WO1999009850A1 - Footwear lacing system - Google Patents

Footwear lacing system Download PDF

Info

Publication number
WO1999009850A1
WO1999009850A1 PCT/US1998/016314 US9816314W WO9909850A1 WO 1999009850 A1 WO1999009850 A1 WO 1999009850A1 US 9816314 W US9816314 W US 9816314W WO 9909850 A1 WO9909850 A1 WO 9909850A1
Authority
WO
WIPO (PCT)
Prior art keywords
lace
guide members
boot
spool
tension
Prior art date
Application number
PCT/US1998/016314
Other languages
French (fr)
Inventor
Gary R. Hammerslag
Original Assignee
Hammerslag Gary R
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25438281&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1999009850(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hammerslag Gary R filed Critical Hammerslag Gary R
Priority to JP2000507254A priority Critical patent/JP4171774B2/en
Priority to EP98938396A priority patent/EP1003392A4/en
Priority to AU86927/98A priority patent/AU8692798A/en
Priority to CA002299253A priority patent/CA2299253A1/en
Publication of WO1999009850A1 publication Critical patent/WO1999009850A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43CFASTENINGS OR ATTACHMENTS OF FOOTWEAR; LACES IN GENERAL
    • A43C11/00Other fastenings specially adapted for shoes
    • A43C11/16Fastenings secured by wire, bolts, or the like
    • A43C11/165Fastenings secured by wire, bolts, or the like characterised by a spool, reel or pulley for winding up cables, laces or straps by rotation
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43CFASTENINGS OR ATTACHMENTS OF FOOTWEAR; LACES IN GENERAL
    • A43C1/00Shoe lacing fastenings
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43CFASTENINGS OR ATTACHMENTS OF FOOTWEAR; LACES IN GENERAL
    • A43C11/00Other fastenings specially adapted for shoes
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43CFASTENINGS OR ATTACHMENTS OF FOOTWEAR; LACES IN GENERAL
    • A43C11/00Other fastenings specially adapted for shoes
    • A43C11/16Fastenings secured by wire, bolts, or the like

Definitions

  • the present invention relates to footwear. More particularly, the present invention relates to a low-friction lacing system that provides equilibrated tightening pressure across a wearer's foot for sports boots and shoes.
  • a traditional method comprises threading a lace in a zig-zag pattern through eyelets that run in two parallel rows attached to opposite sides of the shoe.
  • the shoe is tightened by first tensioning opposite ends of the threaded lace to pull the two rows of eyelets towards the midline of the foot and then tying the ends in a knot to maintain the tension.
  • a number of drawbacks are associated with this type of lacing system.
  • laces do not adequately distribute the tightening force along the length of the threaded zone, due to friction between the lace and the eyelets, so that portions of the lace are slack and other portions are in tension. Consequently, the higher tensioned portions of the shoe are tighter around certain sections of the foot, particularly the ankle portions which are closer to the lace ends. This is uncomfortable and can adversely affect performance in some sports.
  • Another drawback associated with conventional laces is that it is often difficult to untighten or redistribute tension on the lace, as the wearer must loosen the lace from each of the many eyelets through which the laces are threaded.
  • the lace is not easily released by simply untightening the knot.
  • the friction between the lace and the eyelets often maintains the toe portions and sometimes much of the foot in tension even when the knot is released. Consequently, the user must often loosen the lace individually from each of the eyelets. This is especially tedious if the number of eyelets is high, such as in ice-skating boots or other specialized high performance footwear.
  • Another tightening mechanism comprises buckles which clamp together to tighten the shoe around the wearer's foot.
  • buckles typically are positioned over the upper portion of the shoe.
  • the buckles may be quickly clamped together and drawn apart to tighten and loosen the shoe around the wearer's foot.
  • buckles may be easily and quickly tightened and untightened, they also have certain drawbacks. Specifically, buckles isolate the closure pressure across three or four points along the wearer's foot corresponding to the locations of the buckles. This is undesirable in many circumstances, such as for the use of sport boots where the wearer desires a force line that is evenly distributed along the length of the foot.
  • Another drawback of buckles is that they are typically only useful for hard plastic or other rigid material boots. Buckles are not as practical for use with softer boots, such as ice skates or snowboard boots.
  • the lacing system comprises a footwear member including a first and second opposing closure flaps configured to fit around a foot.
  • a plurality of tubular guide members are positioned on the closure flaps, the guide members having a low friction interior surface.
  • a low friction lace extends through the guide members, the low friction lace having first and second ends attached to a spool.
  • a tightening mechanism is attached to the footwear member and coupled to the spool, the tightening mechanism having a control for incrementally winding the lace around the spool to place the lace in tension, and a release is provided for releasing tension on the spool.
  • a tightening system for a boot having closure flaps comprising a plurality of tubular guide members positioned on opposed edges of the closure flaps.
  • the guide members are manufactured of a low friction material, and a low friction lace is threaded through the guide members.
  • a tightening mechanism is provided to permit tensioning of the lace, and a release mechanism is provided for releasing tension on the lace.
  • a method of balancing tension along the length of a lacing zone in boot there is provided.
  • the method comprises the steps of providing a boot having a first and second opposed sets of guide members, and a lace extending back and forth between the first and second opposed guide members.
  • the guide members and the lace have a relatively low friction interface between them.
  • a rotatable tightening mechanism is provided on the boot for retracting lace thereby advancing the first and second set of opposed guide members towards each other to tighten the boot.
  • the control is rotated to retract lace, thereby advancing the first and second opposing sets of guide members towards each other to tighten the boot, and the laces is permitted to slide through the guide members, to equilibrate tightening force along the length of the lacing zone on the boot.
  • Figure 1 is a side view of a sport boot including a lacing system configured in accordance with the present invention
  • Figure 2 is a front view of the sport boot of Figure 1;
  • Figure 3 is a perspective schematic view of the lacing system of the sport boot of Figure 1;
  • Figure 4 is an exploded perspective view of one embodiment of a tightening mechanism used with the lacing system described herein;
  • Figure 5 is a cross-sectional side view of the assembled tightening mechanism of Figure 4; and Figure 6 is a cross-sectional view of the tightening mechanism of Figure 5 taken along the line 6-6.
  • the sport boot 20 generally comprises an ice skating or other action sport boot which is tightened around a wearer's foot using a lacing system 22.
  • the lacing system 22 includes a lace 23 ( Figure 2) that is threaded through the boot 20 and attached at opposite ends to a tightening mechanism 25, as described in detail below.
  • the lace 23 is a low friction lace that slides easily through the boot 20 and automatically equilibrates tightening of the boot 20 over the length of the lacing zone, which generally extends along the ankle and foot.
  • the boot 20 includes an upper 24 comprising a toe portion 26, a heel portion 28, and an ankle portion 29 that surrounds the wearer's ankle.
  • An instep portion 30 of the upper 24 is interposed between the toe portion 26 and the ankle portion 29.
  • the instep portion 30 is configured to fit around the upper part of the arch of the medial side of the wearer's foot between the ankle and the toes.
  • a blade 31 (shown in phantom lines) extends downward from the bottom of the boot 20 in an ice-skating embodiment.
  • FIG. 2 is a front elevational view of the boot 20.
  • the top of the boot 20 generally comprises two opposed closure edges or flaps 32 and 34 that partially cover a tongue 36.
  • the lace 23 may be tensioned to draw the flaps 32 and 34 toward each other and tighten the boot 20 around the foot, as described in detail below.
  • the inner edges of the flaps 32 and 34 are shown separated by a distance, it is understood that the flaps 32 and 34 could also be sized to overlap each other when the boot 20 is tightened, such as is known with ski footwear.
  • the tongue 36 extends rearwardly from the toe portion 26 toward the ankle portion
  • the tongue 36 is provided with a low friction top surface 37 to facilitate sliding of the flaps 32 and 34 and lace 23 over the surface of the tongue 32 when the lace 23 is tightened.
  • the low friction surface 37 may be formed integrally with the tongue 32 or applied thereto such as by adhesives, heat bonding, stitching or the like.
  • the surface 37 is formed by adhering a flexible layer of nylon or polytetraf luoroethylene to the top surface of the tongue 36.
  • the tongue 36 is preferably manufactured of a soft material, such as leather.
  • the upper 24 may be manufactured from any from a wide variety of materials known to those skilled in the art.
  • the upper 24 is preferably manufactured from a soft leather material that conforms to the shape of the wearer's foot.
  • the upper 24 may be manufactured of a hard or soft plastic. It is also contemplated that the upper 24 could be manufactured from any of a variety of other known materials.
  • the lace 23 is threaded in a crossing pattern along the midline of the foot between two generally parallel rows of side retaining members 40 located on the flaps 32 and 34.
  • the side retaining members 40 each consist of a strip of material looped around the top and bottom edges of the flaps 32 and 34 so as to define a space in which guides 50 are positioned. The lace 23 slides through the guides 50 during tightening and untighteni ⁇ g of the lace 23, as described more fully below.
  • the guides 50 may be attached to the flaps 32 and 34 or to other spaced apart portions of the shoe through any of a variety of manners, as will be appreciated by those of skill in the art in view of the disclosure herein.
  • the retaining members 40 can be deleted and the guide 50 sewn directly onto the surface of the flap 32 or 34 or opposing sides of the upper. Stitching the guide 50 directly to the flap 32 or 34 may advantageously permit optimal control over the force distribution along the length of the guide 50.
  • the guide 50 may tend to want to bend and to possibly even kink near the curved transition in between longitudinal portion 51 and transverse portion 53 as will be discussed.
  • the attachment mechanism for attaching the guide member 50 to the shoe preferably provides sufficient support of the guide member to resist bending and/or kinking. Sufficient support is particularly desirable on the inside radius of any curved portions particularly near the ends of the guide member 50.
  • the lace 23 also extends around the ankle portion 29 through a pair of upper retaining members 44a and 44b located on the ankle portion 29.
  • the upper retaining members 44a and 44b each comprise a strip of material having a partially raised central portion that defines a space between the retaining members 44 and the upper 24.
  • An upper guide member 52 extends through each of the spaces for guiding the lace 23 around either side of the ankle portion 29 to the tightening mechanism 25.
  • FIG. 3 is a schematic perspective view of the lacing system 22 of the boot 20.
  • each of the side and top guide members 50 and 52 has a tube-like configuration having a central lumen 54.
  • Each lumen 54 has an inside diameter that is larger than the outside diameter of the lace 23 to facilitate sliding of the lace 23 through the side and top guide members 50, 52 and prevent binding of the lace 23 during tightening and untightening.
  • the inside diameter of the lumen is approximately 0.040 inches, to cooperate with a lace having an outside diameter of about 0.027".
  • the diameter of the lumen 54 can be varied to fit specific desired lace dimensions and other design considerations.
  • the side guide members 50 each have a generally U-shape that opens towards the midline of the shoe.
  • each of the side guide members 50 comprise a longitudinal portion 51 and two inclined or transverse portions 53 extending therefrom.
  • the length of the longitudinal portion 51 may be varied to adjust the distribution of the closing pressure that the lace 23 applies to the upper 24 when the lace 23 is under tension.
  • the length of the longitudinal portion 51 need not be the same for all guide members 50 on a particular shoe.
  • the longitudinal portion 51 may be shortened near the ankle portion 29 to increase the closing pressure that the lace 23 applies to the ankles of the wearer.
  • the length of the longitudinal portion 51 will fall within the range of from about V to about 3", and, in some embodiments, within the range of from about YF to about 4". In one snowboard application, the longitudinal portion 51 had a length of about 2".
  • the length of the transverse portion 53 is generally within the range of from about V ⁇ " to about 1 ". In one snowboard embodiment, the length of transverse portion 53 was about Vi".
  • Different specific length combinations can be readily optimized for a particular boot design through routine experimentation by one of ordinary skill in the art in view of the disclosure herein.
  • the transition In between the longitudinal portion 51 and transverse portion 53 is a curved transition.
  • the transition has a substantially uniform radius throughout, or smooth progressive curve without any abrupt edges or sharp changes in radius.
  • This construction provides a smooth surface over which the lace 23 can slide, as it rounds the corner.
  • the transverse section 53 can in some embodiments be deleted, as long as a rounded cornering surface if provided to facilitate sliding of the lace 23.
  • the radius of the transition is preferably greater than about 0.1 ", and generally within the range of from about 0.125" to about 0.4".
  • the upper guide members 52 extend substantially around opposite sides of the ankle portion 29.
  • Each upper guide member 52 has a proximal end 56 and a distal end 55.
  • the distal ends 55 are positioned near the top of the tongue 36 for receipt of the lace 23 from the uppermost side guide members 50.
  • the proximal ends 56 are coupled to the tightening mechanism 25.
  • the proximal ends 56 include rectangular coupling mounts 57 that engage with the tightening mechanism 25 for feeding the ends of the lace 23 therein, as described more fully below.
  • the guide members 50, 52 are preferably manufactured of a low friction material, such as a lubricous polymer or metal, that facilitates the slidability of the lace 23 therethrough.
  • the guides 50, 52 can be made from any convenient substantially rigid material, and then be provided with a lubricous coating on at least the inside surface of lumen 54 to enhance slidability.
  • the guide members 50 and 52 are preferably substantially rigid to prevent bending and kinking of the guide members 50, 52 and/or the lace 23 within any of the guide members 50 and 52 as the lace 23 is tightened.
  • the guide members 50, 52 may be manufactured from straight tube of material that is cold bent or heated and bent to a desired shape.
  • the guide members 50, 52 may be constructed in a manner that permits bending, retains a low friction surface, yet resist kinking.
  • guide members 50, 52 may comprise a spring coil, either with the spring coil exposed or the spring coil provided with a polymeric coating on the inside surface or outside surface or both. The provision of a spring coil guide satisfies the need for lateral flexibility in some embodiments, yet retains a hard interior surface which help to minimize friction between the guide and the lace.
  • the guide 50 may comprise a plurality of coaxially-aligned segments of a hard polymeric or metal tube material.
  • a plurality of tubing segments each segment having an axial length within the range of from about 0.1 " to about 1.0", and preferably about 0.25" or less can be coaxially aligned, either in end-to-end contact or axially spaced apart along the length of the guide 50, 52.
  • Adjacent tubular segments can be maintained in a coaxial relationship such as by the provision of an outer flexible polymeric jacket.
  • the shape of the tubular guide may be retained such as by stitching the guide onto the side of the shoe in the desired orientation, or through other techniques which will be apparent to those of skill in the art in view of the disclosure herein.
  • the guide members 50, 52 comprise an open channel having, for example, a semicircular or "U" shaped cross section.
  • the guide channel is preferably mounted on the boot such that the channel opening faces away from the midline of the boot, so that a lace under tension will be retained therein.
  • One or more retention strips, stitches or flaps may be provided for "closing" the open side of the channel, to prevent the lace from escaping when tension on the lace is released.
  • the axial length of the channel can be preformed in a generally U configuration like the illustrated tubular embodiment, and may be continuous or segmented as described in connection with the tubular embodiment.
  • lace channels may be molded as a single piece, such as several guide channels molded to a common backing support strip which can be adhered or stitched to the shoe.
  • a right lace retainer strip and a left lace retainer strip can be secured to opposing portions of the top or sides of the shoe to provide a right set of guide channels and a left set of guide channels.
  • the lace 23 may be formed from any of a wide variety of polymeric or metal materials or combinations thereof, which exhibit sufficient axial strength and bendability for the present application.
  • any of a wide variety of solid core wires, solid core polymers, or multi-filament wires or polymers, which may be woven, braided, twisted or otherwise oriented can be used.
  • a solid or multi-filament metal core can be provided with a polymeric coating, such as PTFE or others known in the art, to reduce friction.
  • the lace 23 comprises a stranded cable, such as a 7 strand by 7 strand cable manufactured of stainless steel.
  • the outer surface of the lace 23 is preferably coated with a lubricous material, such as nylon or Teflon.
  • the diameter of the lace 23 ranges from 0.024 inches to 0.060 inches and is preferably 0.027 inches.
  • the lace 23 is desirably strong enough to withstand loads of at least 40 pounds and preferably loads up to 90 pounds.
  • a lace 23 of at least five feet in length is suitable for most footwear sizes, although smaller or larger lengths could be used depending upon the lacing system design.
  • the tightening mechanism 25 is mounted to the rear of the upper 24 by fasteners 64. Although the tightening mechanism 25 is shown mounted to the rear of the boot 20, it is understood that the tightening mechanism 25 could be located at any of a wide variety of locations on the boot 20. In the case of an ice skating boot, the tightening mechanism is preferably positioned over a top portion of the tongue 36. The tightening mechanism 25 may alternatively be located on the bottom of the heal of the boot, on the medial or the lateral sides of the upper or sole, as well as anywhere along the midline of the shoe facing forward or upward. Location of the tightening mechanism 25 may be optimized in view of a variety of considerations, such as overall boot design as well as the intended use of the boot.
  • the shape and overall volume of the tightening mechanism 25 can be varied widely, depending upon the gear train design, and the desired end use and location on the boot.
  • a relatively low profile tightening mechanism 25 is generally preferred.
  • the mounted profile of the tightening mechanism 25 can be further reduced by recessing the tightening mechanism 25 into the wall or tongue of the boot.
  • Boots for many applications have a relatively thick wall, such as due to structural support and/or thermal insulation and comfort requirements.
  • the tightening mechanism may be recessed into the wall of the boot by as much as %" or more in some locations and for some boots, or on the order of about V ⁇ " or YF for other location and/or other boots, without adversely impacting the comfort and functionality of the boot.
  • the tightening mechanism 25 comprises a control such as a lever, crank or knob, which can be manipulated to retract lace 23 therein.
  • the tightening mechanism preferably comprises a release such as a button or lever, for disengaging the tightening mechanism to permit the lace 23 to be withdrawn freely therefrom.
  • the tightening mechanism 25 in the illustrated embodiment generally comprises a rectangular housing 60 and a circular knob 62 rotatably mounted thereto.
  • the knob 62 may be rotated to wind the ends of the lace 23 into the housing 60 and thereby tension the lace 23 to reduce slack.
  • the lace 23 pulls the side guide members 50, and thereby the flaps 32 and 34, toward the midline of the boot to tighten the upper 24 around a foot.
  • the tightening mechanism 25 advantageously includes an internal gear mechanism to allow the wearer to easily turn the knob 62 to retract the lace 23.
  • the gear mechanism is configured to incrementally pull and retain a predetermined length of lace as the knob 62 is rotated, as described in detail below. A user may thus advantageously continuously adjust the tension in the lace 23 to a desired comfort and performance level.
  • knob 62 may be rotated either manually or through the use of a tool or small motor attached to the knob 62.
  • any of a variety of known mechanical structures can be utilized to permit winding of the spool to increase tension on the lace, yet resist unwinding of the spool until desired.
  • any of a wide variety of ratchet structures can be used for this purpose.
  • a sprague clutch or similar structure will permit one-way rotation of a shaft while resisting rotation in the opposite direction.
  • a release lever 63 is located along a side of the housing 60.
  • the release lever may be rotated to disengage the internal gear mechanism to release tension in the lace 23 and loosen the upper 23 around the wearer's foot, as described in detail below. This advantageously allows a user to quickly and easily untighten the lacing system by simply turning the release lever 63.
  • the low friction relationship between the lace 23 and cable guides 50, 52 greatly facilitate tightening and untightening of the lacing system 20. Specifically, because the lace 23 and cable guides 50 and 52 are manufactured or coated with a low friction material, the lace 23 slides easily through the cable guides without catching. The lace 23 thus automatically distributes the tension across its entire length so that tightening pressure is evenly distributed along the length of the ankle and foot. When the tension in the lace 23 is released by actuating the release lever, the lace 23 slides easily through the cable guides 50 and 52 to release tension and evenly distribute any slack among the length of the lace.
  • the low friction tongue 36 also facilitates moving of the flaps 32, 34 away from each other when the lace 23 is loosened.
  • FIG 4 is an exploded perspective view of the various components of one embodiment of the tightening mechanism 25.
  • the housing 60 consists of a pair of interlocking halves 64a and 64b that are mated to each other using fasteners 66, such as screws.
  • the housing 60 encloses a gear mechanism 70 that preferably -o- rotatably fits within cavities 65 in the inner surfaces of the halves 64a and 64b.
  • the gear mechanism 70 comprises first, second, and third gear wheels 72, 74, and 76, respectively, that rotatably engage with each other when the tightening mechanisms 25 is assembled.
  • the first gear wheel 72 includes a shaft 78 about which the first gear wheel rotates.
  • a first portion of the shaft 78 extends through an aperture in the housing halve 64a.
  • a second portion of the shaft 78 extends through an aperture in the halve 64b.
  • the knob 62 mounts to the shaft 78 through a mounting hole 80 in the knob 62.
  • a mounting pin 76 removably secures the knob 62 to the shaft 78 in a well known manner.
  • the first gear wheel 72 also includes a ratchet section 82 having a plurality of sloped teeth 83 ( Figure 6) positioned circumferentially around the axis of the first gear wheel 72.
  • the sloped teeth 83 are configured to mate with a pawl 84 to prevent undesired backward rotation of the first gear wheel 72, as described more fully below.
  • a biasing member 86 couples to a peg 90 that extends from the pawl 84.
  • the biasing member 86 biases the pawl 84 against the ratchet teeth when the gear mechanism 70 is assembled.
  • the third gear wheel 72 also includes a gear section 92 having a series of gear teeth that extend around the periphery of the third gear wheel 72.
  • the second gear wheel 74 includes a first gear section 94 and a stepped second gear section 96 having a diameter smaller than the first gear section 94 on a common axis of rotation.
  • the first gear section 94 has gear teeth that are configured to mesh with the gear section 92 of the first gear wheel 72.
  • An aperture 97 extends centrally through the second gear wheel 74.
  • the aperture 97 is sized to rotatably receive a post 98 that extends from the housing halve 64b.
  • the second gear wheel 74 rotates about the post 98 during actuation of the assembled gear mechanism 70.
  • the third gear wheel 76 includes a gear section 100 that is configured to mesh with the second gear section 96 of the second gear wheel 74.
  • the third gear wheel also includes a spool section 102 comprising grooves 104, 106 that extend around the periphery of the third gear wheel 76.
  • the grooves 104, 106 are sized to receive opposite ends of the lace 23 in a winding fashion during actuation of the gear mechanism 25.
  • the ends 107 and 108 of the lace 23 are each provided with anchors 109 that mate with seating holes
  • the seating holes 110 are diametrically positioned on the third gear wheel 76.
  • the coupling mounts 57 fit into a corresponding aperture in the housing halve 64 to maintain the distal ends 56 of the guide member 50 in a fixed position relative to the tightening mechanism.
  • any of a variety of spool or reel designs can be utilized in the context of the present invention, as will be apparent to those of skill in the art in view of the disclosure herein.
  • a single groove spool can be utilized.
  • a dual groove spool or two side-by-side spools as illustrated has the advantage of permitting convenient simultaneous retraction of both lace ends 107 and 108.
  • the lace conveniently wraps around the spool in opposite directions using a single rotatable shaft as will be apparent from Figure 4.
  • one end of the lace can be fixed to a guide or other portion of the boot and the other end is wound around the spool.
  • both ends of the lace can be fixed to the boot, such as near the toe region and a middle section of the lace is attached to the spool.
  • the cavity 65 is toleranced to fit closely around the outer circumference of the spool, to capture the lace.
  • the gap between the outer flange walls surrounding each groove and the interior surface of the cavity 65 are preferably smaller than the diameter of the lace. In this manner, the risk of tangling the lace within the winding mechanism can be minimized.
  • Any of a variety of attachment structures for attaching the ends of the lace to the spool can be used.
  • the lace may conveniently be attached to the spool by threading the lace through an aperture and providing a transversely oriented set screw so that the set screw can be tightened against the lace and to attach the lace to the spool.
  • set screws or other releasabie clamping structures facilitates disassembly and reassembly of the device, and replacement of the lace as will be apparent to those of skill in the art.
  • Rotation of the third gear wheel 76 causes the ends 107 and 108 of the lace 23 to wind around the grooves 104 and 106, respectively, and thereby pull the length of the lace 23 into the tightening mechanism 25 and place the lace 23 in tension. It is understood that the ends 107, 108 of the lace 23 wind around the spool section 102 at an equal rate so that tension is evenly applied to both ends of the lace 23.
  • the third gear wheel includes a central aperture 111 sized to rotatably receive the shaft 78 on the first gear wheel 72. The third gear wheel 76 rotates about the shaft 78 during actuation of the gear mechanism 70.
  • the third gear wheel 76 has a diameter of 0.625 inches.
  • the second gear section 96 of the second gear wheel 74 preferably has a diameter of approximately 0.31 inches and the first gear section preferably has a diameter approximately equal to the diameter of the third gear wheel 76.
  • the first gear wheel 72 preferably has a diameter of approximately 0.31 inches.
  • Figure 5 illustrates a cross-sectional view of the assembled tightening mechanism 25.
  • the shaft 78 of the first gear wheel 72 is journaled within apertures 112 and 114 in the housing halves 64a and 64b, respectively.
  • the knob 62 is mounted over the portion of the shaft 78 extending out of the halve 64a through the aperture 1 12.
  • the first, second, and third gear wheels 72, 74, and 76, respectively are in meshed engagement with each other.
  • the gear section 92 of the first gear wheel 72 is in meshed engagement with the first gear section 94 on the second gear wheel.
  • the second gear section 96 on the second gear wheel 94 is in meshed engagement with the gear section 100 of the third gear wheel 76.
  • rotation of the knob 62 causes the first gear wheel 72 to rotate and thereby cause the second gear wheel to rotate in an opposite direction by means of the meshed engagement between the gear sections 92 and 94.
  • This in turn causes the third gear wheel 76 to rotate in the direction of knob rotation by means of the meshed engagement between the gear sections 96 and 100.
  • Figure 6 is a cross-sectional view of the tightening mechanism 25 taken along the line 6-6 of Figure 5.
  • the biasing member 86 maintains the pawl 84 in locked engagement with the sloped teeth 83 on the ratchet section 82.
  • the pawl 84 thus inhibits clockwise rotation of the knob 62 and loosening of the lace 23.
  • the sloped teeth 83 do not inhibit counterclockwise rotation of the knob 62 because the pawl 84 slides over the teeth 83 when the knob 64 is rotated clockwise.
  • the pawl 84 automatically engages each of the teeth 83 to advantageously allow the user to incrementally adjust the amount of lace 23 that is drawn into the tightening mechanism 25.
  • the release lever 63 communicates with the pawl 84 through a shaft 116 that extends through the housing 60.
  • a lower end of the shaft 116 is provided with a cam member 118.
  • the release lever 63 may be rotated about the shaft 116 to cause the cam member 118 to also rotate and push the pawl 84 away from engagement with the ratchet teeth 83.
  • the pawl 84 disengages from the ratchet teeth, the first gear wheel 72, and each of the other gear wheels 74 and 76, are free to rotate.
  • the tension, if any, in the lace 23 causes the lace 23 to automatically unwind from the spooling section 102.
  • the release lever 63 is thus used to quickly untighten the boot 20 from around the foot. It will be appreciated that the low friction relationship between the lace 23 and the guide members 50 and 52 facilitates sliding of the lace 23 within the guide members so that the lace untightens quickly and smoothly by simply turning the release lever 63 and then manually pulling the tongue 36 forward. It is contemplated that the resistance to expansion applied by the lace 23 could be supplemented, such as through straps that extend transversely across the boot 20 at locations where increased tightness or support are desired. For instance, a strap could extend across the instep portion 30 from one side of the boot 20 to another side of the boot. A second or lone strap could also extend around the ankle portion 29. Any of a wide variety of well known mechanisms could be used to adjust and maintain the tightness of the straps, such as snaps, buckles, clamps, hook and loop fasteners and the like.
  • the footwear lacing system 20 described herein advantageously allows a user to incrementally tighten the boot 20 around the user's foot.
  • the low friction lace 23 combined with the low friction guide members 50, 52 produce easy sliding of lace 23 within the guide members 50 and 52.
  • the low friction tongue 36 facilitates opening and closure of the flaps 32 and 34 as the lace is tightened.
  • the lace 23 equilibrates tension along its length so that the lacing system 23 provides an even distribution of tightening pressure across the foot.
  • the tightening pressure may be incrementally adjusted by turning the knob on the tightening mechanism 25.
  • a user may quickly untighten the boot 20 by simply turning the release lever 63 to automatically release the lace 23 from the tightening mechanism 25.

Abstract

A footwear lacing system (22) comprising a lace (23) attached to a tightening mechanism (25). The lace (23) is threaded through a series of opposing guide members (50) positioned along the top of the foot and ankle portions (24 and 29) of the footwear (20). The lace (23) and guides (50) preferably have low friction surfaces to facilitate sliding of the lace (23) through the guide members (50) so that the lace (23) evenly distributes tension across the footwear member (20). The tightening mechanism (25) allows incremental adjustment to the tension of the lace (23). A release mechanism (63) allows a user to quickly loosen the lace (23).

Description

F00TWEAR LACING SYSTEM
The present invention relates to footwear. More particularly, the present invention relates to a low-friction lacing system that provides equilibrated tightening pressure across a wearer's foot for sports boots and shoes.
Background of the Invention There currently exists a number of mechanisms and methods for tightening a shoe or boot around a wearer's foot. A traditional method comprises threading a lace in a zig-zag pattern through eyelets that run in two parallel rows attached to opposite sides of the shoe. The shoe is tightened by first tensioning opposite ends of the threaded lace to pull the two rows of eyelets towards the midline of the foot and then tying the ends in a knot to maintain the tension. A number of drawbacks are associated with this type of lacing system. First, laces do not adequately distribute the tightening force along the length of the threaded zone, due to friction between the lace and the eyelets, so that portions of the lace are slack and other portions are in tension. Consequently, the higher tensioned portions of the shoe are tighter around certain sections of the foot, particularly the ankle portions which are closer to the lace ends. This is uncomfortable and can adversely affect performance in some sports.
Another drawback associated with conventional laces is that it is often difficult to untighten or redistribute tension on the lace, as the wearer must loosen the lace from each of the many eyelets through which the laces are threaded. The lace is not easily released by simply untightening the knot. The friction between the lace and the eyelets often maintains the toe portions and sometimes much of the foot in tension even when the knot is released. Consequently, the user must often loosen the lace individually from each of the eyelets. This is especially tedious if the number of eyelets is high, such as in ice-skating boots or other specialized high performance footwear. Another tightening mechanism comprises buckles which clamp together to tighten the shoe around the wearer's foot. Typically, three to four or more buckles are positioned over the upper portion of the shoe. The buckles may be quickly clamped together and drawn apart to tighten and loosen the shoe around the wearer's foot. Although buckles may be easily and quickly tightened and untightened, they also have certain drawbacks. Specifically, buckles isolate the closure pressure across three or four points along the wearer's foot corresponding to the locations of the buckles. This is undesirable in many circumstances, such as for the use of sport boots where the wearer desires a force line that is evenly distributed along the length of the foot. Another drawback of buckles is that they are typically only useful for hard plastic or other rigid material boots. Buckles are not as practical for use with softer boots, such as ice skates or snowboard boots.
There is therefore a need for a tightening system for footwear that does not suffer from the aforementioned drawbacks. Such a system should automatically distribute lateral tightening forces along the length of the wearer's ankle and foot. The tightness of the shoe should desirably be easy to loosen and incrementally adjust. The tightening system should close tightly and should not loosen up with continued use.
Summary of the Invention There is provided in accordance with one aspect of the present invention a footwear lacing system. The lacing system comprises a footwear member including a first and second opposing closure flaps configured to fit around a foot. A plurality of tubular guide members are positioned on the closure flaps, the guide members having a low friction interior surface. A low friction lace extends through the guide members, the low friction lace having first and second ends attached to a spool. A tightening mechanism is attached to the footwear member and coupled to the spool, the tightening mechanism having a control for incrementally winding the lace around the spool to place the lace in tension, and a release is provided for releasing tension on the spool. In accordance with another aspect of the present invention, there is provided a tightening system for a boot having closure flaps, the tightening system comprising a plurality of tubular guide members positioned on opposed edges of the closure flaps. The guide members are manufactured of a low friction material, and a low friction lace is threaded through the guide members. A tightening mechanism is provided to permit tensioning of the lace, and a release mechanism is provided for releasing tension on the lace. In accordance with a further aspect of the present invention, there is provided a method of balancing tension along the length of a lacing zone in boot. The method comprises the steps of providing a boot having a first and second opposed sets of guide members, and a lace extending back and forth between the first and second opposed guide members. The guide members and the lace have a relatively low friction interface between them. A rotatable tightening mechanism is provided on the boot for retracting lace thereby advancing the first and second set of opposed guide members towards each other to tighten the boot. The control is rotated to retract lace, thereby advancing the first and second opposing sets of guide members towards each other to tighten the boot, and the laces is permitted to slide through the guide members, to equilibrate tightening force along the length of the lacing zone on the boot.
Further features and advantages of the present invention will become apparent from the detailed description of preferred embodiments which follows, when considered together with the attached drawings and claims.
Brief Description of the Drawings Figure 1 is a side view of a sport boot including a lacing system configured in accordance with the present invention;
Figure 2 is a front view of the sport boot of Figure 1; Figure 3 is a perspective schematic view of the lacing system of the sport boot of Figure 1;
Figure 4 is an exploded perspective view of one embodiment of a tightening mechanism used with the lacing system described herein;
Figure 5 is a cross-sectional side view of the assembled tightening mechanism of Figure 4; and Figure 6 is a cross-sectional view of the tightening mechanism of Figure 5 taken along the line 6-6. Detailed Description of Preferred Embodiments
Referring to Figure 1, there is disclosed one embodiment of a sport boot 20 prepared in accordance with the present invention. The sport boot 20 generally comprises an ice skating or other action sport boot which is tightened around a wearer's foot using a lacing system 22. The lacing system 22 includes a lace 23 (Figure 2) that is threaded through the boot 20 and attached at opposite ends to a tightening mechanism 25, as described in detail below. The lace 23 is a low friction lace that slides easily through the boot 20 and automatically equilibrates tightening of the boot 20 over the length of the lacing zone, which generally extends along the ankle and foot. Although the present invention will be described with reference to an ice skating boot, it is to be understood that the principles discussed herein are readily applicable to any of a wide variety of footwear, and are particularly applicable to sports shoes or boots suitable for snow boarding, roller skating, skiing and the like.
The boot 20 includes an upper 24 comprising a toe portion 26, a heel portion 28, and an ankle portion 29 that surrounds the wearer's ankle. An instep portion 30 of the upper 24 is interposed between the toe portion 26 and the ankle portion 29. The instep portion 30 is configured to fit around the upper part of the arch of the medial side of the wearer's foot between the ankle and the toes. A blade 31 (shown in phantom lines) extends downward from the bottom of the boot 20 in an ice-skating embodiment.
Figure 2 is a front elevational view of the boot 20. As shown, the top of the boot 20 generally comprises two opposed closure edges or flaps 32 and 34 that partially cover a tongue 36. Generally, the lace 23 may be tensioned to draw the flaps 32 and 34 toward each other and tighten the boot 20 around the foot, as described in detail below. Although the inner edges of the flaps 32 and 34 are shown separated by a distance, it is understood that the flaps 32 and 34 could also be sized to overlap each other when the boot 20 is tightened, such as is known with ski footwear. Referring to Figure 2, the tongue 36 extends rearwardly from the toe portion 26 toward the ankle portion
29 of the boot 20. Preferably, the tongue 36 is provided with a low friction top surface 37 to facilitate sliding of the flaps 32 and 34 and lace 23 over the surface of the tongue 32 when the lace 23 is tightened. The low friction surface 37 may be formed integrally with the tongue 32 or applied thereto such as by adhesives, heat bonding, stitching or the like. In one embodiment, the surface 37 is formed by adhering a flexible layer of nylon or polytetraf luoroethylene to the top surface of the tongue 36. The tongue 36 is preferably manufactured of a soft material, such as leather.
The upper 24 may be manufactured from any from a wide variety of materials known to those skilled in the art. In the case of a snow board boot, the upper 24 is preferably manufactured from a soft leather material that conforms to the shape of the wearer's foot. For other types of boots or shoes, the upper 24 may be manufactured of a hard or soft plastic. It is also contemplated that the upper 24 could be manufactured from any of a variety of other known materials.
As shown in Figure 2, the lace 23 is threaded in a crossing pattern along the midline of the foot between two generally parallel rows of side retaining members 40 located on the flaps 32 and 34. In the illustrated embodiment, the side retaining members 40 each consist of a strip of material looped around the top and bottom edges of the flaps 32 and 34 so as to define a space in which guides 50 are positioned. The lace 23 slides through the guides 50 during tightening and untighteniπg of the lace 23, as described more fully below. In the illustrated embodiment, there are three side retaining members 40 on each flap 32, 34 although the number of retaining members 40 may vary. In some embodiments, four, five or six or more retaining members 40 may be desirable on each side of the boot. The guides 50 may be attached to the flaps 32 and 34 or to other spaced apart portions of the shoe through any of a variety of manners, as will be appreciated by those of skill in the art in view of the disclosure herein. For example, the retaining members 40 can be deleted and the guide 50 sewn directly onto the surface of the flap 32 or 34 or opposing sides of the upper. Stitching the guide 50 directly to the flap 32 or 34 may advantageously permit optimal control over the force distribution along the length of the guide 50. For example, when the lace 23 is under relatively high levels of tension, the guide 50 may tend to want to bend and to possibly even kink near the curved transition in between longitudinal portion 51 and transverse portion 53 as will be discussed. Bending of the guide member under tension may increase friction between the guide member and the lace 23, and, severe bending or kinking of the guide member 50 may undesirably interfere with the intended operation of the lacing system. Thus, the attachment mechanism for attaching the guide member 50 to the shoe preferably provides sufficient support of the guide member to resist bending and/or kinking. Sufficient support is particularly desirable on the inside radius of any curved portions particularly near the ends of the guide member 50.
As shown in Figures 1 and 2, the lace 23 also extends around the ankle portion 29 through a pair of upper retaining members 44a and 44b located on the ankle portion 29. The upper retaining members 44a and 44b each comprise a strip of material having a partially raised central portion that defines a space between the retaining members 44 and the upper 24. An upper guide member 52 extends through each of the spaces for guiding the lace 23 around either side of the ankle portion 29 to the tightening mechanism 25.
Figure 3 is a schematic perspective view of the lacing system 22 of the boot 20. As shown, each of the side and top guide members 50 and 52, has a tube-like configuration having a central lumen 54. Each lumen 54 has an inside diameter that is larger than the outside diameter of the lace 23 to facilitate sliding of the lace 23 through the side and top guide members 50, 52 and prevent binding of the lace 23 during tightening and untightening. In one embodiment, the inside diameter of the lumen is approximately 0.040 inches, to cooperate with a lace having an outside diameter of about 0.027". However, it will be appreciated that the diameter of the lumen 54 can be varied to fit specific desired lace dimensions and other design considerations.
In the illustrated embodiment, the side guide members 50 each have a generally U-shape that opens towards the midline of the shoe. Preferably, each of the side guide members 50 comprise a longitudinal portion 51 and two inclined or transverse portions 53 extending therefrom. The length of the longitudinal portion 51 may be varied to adjust the distribution of the closing pressure that the lace 23 applies to the upper 24 when the lace 23 is under tension. In addition, the length of the longitudinal portion 51 need not be the same for all guide members 50 on a particular shoe. For example, the longitudinal portion 51 may be shortened near the ankle portion 29 to increase the closing pressure that the lace 23 applies to the ankles of the wearer. In general, the length of the longitudinal portion 51 will fall within the range of from about V to about 3", and, in some embodiments, within the range of from about YF to about 4". In one snowboard application, the longitudinal portion 51 had a length of about 2". The length of the transverse portion 53 is generally within the range of from about Vβ" to about 1 ". In one snowboard embodiment, the length of transverse portion 53 was about Vi". Different specific length combinations can be readily optimized for a particular boot design through routine experimentation by one of ordinary skill in the art in view of the disclosure herein. -b-
In between the longitudinal portion 51 and transverse portion 53 is a curved transition. Preferably, the transition has a substantially uniform radius throughout, or smooth progressive curve without any abrupt edges or sharp changes in radius. This construction provides a smooth surface over which the lace 23 can slide, as it rounds the corner. The transverse section 53 can in some embodiments be deleted, as long as a rounded cornering surface if provided to facilitate sliding of the lace 23. In an embodiment which has a transverse section 53 and a radiused transition, with a guide member 50 having an outside diameter of 0.090" and a lace 23 having an outside diameter of 0.027", the radius of the transition is preferably greater than about 0.1 ", and generally within the range of from about 0.125" to about 0.4".
Referring to Figure 3, the upper guide members 52 extend substantially around opposite sides of the ankle portion 29. Each upper guide member 52 has a proximal end 56 and a distal end 55. The distal ends 55 are positioned near the top of the tongue 36 for receipt of the lace 23 from the uppermost side guide members 50. The proximal ends 56 are coupled to the tightening mechanism 25. In the illustrated embodiment, the proximal ends 56 include rectangular coupling mounts 57 that engage with the tightening mechanism 25 for feeding the ends of the lace 23 therein, as described more fully below. The guide members 50, 52 are preferably manufactured of a low friction material, such as a lubricous polymer or metal, that facilitates the slidability of the lace 23 therethrough. Alternatively, the guides 50, 52 can be made from any convenient substantially rigid material, and then be provided with a lubricous coating on at least the inside surface of lumen 54 to enhance slidability. The guide members 50 and 52 are preferably substantially rigid to prevent bending and kinking of the guide members 50, 52 and/or the lace 23 within any of the guide members 50 and 52 as the lace 23 is tightened. The guide members 50, 52 may be manufactured from straight tube of material that is cold bent or heated and bent to a desired shape.
Alternatively, the guide members 50, 52 may be constructed in a manner that permits bending, retains a low friction surface, yet resist kinking. For example, guide members 50, 52 may comprise a spring coil, either with the spring coil exposed or the spring coil provided with a polymeric coating on the inside surface or outside surface or both. The provision of a spring coil guide satisfies the need for lateral flexibility in some embodiments, yet retains a hard interior surface which help to minimize friction between the guide and the lace.
As an alternate guide member 50, 52 design which increases lateral flexibility yet retains a hard interior lace contacting surface, the guide 50 may comprise a plurality of coaxially-aligned segments of a hard polymeric or metal tube material. Thus, a plurality of tubing segments, each segment having an axial length within the range of from about 0.1 " to about 1.0", and preferably about 0.25" or less can be coaxially aligned, either in end-to-end contact or axially spaced apart along the length of the guide 50, 52. Adjacent tubular segments can be maintained in a coaxial relationship such as by the provision of an outer flexible polymeric jacket. The shape of the tubular guide may be retained such as by stitching the guide onto the side of the shoe in the desired orientation, or through other techniques which will be apparent to those of skill in the art in view of the disclosure herein. As an alternative to the previously described tubular guide members, the guide members 50, 52 comprise an open channel having, for example, a semicircular or "U" shaped cross section. The guide channel is preferably mounted on the boot such that the channel opening faces away from the midline of the boot, so that a lace under tension will be retained therein. One or more retention strips, stitches or flaps may be provided for "closing" the open side of the channel, to prevent the lace from escaping when tension on the lace is released. The axial length of the channel can be preformed in a generally U configuration like the illustrated tubular embodiment, and may be continuous or segmented as described in connection with the tubular embodiment.
Several guide channels may be molded as a single piece, such as several guide channels molded to a common backing support strip which can be adhered or stitched to the shoe. Thus, a right lace retainer strip and a left lace retainer strip can be secured to opposing portions of the top or sides of the shoe to provide a right set of guide channels and a left set of guide channels. The lace 23 may be formed from any of a wide variety of polymeric or metal materials or combinations thereof, which exhibit sufficient axial strength and bendability for the present application. For example, any of a wide variety of solid core wires, solid core polymers, or multi-filament wires or polymers, which may be woven, braided, twisted or otherwise oriented can be used. A solid or multi-filament metal core can be provided with a polymeric coating, such as PTFE or others known in the art, to reduce friction. In one embodiment, the lace 23 comprises a stranded cable, such as a 7 strand by 7 strand cable manufactured of stainless steel. In order to reduce friction between the lace 23 and the guide members 50, 52 through which the lace 23 slides, the outer surface of the lace 23 is preferably coated with a lubricous material, such as nylon or Teflon. In a preferred embodiment, the diameter of the lace 23 ranges from 0.024 inches to 0.060 inches and is preferably 0.027 inches. The lace 23 is desirably strong enough to withstand loads of at least 40 pounds and preferably loads up to 90 pounds. A lace 23 of at least five feet in length is suitable for most footwear sizes, although smaller or larger lengths could be used depending upon the lacing system design.
As shown in Figure 3, the tightening mechanism 25 is mounted to the rear of the upper 24 by fasteners 64. Although the tightening mechanism 25 is shown mounted to the rear of the boot 20, it is understood that the tightening mechanism 25 could be located at any of a wide variety of locations on the boot 20. In the case of an ice skating boot, the tightening mechanism is preferably positioned over a top portion of the tongue 36. The tightening mechanism 25 may alternatively be located on the bottom of the heal of the boot, on the medial or the lateral sides of the upper or sole, as well as anywhere along the midline of the shoe facing forward or upward. Location of the tightening mechanism 25 may be optimized in view of a variety of considerations, such as overall boot design as well as the intended use of the boot. The shape and overall volume of the tightening mechanism 25 can be varied widely, depending upon the gear train design, and the desired end use and location on the boot. A relatively low profile tightening mechanism 25 is generally preferred. The mounted profile of the tightening mechanism 25 can be further reduced by recessing the tightening mechanism 25 into the wall or tongue of the boot. Boots for many applications have a relatively thick wall, such as due to structural support and/or thermal insulation and comfort requirements. The tightening mechanism may be recessed into the wall of the boot by as much as %" or more in some locations and for some boots, or on the order of about Vβ" or YF for other location and/or other boots, without adversely impacting the comfort and functionality of the boot.
In general, the tightening mechanism 25 comprises a control such as a lever, crank or knob, which can be manipulated to retract lace 23 therein. In addition, the tightening mechanism preferably comprises a release such as a button or lever, for disengaging the tightening mechanism to permit the lace 23 to be withdrawn freely therefrom.
The tightening mechanism 25 in the illustrated embodiment generally comprises a rectangular housing 60 and a circular knob 62 rotatably mounted thereto. The knob 62 may be rotated to wind the ends of the lace 23 into the housing 60 and thereby tension the lace 23 to reduce slack. As the slack in the lace 23 reduces, the lace 23 pulls the side guide members 50, and thereby the flaps 32 and 34, toward the midline of the boot to tighten the upper 24 around a foot.
The tightening mechanism 25 advantageously includes an internal gear mechanism to allow the wearer to easily turn the knob 62 to retract the lace 23. Preferably, the gear mechanism is configured to incrementally pull and retain a predetermined length of lace as the knob 62 is rotated, as described in detail below. A user may thus advantageously continuously adjust the tension in the lace 23 to a desired comfort and performance level. The knob
62 may be rotated either manually or through the use of a tool or small motor attached to the knob 62.
Any of a variety of known mechanical structures can be utilized to permit winding of the spool to increase tension on the lace, yet resist unwinding of the spool until desired. For example, any of a wide variety of ratchet structures can be used for this purpose. Alternatively, a sprague clutch or similar structure will permit one-way rotation of a shaft while resisting rotation in the opposite direction. These and other structures will be well known to those of ordinary skill in the mechanical arts.
A release lever 63 is located along a side of the housing 60. The release lever may be rotated to disengage the internal gear mechanism to release tension in the lace 23 and loosen the upper 23 around the wearer's foot, as described in detail below. This advantageously allows a user to quickly and easily untighten the lacing system by simply turning the release lever 63.
The low friction relationship between the lace 23 and cable guides 50, 52 greatly facilitate tightening and untightening of the lacing system 20. Specifically, because the lace 23 and cable guides 50 and 52 are manufactured or coated with a low friction material, the lace 23 slides easily through the cable guides without catching. The lace 23 thus automatically distributes the tension across its entire length so that tightening pressure is evenly distributed along the length of the ankle and foot. When the tension in the lace 23 is released by actuating the release lever, the lace 23 slides easily through the cable guides 50 and 52 to release tension and evenly distribute any slack among the length of the lace. The low friction tongue 36 also facilitates moving of the flaps 32, 34 away from each other when the lace 23 is loosened.
Figure 4 is an exploded perspective view of the various components of one embodiment of the tightening mechanism 25. As shown, the housing 60 consists of a pair of interlocking halves 64a and 64b that are mated to each other using fasteners 66, such as screws. The housing 60 encloses a gear mechanism 70 that preferably -o- rotatably fits within cavities 65 in the inner surfaces of the halves 64a and 64b. In the illustrated embodiment, the gear mechanism 70 comprises first, second, and third gear wheels 72, 74, and 76, respectively, that rotatably engage with each other when the tightening mechanisms 25 is assembled.
As shown in Figure 4, the first gear wheel 72 includes a shaft 78 about which the first gear wheel rotates. A first portion of the shaft 78 extends through an aperture in the housing halve 64a. A second portion of the shaft 78 extends through an aperture in the halve 64b. The knob 62 mounts to the shaft 78 through a mounting hole 80 in the knob 62. A mounting pin 76 removably secures the knob 62 to the shaft 78 in a well known manner. When the tightening mechanism 25 is assembled, rotation of the knob 62 causes the first gear wheel 72 to also rotate. Actuation of the gear mechanism 70 is thus accomplished through rotation of the knob 62. Referring to Figure 4, the first gear wheel 72 also includes a ratchet section 82 having a plurality of sloped teeth 83 (Figure 6) positioned circumferentially around the axis of the first gear wheel 72. The sloped teeth 83 are configured to mate with a pawl 84 to prevent undesired backward rotation of the first gear wheel 72, as described more fully below. Toward this end, a biasing member 86 couples to a peg 90 that extends from the pawl 84. The biasing member 86 biases the pawl 84 against the ratchet teeth when the gear mechanism 70 is assembled. The third gear wheel 72 also includes a gear section 92 having a series of gear teeth that extend around the periphery of the third gear wheel 72.
As shown in Figure 4, the second gear wheel 74 includes a first gear section 94 and a stepped second gear section 96 having a diameter smaller than the first gear section 94 on a common axis of rotation. The first gear section 94 has gear teeth that are configured to mesh with the gear section 92 of the first gear wheel 72. An aperture 97 extends centrally through the second gear wheel 74. The aperture 97 is sized to rotatably receive a post 98 that extends from the housing halve 64b. The second gear wheel 74 rotates about the post 98 during actuation of the assembled gear mechanism 70.
Referring to Figure 4, the third gear wheel 76 includes a gear section 100 that is configured to mesh with the second gear section 96 of the second gear wheel 74. The third gear wheel also includes a spool section 102 comprising grooves 104, 106 that extend around the periphery of the third gear wheel 76. The grooves 104, 106 are sized to receive opposite ends of the lace 23 in a winding fashion during actuation of the gear mechanism 25.
The ends 107 and 108 of the lace 23 are each provided with anchors 109 that mate with seating holes
110 in a press fit fashion. The seating holes 110 are diametrically positioned on the third gear wheel 76. When the anchors 109 are mated with the seating holes 110, the ends 107 and 108 of the lace 23 are separately positioned within the grooves 104 and 106, respectively. The coupling mounts 57 fit into a corresponding aperture in the housing halve 64 to maintain the distal ends 56 of the guide member 50 in a fixed position relative to the tightening mechanism.
Any of a variety of spool or reel designs can be utilized in the context of the present invention, as will be apparent to those of skill in the art in view of the disclosure herein. For example, only a single groove spool can be utilized. However, a dual groove spool or two side-by-side spools as illustrated has the advantage of permitting convenient simultaneous retraction of both lace ends 107 and 108. In the illustrated embodiment, with ends 107 and 108 approaching the spool from opposite directions, the lace conveniently wraps around the spool in opposite directions using a single rotatable shaft as will be apparent from Figure 4.
Depending upon the gearing ratio and desired performance, one end of the lace can be fixed to a guide or other portion of the boot and the other end is wound around the spool. Alternatively, both ends of the lace can be fixed to the boot, such as near the toe region and a middle section of the lace is attached to the spool.
Preferably, the cavity 65 is toleranced to fit closely around the outer circumference of the spool, to capture the lace. Thus, the gap between the outer flange walls surrounding each groove and the interior surface of the cavity 65 are preferably smaller than the diameter of the lace. In this manner, the risk of tangling the lace within the winding mechanism can be minimized. Any of a variety of attachment structures for attaching the ends of the lace to the spool can be used.
In addition to the illustrated embodiment, the lace may conveniently be attached to the spool by threading the lace through an aperture and providing a transversely oriented set screw so that the set screw can be tightened against the lace and to attach the lace to the spool. The use of set screws or other releasabie clamping structures facilitates disassembly and reassembly of the device, and replacement of the lace as will be apparent to those of skill in the art.
Rotation of the third gear wheel 76 causes the ends 107 and 108 of the lace 23 to wind around the grooves 104 and 106, respectively, and thereby pull the length of the lace 23 into the tightening mechanism 25 and place the lace 23 in tension. It is understood that the ends 107, 108 of the lace 23 wind around the spool section 102 at an equal rate so that tension is evenly applied to both ends of the lace 23. The third gear wheel includes a central aperture 111 sized to rotatably receive the shaft 78 on the first gear wheel 72. The third gear wheel 76 rotates about the shaft 78 during actuation of the gear mechanism 70.
In a preferred embodiment, the third gear wheel 76 has a diameter of 0.625 inches. The second gear section 96 of the second gear wheel 74 preferably has a diameter of approximately 0.31 inches and the first gear section preferably has a diameter approximately equal to the diameter of the third gear wheel 76. The first gear wheel 72 preferably has a diameter of approximately 0.31 inches. Such a relationship in the gear sizes provides sufficiently small adjustments in the tension of the lace 23 as the gear wheels are turned.
Figure 5 illustrates a cross-sectional view of the assembled tightening mechanism 25. As shown, the shaft 78 of the first gear wheel 72 is journaled within apertures 112 and 114 in the housing halves 64a and 64b, respectively. The knob 62 is mounted over the portion of the shaft 78 extending out of the halve 64a through the aperture 1 12. The first, second, and third gear wheels 72, 74, and 76, respectively are in meshed engagement with each other. Specifically, the gear section 92 of the first gear wheel 72 is in meshed engagement with the first gear section 94 on the second gear wheel. Likewise, the second gear section 96 on the second gear wheel 94 is in meshed engagement with the gear section 100 of the third gear wheel 76. Accordingly, rotation of the knob 62 causes the first gear wheel 72 to rotate and thereby cause the second gear wheel to rotate in an opposite direction by means of the meshed engagement between the gear sections 92 and 94. This in turn causes the third gear wheel 76 to rotate in the direction of knob rotation by means of the meshed engagement between the gear sections 96 and 100.
As the third gear wheel 76 rotates, the ends 107 and 108 of the lace are wound within the grooves 104 and 106 respectively. Rotation of the knob 62 thus winds the lace 23 around the third gear wheel 76 to thereby tighten the boot 20.
As illustrated, counterclockwise rotation (relative to Figure 6) of the knob 62 tightens the lace 23. The tension in the lace 23 is maintained by means of a ratchet mechanism that is described with reference to Figure 6.
Figure 6 is a cross-sectional view of the tightening mechanism 25 taken along the line 6-6 of Figure 5.
As shown, the biasing member 86 maintains the pawl 84 in locked engagement with the sloped teeth 83 on the ratchet section 82. The pawl 84 thus inhibits clockwise rotation of the knob 62 and loosening of the lace 23. It will be understood that the sloped teeth 83 do not inhibit counterclockwise rotation of the knob 62 because the pawl 84 slides over the teeth 83 when the knob 64 is rotated clockwise. As the knob 62 is rotated counterclockwise, the pawl 84 automatically engages each of the teeth 83 to advantageously allow the user to incrementally adjust the amount of lace 23 that is drawn into the tightening mechanism 25. As shown in Figure 6, the release lever 63 communicates with the pawl 84 through a shaft 116 that extends through the housing 60. A lower end of the shaft 116 is provided with a cam member 118. The release lever 63 may be rotated about the shaft 116 to cause the cam member 118 to also rotate and push the pawl 84 away from engagement with the ratchet teeth 83. When the pawl 84 disengages from the ratchet teeth, the first gear wheel 72, and each of the other gear wheels 74 and 76, are free to rotate. When the user actuates the release lever 63, the tension, if any, in the lace 23 causes the lace 23 to automatically unwind from the spooling section 102. The release lever 63 is thus used to quickly untighten the boot 20 from around the foot. It will be appreciated that the low friction relationship between the lace 23 and the guide members 50 and 52 facilitates sliding of the lace 23 within the guide members so that the lace untightens quickly and smoothly by simply turning the release lever 63 and then manually pulling the tongue 36 forward. It is contemplated that the resistance to expansion applied by the lace 23 could be supplemented, such as through straps that extend transversely across the boot 20 at locations where increased tightness or support are desired. For instance, a strap could extend across the instep portion 30 from one side of the boot 20 to another side of the boot. A second or lone strap could also extend around the ankle portion 29. Any of a wide variety of well known mechanisms could be used to adjust and maintain the tightness of the straps, such as snaps, buckles, clamps, hook and loop fasteners and the like.
The footwear lacing system 20 described herein advantageously allows a user to incrementally tighten the boot 20 around the user's foot. The low friction lace 23 combined with the low friction guide members 50, 52 produce easy sliding of lace 23 within the guide members 50 and 52. The low friction tongue 36 facilitates opening and closure of the flaps 32 and 34 as the lace is tightened. The lace 23 equilibrates tension along its length so that the lacing system 23 provides an even distribution of tightening pressure across the foot. The tightening pressure may be incrementally adjusted by turning the knob on the tightening mechanism 25. A user may quickly untighten the boot 20 by simply turning the release lever 63 to automatically release the lace 23 from the tightening mechanism 25.
Although the present invention has been described in terms of certain preferred embodiments, other embodiments can be readily devised by one with skill in the art in view of the foregoing, which will also use the basic concepts of the present invention. Accordingly, the scope of the present invention is to be defined by reference to the following claims.

Claims

WHAT IS CLAIMED IS:
1. A footwear lacing system, comprising: a footwear member including first and second opposing sides configured to fit around a foot; a plurality of opposing tubular guide members positioned on said opposing sides said guide members having a low-friction interior surface; a low-friction lace extending through said guide members, said low friction lace attached to a spool; a tightening mechanism attached to said footwear member and coupled to said spool, said tightening mechanism including a control for winding said lace around said spool to place said lace in tension thereby pulling the opposing sides towards each other, and a release for releasing said tension.
2. A lacing system for footwear, comprising a plurality of tubular guide members attached to said footwear, a low friction lace having two ends, said lace extending through said guide members, a spool coupled to said two ends of said lace, a knob mechanically coupled to said spool wherein rotation of said knob causes said spool to rotate and wind said lace, a ratchet mechanism coupled to said spool to lock a rotation position of said spool, and a release lever coupled to said ratchet mechanism, said release lever configured to uncouple said ratchet mechanism from said spool.
3. A tightening system for a boot having closure flaps, said tightening system comprising a plurality of tubular guide members positioned on opposed edges of said closure flaps, said guide members manufactured of a low-friction material, a low-friction lace threaded through said guide members, a tightening mechanism configured to incrementally tension said lace, and a release mechanism configured to release the tension on said lace.
4. A method of balancing tension along the length of a lacing zone in a boot, comprising the steps of: providing a boot having first and second opposed sets of guide members, and a lace extending back and forth between the first and second opposed guide members, the guide members and lace having a relatively low friction interface therebetween, and a rotatable tightening mechanism on the boot for retracting lace thereby advancing the first and second set of opposed guide members towards each other to tighten the boot- rotating the control to retract lace thereby advancing the first and second opposing sets of guide members towards each other to tighten the boot; and permitting the lace to slide through the guide members, to equilibrate tightening force along the length of the lacing zone on the boot.
PCT/US1998/016314 1997-08-22 1998-08-06 Footwear lacing system WO1999009850A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000507254A JP4171774B2 (en) 1997-08-22 1998-08-06 Tightening system for footwear
EP98938396A EP1003392A4 (en) 1997-08-22 1998-08-06 Footwear lacing system
AU86927/98A AU8692798A (en) 1997-08-22 1998-08-06 Footwear lacing system
CA002299253A CA2299253A1 (en) 1997-08-22 1998-08-06 Footwear lacing system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/917,056 US5934599A (en) 1997-08-22 1997-08-22 Footwear lacing system
US08/917,056 1997-08-22

Publications (1)

Publication Number Publication Date
WO1999009850A1 true WO1999009850A1 (en) 1999-03-04

Family

ID=25438281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1998/016314 WO1999009850A1 (en) 1997-08-22 1998-08-06 Footwear lacing system

Country Status (6)

Country Link
US (2) US5934599A (en)
EP (1) EP1003392A4 (en)
JP (2) JP4171774B2 (en)
AU (1) AU8692798A (en)
CA (1) CA2299253A1 (en)
WO (1) WO1999009850A1 (en)

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5855595A (en) * 1994-04-04 1999-01-05 Asahi Kogaku Kogyo Kabushiki Kaisha Tumor treatment apparatus
EP1213981A1 (en) * 1999-09-02 2002-06-19 Boa Technology, Inc. Footwear lacing system
DE10311175A1 (en) * 2003-03-12 2004-09-30 Goodwell International Ltd., Tortola Lace
US7065906B2 (en) 2002-11-25 2006-06-27 Adidas International Marketing B.V. Shoe closure system
CN101193568B (en) * 2004-10-29 2011-11-30 博技术有限公司 Reel based closure system and footwear using the system
WO2014203416A1 (en) * 2013-06-18 2014-12-24 株式会社ジャパーナ Shoelace winding reel
US9125455B2 (en) 2010-01-21 2015-09-08 Boa Technology Inc. Guides for lacing systems
US9248040B2 (en) 2012-08-31 2016-02-02 Boa Technology Inc. Motorized tensioning system for medical braces and devices
USD751281S1 (en) 2014-08-12 2016-03-15 Boa Technology, Inc. Footwear tightening reels
USD758061S1 (en) 2014-09-08 2016-06-07 Boa Technology, Inc. Lace tightening device
US9375053B2 (en) 2012-03-15 2016-06-28 Boa Technology, Inc. Tightening mechanisms and applications including the same
US9408437B2 (en) 2010-04-30 2016-08-09 Boa Technology, Inc. Reel based lacing system
US9439477B2 (en) 2013-01-28 2016-09-13 Boa Technology Inc. Lace fixation assembly and system
USD767269S1 (en) 2014-08-26 2016-09-27 Boa Technology Inc. Footwear tightening reel
US9516923B2 (en) 2012-11-02 2016-12-13 Boa Technology Inc. Coupling members for closure devices and systems
US9532626B2 (en) 2013-04-01 2017-01-03 Boa Technology, Inc. Methods and devices for retrofitting footwear to include a reel based closure system
USD776421S1 (en) 2015-01-16 2017-01-17 Boa Technology, Inc. In-footwear lace tightening reel
US9610185B2 (en) 2013-03-05 2017-04-04 Boa Technology Inc. Systems, methods, and devices for automatic closure of medical devices
US9629417B2 (en) 2013-07-02 2017-04-25 Boa Technology Inc. Tension limiting mechanisms for closure devices and methods therefor
US9635906B2 (en) 2013-06-18 2017-05-02 Japana Co., Ltd. Shoelace winding device
US9681705B2 (en) 2013-09-13 2017-06-20 Boa Technology Inc. Failure compensating lace tension devices and methods
US9700101B2 (en) 2013-09-05 2017-07-11 Boa Technology Inc. Guides and components for closure systems and methods therefor
US9706814B2 (en) 2013-07-10 2017-07-18 Boa Technology Inc. Closure devices including incremental release mechanisms and methods therefor
EP3192386A1 (en) 2016-01-15 2017-07-19 Calzaturificio S.C.A.R.P.A. S.p.A. Ski boot
US9737115B2 (en) 2012-11-06 2017-08-22 Boa Technology Inc. Devices and methods for adjusting the fit of footwear
US9743714B2 (en) 1997-08-22 2017-08-29 Boa Technology Inc. Reel based closure system
US9770070B2 (en) 2013-06-05 2017-09-26 Boa Technology Inc. Integrated closure device components and methods
US9872790B2 (en) 2013-11-18 2018-01-23 Boa Technology Inc. Methods and devices for providing automatic closure of prosthetics and orthotics
US10070695B2 (en) 2010-04-30 2018-09-11 Boa Technology Inc. Tightening mechanisms and applications including the same
US10076160B2 (en) 2013-06-05 2018-09-18 Boa Technology Inc. Integrated closure device components and methods
USD835898S1 (en) 2015-01-16 2018-12-18 Boa Technology Inc. Footwear lace tightening reel stabilizer
USD835976S1 (en) 2014-01-16 2018-12-18 Boa Technology Inc. Coupling member
US10182935B2 (en) 2014-10-01 2019-01-22 Ossur Hf Support for articles and methods for using the same
US10251451B2 (en) 2013-03-05 2019-04-09 Boa Technology Inc. Closure devices including incremental release mechanisms and methods therefor
US10413019B2 (en) 2011-10-13 2019-09-17 Boa Technology Inc Reel-based lacing system
US10492568B2 (en) 2014-08-28 2019-12-03 Boa Technology Inc. Devices and methods for tensioning apparel and other items
US10499709B2 (en) 2016-08-02 2019-12-10 Boa Technology Inc. Tension member guides of a lacing system
WO2019239107A1 (en) 2018-06-14 2019-12-19 Vipertrophy Limited Blood flow restriction sportswear garment
US10543630B2 (en) 2017-02-27 2020-01-28 Boa Technology Inc. Reel based closure system employing a friction based tension mechanism
US10575591B2 (en) 2014-10-07 2020-03-03 Boa Technology Inc. Devices, methods, and systems for remote control of a motorized closure system
US10702409B2 (en) 2013-02-05 2020-07-07 Boa Technology Inc. Closure devices for medical devices and methods
US10772384B2 (en) 2017-07-18 2020-09-15 Boa Technology Inc. System and methods for minimizing dynamic lace movement
US10791798B2 (en) 2015-10-15 2020-10-06 Boa Technology Inc. Lacing configurations for footwear
US10842230B2 (en) 2016-12-09 2020-11-24 Boa Technology Inc. Reel based closure system
US11219275B2 (en) 2017-02-01 2022-01-11 Alpen Co., Ltd. Article including a cord winding device
US11357279B2 (en) 2017-05-09 2022-06-14 Boa Technology Inc. Closure components for a helmet layer and methods for installing same
US11492228B2 (en) 2019-05-01 2022-11-08 Boa Technology Inc. Reel based closure system
US11779083B2 (en) 2008-11-21 2023-10-10 Boa Technology, Inc. Reel based lacing system

Families Citing this family (217)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7591050B2 (en) * 1997-08-22 2009-09-22 Boa Technology, Inc. Footwear lacing system
US5934599A (en) 1997-08-22 1999-08-10 Hammerslag; Gary R. Footwear lacing system
US20080060167A1 (en) * 1997-08-22 2008-03-13 Hammerslag Gary R Reel based closure system
US6212743B1 (en) * 1999-02-22 2001-04-10 Edwin Cohen Laces that thread easily and form a non-slip knot
US6416074B1 (en) 1999-06-15 2002-07-09 The Burton Corporation Strap for a snowboard boot, binding or interface
US6267390B1 (en) 1999-06-15 2001-07-31 The Burton Corporation Strap for a snowboard boot, binding or interface
US6327750B1 (en) 2000-03-07 2001-12-11 Don Scott Associates, Inc. Final tensioning device for laced closure
US6378230B1 (en) * 2000-11-06 2002-04-30 Visual3D Ltd. Lace-less shoe
DE10208853C1 (en) 2002-03-01 2003-06-26 Goodwell Int Ltd Lace up snow board boot has tongues separated by spacer tubes to allow individual tensioning of different parts of lace
JP3682967B2 (en) * 2003-01-20 2005-08-17 劉 坤 鐘 Easy to wear shoes
US7386947B2 (en) * 2003-02-11 2008-06-17 K-2 Corporation Snowboard boot with liner harness
US7490458B2 (en) 2003-02-11 2009-02-17 Easycare, Inc. Horse boot with dual tongue entry system
US6877256B2 (en) * 2003-02-11 2005-04-12 K-2 Corporation Boot and liner with tightening mechanism
GB2401029B (en) * 2003-05-02 2006-04-19 Titus Internat Ltd Improvements in furniture
US6922917B2 (en) * 2003-07-30 2005-08-02 Dashamerica, Inc. Shoe tightening system
DE10335940A1 (en) 2003-08-04 2005-03-10 Japana Co Tensioning device for pull cables, in particular pull cable laces on shoes
DE10342236B4 (en) * 2003-09-11 2006-03-09 Goodwell International Ltd., Tortola lace-up boots
US20050066632A1 (en) * 2003-09-26 2005-03-31 Ford Garrett N. Horse boot with high-profile protective cuff
US7461497B2 (en) * 2003-09-26 2008-12-09 Easycare, Inc. Slip-on horse boot with replaceable pastern gaiter
TWM250576U (en) * 2003-11-10 2004-11-21 Tung Yi Steel Wire Company Ltd Device for retrieving and releasing tie lace
US7281341B2 (en) * 2003-12-10 2007-10-16 The Burton Corporation Lace system for footwear
US7082701B2 (en) * 2004-01-23 2006-08-01 Vans, Inc. Footwear variable tension lacing systems
FR2865616A1 (en) * 2004-01-30 2005-08-05 Salomon Sa SHOE WITH ROD COMPRISING AT LEAST ONE WORKPIECE
US20050198867A1 (en) * 2004-03-12 2005-09-15 Frederick Labbe Self tying shoe
US20110167543A1 (en) * 2004-05-07 2011-07-14 Enventys, Llc Adjustable protective apparel
US20070039085A1 (en) * 2004-05-07 2007-02-22 Enventys, Llc Adjustably fitted protective apparel with rotary tension adjuster
US7516914B2 (en) * 2004-05-07 2009-04-14 Enventys, Llc Bi-directional device
US20110072566A1 (en) * 2004-05-07 2011-03-31 Enventys, Llc Adjustably fitted protective apparel with rotary tension adjuster
US20120167290A1 (en) * 2004-05-07 2012-07-05 Enventys, Llc Adjustably fitted protective apparel with rotary tension adjuster
US20080223972A1 (en) * 2004-05-07 2008-09-18 Enventys, Llc Independently drawing and tensioning lines with bi-directional rotary device having two spools
US7694354B2 (en) * 2004-05-07 2010-04-13 Enventys, Llc Adjustable protective apparel
US7568298B2 (en) * 2004-06-24 2009-08-04 Dashamerica, Inc. Engineered fabric with tightening channels
US20100192421A1 (en) * 2004-07-14 2010-08-05 Dashamerica, Inc. D/B/A Pearl Izumi Usa, Inc. Composite sole
US7615020B2 (en) * 2004-07-22 2009-11-10 Nordt Development Co., Llc Support with removable pressure/alignment ring
US7618386B2 (en) * 2004-07-22 2009-11-17 Nordt Development Co., Llc Two-component compression collar clamp for arm or leg
US7704219B2 (en) * 2004-07-22 2010-04-27 Nordt Development Company, Llc Wrist support
US8162867B2 (en) 2004-07-22 2012-04-24 Nordt Development Co., Llc Body support for spanning a hinge joint of the body comprising an elastically stretchable framework
US7708708B2 (en) 2004-07-22 2010-05-04 Nordt Development Co., Ltd. Donning potentiating support with expandable framework fastened to garment
US7618389B2 (en) * 2004-07-22 2009-11-17 Nordt Development Co., Llc Potentiating support with expandable framework
US7615019B2 (en) * 2004-07-22 2009-11-10 Nordt Development Co., Llc Potentiating support with side struts spanning hinge joint
KR100662805B1 (en) * 2004-08-19 2006-12-28 주식회사 엘림코퍼레이션 Apparatus for tightening the top of foor in leisure sports
WO2006074067A1 (en) * 2005-01-05 2006-07-13 Red Wing Shoe Company, Inc. Footwear tensioning system
US7387272B2 (en) * 2005-03-03 2008-06-17 Nike, Inc. Hidden drawstring assembly
US7662122B2 (en) * 2005-03-07 2010-02-16 Bellacure, Inc. Orthotic or prosthetic devices with adjustable force dosimeter and sensor
US7721468B1 (en) * 2005-08-26 2010-05-25 Gregory G. Johnson Tightening shoe
US7669880B2 (en) * 2005-08-29 2010-03-02 The Burton Corporation Strap for snowboard boots or bindings
US7306241B2 (en) * 2005-08-29 2007-12-11 The Burton Corporation Strap for snowboard boots or bindings
US7516976B2 (en) * 2005-08-29 2009-04-14 The Burton Corporation Strap for snowboard boots or bindings
CA2621402C (en) * 2005-09-09 2014-05-20 Kirt Lander Hoof boot with pivoting heel captivator
US7367522B2 (en) * 2005-10-14 2008-05-06 Chin Chu Chen String fastening device
US20070128959A1 (en) * 2005-11-18 2007-06-07 Cooke John S Personal flotation device with adjustment cable system and method for tightening same on a person
WO2007081822A2 (en) * 2006-01-06 2007-07-19 Boa Technology, Inc. Rough and fine adjustment closure system
US20070186447A1 (en) * 2006-02-10 2007-08-16 Arturo Ramos Inner Lacing Shoes
US7503131B2 (en) * 2006-05-15 2009-03-17 Adam Ian Nadel Ski boot tightening system
KR101492477B1 (en) * 2006-09-12 2015-02-11 보아 테크놀러지, 인크. Closure system for braces, protective wear and similar articles
US7921522B2 (en) * 2006-10-30 2011-04-12 Nike, Inc. Draw cord adjuster
WO2008073073A2 (en) * 2006-12-08 2008-06-19 Bell Helicopter Textron Inc. Step-over blade-pitch control system
US7806842B2 (en) * 2007-04-06 2010-10-05 Sp Design, Llc Cable-based orthopedic bracing system
US7676957B2 (en) * 2007-06-14 2010-03-16 Johnson Gregory G Automated tightening shoe
US8303527B2 (en) * 2007-06-20 2012-11-06 Exos Corporation Orthopedic system for immobilizing and supporting body parts
KR100836112B1 (en) * 2007-07-06 2008-06-09 기아자동차주식회사 Rotary cable structure for vehicles
KR20100129278A (en) 2008-01-18 2010-12-08 보아 테크놀러지, 인크. Closure system
US8074379B2 (en) * 2008-02-12 2011-12-13 Acushnet Company Shoes with shank and heel wrap
US8020730B2 (en) * 2008-02-21 2011-09-20 The North Face Apparel Corp. Slosh controlled personal hydration system
JP5371267B2 (en) * 2008-03-13 2013-12-18 キヤノン株式会社 Winding device
US8058837B2 (en) * 2008-05-02 2011-11-15 Nike, Inc. Charging system for an article of footwear
US11723436B2 (en) 2008-05-02 2023-08-15 Nike, Inc. Article of footwear and charging system
US8056269B2 (en) 2008-05-02 2011-11-15 Nike, Inc. Article of footwear with lighting system
US9907359B2 (en) 2008-05-02 2018-03-06 Nike, Inc. Lacing system with guide elements
US8046937B2 (en) 2008-05-02 2011-11-01 Nike, Inc. Automatic lacing system
US11206891B2 (en) 2008-05-02 2021-12-28 Nike, Inc. Article of footwear and a method of assembly of the article of footwear
WO2009139895A1 (en) * 2008-05-15 2009-11-19 Ossur Hf Orthopedic devices utilizing rotary tensioning
WO2009139893A1 (en) 2008-05-15 2009-11-19 Ossur Hf Circumferential walker
WO2010027407A1 (en) * 2008-08-27 2010-03-11 Ossur Hf Rotary tensioning device
US7871334B2 (en) * 2008-09-05 2011-01-18 Nike, Inc. Golf club head and golf club with tension element and tensioning member
CN102227196B (en) * 2008-12-03 2013-09-11 欧苏尔公司 Cervical collar having height and circumferential adjustment
US8679044B2 (en) 2008-12-03 2014-03-25 Ossur Hf Cervical collar with reduced vascular obstruction
US8032993B2 (en) * 2009-01-08 2011-10-11 Bell Sports, Inc. Adjustment mechanism
JP5615849B2 (en) 2009-02-24 2014-10-29 エクソス エルエルシー Composite materials for custom adapted products
WO2010117723A2 (en) * 2009-03-31 2010-10-14 3M Innovative Properties Company Ankle brace
US8474157B2 (en) 2009-08-07 2013-07-02 Pierre-Andre Senizergues Footwear lacing system
US10292856B2 (en) 2009-08-10 2019-05-21 Ossur Hf Cervical collar having height and circumferential adjustment
WO2011035253A1 (en) 2009-09-18 2011-03-24 Mahon Joseph A Adjustable prosthetic interfaces and related systems and methods
US8328742B2 (en) 2009-09-25 2012-12-11 Medical Technology Inc. Adjustable orthopedic back brace
US8939925B2 (en) 2010-02-26 2015-01-27 Ossur Hf Tightening system for an orthopedic article
US8505220B2 (en) 2010-03-04 2013-08-13 Nike, Inc. Flex groove sole assembly with biasing structure
US8387282B2 (en) 2010-04-26 2013-03-05 Nike, Inc. Cable tightening system for an article of footwear
US8808213B2 (en) 2010-05-28 2014-08-19 Hendricks Orthotic Prosthetic Enterprises, Inc. Mechanically advantaged spinal system and method
JP5981425B2 (en) 2010-06-17 2016-08-31 ダッシュアメリカ インコーポレイテッドDashamerica,Inc. Midsole for footwear
WO2012003396A2 (en) 2010-07-01 2012-01-05 Boa Technology, Inc. Braces using lacing systems
US9149089B2 (en) 2010-07-01 2015-10-06 Boa Technology, Inc. Lace guide
USD663851S1 (en) 2010-08-18 2012-07-17 Exos Corporation Short thumb spica brace
USD663850S1 (en) 2010-08-18 2012-07-17 Exos Corporation Long thumb spica brace
USD665088S1 (en) 2010-08-18 2012-08-07 Exos Corporation Wrist brace
US8784350B2 (en) 2010-12-09 2014-07-22 Donald M. Cohen Auto-accommodating therapeutic brace
US8959723B2 (en) 2010-12-30 2015-02-24 Trek Bicycle Corporation Adjustable and vented apparel closure assembly
WO2012135007A2 (en) 2011-03-25 2012-10-04 Dashamerica, Inc. D/B/A Pearl Izumi Usa, Inc. Flexible shoe sole
US8434200B2 (en) * 2011-07-13 2013-05-07 Chin-Chu Chen Adjusting device for tightening or loosing laces and straps
US8904673B2 (en) * 2011-08-18 2014-12-09 Palidium, Inc. Automated tightening shoe
US8904672B1 (en) * 2011-08-18 2014-12-09 Palidium Inc. Automated tightening shoe
US8763291B1 (en) 2011-09-23 2014-07-01 John A. Nichols Support device for rollable graphical display
CA2852695C (en) 2011-10-31 2019-10-01 Ossur Hf Orthopedic device for dynamically treating the knee
USD666301S1 (en) 2011-12-08 2012-08-28 Exos Corporation Back brace
US8695577B2 (en) 2011-12-08 2014-04-15 Truglo, Inc. Bowstring release with adjustable wrist strap
USD666302S1 (en) 2011-12-08 2012-08-28 Exos Corporation Cervical collar
US11071344B2 (en) 2012-02-22 2021-07-27 Nike, Inc. Motorized shoe with gesture control
US11684111B2 (en) 2012-02-22 2023-06-27 Nike, Inc. Motorized shoe with gesture control
US9179729B2 (en) 2012-03-13 2015-11-10 Boa Technology, Inc. Tightening systems
US9713546B2 (en) 2012-05-21 2017-07-25 Ossur Hf Cervical collar
USD711083S1 (en) 2012-07-25 2014-08-19 Dashamerica, Inc. Shoe sole
USD712122S1 (en) 2012-07-25 2014-09-02 Dash America, Inc. Shoe sole
USD709275S1 (en) 2012-07-25 2014-07-22 Dash American, Inc. Shoe sole
USD715522S1 (en) 2012-07-25 2014-10-21 Dashamerica, Inc. Shoe sole
USD710079S1 (en) 2012-07-25 2014-08-05 Dashamerica, Inc. Shoe sole
USD713135S1 (en) 2012-07-25 2014-09-16 Dashamerica, Inc. Shoe sole
US9295748B2 (en) 2012-07-31 2016-03-29 Exos Llc Foam core sandwich splint
US9408738B2 (en) 2012-08-01 2016-08-09 Exos Llc Orthopedic brace for animals
EP4331428A3 (en) 2012-08-31 2024-05-01 Nike Innovate C.V. Motorized tensioning system with sensors
GB2505923B (en) * 2012-09-14 2017-09-20 De Montfort Univ A tensioning device
US9655761B2 (en) 2012-11-12 2017-05-23 Djo, Llc Orthopedic back brace
US9375048B2 (en) 2012-12-28 2016-06-28 Nike, Inc. Article of footwear having adjustable sole structure
US10796674B2 (en) 2013-01-11 2020-10-06 Bedson Drum Co. Drumhead tuning rim system and method of use
US9767773B2 (en) 2013-01-11 2017-09-19 Bedson Drum Co. Drumhead tuning rim system and method of use
US9653052B2 (en) 2013-01-11 2017-05-16 Bedson Drum Co. Drumhead tuning rim system and method of use
US9006548B2 (en) 2013-01-11 2015-04-14 Bryan Thomas Bedson Drumhead tuning rim apparatus and method of use
US10714063B2 (en) 2013-01-11 2020-07-14 Bedson Drum Co. Drumhead tuning rim system and method of use
JP5649669B2 (en) * 2013-01-11 2015-01-07 株式会社シマノ Tightening string and shoes using it
US10413437B2 (en) 2013-01-25 2019-09-17 Ossur Iceland Ehf Orthopedic device having a dynamic control system and method for using the same
US9357807B2 (en) 2013-03-15 2016-06-07 Under Armour, Inc. Size adjustment arrangement for a garment
WO2014205103A1 (en) 2013-06-21 2014-12-24 Ossur Hf Dynamic tension system for orthopedic device
US9609918B2 (en) 2013-07-11 2017-04-04 Nike, Inc. Article with closed instep portion having variable volume
US9867417B2 (en) 2013-07-11 2018-01-16 Nike, Inc. Article with tensioning system including tension balancing member
US9872539B2 (en) 2013-07-11 2018-01-23 Nike, Inc. Article with tensioning system including driven tensioning members
KR101506676B1 (en) * 2013-09-03 2015-03-30 주식회사 신경 apparatus for fastening wire and method for mounting thereof
WO2015038946A1 (en) * 2013-09-13 2015-03-19 K-2 Corporation Sports boot with articulating lace guide
US10939723B2 (en) 2013-09-18 2021-03-09 Ossur Hf Insole for an orthopedic device
US9839548B2 (en) 2013-09-25 2017-12-12 Ossur Iceland Ehf Orthopedic device
US9668907B2 (en) 2013-09-25 2017-06-06 Ossur Iceland Ehf Orthopedic device
US9839549B2 (en) 2013-09-25 2017-12-12 Ossur Iceland Ehf Orthopedic device
WO2015048265A1 (en) 2013-09-25 2015-04-02 Ossur Hf Orthopedic device
FR3011822B1 (en) 2013-10-11 2016-12-09 Eurocopter France DEVICE FOR FIXING A FLEXIBLE RESERVOIR IN A COMPARTMENT
WO2015089261A1 (en) 2013-12-12 2015-06-18 Ossur Hf Outsole for orthopedic device
ITVR20130295A1 (en) * 2013-12-23 2015-06-24 Selle Royal Spa SPORTS FOOTWEAR
KR102152640B1 (en) * 2014-01-24 2020-09-09 삼성전자주식회사 Holder and walking aid robot having the same
AU2015214453B2 (en) 2014-02-04 2019-04-04 Exos Llc Rigid ankle support system
TWI561453B (en) * 2014-02-17 2016-12-11 Chin Chu Chen A device for tightening and loosening a lace
USD744111S1 (en) 2014-03-27 2015-11-24 Ossur Hf Orthopedic device
USD729393S1 (en) 2014-03-27 2015-05-12 Ossur Hf Outsole for an orthopedic device
USD742017S1 (en) 2014-03-27 2015-10-27 Ossur Hf Shell for an orthopedic device
US9629418B2 (en) * 2014-04-15 2017-04-25 Nike, Inc. Footwear having motorized adjustment system and elastic upper
US10092065B2 (en) 2014-04-15 2018-10-09 Nike, Inc. Footwear having motorized adjustment system and removable midsole
US9326566B2 (en) * 2014-04-15 2016-05-03 Nike, Inc. Footwear having coverable motorized adjustment system
US9763808B2 (en) 2014-05-19 2017-09-19 Ossur Hf Adjustable prosthetic device
EP2952114A1 (en) 2014-06-03 2015-12-09 K-2 Corporation Single-reel zonal lacing system for winter sports boots
WO2016007704A1 (en) 2014-07-11 2016-01-14 Ossur Hf Tightening system with a tension control mechanism
US9907361B2 (en) 2014-07-29 2018-03-06 Nike, Inc. Article of footwear with channels in sole structure
EP3174418B1 (en) 2014-07-31 2022-06-15 Powerlace Technologies Inc. Closure system
US10653546B2 (en) 2014-10-31 2020-05-19 Ossur Hf Orthopedic device having a dynamic control system
EP3636096B1 (en) 2014-11-12 2021-07-28 NIKE Innovate C.V. Method of manufacturing a sole assembly for an article of footwear
US20160144266A1 (en) * 2014-11-20 2016-05-26 Louis Garneau Sports Inc. Harness and snowshoe frame
JP6450584B2 (en) 2014-12-22 2019-01-09 株式会社ジャパーナ Winding device and shoes equipped therewith
US20160206937A1 (en) * 2015-01-15 2016-07-21 Warrior Sports, Inc. Lacrosse head pocket and related method of manufacture
WO2016123049A1 (en) 2015-01-26 2016-08-04 Ossur Iceland Ehf Negative pressure wound therapy orthopedic device
US11083616B2 (en) 2015-04-06 2021-08-10 Ossur Iceland Ehf Cervical collar having height adjustment
CN107847016B (en) 2015-05-29 2020-11-27 耐克创新有限合伙公司 Article of footwear incorporating a motorized tensioning device with split spool system
US9706812B2 (en) 2015-09-03 2017-07-18 Saucony, Inc. Footwear lacing system and related methods
US11033079B2 (en) 2015-10-07 2021-06-15 Puma SE Article of footwear having an automatic lacing system
JP6639031B2 (en) * 2015-10-07 2020-02-05 プーマ エス イーPuma Se Shoes, especially sports shoes
US11185130B2 (en) 2015-10-07 2021-11-30 Puma SE Article of footwear having an automatic lacing system
US11103030B2 (en) 2015-10-07 2021-08-31 Puma SE Article of footwear having an automatic lacing system
WO2017070203A1 (en) * 2015-10-19 2017-04-27 Nike Innovate C.V. Tensile-strand enclosure system for footwear
WO2017095945A1 (en) 2015-11-30 2017-06-08 Nike Innovate C.V. Article of footwear and charging system
US10842681B2 (en) * 2015-11-30 2020-11-24 Jerome S. Zacks Compression garment
EP3383211B1 (en) 2015-12-02 2019-09-25 Puma Se Method for lacing a shoe, particularly a sports shoe
WO2017147447A1 (en) 2016-02-25 2017-08-31 Ossur Iceland Ehf Cervical collar having height adjustment
US10827804B2 (en) * 2016-03-15 2020-11-10 Nike, Inc. Lacing apparatus for automated footwear platform
JP6967009B2 (en) * 2016-03-15 2021-11-17 ナイキ イノベイト シーブイ Transmission device for powered tensioning systems for footwear
US10390589B2 (en) * 2016-03-15 2019-08-27 Nike, Inc. Drive mechanism for automated footwear platform
US10244822B2 (en) * 2016-03-15 2019-04-02 Nike, Inc. Lace routing pattern of a lacing system for an article of footwear
US9961963B2 (en) 2016-03-15 2018-05-08 Nike, Inc. Lacing engine for automated footwear platform
CN109414093B (en) 2016-03-15 2021-08-10 耐克创新有限合伙公司 Return-to-original-position mechanism for automatic footwear platform
US10201212B2 (en) * 2016-03-15 2019-02-12 Nike, Inc. Article of footwear with a tensioning system including a guide assembly
US10166164B2 (en) 2016-04-27 2019-01-01 Radial Medical, Inc. Adaptive compression therapy systems and methods
US11806264B2 (en) 2016-05-03 2023-11-07 Icarus Medical, LLC Adjustable tensioning device
US11026472B2 (en) 2016-07-22 2021-06-08 Nike, Inc. Dynamic lacing system
EP3515378A1 (en) 2016-09-19 2019-07-31 Ossur Iceland EHF Cervical collar
WO2018093838A1 (en) * 2016-11-15 2018-05-24 Rosalind Franklin University Of Medicine And Science Intelligent offloading insole device
RU2715263C1 (en) 2016-11-22 2020-02-26 Пума Се Method of putting or removing a piece of clothing on its nose or its nose, or a method of closing, putting on, opening or removing a luggage worn by a person
KR102519623B1 (en) 2016-11-22 2023-04-10 푸마 에스이 Shoes, especially sports shoes, and methods of fastening shoes, especially sports shoes
US11564452B2 (en) * 2016-12-09 2023-01-31 Adamant Namiki Precision Jewel Co., Ltd. Winding device
US20180303677A1 (en) * 2017-04-20 2018-10-25 Circulation Concepts, Inc. Lace tension-controlled compression sock
CN111629625B (en) 2017-05-31 2021-12-28 耐克创新有限合伙公司 Automatic shoe lacing system, device and technique
USD870899S1 (en) 2017-09-06 2019-12-24 Ossur Iceland Ehf Cervical collar
USD866773S1 (en) 2017-09-06 2019-11-12 Ossur Iceland Ehf Cervical collar
WO2019079673A1 (en) 2017-10-20 2019-04-25 Nike Innovate, C.V. Lacing architecture for automated footwear platform
WO2019104302A2 (en) 2017-11-27 2019-05-31 Ossur Iceland Ehf Orthopedic device having a suspension element
US11045394B2 (en) 2018-05-09 2021-06-29 Sierra Nevada Corporation Mobile medical drug management systems and methods
US11684110B2 (en) * 2018-08-31 2023-06-27 Nike, Inc. Autolacing footwear
DE202019005973U1 (en) 2018-09-06 2023-09-26 Nike Innovate C.V. Dynamic lacing system with feedback mechanism
US11524188B2 (en) 2018-10-09 2022-12-13 Checkmate Lifting & Safety Ltd Tensioning device
USD906657S1 (en) 2019-01-30 2021-01-05 Puma SE Shoe tensioning device
USD889805S1 (en) 2019-01-30 2020-07-14 Puma SE Shoe
USD899053S1 (en) 2019-01-30 2020-10-20 Puma SE Shoe
US11446181B2 (en) 2019-02-22 2022-09-20 Corey B. Johnson Breath deflector and method of use
IT201900003207A1 (en) 2019-03-06 2020-09-06 10 Ottobre S R L Shoe uppers and process for the production of shoe uppers.
US11484089B2 (en) 2019-10-21 2022-11-01 Puma SE Article of footwear having an automatic lacing system with integrated sound damping
US20210112922A1 (en) * 2019-10-21 2021-04-22 Puma SE Article of footwear having adaptive actuation mechanics
JP2021177828A (en) * 2020-05-11 2021-11-18 Kbセーレン株式会社 String for dial type lacing system
JP2022064758A (en) * 2020-10-14 2022-04-26 日本電産株式会社 Spool and lacing module including the same
JP2022064759A (en) * 2020-10-14 2022-04-26 日本電産株式会社 Spool and lacing module including the same
FR3120558A1 (en) 2021-03-15 2022-09-16 Julien Janicot Device for assisting the manual tightening of a collet tool
US11944893B2 (en) 2021-07-28 2024-04-02 Boardriders Ip Holdings, Llc Sports boot with integrated ankle compression system
KR102369072B1 (en) * 2021-10-18 2022-03-02 (주)지패션코리아 Lifting shoes with straps and boa-system
AT525602A1 (en) 2021-11-02 2023-05-15 Edera Safety Gmbh & Co Kg Dynamically dependent movement blockade system
US11859446B2 (en) 2022-01-21 2024-01-02 Anthony Clark Blackburn Cord tightening device
USD991778S1 (en) 2022-01-21 2023-07-11 Anthony Clark Blackburn Cord tightening device
WO2024057066A1 (en) 2022-09-15 2024-03-21 Ubipro Device for facilitating the operation of a gripping tool and gripping tool comprising same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5157813A (en) * 1991-10-31 1992-10-27 William Carroll Shoelace tensioning device
US5325613A (en) * 1992-01-28 1994-07-05 Tretorn Ab Shoe with a central closure
US5566474A (en) * 1993-06-21 1996-10-22 Salomon S.A. Sport boot having a fixed-lace closure system

Family Cites Families (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB189911673A (en) * 1899-06-05 1899-07-22 Jean Louis Edouard Bourbaud A New or Improved Appliance for Use in Fastening Boots and Shoes.
US746563A (en) * 1903-03-06 1903-12-08 James Mcmahon Shoe-lacing.
US908704A (en) * 1908-04-02 1909-01-05 Mahlon A Stair Shoe-fastener.
US1170472A (en) * 1909-08-27 1916-02-01 John Wesley Barber Fastener for shoes, &c.
US1062511A (en) * 1912-06-19 1913-05-20 Henry William Short Boot-lace.
US1060422A (en) * 1912-10-22 1913-04-29 Albertis Bowdish Device for securing the flaps of boots or shoes.
US1090438A (en) * 1913-02-20 1914-03-17 Charles H Worth Lacing-holder.
US1288859A (en) * 1917-11-14 1918-12-24 Albert S Feller Shoe-lace fastener.
US1412486A (en) * 1920-10-06 1922-04-11 Paine George Washington Lacing device
US1416203A (en) * 1921-05-21 1922-05-16 Hobson Orlen Apparel lacing
US1393188A (en) * 1921-05-24 1921-10-11 Whiteman Allen Clay Lacing device
US1469661A (en) * 1922-02-06 1923-10-02 Migita Tosuke Lacing means for brogues, leggings, and the like
US1481903A (en) * 1923-04-09 1924-01-29 Alonzo W Pangborn Shoe-lacing device
US1530713A (en) * 1924-02-11 1925-03-24 Clark John Stephen Day Lacing device for boots and shoes
CH183109A (en) * 1935-07-03 1936-03-15 Testa Giovanni Sports shoe with front closure, particularly suitable as a ski and mountain shoe.
US3163900A (en) * 1961-01-20 1965-01-05 Martin Hans Lacing system for footwear, particularly ski-boot fastener
US3112545A (en) * 1963-04-15 1963-12-03 Williams Luther Shoe fastening device
US3430303A (en) * 1966-08-11 1969-03-04 Donald E Perrin Lace wind
AT343009B (en) * 1976-01-22 1978-05-10 Dynafit Gmbh CLOSURE FOR SPORTSHOES
US4261081A (en) * 1979-05-24 1981-04-14 Lott Parker M Shoe lace tightener
IT1193578B (en) * 1981-01-28 1988-07-08 Nordica Spa CLOSING DEVICE PARTICULARLY FOR SKI BOOTS
IT8421967V0 (en) * 1984-05-30 1984-05-30 Nordica Spa SKI BOOT WITH FOOT LOCKING DEVICE.
FR2569087B1 (en) * 1984-08-17 1987-01-09 Salomon Sa SKI BOOT
FR2570257B1 (en) * 1984-09-14 1987-01-09 Salomon Sa SKI BOOT
US4654985A (en) * 1984-12-26 1987-04-07 Chalmers Edward L Athletic boot
IT1184540B (en) * 1985-05-06 1987-10-28 Nordica Spa SKI BOOT WITH LEG CLOSURE DEVICE
IT209343Z2 (en) * 1985-09-04 1988-10-05 Nordica Spa STRUCTURE OF DRIVE DEVICE FOR FOOT LOCKING ELEMENTS PARTICULARLY FOR SKI BOOTS.
AT393939B (en) * 1985-11-14 1992-01-10 Dynafit Skischuh Gmbh SKI BOOT
IT1186221B (en) * 1985-12-02 1987-11-18 Nordica Spa SKI BOOT WITH CLOSING AND ADJUSTMENT DEVICE DRIVE GROUP
IT209252Z2 (en) * 1985-12-24 1988-09-20 Nordica Spa CLOSING DEVICE FOR THE SKI BOOTS.
DE3626837A1 (en) * 1986-08-08 1988-02-11 Weinmann & Co Kg TURN LOCK FOR A SPORTSHOE, ESPECIALLY SKI SHOE
IT209328Z2 (en) * 1986-09-23 1988-09-20 Nordica Spa BRAKE, ESPECIALLY FOR THE LOCKING OF TENSIONERS IN SKI SHOES.
IT208988Z2 (en) * 1986-10-09 1988-08-29 Nordica Spa CLOSING AND LOCKING DEVICE, ESPECIALLY FOR SKI BOOTS.
IT1205530B (en) * 1986-10-20 1989-03-23 Nordica Spa SECURITY DEVICE
GB2197484B (en) 1986-10-24 1990-08-29 Yazaki Corp Liquid level indicator
IT1210449B (en) * 1987-05-15 1989-09-14 Nordica Spa CLAMPING AND ADJUSTMENT DEVICE PARTICULARLY FOR SKI BOOTS.
IT1220010B (en) * 1987-07-03 1990-06-06 Nordica Spa CLAMPING AND ADJUSTMENT DEVICE PARTICULARLY FOR SKI BOOTS
US4780969A (en) * 1987-07-31 1988-11-01 White Jr Samuel G Article of footwear with improved tension distribution closure system
US4870761A (en) * 1988-03-09 1989-10-03 Tracy Richard J Shoe construction and closure components thereof
CH677586A5 (en) * 1988-11-09 1991-06-14 Lange Int Sa
US5016327A (en) * 1989-04-10 1991-05-21 Klausner Fred P Footwear lacing system
DE3913018A1 (en) * 1989-04-20 1990-10-25 Weinmann & Co Kg TURN LOCK FOR A SPORTSHOE, ESPECIALLY A SKI SHOE
IT1235324B (en) * 1989-05-15 1992-06-26 Nordica Spa TIGHTENING AND ADJUSTMENT DEVICE, PARTICULARLY FOR SKI BOOTS.
US5177882A (en) 1989-06-03 1993-01-12 Puma Ag Rudolf Dassler Sport Shoe with a central fastener
CZ288491B6 (en) 1989-06-03 2001-06-13 Dassler Puma Sportschuh Shoe with flexible upper material provided with a closing device
IT1235298B (en) * 1989-06-22 1992-06-26 Nordica Spa TIGHTENING AND ADJUSTMENT DEVICE, PARTICULARLY FOR SKI BOOTS.
IT217686Z2 (en) * 1989-07-04 1992-01-16 Nordica Spa STRUCTURE OF CLOSING AND ADJUSTMENT DEVICE, PARTICULARLY FOR SKI BOOTS.
CH679265A5 (en) * 1989-09-26 1992-01-31 Raichle Sportschuh Ag
US5249377A (en) * 1990-01-30 1993-10-05 Raichle Sportschuh Ag Ski boot having tensioning means in the forefoot region
US5184378A (en) * 1991-11-18 1993-02-09 K-Swiss Inc. Lacing system for shoes
US5502902A (en) 1991-12-11 1996-04-02 Puma Ag Rudolf Dassler Sport Shoe with central rotary closure
DE4209425C1 (en) * 1992-03-24 1993-09-02 Markus 73563 Moegglingen De Dubberke
DE4240916C1 (en) * 1992-12-04 1993-10-07 Jungkind Roland Shoe closure
DE9211710U1 (en) 1992-08-31 1994-01-05 Dassler Puma Sportschuh Central locking shoe
DE4230652A1 (en) * 1992-09-14 1994-03-17 Egolf Heinz shoe
FR2697730B1 (en) * 1992-11-06 1995-02-10 Salomon Sa Shoe with tightening by flexible link.
DE4303569C1 (en) * 1993-02-08 1994-03-03 Jungkind Roland Cable pulley drive mechanism - incorporates planetary gearing with stop engaging single planet gear
US5259094A (en) * 1993-02-08 1993-11-09 Zepeda Ramon O Shoe lacing apparatus
DE4305671A1 (en) * 1993-02-24 1994-09-01 Pds Verschlustechnik Ag shoe
DE9308037U1 (en) 1993-05-28 1994-10-13 Dassler Puma Sportschuh Shoe with a central twist lock
DE9307480U1 (en) 1993-05-28 1994-10-06 Dassler Puma Sportschuh Shoe with a central twist lock
FR2706743B1 (en) * 1993-06-21 1995-08-25 Salomon Sa
US5335401A (en) * 1993-08-17 1994-08-09 Hanson Gary L Shoelace tightening and locking device
DE9315640U1 (en) 1993-10-14 1995-02-16 Dassler Puma Sportschuh Shoe, in particular sports shoe
DE9315776U1 (en) * 1993-10-15 1995-02-09 Pds Verschlustechnik Ag shoe
DE9413174U1 (en) * 1994-08-16 1994-10-13 Schoch Rolf Shoe with twist lock
DE9413360U1 (en) 1994-08-20 1995-12-21 Dassler Puma Sportschuh Shoe lock with rotating element and eccentric drive
US5640785A (en) * 1994-12-01 1997-06-24 Items International, Inc. Resilient loops and mating hooks for securing footwear to a foot
US5557864A (en) * 1995-02-06 1996-09-24 Marks; Lloyd A. Footwear fastening system and method of using the same
DE29503552U1 (en) * 1995-03-02 1995-04-13 Swock Ag Twist lock
FR2736806B1 (en) * 1995-07-17 1997-08-14 Rossignol Sa FOOTWEAR FOR SNOW SURFING
US5647104A (en) * 1995-12-01 1997-07-15 Laurence H. James Cable fastener
JP3030988U (en) * 1996-05-08 1996-11-12 浩穆 崔 Boots for snowboarding shoes
US5718021A (en) * 1997-01-17 1998-02-17 Tatum; Richard G. Shoelace tying device
US5934599A (en) 1997-08-22 1999-08-10 Hammerslag; Gary R. Footwear lacing system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5157813A (en) * 1991-10-31 1992-10-27 William Carroll Shoelace tensioning device
US5325613A (en) * 1992-01-28 1994-07-05 Tretorn Ab Shoe with a central closure
US5566474A (en) * 1993-06-21 1996-10-22 Salomon S.A. Sport boot having a fixed-lace closure system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1003392A4 *

Cited By (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5855595A (en) * 1994-04-04 1999-01-05 Asahi Kogaku Kogyo Kabushiki Kaisha Tumor treatment apparatus
US10362836B2 (en) 1997-08-22 2019-07-30 Boa Technology Inc. Reel based closure system
US9743714B2 (en) 1997-08-22 2017-08-29 Boa Technology Inc. Reel based closure system
EP1213981A1 (en) * 1999-09-02 2002-06-19 Boa Technology, Inc. Footwear lacing system
JP2003508097A (en) * 1999-09-02 2003-03-04 ボア テクノロジー インコーポレイテッド Footwear strapping system
EP1213981A4 (en) * 1999-09-02 2004-10-27 Boa Technology Inc Footwear lacing system
JP2010148927A (en) * 1999-09-02 2010-07-08 Boa Technology Inc Footwear lacing system
US7526881B2 (en) 2002-11-25 2009-05-05 Adidas International Marketing B.V. Shoe closure system
US7065906B2 (en) 2002-11-25 2006-06-27 Adidas International Marketing B.V. Shoe closure system
US7134224B2 (en) 2003-03-12 2006-11-14 Goodwell International Ltd. (British Virgin Islands) Laced boot
DE10311175B4 (en) * 2003-03-12 2005-10-13 Goodwell International Ltd., Tortola Lace
DE10311175A1 (en) * 2003-03-12 2004-09-30 Goodwell International Ltd., Tortola Lace
US10849390B2 (en) 2003-06-12 2020-12-01 Boa Technology Inc. Reel based closure system
US9867430B2 (en) 2003-06-12 2018-01-16 Boa Technology Inc. Reel based closure system
CN101193568B (en) * 2004-10-29 2011-11-30 博技术有限公司 Reel based closure system and footwear using the system
CN102132983B (en) * 2004-10-29 2013-08-14 博技术有限公司 Reel based closure system
US10952505B2 (en) 2004-10-29 2021-03-23 Boa Technology Inc. Reel based closure system
US11779083B2 (en) 2008-11-21 2023-10-10 Boa Technology, Inc. Reel based lacing system
US9854873B2 (en) 2010-01-21 2018-01-02 Boa Technology Inc. Guides for lacing systems
US9125455B2 (en) 2010-01-21 2015-09-08 Boa Technology Inc. Guides for lacing systems
US10070695B2 (en) 2010-04-30 2018-09-11 Boa Technology Inc. Tightening mechanisms and applications including the same
US9408437B2 (en) 2010-04-30 2016-08-09 Boa Technology, Inc. Reel based lacing system
US10888139B2 (en) 2010-04-30 2021-01-12 Boa Technology Inc. Tightening mechanisms and applications including same
US10413019B2 (en) 2011-10-13 2019-09-17 Boa Technology Inc Reel-based lacing system
US9375053B2 (en) 2012-03-15 2016-06-28 Boa Technology, Inc. Tightening mechanisms and applications including the same
US9248040B2 (en) 2012-08-31 2016-02-02 Boa Technology Inc. Motorized tensioning system for medical braces and devices
US9516923B2 (en) 2012-11-02 2016-12-13 Boa Technology Inc. Coupling members for closure devices and systems
US9737115B2 (en) 2012-11-06 2017-08-22 Boa Technology Inc. Devices and methods for adjusting the fit of footwear
US10327513B2 (en) 2012-11-06 2019-06-25 Boa Technology Inc. Devices and methods for adjusting the fit of footwear
USRE49092E1 (en) 2013-01-28 2022-06-07 Boa Technology Inc. Lace fixation assembly and system
US9439477B2 (en) 2013-01-28 2016-09-13 Boa Technology Inc. Lace fixation assembly and system
USRE48215E1 (en) 2013-01-28 2020-09-22 Boa Technology Inc. Lace fixation assembly and system
USRE49358E1 (en) 2013-01-28 2023-01-10 Boa Technology, Inc. Lace fixation assembly and system
US10702409B2 (en) 2013-02-05 2020-07-07 Boa Technology Inc. Closure devices for medical devices and methods
US10959492B2 (en) 2013-03-05 2021-03-30 Boa Technology Inc. Closure devices including incremental release mechanisms and methods therefor
US9610185B2 (en) 2013-03-05 2017-04-04 Boa Technology Inc. Systems, methods, and devices for automatic closure of medical devices
US10251451B2 (en) 2013-03-05 2019-04-09 Boa Technology Inc. Closure devices including incremental release mechanisms and methods therefor
US10342294B2 (en) 2013-04-01 2019-07-09 Boa Technology Inc. Methods and devices for retrofitting footwear to include a reel based closure system
US9532626B2 (en) 2013-04-01 2017-01-03 Boa Technology, Inc. Methods and devices for retrofitting footwear to include a reel based closure system
US10772388B2 (en) 2013-06-05 2020-09-15 Boa Technology Inc. Integrated closure device components and methods
US9770070B2 (en) 2013-06-05 2017-09-26 Boa Technology Inc. Integrated closure device components and methods
US10076160B2 (en) 2013-06-05 2018-09-18 Boa Technology Inc. Integrated closure device components and methods
WO2014203416A1 (en) * 2013-06-18 2014-12-24 株式会社ジャパーナ Shoelace winding reel
US9635906B2 (en) 2013-06-18 2017-05-02 Japana Co., Ltd. Shoelace winding device
US9717305B2 (en) 2013-06-18 2017-08-01 Japana Co., Ltd. Shoelace winding reel
JP2015000297A (en) * 2013-06-18 2015-01-05 株式会社ジャパーナ Shoe lace take-up reel
US10039348B2 (en) 2013-07-02 2018-08-07 Boa Technology Inc. Tension limiting mechanisms for closure devices and methods therefor
US9629417B2 (en) 2013-07-02 2017-04-25 Boa Technology Inc. Tension limiting mechanisms for closure devices and methods therefor
US9706814B2 (en) 2013-07-10 2017-07-18 Boa Technology Inc. Closure devices including incremental release mechanisms and methods therefor
US11253028B2 (en) 2013-09-05 2022-02-22 Boa Technology Inc. Guides and components for closure systems and methods therefor
US9700101B2 (en) 2013-09-05 2017-07-11 Boa Technology Inc. Guides and components for closure systems and methods therefor
US10477922B2 (en) 2013-09-05 2019-11-19 Boa Technology Inc. Guides and components for closure systems and methods therefor
US10952503B2 (en) 2013-09-13 2021-03-23 Boa Technology Inc. Failure compensating lace tension devices and methods
US9681705B2 (en) 2013-09-13 2017-06-20 Boa Technology Inc. Failure compensating lace tension devices and methods
US9872790B2 (en) 2013-11-18 2018-01-23 Boa Technology Inc. Methods and devices for providing automatic closure of prosthetics and orthotics
USD835976S1 (en) 2014-01-16 2018-12-18 Boa Technology Inc. Coupling member
USD751281S1 (en) 2014-08-12 2016-03-15 Boa Technology, Inc. Footwear tightening reels
USD767269S1 (en) 2014-08-26 2016-09-27 Boa Technology Inc. Footwear tightening reel
US10492568B2 (en) 2014-08-28 2019-12-03 Boa Technology Inc. Devices and methods for tensioning apparel and other items
USD758061S1 (en) 2014-09-08 2016-06-07 Boa Technology, Inc. Lace tightening device
US10182935B2 (en) 2014-10-01 2019-01-22 Ossur Hf Support for articles and methods for using the same
US11304838B2 (en) 2014-10-01 2022-04-19 Ossur Hf Support for articles and methods for using the same
US10575591B2 (en) 2014-10-07 2020-03-03 Boa Technology Inc. Devices, methods, and systems for remote control of a motorized closure system
USD776421S1 (en) 2015-01-16 2017-01-17 Boa Technology, Inc. In-footwear lace tightening reel
USD835898S1 (en) 2015-01-16 2018-12-18 Boa Technology Inc. Footwear lace tightening reel stabilizer
US10791798B2 (en) 2015-10-15 2020-10-06 Boa Technology Inc. Lacing configurations for footwear
EP3192386A1 (en) 2016-01-15 2017-07-19 Calzaturificio S.C.A.R.P.A. S.p.A. Ski boot
US11089837B2 (en) 2016-08-02 2021-08-17 Boa Technology Inc. Tension member guides for lacing systems
US10499709B2 (en) 2016-08-02 2019-12-10 Boa Technology Inc. Tension member guides of a lacing system
US10842230B2 (en) 2016-12-09 2020-11-24 Boa Technology Inc. Reel based closure system
US11219275B2 (en) 2017-02-01 2022-01-11 Alpen Co., Ltd. Article including a cord winding device
US11220030B2 (en) 2017-02-27 2022-01-11 Boa Technology Inc. Reel based closure system employing a friction based tension mechanism
US10543630B2 (en) 2017-02-27 2020-01-28 Boa Technology Inc. Reel based closure system employing a friction based tension mechanism
US11357279B2 (en) 2017-05-09 2022-06-14 Boa Technology Inc. Closure components for a helmet layer and methods for installing same
US10772384B2 (en) 2017-07-18 2020-09-15 Boa Technology Inc. System and methods for minimizing dynamic lace movement
WO2019239107A1 (en) 2018-06-14 2019-12-19 Vipertrophy Limited Blood flow restriction sportswear garment
US11492228B2 (en) 2019-05-01 2022-11-08 Boa Technology Inc. Reel based closure system

Also Published As

Publication number Publication date
EP1003392A1 (en) 2000-05-31
JP2007330808A (en) 2007-12-27
JP4171774B2 (en) 2008-10-29
US6202953B1 (en) 2001-03-20
EP1003392A4 (en) 2002-09-25
JP2001513379A (en) 2001-09-04
AU8692798A (en) 1999-03-16
CA2299253A1 (en) 1999-03-04
US5934599A (en) 1999-08-10

Similar Documents

Publication Publication Date Title
US5934599A (en) Footwear lacing system
US6289558B1 (en) Footwear lacing system
US11452342B2 (en) Reel based closure system
US20020095750A1 (en) Footwear lacing system
US7082701B2 (en) Footwear variable tension lacing systems
US7591050B2 (en) Footwear lacing system
US9339082B2 (en) Reel based closure system
US7950112B2 (en) Reel based closure system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HR HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2299253

Country of ref document: CA

Ref country code: CA

Ref document number: 2299253

Kind code of ref document: A

Format of ref document f/p: F

NENP Non-entry into the national phase

Ref country code: KR

WWE Wipo information: entry into national phase

Ref document number: 1998938396

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1998938396

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 1998938396

Country of ref document: EP