WO1998054093A1 - Novel angiogenesis inhibitors - Google Patents

Novel angiogenesis inhibitors Download PDF

Info

Publication number
WO1998054093A1
WO1998054093A1 PCT/US1998/010590 US9810590W WO9854093A1 WO 1998054093 A1 WO1998054093 A1 WO 1998054093A1 US 9810590 W US9810590 W US 9810590W WO 9854093 A1 WO9854093 A1 WO 9854093A1
Authority
WO
WIPO (PCT)
Prior art keywords
pyrimidine
pyrazolo
pyridyl
compound
alkyl
Prior art date
Application number
PCT/US1998/010590
Other languages
French (fr)
Inventor
Mark T. Bilodeau
Randall W. Hungate
Richard L. Kendall
Ruth Rutledge
Kenneth A. Thomas, Jr.
Robert Rubino
Mark E. Fraley
Original Assignee
Merck & Co., Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GBGB9800681.0A external-priority patent/GB9800681D0/en
Application filed by Merck & Co., Inc. filed Critical Merck & Co., Inc.
Priority to JP50079099A priority Critical patent/JP2002501532A/en
Priority to US09/424,132 priority patent/US6380203B1/en
Priority to AU75944/98A priority patent/AU734009B2/en
Priority to CA002291709A priority patent/CA2291709A1/en
Priority to EP98923719A priority patent/EP0984692A4/en
Publication of WO1998054093A1 publication Critical patent/WO1998054093A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/14Vasoprotectives; Antihaemorrhoidals; Drugs for varicose therapy; Capillary stabilisers

Definitions

  • R 4 is H, Cj.io a] ky ⁇ , C 3 - 6 cycloalkyl, C 5 . 10 aryl, C 5 . 10 heteroaryl, C 3 . 10 heterocyclyl, C ⁇ - 6 alkoxyNR 7 R 8 , N0 2 , OH, -NH 2 or C 5 . 10 heteroaryl, said alkyl, aryl, heteroaryl and heterocyclyl being optionally substituted with from one to three members selected from R a ; and all other variables are as described above.
  • VEGF receptor kinase activity is measured by inco ⁇ oration of radio-labeled phosphate into polyglutamic acid, tyrosine, 4: 1 (pEY) substrate.
  • the phosphorylated pEY product is trapped onto a filter membrane and the incoporation of radio- labeled phosphate quantified by scintillation counting.
  • KDR (Terman, B.I. et al. Oncogene (1991) vol. 6, pp. 1677-1683.) and Flt-1 (Shibuya, M. et al. Oncogene (1990) vol. 5, pp. 519- 524) were cloned as glutathione S-transferase (GST) gene fusion proteins. This was accomplished by cloning the cytoplasmic domain of the KDR kinase as an in frame fusion at the carboxy terminus of the GST gene.
  • GST glutathione S-transferase

Abstract

The present invention relates to compounds which inhibit tyrosine kinase enzymes, compositions which contain tyrosine kinase inhibiting compounds and methods of using tyrosine kinase inhibitors to treat tyrosine kinase-dependent diseases/conditions such as angiogenesis, cancer, atherosclerosis, diabetic retinopathy or autoimmune diseases, in mammals.

Description

TITLE OF THE INVENTION
NOVEL ANGIOGENESIS INHIBITORS
BACKGROUND OF THE INVENTION The present invention relates to compounds which inhibit tyrosine kinase enzymes, compositions which contain tyrosine kinase inhibiting compounds and methods of using tyrosine kinase inhibitors to treat tyrosine kinase-dependent diseases/conditions such as neoangiogenesis, cancer, atherosclerosis, diabetic retinopathy or inflammatory diseases, in mammals.
Tyrosine kinases are a class of enzymes that catalyze the transfer of the terminal phosphate of adenosine triphospate to tyrosine residues in protein substrates. Tyrosine kinases are believed, by way of substrate phosphorylation, to play critical roles in signal transduction for a number of cell functions. Though the exact mechanisms of signal transduction is still unclear, tyrosine kinases have been shown to be important contributing factors in cell proliferation, carcinogenesis and cell differentiation. Accordingly, inhibitors of these tyrosine kinases are useful for the prevention and treatment chemotherapy of proliferative diseases dependent on these enzymes.
For example, a method of treatment described herein relates to neoangiogenesis. Neoangiogenesis occurs in conjunction with tumor growth and in certain diseases of the eye. It is characterized by excessive activity of vascular endothelial growth factor.
Vascular endothelial growth factor (VEGF) binds the high affinity membrane-spanning tyrosine kinase receptors KDR and Flt-1. Cell culture and gene knockout experiments indicate that each receptor contributes to different aspects of angiogenesis. KDR mediates the mitogenic function of VEGF whereas Flt-1 appears to modulate non-mitogenic functions such as those associated with cellular adhesion. Inhibiting KDR thus modulates the level of mitogenic VEGF activity.
Vascular growth in the retina leads to visual degeneration culminating in blindness. VEGF accounts for most of the angiogenic activity produced in or near the retina in diabetic retinopathy. Ocular VEGF mRNA and protein are elevated by conditions such as retinal vein occlusion in primates and decreased p02 levels in mice that lead to neovascularization. Intraocular injections of anti-VEGF monoclonal antibodies or VEGF receptor iinmunofusions inhibit ocular neovascularization in both primate and rodent models. Regardless of the cause of induction of VEGF in human diabetic retinopathy, inhibition of ocular VEGF is useful in treating the disease.
Expression of VEGF is also significantly increased in hypoxic regions of animal and human tumors adjacent to areas of necrosis. Monoclonal anti-VEGF antibodies inhibit the growth of human tumors in nude mice. Although these same tumor cells continue to express VEGF in culture, the antibodies do not diminish their mitotic rate. Thus tumor-derived VEGF does not function as an autocrine mitogenic factor. Therefore, VEGF contributes to tumor growth in vivo by promoting angiogenesis through its paracrine vascular endothelial cell chemotactic and mitogenic activities. These monoclonal antibodies also inhibit the growth of typically less well vascularized human colon cancers in athymic mice and decrease the number of tumors arising from inoculated cells. Viral expression of a VEGF-binding construct of Flk-1, the mouse KDR receptor homologue, truncated to eliminate the cytoplasmic tyrosine kinase domains but retaining a membrane anchor, virtually abolishes the growth of a transplantable glioblastoma in mice presumably by the dominant negative mechanism of heterodimer formation with membrane spanning endothelial cell VEGF receptors. Embryonic stem cells, which normally grow as solid tumors in nude mice, do not produce detectable tumors if both VEGF alleles are knocked out. Taken together, these data indicate the role of VEGF in the growth of solid tumors. Inhibition of KDR or Flt-1 is implicated in pathological neoangiogenesis, and these are useful in the treatment of diseases in which neoangiogenesis is part of the overall pathology, e.g., diabetic retinal vascularization, as well as various forms of cancer.
Cancers which are treatable in accordance with the present invention demonstrate high levels of gene and protein expression. Examples of such cancers include cancers of the brain, genitourinary tract, lymphatic system, stomach, larynx and lung. These include histiocytic lymphoma, lung adenocarcinoma and small cell lung cancers. Additional examples include cancers in which overexpression or activation of Raf-activating oncogenes (e.g., K-ras, erb-B) is observed. More particularly, such cancers include pancreatic and breast carcinoma.
SUMMARY OF THE INVENTION
A compound is disclosed in accordance with formula
Figure imgf000005_0001
I or a pharmaceutically acceptable salt, hydrate or prodrug thereof,
wherein
Rj is H, C 0 alkyl, C3.6 cycloalkyl, C5.10 aryl, halo, OH, C3.
10 heterocyclyl, or C5.10 heteroaryl; said alkyl, alkenyl, alkynyl, aryl, heteroaryl and heterocyclyl being optionally substituted with from one to three members selected from Ra;
R2&R3 are independently H, Cj_6 alkyl, C5.10 aryl, C3-6 cycloalkyl, OH, N02, -NH2, or halogen;
R4 is H, CM0 alkyl, C3-6 cycloalkyl, C{_6 alkoxy C20 alkenyl, C2-ιo alkynyl, C5.10 aryl, C3.10 heterocyclyl, Cj-6 alkoxyNR7R8, N02, OH, -NH2 or C5.10 heteroaryl, said alkyl, alkenyl, alkynyl, aryl, heteroaryl and heterocyclyl being optionally substituted with from one to three members selected from Ra;
R5 is H, or Cι.6 alkyl, OR, halo, NH2 or N02;
Ra is H, C 0 alkyl, halogen, N02, OR, -NR NR7R8, R7R8,
C5-10 aryl C5.10 heteroaryl or C3.10 heterocyclyl,
R is H, or C 6 alkyl; and
R7&R8 are independently H, C 0 alkyl, C3-6 cycloalkyl, COR, COOR, COO-, C5.10 aryl, C3.10 heterocyclyl, or C5.10 heteroaryl or NR7R8 can be taken together to form a heterocyclic 5-10 membered saturated or unsaturated ring containing, in addition to the nitrogen atom, one to two additional heteroatoms selected from the group consisting of N, O and S.
Also disclosed is a pharmaceutical composition which is comprised of a compound represented by the formula I:
Figure imgf000007_0001
I wherein Rl 5 R2, R3, R4 and R5 are described as above or a pharmaceutically acceptable salt or hydrate or prodrug thereof in combination with a carrier.
Also included is a method of treating a tyrosine kinase dependent disease or condition in a mammal which comprises administering to a mammalian patient in need of such treatment a tyrosine kinase dependent disease or condition treating amount of a compound of formula I or a pharmaceutically acceptable salt, hydrate or pro-drug thereof.
Also included is a method of treating cancer in a mammalian patient in need of such treatment which is comprised of admininstering to said patient an anti-cancer effective amount of a compound of formula I or a pharmaceutically acceptable salt, hydrate or pro-drug thereof.
Also included in the present invention is a method of treating diseases in which neoangiogenesis is implicated, which is comprised of administering to a mammalian patient in need of such treatment a compound of formula I or a pharmaceutically acceptable salt, hydrate or pro-drug thereof in an amount which is effective for reducing neoangiogenesis.
More particularly, a method of treating ocular disease in which neoangiogenesis occurs is included herein, which is comprised of administering to a mammalian patient in need of such treatment a compound of formula I or a pharmaceutically acceptable salt hydrate or pro-drug thereof in an amount which is effective for treating said ocular disease. More particularly, a method of treating retinal vascularization is included herein, which is comprised of administering to a mammalian patient in need of such treatment a compound of formula I or a pharmaceutically acceptable salt, hydrate or pro-drug thereof in an amount which is effective for treating retinal vascularization. Diabetic retinopathy is an example of a disease in which neoangiogenesis or retinal vascularization is part of the overall disease etiology. Also included is a method of treating age-related macular degeneration. These and other aspects of the invention will be apparent from the teachings contained herein.
DETAILED DESCRIPTION OF THE INVENTION
The invention is described herein in detail using the terms defined below unless otherwise specified.
The term "alkyl" refers to a monovalent alkane (hydrocarbon) derived radical containing from 1 to 10 carbon atoms unless otherwise defined. It may be straight, branched or cyclic. Preferred straight or branched alkyl groups include methyl, ethyl, propyl, isopropyl, butyl and t-butyl. Preferred cycloalkyl groups include cyclopropyl, cyclobutyl, cycloheptyl, cyclopentyl and cyclohexyl.
Alkyl also includes a straight or branched alkyl group which contains or is interrupted by a cycloalkylene portion. Examples include the following:
and — (CH2)w-
Figure imgf000008_0001
, — r(CH2)z-
wherein: x plus y = from 0-10; and w plus z = from 0-9.
The alkylene and monovalent alkyl portion(s) of the alkyl group can be attached at any available point of attachment to the cycloalkylene portion. When substituted alkyl is present, this refers to a straight, branched or cyclic alkyl group as defined above, substituted with 1 -3 groups of Ra, described herein.
The term "alkenyl" refers to a hydrocarbon radical straight, branched or cyclic containing from 2 to 10 carbon atoms and at least one carbon to carbon double bond. Preferably one carbon to carbon double bond is present, and up to four non- aromatic (non-resonating) carbon-carbon double bonds may be present. Preferred alkenyl groups include ethenyl, propenyl, butenyl and cyclohexenyl. As described above with respect to alkyl, the straight, branched or cyclic portion of the alkenyl group may contain double bonds and may be substituted with one to three groups of Ra, when a substituted alkenyl group is provided.
The term "alkynyl" refers to a hydrocarbon radical straight, branched or cyclic, containing from 2 to 10 carbon atoms and at least one carbon to carbon triple bond. Up to three carbon- carbon triple bonds may be present. Preferred alkynyl groups include ethynyl, propynyl and butynyl. As described above with respect to alkyl, the straight, branched or cyclic portion of the alkynyl group may contain triple bonds and may be substituted with 1-3 groups of Ra, when a substituted alkynyl group is provided. Aryl refers to 5-10 membered aromatic rings e.g., phenyl, substituted phenyl and like groups as well as rings which are fused, e.g., naphthyl and the like. Aryl thus contains at least one ring having at least 5 atoms, with up to two such rings being present, containing up to 10 atoms therein, with alternating (resonating) double bonds between adjacent carbon atoms. The preferred aryl groups are phenyl and naphthyl. Aryl groups may likewise be substituted with 1 -3 groups of Ra as defined herein. Preferred substituted aryls include phenyl and naphthyl substituted with one or two groups.
The term heterocycle, heteroaryl or heterocyclic, as used herein except where noted, represents a stable 5- to 7- membered mono- or bicyclic or stable 7- to 10-membered bicyclic heterocyclic ring system, any ring of which may be saturated or unsaturated, and which consists of carbon atoms and from one to three heteroatoms selected from the group consisting of N, O and S, and wherein the nitrogen and sulfur heteroatoms may optionally be oxidized, and the nitrogen heteroatom may optionally be quaternized, and including any bicyclic group in which any of the above-defined heterocyclic rings is fused to a benzene ring. The heterocyclic ring may be attached at any heteroatom or carbon atom which results in the creation of a stable structure. The heterocycle, heteroaryl or heterocyclic may be substituted with 1-3 groups of Ra. Examples of such heterocyclic elements include piperidinyl, piperazinyl, 2-oxopiperazinyl, 2-oxopiperidinyl, 2- oxopyrrolodinyl, 2-oxoazepinyl, azepinyl, pyrrolyl, 4-piperidonyl, pyrrolidinyl, pyrazolyl, pyrazolidinyl, imidazolyl, imidazolinyl, imidazolidinyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, oxazolyl, oxazolidinyl, isoxazolyl, isoxazolidinyl, morpholinyl, thiazolyl, thiazolidinyl, isothiazolyl, quinuclidinyl, isothiazolidinyl, indolyl, quinolinyl, isoquinolinyl, benzimidazolyl, thiadiazoyl, benzopyranyl, benzothiazolyl, benzoxazolyl, furyl, tetrahydrofuryl, tetrahydropyranyl, thiophenyl, imidazopyridinyl, tetrazolyl, triazinyl, thienyl, benzothienyl, thiamorpholinyl sulfoxide, thiamoφholinyl sulfone, and oxadiazolyl. The term "alkoxy" refers to those groups of the designated length in either a straight or branched configuration and if two or more carbon atoms in length, they may include a double or a triple bond. Exemplary of such alkoxy groups are methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, tertiary butoxy, pentoxy, isopentoxy, hexoxy, isohexoxy allyloxy, propargyloxy, and the like.
The term "halogen" is intended to include the halogen atom fluorine, chlorine, bromine and iodine.
The term "prodrug" refers to compounds which are drug precursors which, following administration and absorption, release the drug in vivo via some metabolic process. Exemplary prodrugs include acyl amides of the amino compounds of this inventon such as amides of
Figure imgf000011_0001
amides of aryl acids (e.g., benzoic acid) and alkane(C!.6)dioic acids.
Tyrosine kinase dependent diseases or conditions refers to hyperproliferative disorders which are initiated/maintained by aberrant tyrosine kinase enzyme activity. Examples include psoriasis, cancer, immunoregulation (graft rejection), atherosclerosis, rheumatoid arthritis, angiogenesis (e.g. tumor growth, diabetic retinopathy), etc.
The compounds of the present invention are in accordance with formula I:
Figure imgf000011_0002
I or a pharmaceutically acceptable salt, hydrate or prodrug thereof,
wherein
R! is H, CM0 alkyl, C3.6 cycloalkyl, C5.10 aryl, halo, OH, C3.
10 heterocyclyl, or C5.10 heteroaryl; said alkyl, alkenyl, alkynyl, aryl, heteroaryl and heterocyclyl being optionally substituted with from one to three members selected from Ra;
R2&R3 are independently H, CN6 alkyl, C5.10 aryl, C3-6 cycloalkyl, OH, N02, -NH2, or halogen;
R4 is H, C 0 alkyl, C3-6 cycloalkyl, Cj.6 alkoxy C2.10 alkenyl, C2-ιo alkynyl, C5.10 aryl, C3.10 heterocyclyl, Cι-6 alkoxyNR7R8, N02, OH, -NH2 or C5.10 heteroaryl, said alkyl, alkenyl, alkynyl, aryl, heteroaryl and heterocyclyl being optionally substituted with from one to three members selected from Ra;
R5 is H, or Cj_6 alkyl, OR, halo, NH2 or N02;
Ra is H, CM0 alkyl, halogen, N02, OR, -NR, NR7R8, R7R8j
C5.10 aryl, C5.10 heteroaryl or C3.10 heterocyclyl,
R is H, or Cj.6 alkyl; and
R7&R8 are independently H, Cj.10 alkyl, C3-6 cycloalkyl, COR, COOR, COO-, C5.10 aryl, C3.10 heterocyclyl, or C5.10 heteroaryl or NR7R8 can be taken together to form a heterocyclic 5-10 membered saturated or unsaturated ring containing, in addition to the nitrogen atom, one to two additional heteroatoms selected from the group consisting of N, O and S.
A preferred subset of compounds of the present invention is realized when:
Rj is H, CJ.JO alkyl, C5.10 aryl, C3.10 heterocyclyl, or C5.10 heteroaryl; said alkyl, aryl, heteroaryl and heterocyclyl being optionally substituted with from one to three members selected from Ra;
R2&R3 are independently H, Cj_6 alkyl, C3-6 cycloalkyl, OH, or halogen;
R4 is H, Cj.io a]ky\, C3-6 cycloalkyl, C5.10 aryl, C5.10 heteroaryl, C3.10 heterocyclyl, Cι-6 alkoxyNR7R8, N02, OH, -NH2 or C5.10 heteroaryl, said alkyl, aryl, heteroaryl and heterocyclyl being optionally substituted with from one to three members selected from Ra; and all other variables are as described above.
Examples of the compounds of this invention are:
3-(4-fluorophenyl)-6-(4-pyridyl) pyrazolo(l,5-A)pyrimidine, 3-(3-chlorophenyl)-6-(4-pyridyl) pyrazolo(l ,5-A)pyrimidine, 3-(3,4-methylenedioxypheny)-6-(4-pyridyl) pyrazolo(l ,5- A)pyrimidine, 3-(phenyl)-6-(4-pyrimidyl) pyrazolo(l,5-A)pyrimidine,
3-(4-fluorophenyl)-6-(4-pyrimidyl) pyrazolo(l ,5-A)pyrimidine, 3-(3-chlorophenyl)-6-(4-pyrimidyl) pyrazolo(l ,5-A)pyrimidine, 3-(3-thienyl)-6-(4-pyrimidyl) pyrazolo(l ,5-A)pyrimidine, 3-(3-acetamidophenyl)-6-(4-methylphenyl) pyrazolo(l ,5- A)pyrimidine,
3-(3-thienyl)-6-(4-methylphenyl) pyrazolo(l ,5-A)pyrimidine, 3-(phenyl)-6-(4-methoxyphenyl) pyrazolo(l ,5-A)pyrimidine, 3-(3-acetamidophenyl)-6-(4-methoxyphenyl)pyrazolo(l,5- A)pyrimidine, 3-(3-thienyl)-6-(4-methoxyphenyl) pyrazolo( 1 ,5-A)pyrimidine, 3-(phenyl)-6-(4-methoxyphenyl) pyrazolo(l ,5-A)pyrimidine, 3-(4-pyridyl)-6-(4-methoxyphenyl) pyrazolo( 1 ,5-A)pyrimidine, 3-(phenyl)-6-(4-chlorophenyl) pyrazolo( 1 ,5-A)pyrimidine. 3-(4-pyridyl)-6-(4-chlorophenyl) pyrazolo(l ,5-A)pyrimidine, 3-(phenyl)-6-(4-methylphenyl) pyrazolo(l,5-A)pyrimidine, 3-(4-pyridyl)-6-(4-methylρhenyl) pyrazolo(l ,5-A)pyrimidine, 3-(ρhenyl)-6-(2-pyridyl) pyrazolo(l ,5-A)ρyrimidine, 3-(4-pyridyl)-6-(2-ρyridyl) pyrazolo(l ,5-A)pyrimidine, 3-(phenyl)-6-(4-ρyrimidyl) pyrazolo(l ,5-A)pyrimidine, 3-(4-pyridyl)-6-(4-ρyrimidyl) pyrazolo( 1 ,5-A)pyrimidine, 3-(ρhenyl)-6-(2-pyrazinyl) pyrazolo(l ,5-A)pyrimidine, 3-(4-pyridyl)-6-(2-pyrazinyl) pyrazolo(l ,5-A)pyrimidine, 3-(3-pyridyl)-6-(4-methoxyphenyl) pyrazolo( 1 ,5-A)pyrimidine, 3-(phenyl)-6-(4-pyridyl) pyrazolo( 1 ,5-A)pyrimidine, 3-(3-pyridyl)-6-(4-pyridyl) pyrazolo(l ,5-A)pyrimidine, 3-(4 pyridyl)-6-(4-methoxyphenyl) pyrazolo(l,5-A)pyrimidine, 3-(3-thienyl)-6-(4-methoxyphenyl) pyrazolo(l ,5-A)pyrimidine, 3 -(3 -thienyl)-6-(4-hydroxyphenyl)pyrazolo( 1 ,5-A)pyrimidine, 3-(3-thienyl)-6-(4-(2-(4-moφholinyl)ethoxy)phenyl) pyrazolo(l ,5- A)pyrimidine,
3-(3-thienyl)-6-(cyclohexyl)pyrazolo (1 ,5-A)pyrimidine, 3-(bromo)-6-(4-methoxyphenyl) pyrazolo(l ,5-A)pyrimidine, 3-(bromo)-6-(4-pyrimidyl) pyrazolo(l ,5-A)pyrimidine, 3-(phenyl)-6-(2-(3-carboxy)pyridyl) pyrazolo(l,5-A)pyrimidine, and 3-(3-thienyl)-6-(4-pyridyl) pyrazolo(l ,5-A)pyrimidine.
Schemes 1-3 for preparing the novel compounds of this invention are presented below. The examples which follow the schemes illustrate the compounds that can be synthesized by Schemes 1-3, but Schemes 1-3 are not limited by the compounds in the tables nor by any particular substituents employed in the schemes for illustrative puφoses. The examples specifically illustrate the application of the following schemes to specific compounds.
Figure imgf000014_0001
Generally, a method for the preparation of 3,6-diaryl pyrazolo(l,5-A)pyrimidines comprises mixing a commercially available malondialdehyde compound (1), with commercially available aminopyrazole (2) in an alcohol, such as ethanol, methanol, isopropanol, butanol and the like, said alcohol containing catalytic quantities of an acid, such as acetic acid, to yield (3), wherein Arl and r2, respectively, are R4 and Rl5 as described above.
Scheme 2
Figure imgf000015_0001
Figure imgf000015_0002
Scheme 2 depicts a means for making 3,6-diaryl pyrazolo(l,5-A)pyrimidines when the desired aminopyrazole is not commercially available. In a like manner to that described in scheme 1 compound (8) is obtained. Treatment of (8) with a boronic acid derivative in the presence of a palladium catalyst provides after workup the desired material (9). Arl and Ar2 are as described above.
Scheme 3 n OMe PhCH3 Ar Λ ° ^N'
An^ + Me2N-< —^ Arι ■?
1 + OMe 115°C '
15 16 17
Figure imgf000016_0001
18 16 19 20
Figure imgf000016_0002
20 17 21
Scheme 3 ilustrates another method for the preparation of 3,7 diarylpyrazolo(l,5-A)pyrimidines. The comercially available ketone (15) and nitrile (18) are treated seperately with dimethylformamidedimethyl acetal (16) in refluxing toluene to give products (17) and (19) respectively. Compound (19) is then treated with hydrazinehydrochloride in refluxing ethanol to give the aminopyrazole (20). Compounds (17) and (20) and then treated with catalytic amounts of acetic acid in ethanol as described previously giving the desired of 3,7 diarylpyrazolo(l,5- A)pyrimidines (21). Arl and Ar2 are as described above.
The invention described herein includes a pharmaceutical composition which is comprised of a compound of formula I or a pharmaceutically acceptable salt or hydrate thereof in combination with a carrier. As used herein the terms "pharmaceutically acceptable salts" and "hydrates" refer to those salts and hydrated forms of the compound which would be apparent to the pharmaceutical chemist, i.e., those which favorably affect the physical or pharmacokinetic properties of the compound, such as solubility, palatability, absoφtion, distribution, metabolism and excretion. Other factors, more practical in nature, which are also important in the selection, are the cost of the raw materials, ease of crystallization, yield, stability, solubility, hygroscopicity and flowability of the resulting bulk drug. When a compound of formula I is present as a salt or hydrate which is non-pharmaceutically acceptable, this can be converted to a salt or hydrate form which is pharmaceutically acceptable in accordance with the present invention.
When the compound is negatively charged, it is balanced by a counterion, e.g., an alkali metal cation such as sodium or potassium. Other suitable counterions include calcium, magnesium, zinc, ammonium, or alkylammonium cations such as tetramethylammonium, tetrabutylammonium, choline, triethylhydroammonium, meglumine, triethanolhydroammonium, etc. An appropriate number of counterions is associated with the molecule to maintain overall charge neutrality. Likewise when the compound is positively charged, e.g., protonated, an appropriate number of negatively charged counterions is present to maintain overall charge neutrality. Pharmaceutically acceptable salts also include acid addition salts. Thus, the compound can be used in the form of salts derived from inorganic or organic acids or bases. Examples include acetate, adipate, alginate, aspartate, benzoate, benzenesulfonate, bisulfate, butyrate, citrate, camphorate, camphorsulfonate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, fumarate, glucoheptanoate, glycerophosphate, hemisulfate, heptanoate, hexanoate, hydrochloride, hydrobromide, hydroiodide, 2- hydroxyethanesulfonate, lactate, maleate, methanesulfonate, 2- naphthalenesulfonate, nicotinate, oxalate, pamoate, pectinate, persulfate, 3-phenylpropionate, picrate, pivalate, propionate, succinate, tartrate, thiocyanate, tosylate and undecanoate. Base salts include ammonium salts, alkali metal salts such as sodium and potassium salts, alkaline earth metal salts such as calcium and magnesium salts, salts with organic bases such as dicyclohexylamine salts, N-methyl-D-glucamine, and salts with amino acids such as arginine, lysine, and so forth. Also, the basic nitrogen-containing groups may be quaternized with such agents as lower alkyl halides, such as methyl, ethyl, propyl, and butyl chloride, bromides and iodides; dialkyl sulfates like dimethyl, diethyl, dibutyl; and diamyl sulfates, long chain halides such as decyl, lauryl, myristyl and stearyl chlorides, bromides and iodides, aralkyl halides like benzyl and phenethyl bromides and others. Other pharmaceutically acceptable salts include the sulfate salt ethanolate and sulfate salts.
The compounds of the present invention, may have asymmetric centers and occur as racemates, racemic mixtures and as individual diastereomers, or enantiomers with all isomeric forms being included in the present invention. When any variable (e.g., aryl, heterocyle, Rl, etc)occurs more than one time in any constituent or in Formula I, its definition on each occcurence is independent of its definition at every other occurrence, unless otherwise stated. The compounds of the invention can be formulated in a pharmaceutical composition by combining the compound with a pharmaceutically acceptable carrier. Examples of such compositions and carriers are set forth below.
The compounds may be employed in powder or crystalline form, in solution or in suspension. They may be administered orally, parenterally (intravenously or intramuscularly), topically, transdermally or by inhalation.
Thus, the carrier employed may be, for example, either a solid or liquid. Examples of solid carriers include lactose, terra alba, sucrose, talc, gelatin, agar, pectin, acacia, magnesium stearate, stearic acid and the like. Examples of liquid carriers include syrup, peanut oil, olive oil, water and the like. Similarly, the carrier for oral use may include time delay material well known in the art, such as glyceryl monostearate or glyceryl distearate alone or with a wax.
Topical applications may be formulated in carriers such as hydrophobic or hydrophilic bases to form ointments, creams, lotions, in aqueous, oleaginous or alcoholic liquids to form paints or in dry diluents to form powders. Such topical formulations can be used to treat ocular diseases as well as inflammatory diseases such as rheumatoid arthritis, psoriasis, contact dermatitis, delayed hypersensitivity reactions and the like. Examples of oral solid dosage forms include tablets, capsules, troches, lozenges and the like. The size of the dosage form will vary widely, but preferably will be from about 25 mg to about 500mg. Examples of oral liquid dosage forms include solutions, suspensions, syrups, emulsions, soft gelatin capsules and the like. Examples of injectable dosage forms include sterile injectable liquids, e.g., solutions, emulsions and suspensions. Examples of injectable solids would include powders which are reconstituted, dissolved or suspended in a liquid prior to injection. In injectable compositions, the carrier is typically comprised of sterile water, saline or another injectable liquid, e.g., peanut oil for intramuscular injections. Also, various buffering agents, preservatives and the like can be included.
For the methods of treatment disclosed herein, dosages can be varied depending upon the overall condition of the patient, the nature of the illness being treated and other factors. An example of a suitable oral dosage range is from about 0.1 to about 80 mg/kg per day, in single or divided doses. An example of a suitable parenteral dosage range is from about 0.1 to about 80 mg/kg per day, in single or divided dosages, administered by intravenous or intramuscular injection. An example of a topical dosage range is from about 0.1 mg to about 150 mg, applied externally from about one to four times a day. An example of an inhalation dosage range is from about 0.01 mg/kg to about 1 mg/kg per day. The compounds may be administered in conventional dosages as a single agent or in combination with other therapeutically active compounds.
EXAMPLE 1
Figure imgf000020_0001
3-(4 pyridyl)-6-(4-methoxyphenyl) pyrazolo(l,5-A)pyrimidine
A solution of commercially available dialdehyde (4, 12.9 mg, 0.0724 mmol) and aminopyrazole (5, 10.4mg
0.0652mmol) in ethanol was heated at 80°C for 10 hours in a test tube containing catalytic amounts of acetic acid. The reaction was cooled to room temperature and the yellow solid was collected by filtration and the title compound was washed with cold ethanol and dried (11.7 mg, 60%). Mass Spec (M+l, 303).
Figure imgf000020_0002
EXAMPLE 2
Figure imgf000020_0003
3-(3-thienyl)-6-(4-methoxyphenyl) pyrazolo( 1 ,5-A)pyrimidine Step 1.
A solution of 4 (713 mg, 4.0 mmol) and commercially availaible 7 (648 mg, 4.0 mmol), discussed above in ethanol (20 mL) was heated at 75°C for 4 h. The resulting white suspension was as decribed in example 1 for 4 hours, then cooled to 20°C, filtered, and washed with methanol (3 x 5 mL) to provide 10 as a white powder (1.07 g, 88%, mp = 168-170°C): Η NMR (CDC13) δ 8.79 (d, 1 H, J = 2.2 Hz), 8.74 (d, 1 H, ; = 2.2 Hz), 8.12 (s, 1 H), 7.51 (d, 2 H, J = 8.8 Hz), 7.05 (d, 2 H, J = 8.8 Hz), 3.88 (s, 3 H).
Figure imgf000021_0001
10
Step 2. A suspension of (10) (250 mg, 0.82 mmol), thiophene-3-boronic acid (11) (158 mg, 1.24 mmol), and aqueous sodium carbonate (2 M, 1 mL) in dioxane (5 mL) was de-gassed by evacuating and backflushing with argon (3x). Tetrakis(triphenyl-phosphine) palladium (20 mg, 0.017 mmol) was added and the reaction mixture was de-gassed again. The argon filled flask was then submerged in an oil bath pre-heated to 90°C and was heated at that temperature for 16 h. After cooling to 20°C, the yellow precipitate which formed was collected by filtration and was washed with methanol (3 x 5 mL) to provide the title compound as a yellow powder (220 mg, 87%, mp = 191-193 °C): Η NMR (CDCI3) δ 8.79 (d, 1 H, J = 2.4 Hz), 8.76 (d, 1 H, J = 2.2 Hz), 8.37 (s, 1 H), 7.90 (dd, 1 H, J = 2.9, 1.3 Hz), 7.70 (dd, 1 H, J = 4.9, 1.2 Hz), 7.54 (d, 2 H, J = 8.8 Hz), 7.43 (d, 1 H, J = 4.9, 2.9 Hz), 7.06 (d, 2 H, J = 8.8 Hz), 3.88 (s, 3H).
Figure imgf000022_0001
3-(3-thienyl)-6-(4-hydroxyphenyl)pyrazolo(l,5-A)pyrimidine
Ethanethiol (30 mg, 36 uL) was added drop wise over 1 min to a suspension of sodium hydride (23 mg, 0.98 mmol) in dry DMF (2 mL) under argon. After 15 min, the compound of example 2 (50 mg, 0.16 mmol) was added and the reaction mixture was heated at 150°C for 1.5 h. The resulting brown solution was cooled, poured into water (25 mL) and washed with ethyl acetate (2 x 25 mL). The combined organics were dried (Na2S04), concentrated, and purified by flash chromatography (40%
EtOAc/Hexanes) to give the title compound as a yellow solid [11 mg, 23%, Rf = 0.12 (40% EtOAc/Hexanes)]: Η NMR (CD3OD) δ 8.96 (d, 1 H, ;= 2.4 Hz), 8.85 (d, 1 H, J = 2.2 Hz), 8.44 (s, 1 H), 7.94 (dd, 1 H, J = 2.9, 1.2 Hz), 7.74 (dd, 1 H, J = 4.9, 1.2 Hz), 7.56 (d, 2 H, J = 8.8 Hz), 7.46 (dd, 1 H, J = 4.9, 2.9 Hz), 6.94 (d, 2 H, J= 8.6 Hz).
Figure imgf000022_0002
3-(3-thienyl)-6-(4-(2-(4-moφholinyl)ethoxy)phenyl) pyrazolo(l,5- A)pyrimidine
A solution of example 3 (11 mg, 0.038 mmol), cesium carbonate (37 mg, 0.11 mmol), N-(2-chloroethyl)moφholine hydrochloride (7 mg, 0.11 mmol), and sodium iodide (0.013 mmol) in DMF (3 mL) was heated at 60°C under argon for 16 h. The reaction mixture was then poured into water (25 mL) and washed with ethyl acetate (2 x 25 mL). The combined organics were dried (Na2S04), concentrated, and purified by flash chromatography [50% Hexanes/CHC13(NH3)] to give the title compound as a yellow solid [10 mg, 65%, mp = 149-151°C, Rf = 0.39 (100%
CHC13(NH3))]: Η NMR (CDC13) δ 8.77 (d, 1 H, J = 2.2 Hz), 8.75 (d, 1 H, J = 2.2 Hz), 8.36 (s, 1 H), 7.90 (dd, 1 H, J = 2.9, 1.3 Hz), 7.69 (dd, 1 H, J = 4.9, 1.3 Hz), 7.52 (d, 2 H, J = 8.8 Hz), 7.43 (d, l H, = 4.9, 2.9 Hz), 7.06 (d, 2 H, J = 8.8 Hz), 4.18 (t, 2 H, 7 = 5.7 Hz), 3.76 (t, 4 H, J= 4.6 Hz), 2.85 (t, 2 H, J= 5.7 Hz), 2.61 (t, 4 H, J= 4.6 Hz); FAB MS (M++l) Anal Calcd. for C22H22N402S : C, 65.00; H, 5.46; N, 13.78. Found C, 64.98; H, 5.55; N, 14.02.
Figure imgf000023_0002
EXAMPLE 5
Figure imgf000024_0001
3-(3-thiophenyl)-7-(4-pyridyl) pyrazolo(l,5-A)pyrimidine
A 13 x 100 mm reaction tube was charged with aminopyrazole (22) (16.5 mg, 0.100 mmol) dissolved in 0.500 mL EtOH and vinylogous amide (23) (17.6 mg, 0.100 mmol) dissolved in 0.200 mL EtOH. Glacial acetic acid (1 drop) was added and the reaction was heated to 80 °C for 14 h. An additional 0.100 mL of glacial acetic acid was added and heating was continued for an additional 6 h. The sample was concentrated to dryness to provide the desired title compound. Analysis by mass spectrometry showed [M+H]+ 279.2.
Figure imgf000024_0002
23
EXAMPLE 6
Figure imgf000024_0003
3-(3-thienyl)-6-(cyclohexyl) pyrazolo( 1 ,5- A)pyrimidine Step l
Palladium on carbon (10%, 2 g) was added to a solution of 24 (5.62 g, 23.4 mmol) in ethanol (100 mL) under an argon atmosphere. After evacuating and backflushing the reaction vessel with H2 (3X), the black suspension was stirred vigorously under an H2 filled balloon for 16 h. The reaction mixture was then filtered through celite, washed with ethyl acetate (200 mL) and concentrated to provide 25 as a colorless oil (5.0 g, 88%): H NMR (CDC13) d 4.18 (q, 4 H, / = 7.1 Hz), 3.13 (d, 1 H, / = 9.2 Hz), 2.08 (m, 1 H), 1.73 - 1.56 (m, 5 H), 1.35 - 1.01 (m, 5 H), 1.26 (t, 6 H, 7 = 7.0 Hz).
Figure imgf000025_0001
Step 2 A solution of 25 (2.0 g, 8.3 mmol) in dry THF (30 mL) at
0°C was treated with lithium aluminum hydride (1.0 M in THF, 16.5 mL, 16.5 mmol) over a 5 min period. The reaction mixture was warmed gradually to 15°C over 20 min and then was re- cooled to 0°C and quenched sequentially with water (630 uL), aqueous sodium hydroxide (I N, 630 uL), and then water (3 x 630 uL). The resulting white suspension was stirred for 15 min, dried (Na2S04), and filtered washing with THF (100 mL) and ethyl acetate (100 mL). The filtrate was concentrated to provide 26 as a white solid (1.35 g, 100%): iH NMR (CDCI3) d 3.83 (ddd, 4 H), 1.77 - 1.62 (m, 5 H), 1.57 (m, 1 H), 1.42 (m, 1 H), 1.30 - 0.96 (m, 5 H).
Figure imgf000025_0002
Step 3
A solution of oxalyl chloride (2.39 g, 1.64 mL, 18.8 mmol) in CH2CI2 (50 mL) at -60°C was treated with DMSO (2.94 g, 2.67 mL, 37.6 mmol) in CH2CI2 (10 mL) over 2 min. After 5 min, a solution of 26 (1.35 g, 8.5 mmol) in CH2CI2 (20 mL) was added and the resulting suspension was maintained at -60°C for 15 min. Triethylamine (8.6 g, 11.8 mL, 85 mmol) was then added and the reaction mixture was allowed to warm to 20°C. The quenched reaction was poured into water (200 mL) and washed with CH2CI2 (2 x 100 mL). The combined organics were dried (Na2Sθ4), concentrated, and purified by flash chromatography (40% Hexane/EtOAc) to provide 27 as a viscous oil [135 mg, 10%, Rf=
0.34 (40% Hexane/EtOAc)]: *H NMR (CDCI3) d 8.26 (s, 2 H),
2.09 (tt, 1 H), 1.85 - 1.68 (m, 6 H), 1.39 - 1.13 (m, 5 H).
Figure imgf000026_0001
Step 4
A solution of 27 (50 mg, 0.30 mmol) and 22 (47 mg, 0.30 mmol) in ethanol (5 mL) was heated at 75°C for 16 h. After cooling, the reaction mixture was concentrated, and the crude product was purified by flash chromatography (25%
EtOAc/Hexane) to provide 6 as a yellow solid [54 mg, 63%, Rf =
0.33 (25% EtOAc/Hexanes)]: iH NMR (CDCI3) d 8.48 (d, 1 H, J = 2.2 Hz), 8.44 (d, 1 H, J = 1.5 Hz), 8.30 (s, 1 H), 7.86 (dd, 1 H, / = 2.9, 1.1 Hz), 7.66 (dd, 1 H, J = 4.9, 1.2 Hz), 7.41 (dd, 1 H, / = 4.9, 2.9 Hz), 2.64 (m, 1 H), 2.03 - 1.80 (m, 5 H), 1.52 - 1.27 (m,
5 H); FAB MS (M++l) calcd. for 284, found 284; Anal Calcd. for CI6H17N3S (0.05 H2O): C, 67.59; H, 6.06; N, 14.78. Found C,
67.66; H, 6.12; N, 15.14.
Figure imgf000027_0001
Kinase inhibition is demonstrated in accordance with the following protocol.
VEGF RECEPTOR KINASE ASSAY
VEGF receptor kinase activity is measured by incoφoration of radio-labeled phosphate into polyglutamic acid, tyrosine, 4: 1 (pEY) substrate. The phosphorylated pEY product is trapped onto a filter membrane and the incoporation of radio- labeled phosphate quantified by scintillation counting.
MATERIALS VEGF receptor kinase The intracellular tyrosine kinase domains of human
KDR (Terman, B.I. et al. Oncogene (1991) vol. 6, pp. 1677-1683.) and Flt-1 (Shibuya, M. et al. Oncogene (1990) vol. 5, pp. 519- 524) were cloned as glutathione S-transferase (GST) gene fusion proteins. This was accomplished by cloning the cytoplasmic domain of the KDR kinase as an in frame fusion at the carboxy terminus of the GST gene. Soluble recombinant GST-kinase domain fusion proteins were expressed in Spodoptera frugiperda (Sf21) insect cells (Invitrogen) using a baculovirus expression vector (pAcG2T, Pharmingen).
Lysis buffer
50 mM Tris pH 7.4, 0.5 M NaCl, 5 mM DTT, 1 mM EDTA, 0.5% triton X-100, 10 % glycerol, 10 mg/ml of each leupeptin, pepstatin and aprotinin and ImM phenylmethylsulfonyl fluoride (all Sigma). Wash buffer
50 mM Tris pH 7.4, 0.5 M NaCl, 5 mM DTT, 1 mM EDTA, 0.05% triton X-100, 10 % glycerol, 10 mg/ml of each leupeptin, pepstatin and aprotinin and ImM phenylmethylsulfonyl fluoride.
Dialysis buffer
50 mM Tris pH 7.4, 0.5 M NaCl, 5 mM DTT, 1 mM EDTA, 0.05% triton X-100, 50 % glycerol, 10 mg/ml of each leupeptin, pepstatin and aprotinin and ImM phenylmethylsuflonyl fluoride
10 X reaction buffer
200 mM Tris, pH 7.4, 1.0 M NaCl, 50 mM MnCl2, 10 mM DTT and 5 mg/ml bovine serum albumin (Sigma).
Enzyme dilution buffer
50 mM Tris, pH 7.4, 0.1 M NaCl, 1 mM DTT, 10 % glycerol, 100 mg/ml BSA.
10 X Substrate
750 μg/ml poly (glutamic acid, tyrosine; 4: 1) (Sigma).
Stop solution 30% trichloroacetic acid, 0.2 M sodium pyrophosphate (both Fisher).
Wash solution
15% trichloroacetic acid, 0.2 M sodium pyrophosphate.
Filter plates
Millipore #MAFC NOB, GF/C glass fiber 96 well plate. METHOD
A. Protein purification
1. Sf21 cells were infected with recombinant virus at a multiplicity of infection of 5 virus particles/ cell and grown at
27 °C for 48 hours.
2. All steps were performed at 4°C. Infected cells were harvested by centrifugation at 1000 X g and lysed at 4 °C for 30 minutes with 1/10 volume of lysis buffer followed by centrifugation at 100,000Xg for 1 hour. The supernatant was then passed over a glutathione Sepharose column (Pharmacia) equilibrated in lysis buffer and washed with 5 volumes of the same buffer followed by 5 volumes of wash buffer. Recombinant GST- KDR protein was eluted with wash buffer/ 10 mM reduced glutathione (Sigma) and dialyzed against dialysis buffer.
B. VEGF receptor kinase assay
1. Add 5 μl of inhibitor or control to the assay in 50% DMSO. 2. Add 35 μl of reaction mix containing 5 μl of 10 X reaction buffer, 5 μl 25 mM ATP/10 μCi [33P]ATP (Amersham), and 5 μl 10 X substrate.
3. Start the reaction by the addition of 10 μl of KDR (25 nM) in enzyme dilution buffer. 4. Mix and incubate at room temperature for 15 minutes.
5. Stop by the addition of 50 μl stop solution.
6. Incubate for 15 minutes at 4°C.
7. Transfer a 90 μl aliquot to filter plate. 8. Aspirate and wash 3 times with wash solution.
9. Add 30 μl of scintillation cocktail, seal plate and count in a Wallac Microbeta scintillation counter. Human Umbilical Vein Endothelial Cell Mitogenesis Assay
Expression of VEGF receptors that mediate mitogenic responses to the growth factor is largely restricted to vascular endothelial cells. Human umbilical vein endothelial cells (HUVECs) in culture proliferate in response to VEGF treatment and can be used as an assay system to quantify the effects of KDR kinase inhibitors on VEGF stimulation. In the assay described, quiescent HUVEC monolayers are treated with vehicle or test compound 2 hours prior to addition of VEGF or basic fibroblast growth factor (bFGF). The mitogenic response to VEGF or bFGF is determined by measuring the incoφoration of [3H]thymidine into cellular DNA.
Materials
HUVECs
HUVECs frozen as primary culture isolates are obtained from Clonetics Coφ. Cells are maintained in Endothelial Growth Medium (EGM; Clonetics) and are used for mitogenic assays at passages 3-7.
Culture Plates
NUNCLON 96-well polystyrene tissue culture plates (NUNC #167008).
Assay Medium
Dulbecco's modification of Eagle's medium containing 1 g/ml glucose (low-glucose DMEM; Mediatech) plus 10% (v/v) fetal bovine serum (Clonetics).
Test Compounds
Working stocks of test compounds are diluted serially in 100% dimethylsulfoxide (DMSO) to 400-fold greater than their desired final concentrations. Final dilutions to IX concentration are made directly into Assay Medium immediately prior to addition to cells.
IPX Growth factors Solutions of human VEGF165 (500 ng/ml; R&D
Systems) and bFGF (10 ng/ml; R&D Systems) are prepared in Assay Medium.
IPX [3HlThymidine [Methyl-3H]Thymidine (20 Ci/mmol; Dupont-NEN) is diluted to 80 uCi/ml in low-glucose DMEM.
Cell Wash Medium
Hank's balanced salt solution (Mediatech) containing 1 mg/ml bovine serum albumin (Boehringer-Mannheim).
Cell Lysis Solution
1 N NaOH, 2% (w/v) Na2C03.
Method
1. HUVEC monolayers maintained in EGM are harvested by trypsinization and plated at a density of 4000 cells per 100 ul Assay Medium per well in 96-well plates. Cells are growth- arrested for 24 hours at 37°C in a humidified atmosphere containing 5% C02.
2. Growth-arrest medium is replaced by 100 ul Assay Medium containing either vehicle (0.25% [v/v] DMSO) or the desired final concentration of test compound. All determinations are performed in triplicate. Cells are then incubated at 37°C/5% C02 for 2 hours to allow test compounds to enter cells.
3. After the 2-hour pretreatment period, cells are stimulated by addition of 10 ul/well of either Assay Medium, 10X VEGF solution or 10X bFGF solution. Cells are then incubated at 37°C/5% C02.
4. After 24 hours in the presence of growth factors, 10X
[3H]Thymidine (10 ul/well) is added. 5. Three days after addition of [3H]thymidine, medium is removed by aspiration, and cells are washed twice with Cell Wash Medium (400 ul/well followed by 200 ul/well). The washed, adherent cells are then solubilized by addition of Cell Lysis Solution (100 ul/well) and warming to 37°C for 30 minutes. Cell lysates are transferred to 7-ml glass scintillation vials containing 150 ul of water. Scintillation cocktail (5 ml/vial) is added, and cell-associated radioactivity is determined by liquid scintillation spectroscopy.
Based upon the foregoing assays the compounds of formula I are inhibitors of VEGF and thus are useful for the inhibition of neoangiogenesis, such as in the treatment of occular disease, e.g., diabetic retinopathy and in the treatment of cancers, e.g., solid tumors. The instant compounds inhibit VEGF-stimulated mitogenesis of human vascular endothelial cells in culture with IC50 values between 150-650 nM. These compounds also show selectivity over related tyrosine kinases (e.g. FGFRl and the Src family).

Claims

WHAT IS CLAIMED IS:
A compound in accordance with formula I:
Figure imgf000033_0001
I or a pharmaceutically acceptable salt, hydrate or prodrug thereof,
wherein
R, is H, CM0 alkyl, C3-6 cycloalkyl, C5.10 aryl, halo, OH, C3_
10 heterocyclyl, or C5.10 heteroaryl; said alkyl, alkenyl, alkynyl, aryl, heteroaryl and heterocyclyl being optionally substituted with from one to three members selected from Ra;
R2&R3 are independently H, Cj_6 alkyl, C5.10 aryl, C3-6 cycloalkyl, OH, N02, -NH2, or halogen;
R4 is H, CM0 alkyl, C3-6 cycloalkyl, Cj.6 alkoxy C2.10 alkenyl, C2-╬╣o alkynyl, C5.10 aryl, C3.10 heterocyclyl, Cj-6 alkoxyNR7R8, N02, OH, -NH2 or C5.10 heteroaryl, said alkyl, alkenyl, alkynyl, aryl, heteroaryl and heterocyclyl being optionally substituted with from one to three members selected from Ra;
R, is H, or CL6 alkyl, OR, halo, NH2 or N02; Ra is H, CM0 alkyl, halogen, N02, OR, -NR, NR7R8, R7R8,
C5-10 aryl. C5-10 heteroaryl or C3.10 heterocyclyl,
R is H, or Cj.6 alkyl; and
R7&R8 are independently H, C,.10 alkyl, C3-6 cycloalkyl, COR, COOR, COO-, C5.10 aryl, C3.10 heterocyclyl, or C5.10 heteroaryl or NR7R8 can be taken together to form a heterocyclic 5-10 membered saturated or unsaturated ring containing, in addition to the nitrogen atom, one to two additional heteroatoms selected from the group consisting of N, O and S.
2. A compound in accordance with claim 1 wherein
R] is H, C^JO alkyl, C5.10 aryl, C3.10 heterocyclyl, or C5.10 heteroaryl; said alkyl, aryl, heteroaryl and heterocyclyl being optionally substituted with from one to three members selected from Ra;
R2&R3 are independently H, Cj_6 alkyl, C3.6 cycloalkyl, OH, or halogen;
R4 is H, C 0 alkyl, C3.6 cycloalkyl, C5.10 aryl, C5.10 heteroaryl, C3.10 heterocyclyl, C╬╣-6 alkoxyNR7R8, N02, OH, -NH2 or C5.10 heteroaryl, said alkyl, aryl, heteroaryl and heterocyclyl being optionally substituted with from one to three members selected from Ra; and all other variables are as described above.
3. A compound in accordance with claim 1 which is:
3-(4-fluorophenyl)-6-(4-pyridyl) pyrazolo(l ,5-A)pyrimidine, 3-(3-chlorophenyl)-6-(4-pyridyl) pyrazolo(l ,5-A)pyrimidine, 3-(3 ,4-methylenedioxypheny)-6-(4-pyridyl) pyrazolo( 1 ,5- A)pyrimidine,
3-(phenyl)-6-(4-pyrimidyl) pyrazolo(l ,5-A)pyrimidine, 3-(4-fluorophenyl)-6-(4-pyrimidyl) pyrazolo(l ,5-A)pyrimidine, 3-(3-chlorophenyl)-6-(4-pyrimidyl) pyrazolo(l ,5-A)pyrimidine, 3-(3-thienyl)-6-(4-pyrimidyl) ρyrazolo(l,5-A)pyrimidine, 3-(3-acetamidophenyl)-6-(4-methylphenyl) pyrazolo( 1,5- A)pyrimidine,
3-(3-thienyl)-6-(4-methylphenyl) pyrazolo(l ,5-A)pyrimidine, 3-(phenyl)-6-(4-methoxyphenyl) pyrazolo(l ,5-A)pyrimidine, 3-(3-acetamidophenyl)-6-(4-methoxyphenyl)pyrazolo( 1,5- A)pyrimidine,
3-(3-thienyl)-6-(4-methoxyphenyl) pyrazolo(l ,5-A)pyrimidine, 3-(phenyl)-6-(4-methoxyphenyl) pyrazolo(l ,5-A)pyrimidine, 3-(4-pyridyl)-6-(4-methoxyphenyl) pyrazolo(l ,5-A)pyrimidine, 3-(phenyl)-6-(4-chloroρhenyl) pyrazolo( 1 ,5-A)pyrimidine. 3-(4-pyridyl)-6-(4-chlorophenyl) ρyrazolo(l ,5-A)ρyrimidine, 3-(phenyl)-6-(4-methylphenyl) pyrazolo(l ,5-A)pyrimidine, 3-(4-pyridyl)-6-(4-methylphenyl) pyrazolo(l ,5-A)pyrimidine, 3-(phenyl)-6-(2-pyridyl) pyrazolo(l ,5-A)pyrimidine, 3-(4-pyridyl)-6-(2-pyridyl) pyrazolo(l,5-A)pyrimidine, 3-(phenyl)-6-(4-pyrimidyl) pyrazolo(l ,5-A)pyrimidine, 3 -(4-pyridyl)-6-(4-pyrimidyl) ρyrazolo( 1 ,5- A)pyrimidine, 3 -(phenyl)-6-(2 -pyrazinyl) pyrazolo(l ,5-A)ρyrimidine, 3-(4-pyridyl)-6-(2-pyrazinyl) pyrazolo(l ,5-A)pyrimidine, 3-(3-pyridyl)-6-(4-methoxyphenyl) pyrazolo(l,5-A)pyrimidine, 3-(ρhenyl)-6-(4-pyridyl) pyrazolo(l ,5-A)pyrimidine, 3-(3-pyridyl)-6-(4-pyridyl) ρyrazolo(l ,5-A)pyrimidine, 3-(4 pyridyl)-6-(4-methoxyphenyl) pyrazolo(l,5-A)pyrimidine, 3-(3-thienyl)-6-(4-methoxyphenyl) pyrazolo(l ,5-A)pyrimidine, 3 -(3 -thienyl)-6-(4-hydroxyphenyl)pyrazolo( 1 , 5 - A)pyrimidine, 3-(3-thienyl)-6-(4-(2-(4-moφholinyl)ethoxy)phenyl) pyrazolo(l,5- A)pyrimidine,
3-(3-thienyl)-6-(cyclohexyl)pyrazolo (1 ,5-A)pyrimidine, 3-(bromo)-6-(4-methoxyphenyl) pyrazolo(l ,5-A)pyrimidine, 3-(bromo)-6-(4-pyrimidyl) pyrazolo(l ,5-A)pyrimidine, 3-(phenyl)-6-(2-(3-carboxy)pyridyl) pyrazolo(l ,5-A)pyrimidine, and 3-(3-thienyl)-6-(4-pyridyl) pyrazolo(l ,5-A)pyrimidine.
4. A pharmaceutical composition which is comprised of a compound in accordance with claim 1 or a pharmaceutically acceptable salt, prodrug or hydrate thereof in combination with a carrier.
5. A method of treating cancer in a mammalian patient in need of such treatment which is comprised of admininstering to said patient an anti-cancer effective amount of a compound of claim 1.
6. A method of treating cancer in accordance with claim 5 wherein the cancer comprises cancers of the brain, genitourinary tract, lymphatic system, stomach, larynx and lung.
7. A method in accordance with claim 5 wherein the cancer comprises histiocytic lymphoma, lung adenocarcinoma, small cell lung cancers, pancreatic cancer, gioblastomas and breast carcinoma.
8. A method of treating a disease in which neoangiogenesis is implicated, which is comprised of administering to a mammalian patient in need of such treatment a compound of formula I or a pharmaceutically acceptable salt, prodrug or hydrate thereof in an amount which is effective for reducing neoangiogenesis.
9. A method in accordance with claim 8 wherein the disease is an ocular disease.
10. A method of treating retinal vascularization which is comprised of administering to a mammalian patient in need of such treatment a compound of claim 1 or a pharmaceutically acceptable salt, prodrug or hydrate thereof in an amount which is effective for treating retinal vascularization.
11. A method of treating diabetic retinopathy which is comprised of administering to a mammalian patient in need of such treatment a compound of claim 1 or a pharmaceutically acceptable salt, prodrug or hydrate thereof in an amount which is effective for treating diabetic retinopathy.
12. A method of age-related macular degeneration which is comprised of administering to a mammalian patient in need of such treatment a compound of formula I or a pharmaceutically acceptable salt, prodrug or hydrate thereof in an amount which is effective for inflammation.
13. A method of treating inflammatory diseases which is comprised of administering to a mammalian patient in need of such treatment a compound of formula I or a pharmaceutically acceptable salt, prodrug or hydrate thereof in an amount which is effective for inflammation.
14. A method according to claim 13 treating wherein the inflammatory disease comprises rheumatoid arthritis, psoriasis, contact dermatitis and delayed hypertensitivity reactions.
15. A method for inhibiting tyrosine kinase which comprises administering to a mammalian patient in need of such treatment a therapeutically effective amount of a composition of claim 4.
16. A method of preventing cancer in a mammalian patient in need of such treatment which is comprised of admininstering to said patient an anti-cancer effective amount of a compound of claim 1.
17. A method of preventing cancer in accordance with claim 16 wherein the cancer comprises cancers of the brain, genitourinary tract, lymphatic system, stomach, larynx and lung.
18. A method in accordance with claim 17 wherein the cancer comprises histiocytic lymphoma, lung adenocarcinoma, small cell lung cancers, pancreatic cancer, gioblastomas and breast carcinoma.
19. A method of preventing a disease in which neoangiogenesis is implicated, which is comprised of administering to a mammalian patient in need of such treatment a compound of formula I or a pharmaceutically acceptable salt, prodrug or hydrate thereof in an amount which is effective for reducing neoangiogenesis.
20. A method in accordance with claim 19 wherein the disease is an ocular disease.
21. A method of preventing retinal vascularization which is comprised of administering to a mammalian patient in need of such treatment a compound of claim 1 or a pharmaceutically acceptable salt, prodrug or hydrate thereof in an amount which is effective for treating retinal vascularization.
22. A method of preventing diabetic retinopathy which is comprised of administering to a mammalian patient in need of such treatment a compound of claim 1 or a pharmaceutically acceptable salt, prodrug or hydrate thereof in an amount which is effective for treating diabetic retinopathy.
23. A method of age-related macular degeneration which is comprised of administering to a mammalian patient in need of such treatment a compound of formula I or a pharmaceutically acceptable salt, prodrug or hydrate thereof in an amount which is effective for inflammation.
24. A method of preventing inflammatory diseases which is comprised of administering to a mammalian patient in need of such treatment a compound of formula I or a pharmaceutically acceptable salt, prodrug or hydrate thereof in an amount which is effective for inflammation.
25. A method according to claim 24 wherein the inflammatory disease comprises rheumatoid arthritis, psoriasis, contact dermatitis and delayed hypertensitivity reactions.
PCT/US1998/010590 1997-05-30 1998-05-26 Novel angiogenesis inhibitors WO1998054093A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP50079099A JP2002501532A (en) 1997-05-30 1998-05-26 Novel angiogenesis inhibitors
US09/424,132 US6380203B1 (en) 1998-01-14 1998-05-26 Angiogenesis inhibitors
AU75944/98A AU734009B2 (en) 1997-05-30 1998-05-26 Novel angiogenesis inhibitors
CA002291709A CA2291709A1 (en) 1997-05-30 1998-05-26 Novel angiogenesis inhibitors
EP98923719A EP0984692A4 (en) 1997-05-30 1998-05-26 Novel angiogenesis inhibitors

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US4807697P 1997-05-30 1997-05-30
US60/048,076 1997-05-30
GB9800681.0 1998-01-14
GBGB9800681.0A GB9800681D0 (en) 1998-01-14 1998-01-14 Novel angiogenesis inhibitors

Publications (1)

Publication Number Publication Date
WO1998054093A1 true WO1998054093A1 (en) 1998-12-03

Family

ID=26312935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1998/010590 WO1998054093A1 (en) 1997-05-30 1998-05-26 Novel angiogenesis inhibitors

Country Status (5)

Country Link
EP (1) EP0984692A4 (en)
JP (1) JP2002501532A (en)
AU (1) AU734009B2 (en)
CA (1) CA2291709A1 (en)
WO (1) WO1998054093A1 (en)

Cited By (159)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1109555A1 (en) * 1998-08-31 2001-06-27 Merck & Co., Inc. Novel angiogenesis inhibitors
EP1147107A1 (en) * 1999-01-20 2001-10-24 Merck & Co., Inc. Novel angiogenesis inhibitors
EP1161433A1 (en) * 1999-03-11 2001-12-12 Merck & Co., Inc. Tyrosine kinase inhibitors
WO2002040485A1 (en) * 2000-11-17 2002-05-23 Ishihara Sangyo Kaisha, Ltd. Preventive or therapeutic medicines for diabetes containing fused-heterocycle compounds or their salts
WO2003051886A1 (en) * 2001-12-17 2003-06-26 Smithkline Beecham Corporation Pyrazolopyridazine derivatives
US6593326B1 (en) 1998-12-24 2003-07-15 Astrazeneca Ab 2,4-diamino pyrimidine compounds having anti-cell proliferative activity
US6632820B1 (en) 1998-08-29 2003-10-14 Astrazeneca Ab Pyrimidine compounds
US6649759B2 (en) 2000-03-30 2003-11-18 Pfizer Inc. Neuropeptide Y antagonists
US6649608B2 (en) 2000-03-01 2003-11-18 Astrazeneca Ab 2,4-di(hetero-)arylamino (oxy)-5-substituted pyrimidines as antineoplastic agents
US6670368B1 (en) 1999-04-06 2003-12-30 Astrazeneca Ab Pyrimidine compounds with pharmaceutical activity
US6710052B2 (en) 2000-03-01 2004-03-23 Astrazeneca Pyrimidine compounds
US6716831B1 (en) 1999-03-06 2004-04-06 Astrazeneca Ab 2,4-diamino-pyrimidine deprivatives having anti-cell proliferative activity
WO2004087707A1 (en) * 2003-03-31 2004-10-14 Vernalis (Cambridge) Limited Pyrazolopyrimidine compounds and their use in medicine
US6833456B2 (en) 2002-03-01 2004-12-21 Agouron Pharmaceuticals, Inc. Indolyl-urea derivatives of thienopyridines useful as antiangiogenic agents, and methods for their use
US6838464B2 (en) 2000-03-01 2005-01-04 Astrazeneca Ab 2,4-Di(hetero-)arylamino(-oxy)-5-substituted pyrimidines as antineaoplastic agents
US6844341B2 (en) 2001-02-17 2005-01-18 Astrazeneca Ab Pyrimidine derivatives for inhibition of cell proliferation
US6855719B1 (en) 1999-08-21 2005-02-15 Astrazeneca Ab Imidazo[1,2-A]pyridine and pyrazolo[2,3-A]pyridine derivatives
US6869962B2 (en) 2002-06-14 2005-03-22 Agouron Pharmaceuticals, Inc. Benzofused heterozryl amide derivatives of thienopyridines useful as therapeutic agents, pharmaceutical compositions including the same, and methods for their use
US6887874B2 (en) 2000-08-09 2005-05-03 Astrazeneca Ab Cinnoline compounds
US6906065B2 (en) 2000-03-28 2005-06-14 Astrazeneca Ab 4-Amino-5-cyano-2-anilino-pyrimidine derivatives and their use as inhibitors of cell-cycle kinases
US6908920B2 (en) 2000-07-11 2005-06-21 Astrazeneca Ab Pyrimidine derivatives
WO2005063756A1 (en) * 2003-12-22 2005-07-14 Sb Pharmco Puerto Rico Inc Crf receptor antagonists and methods relating thereto
WO2005054246A3 (en) * 2003-12-04 2005-07-28 Merck Patent Gmbh Amine derivatives having a tyrosine-kinase-inhibiting effect
US6939872B2 (en) 2001-05-30 2005-09-06 Astrazeneca Ab 2-anilino-pyrimidine derivatives as cyclin dependent kinase inhibitors
US6969714B2 (en) 2000-09-05 2005-11-29 Astrazeneca Ab Imidazolo-5-YL-2-anilino-pyrimidines as agents for the inhibition of the cell proliferation
US6995171B2 (en) 2001-06-21 2006-02-07 Agouron Pharmaceuticals, Inc. Bicyclic pyrimidine and pyrimidine derivatives useful as anticancer agents
WO2006033795A2 (en) * 2004-09-17 2006-03-30 Wyeth Substituted pyrazolo [1, 5-a] pyrimidines for inhibiting abnormal cell growth
WO2006052913A1 (en) * 2004-11-04 2006-05-18 Vertex Pharmaceuticals Incorporated PYRAZOLO[1,5-a]PYRIMIDINES USEFUL AS INHIBITORS OF PROTEIN KINASES
US7053107B2 (en) 2002-12-19 2006-05-30 Agouron Pharmaceuticals, Inc. Indazole compounds and pharmaceutical compositions for inhibiting protein kinases, and methods for their use
US7074800B1 (en) 1999-02-10 2006-07-11 Astrazeneca Ab Quinazoline derivatives as angiogenesis inhibitors
US7105530B2 (en) 2000-12-21 2006-09-12 Smithkline Beecham Corporation Pyrimidineamines as angiogenesis modulators
US7153964B2 (en) 2000-03-01 2006-12-26 Astrazeneca Ab Pyrimidine compounds
US7176212B2 (en) 1998-08-29 2007-02-13 Astrazeneca Ab 2,4-diamino pyrimidine compounds having anti-cell proliferative activity
WO2007035744A1 (en) 2005-09-20 2007-03-29 Osi Pharmaceuticals, Inc. Biological markers predictive of anti-cancer response to insulin-like growth factor-1 receptor kinase inhibitors
WO2007041712A1 (en) 2005-10-06 2007-04-12 Schering Corporation Pyrazolopyrimidines as protein kinase inhibitors
WO2007044410A1 (en) * 2005-10-06 2007-04-19 Schering Corporation Pyrazolo [1,5-a] pyrimidines as protein kinase inhibitors
US7208500B2 (en) 2003-08-29 2007-04-24 Agouron Pharmaceuticals, Inc. Thienopyridine-phenylacetamides and their derivatives useful as new anti-angiogenic agents
KR100733949B1 (en) * 1999-03-26 2007-07-02 마이크로소프트 코포레이션 Lossless adaptive encoding of finite alphabet data
US7268230B2 (en) 2002-02-01 2007-09-11 Astrazeneca Ab Quinazoline compounds
US7304068B2 (en) 2002-05-10 2007-12-04 Smithkline Beecham Corporation Substituted pyrazolo [1,5-A] pyrimidinyls and pharmaceutical uses therefore
WO2008025822A1 (en) * 2006-08-30 2008-03-06 Cellzome Limited Diazolodiazine derivatives as kinase inhibitors
US7371765B2 (en) 2000-08-09 2008-05-13 Astrazeneca Ab Quinoline derivatives having VEGF inhibiting activity
US7381824B2 (en) 2003-12-23 2008-06-03 Agouron Pharmaceuticals, Inc. Quinoline derivatives
WO2008078091A1 (en) 2006-12-22 2008-07-03 Astex Therapeutics Limited Bicyclic heterocyclic compounds as fgfr inhibitors
US7427626B2 (en) 2003-05-16 2008-09-23 Astrazeneca Ab 2-Anilino-4-(imidazol-5-yl)-pyrimidine derivatives and their use as cdk (cdk2) inhibitors
US7442697B2 (en) 2002-03-09 2008-10-28 Astrazeneca Ab 4-imidazolyl substituted pyrimidine derivatives with CDK inhibitory activity
US7446105B2 (en) 2002-03-09 2008-11-04 Astrazeneca Ab Pyrimidine compounds
US7465728B2 (en) 2002-03-09 2008-12-16 Astrazeneca Ab Derivatives of 4-(imidazol-5-yl)-2-(4-sulfoanilino)pyrimidine with CDK inhibitory activity
WO2009014620A1 (en) 2007-07-20 2009-01-29 Merck & Co., Inc. Pyrazolo[1,5-a]pyrimidine derivatives
US7485638B2 (en) 2002-03-09 2009-02-03 Astrazeneca Ab Pyrimidine compounds
WO2009033094A2 (en) 2007-09-07 2009-03-12 Agensys, Inc. Antibodies and related molecules that bind to 24p4c12 proteins
WO2009047506A1 (en) 2007-10-12 2009-04-16 Astex Therapeutics Limited Bicyclic heterocyclic compounds as protein tyrosine kinase inhibitors
US7557110B2 (en) 2003-02-28 2009-07-07 Teijin Pharma Limited Pyrazolo[1,5-A] pyrimidine derivatives
US7579344B2 (en) 2003-05-16 2009-08-25 Astrazeneca Ab Pyrimidine derivatives possessing cell-cycle inhibitors activity
CN101600718A (en) * 2006-11-06 2009-12-09 休普基因公司 Imidazo [1,2-B] pyridazine and pyrazolo [1,5-A] pyrimidine derivatives and as the purposes of kinases inhibitor
US7655652B2 (en) 2004-02-03 2010-02-02 Astrazeneca Ab Imidazolo-5-yl-2-anilinopyrimidines as agents for the inhibition of cell proliferation
WO2010045495A2 (en) 2008-10-16 2010-04-22 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Fully human antibodies to high molecular weight-melanoma associated antigen and uses thereof
US7723307B2 (en) 2003-06-19 2010-05-25 Aston University Amino acid derivatives and pharmaceutical uses thereof
EP2194067A2 (en) 2001-01-05 2010-06-09 Pfizer Inc. Antibodies to insulin-like growth factor I receptor (IGF-IR)
US7745428B2 (en) 2005-09-30 2010-06-29 Astrazeneca Ab Imidazo[1,2-A]pyridine having anti-cell-proliferation activity
WO2010090764A1 (en) 2009-02-09 2010-08-12 Supergen, Inc. Pyrrolopyrimidinyl axl kinase inhibitors
WO2010099139A2 (en) 2009-02-25 2010-09-02 Osi Pharmaceuticals, Inc. Combination anti-cancer therapy
WO2010099364A2 (en) 2009-02-27 2010-09-02 Osi Pharmaceuticals, Inc. Methods for the identification of agents that inhibit mesenchymal-like tumor cells or their formation
WO2010099137A2 (en) 2009-02-26 2010-09-02 Osi Pharmaceuticals, Inc. In situ methods for monitoring the emt status of tumor cells in vivo
WO2010099363A1 (en) 2009-02-27 2010-09-02 Osi Pharmaceuticals, Inc. Methods for the identification of agents that inhibit mesenchymal-like tumor cells or their formation
WO2010099138A2 (en) 2009-02-27 2010-09-02 Osi Pharmaceuticals, Inc. Methods for the identification of agents that inhibit mesenchymal-like tumor cells or their formation
WO2010098866A1 (en) 2009-02-27 2010-09-02 Supergen, Inc. Cyclopentathiophene/cyclohexathiophene dna methyltransferase inhibitors
EP2258700A1 (en) 2006-05-09 2010-12-08 Pfizer Products Inc. Cycloalkylamino acid derivatives and pharmaceutical compositions thereof
US7858643B2 (en) 2004-08-26 2010-12-28 Agouron Pharmaceuticals, Inc. Enantiomerically pure aminoheteroaryl compounds as protein kinase inhibitors
EP2270229A1 (en) * 2006-09-12 2011-01-05 The General Hospital Corporation Inhibitors of bone morphogenetic protein (BMP) signalling for therapeutical purposes
WO2011008696A2 (en) 2009-07-13 2011-01-20 Genentech, Inc. Diagnostic methods and compositions for treatment of cancer
WO2011014726A1 (en) 2009-07-31 2011-02-03 Osi Pharmaceuticals, Inc. Mtor inhibitor and angiogenesis inhibitor combination therapy
US20110053930A1 (en) * 2008-03-13 2011-03-03 The Brigham And Women's Hospital, Inc. Inhibitors of the bmp signaling pathway
EP2292233A2 (en) 1999-11-11 2011-03-09 OSI Pharmaceuticals, Inc. Pharmaceutical uses of N-(3-Ethynylphenyl)-6,7-bis(2-methoxyethoxy)-4-quinazolinamine
WO2011027249A2 (en) 2009-09-01 2011-03-10 Pfizer Inc. Benzimidazole derivatives
WO2011032013A1 (en) 2009-09-11 2011-03-17 Genentech, Inc. Method to identify a patient with an increased likelihood of responding to an anti-cancer agent
WO2011033006A1 (en) 2009-09-17 2011-03-24 F. Hoffmann-La Roche Ag Methods and compositions for diagnostics use in cancer patients
WO2011073521A1 (en) 2009-12-15 2011-06-23 Petri Salven Methods for enriching adult-derived endothelial progenitor cells and uses thereof
EP2343086A2 (en) 2001-11-09 2011-07-13 Pfizer Products Inc. Antibodies to CD40
WO2011098971A1 (en) 2010-02-12 2011-08-18 Pfizer Inc. Salts and polymorphs of 8-fluoro-2-{4-[(methylamino}methyl]phenyl}-1,3,4,5-tetrahydro-6h-azepino[5,4,3-cd]indol-6-one
WO2011109572A2 (en) 2010-03-03 2011-09-09 OSI Pharmaceuticals, LLC Biological markers predictive of anti-cancer response to insulin-like growth factor-1 receptor kinase inhibitors
WO2011109584A2 (en) 2010-03-03 2011-09-09 OSI Pharmaceuticals, LLC Biological markers predictive of anti-cancer response to insulin-like growth factor-1 receptor kinase inhibitors
US8071614B2 (en) 2007-10-12 2011-12-06 Astex Therapeutics Limited Bicyclic heterocyclic compounds as protein tyrosine kinase inhibitors
WO2011153224A2 (en) 2010-06-02 2011-12-08 Genentech, Inc. Diagnostic methods and compositions for treatment of cancer
WO2012010548A1 (en) 2010-07-19 2012-01-26 F. Hoffmann-La Roche Ag Method to identify a patient with an increased likelihood of responding to an anti-cancer therapy
WO2012012750A1 (en) 2010-07-23 2012-01-26 Trustees Of Boston University ANTI-DEsupR INHIBITORS AS THERAPEUTICS FOR INHIBITION OF PATHOLOGICAL ANGIOGENESIS AND TUMOR CELL INVASIVENESS AND FOR MOLECULAR IMAGING AND TARGETED DELIVERY
WO2012010549A1 (en) 2010-07-19 2012-01-26 F. Hoffmann-La Roche Ag Method to identify a patient with an increased likelihood of responding to an anti-cancer therapy
US8131527B1 (en) 2006-12-22 2012-03-06 Astex Therapeutics Ltd. FGFR pharmacophore compounds
WO2012041817A1 (en) 2010-09-27 2012-04-05 Proximagen Ltd 7-hydroxy-pyrazolo[1,5-a] pyrimidine compounds and their use as ccr2 receptor antagonists
WO2012042421A1 (en) 2010-09-29 2012-04-05 Pfizer Inc. Method of treating abnormal cell growth
EP2444099A1 (en) 2005-03-31 2012-04-25 Agensys, Inc. Antibodies and related molecules that bind to 161P2F10B proteins
EP2444419A1 (en) 2005-04-26 2012-04-25 Pfizer Inc. P-Cadherin antibodies
WO2012052948A1 (en) 2010-10-20 2012-04-26 Pfizer Inc. Pyridine- 2- derivatives as smoothened receptor modulators
EP2447283A2 (en) 2005-09-07 2012-05-02 Amgen Fremont Inc. Human monoclonal antibodies to activin receptor-like kinase-1 (ALK-1)
EP2476667A2 (en) 2003-02-26 2012-07-18 Sugen, Inc. Aminoheteroaryl compounds as protein kinase inhibitors
WO2012116040A1 (en) 2011-02-22 2012-08-30 OSI Pharmaceuticals, LLC Biological markers predictive of anti-cancer response to insulin-like growth factor-1 receptor kinase inhibitors in hepatocellular carcinoma
WO2012142164A1 (en) 2011-04-12 2012-10-18 The United States Of America, As Represented By The Secretary, Department Of Health & Human Services Human monoclonal antibodies that bind insulin-like growth factor (igf) i and ii
WO2012145183A2 (en) 2011-04-19 2012-10-26 Pfizer Inc. Combinations of anti-4-1bb antibodies and adcc-inducing antibodies for the treatment of cancer
WO2012149014A1 (en) 2011-04-25 2012-11-01 OSI Pharmaceuticals, LLC Use of emt gene signatures in cancer drug discovery, diagnostics, and treatment
WO2013031931A1 (en) 2011-09-02 2013-03-07 協和発酵キリン株式会社 Chemokine receptor activity regulator
WO2013042006A1 (en) 2011-09-22 2013-03-28 Pfizer Inc. Pyrrolopyrimidine and purine derivatives
WO2013050725A1 (en) 2011-10-04 2013-04-11 King's College London Ige anti -hmw-maa antibody
CN101952283B (en) * 2007-12-14 2013-04-17 霍夫曼-拉罗奇有限公司 Novel imidazo[1,2-a]pyridine and imidazo[1,2-b]pyridazine derivatives
WO2013068902A1 (en) 2011-11-08 2013-05-16 Pfizer Inc. Methods of treating inflammatory disorders using anti-m-csf antibodies
US8481531B2 (en) 2009-04-15 2013-07-09 Astex Therapeutics Ltd Bicyclic heterocyclyl derivatives as FGFR kinase inhibitors for therapeutic use
US8513276B2 (en) 2006-12-22 2013-08-20 Astex Therapeutics Limited Imidazo[1,2-a]pyridine compounds for use in treating cancer
WO2013152252A1 (en) 2012-04-06 2013-10-10 OSI Pharmaceuticals, LLC Combination anti-cancer therapy
US8722687B2 (en) 2009-04-15 2014-05-13 Astex Therapeutics Ltd Imidazo [1,2-A]pyridine derivatives as FGFR kinase inhibitors for use in therapy
US8729264B2 (en) 2007-09-28 2014-05-20 Kyowa Hakko Kirin Co., Ltd. Agent for prevention and/or treatment of skin diseases
US8748435B2 (en) 2011-04-01 2014-06-10 Novartis Ag Pyrazolo pyrimidine derivatives
WO2014093383A1 (en) 2012-12-14 2014-06-19 Arrien Pharmaceuticals Llc Substituted 1h-pyrrolo [2,3-b] pyridine and 1h-pyrazolo [3, 4-b] pyridine derivatives as salt inducible kinase 2 (sik2) inhibitors
US8796244B2 (en) 2008-06-13 2014-08-05 Astex Therapeutics Ltd Imidazopyridine derivatives as inhibitors of receptor tyrosine kinases
US8815874B2 (en) 2010-03-05 2014-08-26 Kyowa Hakko Kirin Co., Ltd. Pyrazolopyrimidine derivative
US8859570B2 (en) 2003-12-24 2014-10-14 Astrazeneca Ab Maleate salts of a quinazoline derivative useful as an antiangiogenic agent
US8937064B2 (en) 2007-12-19 2015-01-20 Vertex Pharmaceuticals Incorporated Pyrazolo[1,5-a]pyrimidines useful as JAK2 inhibitors
US8957078B2 (en) 2013-03-15 2015-02-17 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
US8969360B2 (en) 2013-03-15 2015-03-03 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
WO2015051302A1 (en) 2013-10-04 2015-04-09 Aptose Biosciences Inc. Compositions and methods for treating cancers
WO2015075598A1 (en) 2013-11-21 2015-05-28 Pfizer Inc. 2,6-substituted purine derivatives and their use in the treatment of proliferative disorders
WO2015149721A1 (en) 2014-04-04 2015-10-08 Crown Bioscience, Inc.(Taicang) Methods for determining responsiveness to mek/erk inhibitors
WO2015155624A1 (en) 2014-04-10 2015-10-15 Pfizer Inc. Dihydropyrrolopyrimidine derivatives
WO2015166373A1 (en) 2014-04-30 2015-11-05 Pfizer Inc. Cycloalkyl-linked diheterocycle derivatives
WO2016001789A1 (en) 2014-06-30 2016-01-07 Pfizer Inc. Pyrimidine derivatives as pi3k inhibitors for use in the treatment of cancer
WO2016019280A1 (en) 2014-07-31 2016-02-04 The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Human monoclonal antibodies against epha4 and their use
US9309250B2 (en) 2011-06-22 2016-04-12 Vertex Pharmaceuticals Incorporated Substituted pyrrolo[2,3-b]pyrazines as ATR kinase inhibitors
US9340546B2 (en) 2012-12-07 2016-05-17 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
WO2016097918A1 (en) 2014-12-18 2016-06-23 Pfizer Inc. Pyrimidine and triazine derivatives and their use as axl inhibitors
WO2016178876A2 (en) 2015-05-01 2016-11-10 Cocrystal Pharma, Inc. Nucleoside analogs for treatment of the flaviviridae family of viruses and cancer
WO2017009751A1 (en) 2015-07-15 2017-01-19 Pfizer Inc. Pyrimidine derivatives
EP3135692A1 (en) 2010-06-16 2017-03-01 University of Pittsburgh of the Commonwealth System of Higher Education Antibodies to endoplasmin and their use
CN106632260A (en) * 2016-09-29 2017-05-10 上海天慈生物谷生物工程有限公司 Preparation method for micro-molecular kinase inhibitor
EP3170840A1 (en) 2003-09-10 2017-05-24 Warner-Lambert Company LLC Antibodies to m-csf
US9663519B2 (en) 2013-03-15 2017-05-30 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
US9670215B2 (en) 2014-06-05 2017-06-06 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
WO2017096165A1 (en) 2015-12-03 2017-06-08 Agios Pharmaceuticals, Inc. Mat2a inhibitors for treating mtap null cancer
US9682983B2 (en) 2013-03-14 2017-06-20 The Brigham And Women's Hospital, Inc. BMP inhibitors and methods of use thereof
EP3409278A1 (en) 2011-07-21 2018-12-05 Tolero Pharmaceuticals, Inc. Heterocyclic protein kinase inhibitors
US10160760B2 (en) 2013-12-06 2018-12-25 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
WO2019075367A1 (en) 2017-10-13 2019-04-18 Tolero Pharmaceuticals, Inc. Pkm2 activators in combination with reactive oxygen species for treatment of cancer
US10422788B2 (en) 2016-12-19 2019-09-24 Tolero Pharmaceuticals, Inc. Profiling peptides and methods for sensitivity profiling
EP3545956A1 (en) 2013-04-18 2019-10-02 Arrien Pharmaceuticals LLC 3,5-(un)substituted-1h-pyrrolo[2,3-b]pyridine, 1h-pyrazolo[3,4-b]pyridine and 5h- pyrrolo[2,3-b]pyrazine dual itk and jak3 kinase inhibitors
US10513521B2 (en) 2014-07-15 2019-12-24 The Brigham And Women's Hospital, Inc. Compositions and methods for inhibiting BMP
EP3590932A1 (en) 2013-03-14 2020-01-08 Tolero Pharmaceuticals, Inc. Jak2 and alk2 inhibitors and methods for their use
US10562925B2 (en) 2015-05-18 2020-02-18 Tolero Pharmaceuticals, Inc. Alvocidib prodrugs having increased bioavailability
US10568887B2 (en) 2015-08-03 2020-02-25 Tolero Pharmaceuticals, Inc. Combination therapies for treatment of cancer
US10624880B2 (en) 2015-04-20 2020-04-21 Tolero Pharmaceuticals, Inc. Predicting response to alvocidib by mitochondrial profiling
US10766865B2 (en) 2012-10-16 2020-09-08 Sumitomo Dainippon Pharma Oncology, Inc. PKM2 modulators and methods for their use
WO2020198077A1 (en) 2019-03-22 2020-10-01 Sumitomo Dainippon Pharma Oncology, Inc. Compositions comprising pkm2 modulators and methods of treatment using the same
WO2020249096A1 (en) * 2019-06-14 2020-12-17 南京明德新药研发有限公司 Fused ring compound as fgfr and vegfr dual inhibitor
US11034710B2 (en) 2018-12-04 2021-06-15 Sumitomo Dainippon Pharma Oncology, Inc. CDK9 inhibitors and polymorphs thereof for use as agents for treatment of cancer
US11040038B2 (en) 2018-07-26 2021-06-22 Sumitomo Dainippon Pharma Oncology, Inc. Methods for treating diseases associated with abnormal ACVR1 expression and ACVR1 inhibitors for use in the same
WO2021155006A1 (en) 2020-01-31 2021-08-05 Les Laboratoires Servier Sas Inhibitors of cyclin-dependent kinases and uses thereof
GR1010096B (en) * 2020-07-02 2021-10-08 Uni-Pharma Κλεων Τσετης Φαρμακευτικα Εργαστηρια Αβεε, Pyrazolo[1,5-a]pyrimidines as autotaxin inhibitors
US11179394B2 (en) 2014-06-17 2021-11-23 Vertex Pharmaceuticals Incorporated Method for treating cancer using a combination of Chk1 and ATR inhibitors
US11279694B2 (en) 2016-11-18 2022-03-22 Sumitomo Dainippon Pharma Oncology, Inc. Alvocidib prodrugs and their use as protein kinase inhibitors
US11464774B2 (en) 2015-09-30 2022-10-11 Vertex Pharmaceuticals Incorporated Method for treating cancer using a combination of DNA damaging agents and ATR inhibitors
US11471456B2 (en) 2019-02-12 2022-10-18 Sumitomo Pharma Oncology, Inc. Formulations comprising heterocyclic protein kinase inhibitors
US11497756B2 (en) 2017-09-12 2022-11-15 Sumitomo Pharma Oncology, Inc. Treatment regimen for cancers that are insensitive to BCL-2 inhibitors using the MCL-1 inhibitor alvocidib
US11793802B2 (en) 2019-03-20 2023-10-24 Sumitomo Pharma Oncology, Inc. Treatment of acute myeloid leukemia (AML) with venetoclax failure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ20023575A3 (en) * 2002-10-25 2004-01-14 Léčiva, A.S. Process for preparing N-ethyl-N-[3-(3-methyl-pyrazolo[1,5-a]pyrimidin-7-yl)-phenyl]-acetamide (zaleplon)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU707530B2 (en) * 1995-09-28 1999-07-15 Otsuka Pharmaceutical Factory, Inc. Analgesic composition
KR100421626B1 (en) * 1996-02-07 2004-05-20 뉴로크린 바이오사이언시즈 인코퍼레이티드 Pyrazolopyrimidine &lt; / RTI &gt; as an antagonist to CRF receptors

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
DATABASE HCAPLUS 1 January 1900 (1900-01-01), XP002913668, Database accession no. 1995:315545 *
DATABASE HCAPLUS 1 January 1900 (1900-01-01), XP002913669, Database accession no. 1993:603440 *
DATABASE HCAPLUS 1 January 1900 (1900-01-01), XP002913670, Database accession no. 1992:551008 *
DATABASE HCAPLUS 1 January 1900 (1900-01-01), XP002913671, Database accession no. 1996:181559 *
DATABASE HCAPLUS 1 January 1900 (1900-01-01), XP002913672, Database accession no. 1993:580816 *
DATABASE HCAPLUS 1 January 1900 (1900-01-01), XP002913673, Database accession no. 1993:213102 *
DATABASE HCAPLUS 1 January 1900 (1900-01-01), XP002913674, Database accession no. 1992:6580 *
See also references of EP0984692A4 *

Cited By (245)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7176212B2 (en) 1998-08-29 2007-02-13 Astrazeneca Ab 2,4-diamino pyrimidine compounds having anti-cell proliferative activity
US6632820B1 (en) 1998-08-29 2003-10-14 Astrazeneca Ab Pyrimidine compounds
EP1109555A1 (en) * 1998-08-31 2001-06-27 Merck & Co., Inc. Novel angiogenesis inhibitors
EP1109555A4 (en) * 1998-08-31 2001-11-21 Merck & Co Inc Novel angiogenesis inhibitors
US6593326B1 (en) 1998-12-24 2003-07-15 Astrazeneca Ab 2,4-diamino pyrimidine compounds having anti-cell proliferative activity
EP1147107A1 (en) * 1999-01-20 2001-10-24 Merck & Co., Inc. Novel angiogenesis inhibitors
EP1147107A4 (en) * 1999-01-20 2002-05-22 Merck & Co Inc Novel angiogenesis inhibitors
US7074800B1 (en) 1999-02-10 2006-07-11 Astrazeneca Ab Quinazoline derivatives as angiogenesis inhibitors
US8492560B2 (en) 1999-02-10 2013-07-23 Astrazeneca Ab Quinazoline derivatives as angiogenesis inhibitors
US6716831B1 (en) 1999-03-06 2004-04-06 Astrazeneca Ab 2,4-diamino-pyrimidine deprivatives having anti-cell proliferative activity
EP1161433A1 (en) * 1999-03-11 2001-12-12 Merck & Co., Inc. Tyrosine kinase inhibitors
EP1161433A4 (en) * 1999-03-11 2002-05-08 Merck & Co Inc Tyrosine kinase inhibitors
US6544988B1 (en) 1999-03-11 2003-04-08 Merck & Co., Inc. Tyrosine kinase inhibitors
KR100733949B1 (en) * 1999-03-26 2007-07-02 마이크로소프트 코포레이션 Lossless adaptive encoding of finite alphabet data
US6670368B1 (en) 1999-04-06 2003-12-30 Astrazeneca Ab Pyrimidine compounds with pharmaceutical activity
US6855719B1 (en) 1999-08-21 2005-02-15 Astrazeneca Ab Imidazo[1,2-A]pyridine and pyrazolo[2,3-A]pyridine derivatives
EP2292233A2 (en) 1999-11-11 2011-03-09 OSI Pharmaceuticals, Inc. Pharmaceutical uses of N-(3-Ethynylphenyl)-6,7-bis(2-methoxyethoxy)-4-quinazolinamine
EP3100730A1 (en) 1999-11-11 2016-12-07 OSI Pharmaceuticals, LLC N-(3-ethynylphenyl)-6,7-bis(2-methoxyethoxy)-4-quinazolinamine for use in the treatment of nsclc
US6649608B2 (en) 2000-03-01 2003-11-18 Astrazeneca Ab 2,4-di(hetero-)arylamino (oxy)-5-substituted pyrimidines as antineoplastic agents
US6710052B2 (en) 2000-03-01 2004-03-23 Astrazeneca Pyrimidine compounds
US6838464B2 (en) 2000-03-01 2005-01-04 Astrazeneca Ab 2,4-Di(hetero-)arylamino(-oxy)-5-substituted pyrimidines as antineaoplastic agents
US7153964B2 (en) 2000-03-01 2006-12-26 Astrazeneca Ab Pyrimidine compounds
US7067522B2 (en) 2000-03-01 2006-06-27 Astrazeneca Ab 2,4,DI (hetero-) arylamino (-oxy)-5-substituted pyrimidines as antineoplastic agents
US6906065B2 (en) 2000-03-28 2005-06-14 Astrazeneca Ab 4-Amino-5-cyano-2-anilino-pyrimidine derivatives and their use as inhibitors of cell-cycle kinases
US6649759B2 (en) 2000-03-30 2003-11-18 Pfizer Inc. Neuropeptide Y antagonists
US6908920B2 (en) 2000-07-11 2005-06-21 Astrazeneca Ab Pyrimidine derivatives
US6887874B2 (en) 2000-08-09 2005-05-03 Astrazeneca Ab Cinnoline compounds
US7371765B2 (en) 2000-08-09 2008-05-13 Astrazeneca Ab Quinoline derivatives having VEGF inhibiting activity
US6969714B2 (en) 2000-09-05 2005-11-29 Astrazeneca Ab Imidazolo-5-YL-2-anilino-pyrimidines as agents for the inhibition of the cell proliferation
US7067520B2 (en) 2000-11-17 2006-06-27 Ishihara Sangyo Kaisha, Ltd. Preventive or therapeutic medicines for diabetes containing fused-heterocyclic compounds or their salts
WO2002040485A1 (en) * 2000-11-17 2002-05-23 Ishihara Sangyo Kaisha, Ltd. Preventive or therapeutic medicines for diabetes containing fused-heterocycle compounds or their salts
US8114885B2 (en) 2000-12-21 2012-02-14 Glaxosmithkline Llc Chemical compounds
US7858626B2 (en) 2000-12-21 2010-12-28 Glaxosmithkline Llc Pyrimidineamines as angiogenesis modulators
US7105530B2 (en) 2000-12-21 2006-09-12 Smithkline Beecham Corporation Pyrimidineamines as angiogenesis modulators
US7262203B2 (en) 2000-12-21 2007-08-28 Smithkline Beecham Corporation Pyrimidineamines as angiogenesis modulators
EP2194067A2 (en) 2001-01-05 2010-06-09 Pfizer Inc. Antibodies to insulin-like growth factor I receptor (IGF-IR)
EP2796468A2 (en) 2001-01-05 2014-10-29 Pfizer Inc Antibodies to insulin-like growth factor I receptor
US9234041B2 (en) 2001-01-05 2016-01-12 Pfizer Inc. Antibodies to insulin-like growth factor I receptor
US6844341B2 (en) 2001-02-17 2005-01-18 Astrazeneca Ab Pyrimidine derivatives for inhibition of cell proliferation
US6939872B2 (en) 2001-05-30 2005-09-06 Astrazeneca Ab 2-anilino-pyrimidine derivatives as cyclin dependent kinase inhibitors
US6995171B2 (en) 2001-06-21 2006-02-07 Agouron Pharmaceuticals, Inc. Bicyclic pyrimidine and pyrimidine derivatives useful as anticancer agents
EP2343086A2 (en) 2001-11-09 2011-07-13 Pfizer Products Inc. Antibodies to CD40
WO2003051886A1 (en) * 2001-12-17 2003-06-26 Smithkline Beecham Corporation Pyrazolopyridazine derivatives
US7279473B2 (en) 2001-12-17 2007-10-09 Smithkline Beecham Corporation Pyrazolopyridazine derivatives
US7268230B2 (en) 2002-02-01 2007-09-11 Astrazeneca Ab Quinazoline compounds
US6833456B2 (en) 2002-03-01 2004-12-21 Agouron Pharmaceuticals, Inc. Indolyl-urea derivatives of thienopyridines useful as antiangiogenic agents, and methods for their use
US7465728B2 (en) 2002-03-09 2008-12-16 Astrazeneca Ab Derivatives of 4-(imidazol-5-yl)-2-(4-sulfoanilino)pyrimidine with CDK inhibitory activity
US7485638B2 (en) 2002-03-09 2009-02-03 Astrazeneca Ab Pyrimidine compounds
US7446105B2 (en) 2002-03-09 2008-11-04 Astrazeneca Ab Pyrimidine compounds
US7442697B2 (en) 2002-03-09 2008-10-28 Astrazeneca Ab 4-imidazolyl substituted pyrimidine derivatives with CDK inhibitory activity
US7304068B2 (en) 2002-05-10 2007-12-04 Smithkline Beecham Corporation Substituted pyrazolo [1,5-A] pyrimidinyls and pharmaceutical uses therefore
US6869962B2 (en) 2002-06-14 2005-03-22 Agouron Pharmaceuticals, Inc. Benzofused heterozryl amide derivatives of thienopyridines useful as therapeutic agents, pharmaceutical compositions including the same, and methods for their use
US7045528B2 (en) 2002-06-14 2006-05-16 Agouron Pharmaceuticals, Inc. Benzofused heterozryl amide derivatives of thienopyridines useful as therapeutic agents, pharmaceutical compositions including the same, and methods for their use
US7053107B2 (en) 2002-12-19 2006-05-30 Agouron Pharmaceuticals, Inc. Indazole compounds and pharmaceutical compositions for inhibiting protein kinases, and methods for their use
EP2476667A2 (en) 2003-02-26 2012-07-18 Sugen, Inc. Aminoheteroaryl compounds as protein kinase inhibitors
US7557110B2 (en) 2003-02-28 2009-07-07 Teijin Pharma Limited Pyrazolo[1,5-A] pyrimidine derivatives
WO2004087707A1 (en) * 2003-03-31 2004-10-14 Vernalis (Cambridge) Limited Pyrazolopyrimidine compounds and their use in medicine
US7579344B2 (en) 2003-05-16 2009-08-25 Astrazeneca Ab Pyrimidine derivatives possessing cell-cycle inhibitors activity
US7427626B2 (en) 2003-05-16 2008-09-23 Astrazeneca Ab 2-Anilino-4-(imidazol-5-yl)-pyrimidine derivatives and their use as cdk (cdk2) inhibitors
US7723307B2 (en) 2003-06-19 2010-05-25 Aston University Amino acid derivatives and pharmaceutical uses thereof
US7208500B2 (en) 2003-08-29 2007-04-24 Agouron Pharmaceuticals, Inc. Thienopyridine-phenylacetamides and their derivatives useful as new anti-angiogenic agents
US10280219B2 (en) 2003-09-10 2019-05-07 Amgen Fremont Inc. Antibodies to M-CSF
US9718883B2 (en) 2003-09-10 2017-08-01 Amgen Fremont Inc. Antibodies to M-CSF
EP3170840A1 (en) 2003-09-10 2017-05-24 Warner-Lambert Company LLC Antibodies to m-csf
WO2005054246A3 (en) * 2003-12-04 2005-07-28 Merck Patent Gmbh Amine derivatives having a tyrosine-kinase-inhibiting effect
US7816365B2 (en) 2003-12-04 2010-10-19 Merck Patent Gmbh Amine derivatives
WO2005063756A1 (en) * 2003-12-22 2005-07-14 Sb Pharmco Puerto Rico Inc Crf receptor antagonists and methods relating thereto
US7381824B2 (en) 2003-12-23 2008-06-03 Agouron Pharmaceuticals, Inc. Quinoline derivatives
US7923457B2 (en) 2003-12-23 2011-04-12 Agouron Pharmaceuticals Inc. Quinoline derivatives
US8859570B2 (en) 2003-12-24 2014-10-14 Astrazeneca Ab Maleate salts of a quinazoline derivative useful as an antiangiogenic agent
US9556151B2 (en) 2003-12-24 2017-01-31 Astrazeneca Ab Maleate salts of a quinazoline derivative useful as an antiangiogenic agent
US9890140B2 (en) 2003-12-24 2018-02-13 Astrazeneca Ab Maleate salts of a quinazoline derivative useful as an antiangiogenic agent
US7655652B2 (en) 2004-02-03 2010-02-02 Astrazeneca Ab Imidazolo-5-yl-2-anilinopyrimidines as agents for the inhibition of cell proliferation
US7858643B2 (en) 2004-08-26 2010-12-28 Agouron Pharmaceuticals, Inc. Enantiomerically pure aminoheteroaryl compounds as protein kinase inhibitors
US8785632B2 (en) 2004-08-26 2014-07-22 Agouron Pharmaceuticals, Inc. Enantiomerically pure aminoheteroaryl compounds as protein kinase inhibitors
WO2006033795A2 (en) * 2004-09-17 2006-03-30 Wyeth Substituted pyrazolo [1, 5-a] pyrimidines for inhibiting abnormal cell growth
WO2006033795A3 (en) * 2004-09-17 2006-08-10 Wyeth Corp Substituted pyrazolo [1, 5-a] pyrimidines for inhibiting abnormal cell growth
US7528138B2 (en) 2004-11-04 2009-05-05 Vertex Pharmaceuticals Incorporated Pyrazolo[1,5-a]pyrimidines useful as inhibitors of protein kinases
AU2005304784B2 (en) * 2004-11-04 2011-03-24 Vertex Pharmaceuticals Incorporated Pyrazolo[1,5-a]pyrimidines useful as inhibitors of protein kinases
WO2006052913A1 (en) * 2004-11-04 2006-05-18 Vertex Pharmaceuticals Incorporated PYRAZOLO[1,5-a]PYRIMIDINES USEFUL AS INHIBITORS OF PROTEIN KINASES
EP3300739A2 (en) 2005-03-31 2018-04-04 Agensys, Inc. Antibodies and related molecules that bind to 161p2f10b proteins
EP2444099A1 (en) 2005-03-31 2012-04-25 Agensys, Inc. Antibodies and related molecules that bind to 161P2F10B proteins
EP2444421A1 (en) 2005-04-26 2012-04-25 Pfizer Inc. P-Cadherin antibodies
EP2444420A1 (en) 2005-04-26 2012-04-25 Pfizer Inc. P-Cadherin antibodies
EP2444419A1 (en) 2005-04-26 2012-04-25 Pfizer Inc. P-Cadherin antibodies
EP2447283A2 (en) 2005-09-07 2012-05-02 Amgen Fremont Inc. Human monoclonal antibodies to activin receptor-like kinase-1 (ALK-1)
EP3381945A1 (en) 2005-09-07 2018-10-03 Amgen Fremont Inc. Human monoclonal antibodies to activin receptor-like kinase-1
US9221915B2 (en) 2005-09-07 2015-12-29 Pfizer Inc. Human monoclonal antibodies to activin receptor-like kinase-1
EP2960253A1 (en) 2005-09-07 2015-12-30 Amgen Fremont Inc. Human monoclonal antibodies to activin receptor-like kinase-1
WO2007035744A1 (en) 2005-09-20 2007-03-29 Osi Pharmaceuticals, Inc. Biological markers predictive of anti-cancer response to insulin-like growth factor-1 receptor kinase inhibitors
EP2372363A1 (en) 2005-09-20 2011-10-05 OSI Pharmaceuticals, Inc. Biological markers predictive of anti-cancer response to insulin-like growth factor-1
US7745428B2 (en) 2005-09-30 2010-06-29 Astrazeneca Ab Imidazo[1,2-A]pyridine having anti-cell-proliferation activity
WO2007041712A1 (en) 2005-10-06 2007-04-12 Schering Corporation Pyrazolopyrimidines as protein kinase inhibitors
WO2007044410A1 (en) * 2005-10-06 2007-04-19 Schering Corporation Pyrazolo [1,5-a] pyrimidines as protein kinase inhibitors
US7776865B2 (en) 2005-10-06 2010-08-17 Schering Corporation Substituted pyrazolo[1,5-a]pyrimidines as protein kinase inhibitors
EP2258700A1 (en) 2006-05-09 2010-12-08 Pfizer Products Inc. Cycloalkylamino acid derivatives and pharmaceutical compositions thereof
WO2008025822A1 (en) * 2006-08-30 2008-03-06 Cellzome Limited Diazolodiazine derivatives as kinase inhibitors
EP1900739A1 (en) * 2006-08-30 2008-03-19 Cellzome Ag Diazolodiazine derivatives as kinase inhibitors
EP2270229A1 (en) * 2006-09-12 2011-01-05 The General Hospital Corporation Inhibitors of bone morphogenetic protein (BMP) signalling for therapeutical purposes
CN101600718A (en) * 2006-11-06 2009-12-09 休普基因公司 Imidazo [1,2-B] pyridazine and pyrazolo [1,5-A] pyrimidine derivatives and as the purposes of kinases inhibitor
AU2007337886C1 (en) * 2006-12-22 2014-10-16 Astex Therapeutics Limited Bicyclic heterocyclic compounds as FGFR inhibitors
US8131527B1 (en) 2006-12-22 2012-03-06 Astex Therapeutics Ltd. FGFR pharmacophore compounds
AU2007337886B2 (en) * 2006-12-22 2014-01-30 Astex Therapeutics Limited Bicyclic heterocyclic compounds as FGFR inhibitors
US8513276B2 (en) 2006-12-22 2013-08-20 Astex Therapeutics Limited Imidazo[1,2-a]pyridine compounds for use in treating cancer
US8895745B2 (en) 2006-12-22 2014-11-25 Astex Therapeutics Limited Bicyclic heterocyclic compounds as FGFR inhibitors
NO343370B1 (en) * 2006-12-22 2019-02-11 Astex Therapeutics Ltd Bicyclic heterocyclic compounds such as FGFR inhibitors, pharmaceutical composition and therapeutic use
WO2008078091A1 (en) 2006-12-22 2008-07-03 Astex Therapeutics Limited Bicyclic heterocyclic compounds as fgfr inhibitors
CN101679408B (en) * 2006-12-22 2016-04-27 Astex治疗学有限公司 As the bicyclic heterocycles of FGFR inhibitor
US8461162B2 (en) 2007-07-20 2013-06-11 Merck Sharp & Dohme Corp. Pyrazolo[1,5-a]pyrimidine derivatives
WO2009014620A1 (en) 2007-07-20 2009-01-29 Merck & Co., Inc. Pyrazolo[1,5-a]pyrimidine derivatives
WO2009033094A2 (en) 2007-09-07 2009-03-12 Agensys, Inc. Antibodies and related molecules that bind to 24p4c12 proteins
US8729264B2 (en) 2007-09-28 2014-05-20 Kyowa Hakko Kirin Co., Ltd. Agent for prevention and/or treatment of skin diseases
WO2009047506A1 (en) 2007-10-12 2009-04-16 Astex Therapeutics Limited Bicyclic heterocyclic compounds as protein tyrosine kinase inhibitors
US8859582B2 (en) 2007-10-12 2014-10-14 Astex Therapeutics Limited Bicyclic heterocyclic compounds as protein tyrosine kinase inhibitors
US8071614B2 (en) 2007-10-12 2011-12-06 Astex Therapeutics Limited Bicyclic heterocyclic compounds as protein tyrosine kinase inhibitors
US8859583B2 (en) 2007-10-12 2014-10-14 Astex Therapeutics Limited Bicyclic heterocyclic compounds as protein tyrosine kinase inhibitors
US8076354B2 (en) 2007-10-12 2011-12-13 Astex Therapeutics Limited Bicyclic heterocyclic compounds as protein tyrosine kinase inhibitors
CN101952283B (en) * 2007-12-14 2013-04-17 霍夫曼-拉罗奇有限公司 Novel imidazo[1,2-a]pyridine and imidazo[1,2-b]pyridazine derivatives
US8937064B2 (en) 2007-12-19 2015-01-20 Vertex Pharmaceuticals Incorporated Pyrazolo[1,5-a]pyrimidines useful as JAK2 inhibitors
US8507501B2 (en) 2008-03-13 2013-08-13 The Brigham And Women's Hospital, Inc. Inhibitors of the BMP signaling pathway
US9045484B2 (en) 2008-03-13 2015-06-02 The Brigham And Women's Hospital, Inc. Inhibitors of the BMP signaling pathway
US20110053930A1 (en) * 2008-03-13 2011-03-03 The Brigham And Women's Hospital, Inc. Inhibitors of the bmp signaling pathway
US8796244B2 (en) 2008-06-13 2014-08-05 Astex Therapeutics Ltd Imidazopyridine derivatives as inhibitors of receptor tyrosine kinases
WO2010045495A2 (en) 2008-10-16 2010-04-22 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Fully human antibodies to high molecular weight-melanoma associated antigen and uses thereof
WO2010090764A1 (en) 2009-02-09 2010-08-12 Supergen, Inc. Pyrrolopyrimidinyl axl kinase inhibitors
WO2010099139A2 (en) 2009-02-25 2010-09-02 Osi Pharmaceuticals, Inc. Combination anti-cancer therapy
WO2010099137A2 (en) 2009-02-26 2010-09-02 Osi Pharmaceuticals, Inc. In situ methods for monitoring the emt status of tumor cells in vivo
WO2010099364A2 (en) 2009-02-27 2010-09-02 Osi Pharmaceuticals, Inc. Methods for the identification of agents that inhibit mesenchymal-like tumor cells or their formation
WO2010099363A1 (en) 2009-02-27 2010-09-02 Osi Pharmaceuticals, Inc. Methods for the identification of agents that inhibit mesenchymal-like tumor cells or their formation
WO2010099138A2 (en) 2009-02-27 2010-09-02 Osi Pharmaceuticals, Inc. Methods for the identification of agents that inhibit mesenchymal-like tumor cells or their formation
WO2010098866A1 (en) 2009-02-27 2010-09-02 Supergen, Inc. Cyclopentathiophene/cyclohexathiophene dna methyltransferase inhibitors
US8481531B2 (en) 2009-04-15 2013-07-09 Astex Therapeutics Ltd Bicyclic heterocyclyl derivatives as FGFR kinase inhibitors for therapeutic use
US8722687B2 (en) 2009-04-15 2014-05-13 Astex Therapeutics Ltd Imidazo [1,2-A]pyridine derivatives as FGFR kinase inhibitors for use in therapy
WO2011008696A2 (en) 2009-07-13 2011-01-20 Genentech, Inc. Diagnostic methods and compositions for treatment of cancer
WO2011014726A1 (en) 2009-07-31 2011-02-03 Osi Pharmaceuticals, Inc. Mtor inhibitor and angiogenesis inhibitor combination therapy
WO2011027249A2 (en) 2009-09-01 2011-03-10 Pfizer Inc. Benzimidazole derivatives
WO2011032013A1 (en) 2009-09-11 2011-03-17 Genentech, Inc. Method to identify a patient with an increased likelihood of responding to an anti-cancer agent
WO2011033006A1 (en) 2009-09-17 2011-03-24 F. Hoffmann-La Roche Ag Methods and compositions for diagnostics use in cancer patients
WO2011073521A1 (en) 2009-12-15 2011-06-23 Petri Salven Methods for enriching adult-derived endothelial progenitor cells and uses thereof
EP4166558A1 (en) 2010-02-12 2023-04-19 Pfizer Inc. Salts and polymorphs of 8-fluoro-2-{4- [(methylamino)methyl]phenyl}-1 ,3,4,5-tetrahydro-6h-azepino[5,4,3- cd]indol-6-one
EP3597651A1 (en) 2010-02-12 2020-01-22 Pfizer Inc Salts and polymorphs of 8-fluoro-2-{4- [(methylamino)methyl]phenyl}-1 ,3,4,5-tetrahydro-6h-azepino[5,4,3- cd]indol-6-one
WO2011098971A1 (en) 2010-02-12 2011-08-18 Pfizer Inc. Salts and polymorphs of 8-fluoro-2-{4-[(methylamino}methyl]phenyl}-1,3,4,5-tetrahydro-6h-azepino[5,4,3-cd]indol-6-one
EP3150610A1 (en) 2010-02-12 2017-04-05 Pfizer Inc Salts and polymorphs of 8-fluoro-2-{4-[(methylamino}methyl]phenyl}-1,3,4,5-tetrahydro-6h-azepino[5,4,3-cd]indol-6-one
WO2011109572A2 (en) 2010-03-03 2011-09-09 OSI Pharmaceuticals, LLC Biological markers predictive of anti-cancer response to insulin-like growth factor-1 receptor kinase inhibitors
WO2011109584A2 (en) 2010-03-03 2011-09-09 OSI Pharmaceuticals, LLC Biological markers predictive of anti-cancer response to insulin-like growth factor-1 receptor kinase inhibitors
US8815874B2 (en) 2010-03-05 2014-08-26 Kyowa Hakko Kirin Co., Ltd. Pyrazolopyrimidine derivative
WO2011153224A2 (en) 2010-06-02 2011-12-08 Genentech, Inc. Diagnostic methods and compositions for treatment of cancer
EP3135692A1 (en) 2010-06-16 2017-03-01 University of Pittsburgh of the Commonwealth System of Higher Education Antibodies to endoplasmin and their use
WO2012010548A1 (en) 2010-07-19 2012-01-26 F. Hoffmann-La Roche Ag Method to identify a patient with an increased likelihood of responding to an anti-cancer therapy
EP2801826A1 (en) 2010-07-19 2014-11-12 F. Hoffmann-La Roche AG Method to identify a patient with an increased likelihood of responding to an anti-cancer therapy
WO2012010550A1 (en) 2010-07-19 2012-01-26 F. Hoffmann-La Roche Ag Method to identify a patient with an increased likelihood of responding to an anti-cancer therapy
EP2824457A1 (en) 2010-07-19 2015-01-14 F. Hoffmann-La Roche AG Method to identify a patient with an increased likelihood of responding to an anti-cancer therapy
WO2012010547A1 (en) 2010-07-19 2012-01-26 F. Hoffmann-La Roche Ag Method to identify a patient with an increased likelihood of responding to an anti-cancer therapy
EP2866032A1 (en) 2010-07-19 2015-04-29 F. Hoffmann-La Roche AG Method to identify a patient with an increased likelihood of responding to an anti-cancer therapy
WO2012010549A1 (en) 2010-07-19 2012-01-26 F. Hoffmann-La Roche Ag Method to identify a patient with an increased likelihood of responding to an anti-cancer therapy
EP2848940A1 (en) 2010-07-19 2015-03-18 F. Hoffmann-La Roche AG Method to identify a patient with an increased likelihood of responding to an anti-cancer therapy
EP2848939A1 (en) 2010-07-19 2015-03-18 F. Hoffmann-La Roche AG Method to identify a patient with an increased likelihood of responding to an anti-cancer therapy
WO2012010551A1 (en) 2010-07-19 2012-01-26 F. Hoffmann-La Roche Ag Method to identify a patient with an increased likelihood of responding to an anti-cancer therapy
WO2012012750A1 (en) 2010-07-23 2012-01-26 Trustees Of Boston University ANTI-DEsupR INHIBITORS AS THERAPEUTICS FOR INHIBITION OF PATHOLOGICAL ANGIOGENESIS AND TUMOR CELL INVASIVENESS AND FOR MOLECULAR IMAGING AND TARGETED DELIVERY
EP3696195A1 (en) 2010-07-23 2020-08-19 Trustees of Boston University Anti-despr inhibitors as therapeutics for inhibition of pathological angiogenesis and tumor cell invasiveness and for molecular imaging and targeted delivery
CN103328479A (en) * 2010-09-27 2013-09-25 普罗克斯马根有限公司 7-hydroxy-pyrazolo[1,5-A] pyrimidine compounds and their use as CCR2 receptor antagonists
WO2012041817A1 (en) 2010-09-27 2012-04-05 Proximagen Ltd 7-hydroxy-pyrazolo[1,5-a] pyrimidine compounds and their use as ccr2 receptor antagonists
WO2012042421A1 (en) 2010-09-29 2012-04-05 Pfizer Inc. Method of treating abnormal cell growth
WO2012052948A1 (en) 2010-10-20 2012-04-26 Pfizer Inc. Pyridine- 2- derivatives as smoothened receptor modulators
WO2012116040A1 (en) 2011-02-22 2012-08-30 OSI Pharmaceuticals, LLC Biological markers predictive of anti-cancer response to insulin-like growth factor-1 receptor kinase inhibitors in hepatocellular carcinoma
US8748435B2 (en) 2011-04-01 2014-06-10 Novartis Ag Pyrazolo pyrimidine derivatives
WO2012142164A1 (en) 2011-04-12 2012-10-18 The United States Of America, As Represented By The Secretary, Department Of Health & Human Services Human monoclonal antibodies that bind insulin-like growth factor (igf) i and ii
WO2012145183A2 (en) 2011-04-19 2012-10-26 Pfizer Inc. Combinations of anti-4-1bb antibodies and adcc-inducing antibodies for the treatment of cancer
EP3536708A1 (en) 2011-04-19 2019-09-11 Pfizer Inc Combinations of anti-4-1bb antibodies and adcc-inducing antibodies for the treatment of cancer
WO2012149014A1 (en) 2011-04-25 2012-11-01 OSI Pharmaceuticals, LLC Use of emt gene signatures in cancer drug discovery, diagnostics, and treatment
US9309250B2 (en) 2011-06-22 2016-04-12 Vertex Pharmaceuticals Incorporated Substituted pyrrolo[2,3-b]pyrazines as ATR kinase inhibitors
US10875864B2 (en) 2011-07-21 2020-12-29 Sumitomo Dainippon Pharma Oncology, Inc. Substituted imidazo[1,2-B]pyridazines as protein kinase inhibitors
EP3409278A1 (en) 2011-07-21 2018-12-05 Tolero Pharmaceuticals, Inc. Heterocyclic protein kinase inhibitors
EP3812387A1 (en) 2011-07-21 2021-04-28 Sumitomo Dainippon Pharma Oncology, Inc. Heterocyclic protein kinase inhibitors
WO2013031931A1 (en) 2011-09-02 2013-03-07 協和発酵キリン株式会社 Chemokine receptor activity regulator
WO2013042006A1 (en) 2011-09-22 2013-03-28 Pfizer Inc. Pyrrolopyrimidine and purine derivatives
WO2013050725A1 (en) 2011-10-04 2013-04-11 King's College London Ige anti -hmw-maa antibody
EP3275902A1 (en) 2011-10-04 2018-01-31 IGEM Therapeutics Limited Ige anti-hmw-maa antibody
WO2013068902A1 (en) 2011-11-08 2013-05-16 Pfizer Inc. Methods of treating inflammatory disorders using anti-m-csf antibodies
WO2013152252A1 (en) 2012-04-06 2013-10-10 OSI Pharmaceuticals, LLC Combination anti-cancer therapy
US10766865B2 (en) 2012-10-16 2020-09-08 Sumitomo Dainippon Pharma Oncology, Inc. PKM2 modulators and methods for their use
US11370798B2 (en) 2012-12-07 2022-06-28 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
US9650381B2 (en) 2012-12-07 2017-05-16 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
US10787452B2 (en) 2012-12-07 2020-09-29 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
US11117900B2 (en) 2012-12-07 2021-09-14 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
US10392391B2 (en) 2012-12-07 2019-08-27 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
US9340546B2 (en) 2012-12-07 2016-05-17 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
US9718827B2 (en) 2012-12-07 2017-08-01 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
WO2014093383A1 (en) 2012-12-14 2014-06-19 Arrien Pharmaceuticals Llc Substituted 1h-pyrrolo [2,3-b] pyridine and 1h-pyrazolo [3, 4-b] pyridine derivatives as salt inducible kinase 2 (sik2) inhibitors
US10752594B2 (en) 2013-03-14 2020-08-25 Sumitomo Dainippon Pharma Oncology, Inc. JAK1 and ALK2 inhibitors and methods for their use
EP3590932A1 (en) 2013-03-14 2020-01-08 Tolero Pharmaceuticals, Inc. Jak2 and alk2 inhibitors and methods for their use
US9682983B2 (en) 2013-03-14 2017-06-20 The Brigham And Women's Hospital, Inc. BMP inhibitors and methods of use thereof
US10017516B2 (en) 2013-03-14 2018-07-10 The Brigham And Women's Hospital, Inc. BMP inhibitors and methods of use thereof
US8969360B2 (en) 2013-03-15 2015-03-03 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
US9663519B2 (en) 2013-03-15 2017-05-30 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
US8957078B2 (en) 2013-03-15 2015-02-17 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
EP3545956A1 (en) 2013-04-18 2019-10-02 Arrien Pharmaceuticals LLC 3,5-(un)substituted-1h-pyrrolo[2,3-b]pyridine, 1h-pyrazolo[3,4-b]pyridine and 5h- pyrrolo[2,3-b]pyrazine dual itk and jak3 kinase inhibitors
EP3650023A1 (en) 2013-10-04 2020-05-13 Aptose Biosciences Inc. Compositions for treating cancers
WO2015051302A1 (en) 2013-10-04 2015-04-09 Aptose Biosciences Inc. Compositions and methods for treating cancers
WO2015075598A1 (en) 2013-11-21 2015-05-28 Pfizer Inc. 2,6-substituted purine derivatives and their use in the treatment of proliferative disorders
US10160760B2 (en) 2013-12-06 2018-12-25 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
US10815239B2 (en) 2013-12-06 2020-10-27 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
US11485739B2 (en) 2013-12-06 2022-11-01 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
US10501805B2 (en) 2014-04-04 2019-12-10 Crown Bioscience, Inc. (Taicang) Methods for determining responsiveness to MEK/ERK inhibitors
EP4012049A2 (en) 2014-04-04 2022-06-15 Crown Bioscience, Inc. (Taicang) Methods for determining responsiveness to mek/erk inhibitors
WO2015149721A1 (en) 2014-04-04 2015-10-08 Crown Bioscience, Inc.(Taicang) Methods for determining responsiveness to mek/erk inhibitors
WO2015155624A1 (en) 2014-04-10 2015-10-15 Pfizer Inc. Dihydropyrrolopyrimidine derivatives
EP3556757A1 (en) 2014-04-30 2019-10-23 Pfizer Inc Cycloalkyl-linked diheterocycle derivatives
WO2015166373A1 (en) 2014-04-30 2015-11-05 Pfizer Inc. Cycloalkyl-linked diheterocycle derivatives
US10093676B2 (en) 2014-06-05 2018-10-09 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
US10800781B2 (en) 2014-06-05 2020-10-13 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
US9670215B2 (en) 2014-06-05 2017-06-06 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
US11179394B2 (en) 2014-06-17 2021-11-23 Vertex Pharmaceuticals Incorporated Method for treating cancer using a combination of Chk1 and ATR inhibitors
WO2016001789A1 (en) 2014-06-30 2016-01-07 Pfizer Inc. Pyrimidine derivatives as pi3k inhibitors for use in the treatment of cancer
US10513521B2 (en) 2014-07-15 2019-12-24 The Brigham And Women's Hospital, Inc. Compositions and methods for inhibiting BMP
US10934360B2 (en) 2014-07-31 2021-03-02 The Hong Kong University Of Science And Technology Human monoclonal antibodies against EPHA4 and their use
WO2016019280A1 (en) 2014-07-31 2016-02-04 The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Human monoclonal antibodies against epha4 and their use
EP3473271A1 (en) 2014-07-31 2019-04-24 The Government of the United States of America as represented by the Secretary of the Department of Health and Human Services Human monoclonal antibodies against epha4 and their use
WO2016097918A1 (en) 2014-12-18 2016-06-23 Pfizer Inc. Pyrimidine and triazine derivatives and their use as axl inhibitors
US9593097B2 (en) 2014-12-18 2017-03-14 Pfizer Inc. Axl inhibitors
US10624880B2 (en) 2015-04-20 2020-04-21 Tolero Pharmaceuticals, Inc. Predicting response to alvocidib by mitochondrial profiling
WO2016178876A2 (en) 2015-05-01 2016-11-10 Cocrystal Pharma, Inc. Nucleoside analogs for treatment of the flaviviridae family of viruses and cancer
US10562925B2 (en) 2015-05-18 2020-02-18 Tolero Pharmaceuticals, Inc. Alvocidib prodrugs having increased bioavailability
WO2017009751A1 (en) 2015-07-15 2017-01-19 Pfizer Inc. Pyrimidine derivatives
US10835537B2 (en) 2015-08-03 2020-11-17 Sumitomo Dainippon Pharma Oncology, Inc. Combination therapies for treatment of cancer
US10682356B2 (en) 2015-08-03 2020-06-16 Tolero Pharmaceuticals, Inc. Combination therapies for treatment of cancer
US10568887B2 (en) 2015-08-03 2020-02-25 Tolero Pharmaceuticals, Inc. Combination therapies for treatment of cancer
US11464774B2 (en) 2015-09-30 2022-10-11 Vertex Pharmaceuticals Incorporated Method for treating cancer using a combination of DNA damaging agents and ATR inhibitors
WO2017096165A1 (en) 2015-12-03 2017-06-08 Agios Pharmaceuticals, Inc. Mat2a inhibitors for treating mtap null cancer
CN106632260A (en) * 2016-09-29 2017-05-10 上海天慈生物谷生物工程有限公司 Preparation method for micro-molecular kinase inhibitor
CN106632260B (en) * 2016-09-29 2019-04-26 上海天慈生物谷生物工程有限公司 A kind of preparation method of small molecule kinase inhibitors
US11279694B2 (en) 2016-11-18 2022-03-22 Sumitomo Dainippon Pharma Oncology, Inc. Alvocidib prodrugs and their use as protein kinase inhibitors
US10422788B2 (en) 2016-12-19 2019-09-24 Tolero Pharmaceuticals, Inc. Profiling peptides and methods for sensitivity profiling
US11497756B2 (en) 2017-09-12 2022-11-15 Sumitomo Pharma Oncology, Inc. Treatment regimen for cancers that are insensitive to BCL-2 inhibitors using the MCL-1 inhibitor alvocidib
WO2019075367A1 (en) 2017-10-13 2019-04-18 Tolero Pharmaceuticals, Inc. Pkm2 activators in combination with reactive oxygen species for treatment of cancer
US11040038B2 (en) 2018-07-26 2021-06-22 Sumitomo Dainippon Pharma Oncology, Inc. Methods for treating diseases associated with abnormal ACVR1 expression and ACVR1 inhibitors for use in the same
US11530231B2 (en) 2018-12-04 2022-12-20 Sumitomo Pharma Oncology, Inc. CDK9 inhibitors and polymorphs thereof for use as agents for treatment of cancer
US11034710B2 (en) 2018-12-04 2021-06-15 Sumitomo Dainippon Pharma Oncology, Inc. CDK9 inhibitors and polymorphs thereof for use as agents for treatment of cancer
US11471456B2 (en) 2019-02-12 2022-10-18 Sumitomo Pharma Oncology, Inc. Formulations comprising heterocyclic protein kinase inhibitors
US11793802B2 (en) 2019-03-20 2023-10-24 Sumitomo Pharma Oncology, Inc. Treatment of acute myeloid leukemia (AML) with venetoclax failure
WO2020198077A1 (en) 2019-03-22 2020-10-01 Sumitomo Dainippon Pharma Oncology, Inc. Compositions comprising pkm2 modulators and methods of treatment using the same
US11712433B2 (en) 2019-03-22 2023-08-01 Sumitomo Pharma Oncology, Inc. Compositions comprising PKM2 modulators and methods of treatment using the same
WO2020249096A1 (en) * 2019-06-14 2020-12-17 南京明德新药研发有限公司 Fused ring compound as fgfr and vegfr dual inhibitor
WO2021155006A1 (en) 2020-01-31 2021-08-05 Les Laboratoires Servier Sas Inhibitors of cyclin-dependent kinases and uses thereof
GR1010096B (en) * 2020-07-02 2021-10-08 Uni-Pharma Κλεων Τσετης Φαρμακευτικα Εργαστηρια Αβεε, Pyrazolo[1,5-a]pyrimidines as autotaxin inhibitors

Also Published As

Publication number Publication date
CA2291709A1 (en) 1998-12-03
AU734009B2 (en) 2001-05-31
AU7594498A (en) 1998-12-30
EP0984692A4 (en) 2001-02-21
JP2002501532A (en) 2002-01-15
EP0984692A1 (en) 2000-03-15

Similar Documents

Publication Publication Date Title
US6235741B1 (en) Angiogenesis inhibitors
EP0984692A1 (en) Novel angiogenesis inhibitors
AU760020B2 (en) Novel angiogenesis inhibitors
US6465484B1 (en) Angiogenesis inhibitors
AU744939B2 (en) Novel angiogenesis inhibitors
US6162804A (en) Tyrosine kinase inhibitors
AU747427B2 (en) Novel angiogenesis inhibitors
US6265403B1 (en) Angiogenesis inhibitors
EP2170823B1 (en) N-(2-(hetaryl)aryl)arylsulfonamides and n-(2-(hetaryl)hetaryl)arylsulfonamides
US6380203B1 (en) Angiogenesis inhibitors
JP2009536617A (en) Thiazoles, imidazoles, and pyrazoles useful as inhibitors of protein kinases
US20140221336A1 (en) Compounds useful as inhibitors of janus kinases
JP2002534385A (en) New compound
JP2010510216A (en) Compounds useful as inhibitors of protein kinases
JP2002544272A (en) Substituted 3-pyridyl-4-arylpyrroles and related treatments and prophylaxis
US6228871B1 (en) Angiogenesis inhibitors
WO2004089930A1 (en) 4-fluoroquinolone derivatives and their use as kinase inhibitors
US20230312583A1 (en) 1h-imidazo [4,5-h] quinazoline compound as novel selective flt3 inhibitors
KR20240028959A (en) Compounds as autotaxin inhibitors and pharmaceutical compositions comprising the same
MXPA03010535A (en) Inhibitors of src and other protein kinases

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AU AZ BA BB BG BR BY CA CN CU CZ EE GE GW HU ID IL IS JP KG KR KZ LC LK LR LT LV MD MG MK MN MX NO NZ PL RO RU SG SI SK SL TJ TM TR TT UA US UZ VN YU

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998923719

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09424132

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2291709

Country of ref document: CA

Ref country code: CA

Ref document number: 2291709

Kind code of ref document: A

Format of ref document f/p: F

ENP Entry into the national phase

Ref country code: JP

Ref document number: 1999 500790

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 75944/98

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 1998923719

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 75944/98

Country of ref document: AU

WWW Wipo information: withdrawn in national office

Ref document number: 1998923719

Country of ref document: EP