WO1998015230A1 - Improved loop electrodes for electrocautery probes for use with a resectoscope - Google Patents

Improved loop electrodes for electrocautery probes for use with a resectoscope Download PDF

Info

Publication number
WO1998015230A1
WO1998015230A1 PCT/US1997/018154 US9718154W WO9815230A1 WO 1998015230 A1 WO1998015230 A1 WO 1998015230A1 US 9718154 W US9718154 W US 9718154W WO 9815230 A1 WO9815230 A1 WO 9815230A1
Authority
WO
WIPO (PCT)
Prior art keywords
proximal
distal
approximately
electrode
arms
Prior art date
Application number
PCT/US1997/018154
Other languages
French (fr)
Inventor
Kevin F. Hahnen
Tracie L. Beidemen
Original Assignee
Symbiosis Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Symbiosis Corporation filed Critical Symbiosis Corporation
Priority to AU46083/97A priority Critical patent/AU4608397A/en
Publication of WO1998015230A1 publication Critical patent/WO1998015230A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1485Probes or electrodes therefor having a short rigid shaft for accessing the inner body through natural openings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/149Probes or electrodes therefor bow shaped or with rotatable body at cantilever end, e.g. for resectoscopes, or coagulating rollers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00607Coagulation and cutting with the same instrument

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Otolaryngology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)
  • Endoscopes (AREA)

Abstract

An electrocautery probe (112) includes a distal loop electrode (222) mounted between a pair of arms (223, 225) which are joined at their proximal ends to an electrode lead (227), and a mounting sleeve (229) for slide coupling the probe to the guide tube of a resectoscope. The arms are skewed from a longitudinal axis defined by the electrode lead and are covered with an insulation material (231, 233) which extends to the distal end of the arms, and terminates in a straight edge parallel to a plane substantially perpendicular to the arms. The loop electrode is angled approximately 25 proximally to 35 proximally relative to a plane substantially perpendicular to the electrode lead. The loop electrode further defines sharp upper distal and proximal edges (226a, 226b). A cross section of the electrode further defines an upper surface (224a), a leading distal surface (224b), a lower distal surface (224c), and a lower proximal surface (224d).

Description

IMPROVED LOOP ELECTRODES FOR ELECTROCAUTERY PROBES FOR USE WITH A RESECTOSCOPE
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates broadly to surgical instruments. More particularly, this invention relates to loop electrodes which are used in electrocautery probes with a resectoscope.
2. State of the Art
Prior art Figure 1 shows a typical resectoscope 10 with an electrocautery probe 12. The resectoscope 10 includes a distal guide tube 14 and a proximal handle 16. A telescope 18 extending through the guide tube 14 is provided with a proximal eye piece 20 for viewing the interior of the bladder or other operative site. The cautery probe 12 has a distal electrode 22 which is mounted between a pair of arms 23, 25. The arms 23, 25 are joined at their proximal ends to an electrode lead 27 which is coupled via the handle 16 to a wire 24. The wire, in turn, is coupled to a source of cautery current (not shown) . As seen in the prior art Figure 2, a mounting sleeve 29 is provided on the probe 12 for slideably coupling it to the guide tube 14. The mounting sleeve 29 is typically located at the point where the arms 23, 25 are joined to the electrode lead 27. The handle 16 is provided with the capability of axially sliding the probe 12 and its distally mounted electrode 22 relative to the guide tube 14.
The resection procedure involves applying a cauterizing wattage to the electrode 22 and moving the electrode slowly through or over the prostate or endometrium while viewing the tissue through the scope 18. Thermal energy is applied through the electrode to the prostate or the endometrium so that tissue is excised. The resectoscope and cautery probe are also useful in other procedures for resecting the uterus, ureter, or renal pelvis .
Known electrodes for use in resectoscopes are available in many different shapes and sizes. U.S. patent 4,917,082 to Grossi et al., for example, discloses several embodiments of a "Resectoscope Electrode" including a coagulating electrode, a knife electrode, a punctate electrode, and a roller electrode, among others. Electrodes for use with resectoscopes are also widely available from Olsen Electrosurgical, Inc., Concord, California. They are available as blades, needles, balls, loops, spear tips, flexible wires, semi-circular wires, hooks, spatulas and blunt tips.
The loop electrode 22, which is shown in Figures 1 and 2 is the presently preferred type of electrode for prostatic resection because it can be used to cut and to coagulate. The disadvantage of the loop electrode is that in order to make the electrode sharp enough to cut smoothly, it must be made relatively thin with little surface area. The small surface area of the loop electrode compromises its effectiveness as a coagulating tool. Thus, in a prostatic resection procedure, 80% of the time devoted to the procedure is used to coagulate the prostate and stop it from bleeding. An electrocautery probe solving the problems of the previous probes was disclosed in parent application U.S. Serial No. 08/425,386 and is shown in Figures 3 and 4. The electrocautery probe 112 includes a distal loop electrode 122 mounted between a pair of arms 123, 125, which are joined at their proximal ends to an electrode lead 127, and a mounting sleeve 129 for slideably coupling the probe to the guide tube of a resectoscope. The arms 123, 125 extend parallel to the guide tube and are covered in an insulative material 131, 133 which further extends over an upper portion 131a, 133a of the loop electrode. The loop electrode defines a sharp distal edge 122a, a sharp proximal edge 122b, and a broad lower base surface 122c. A cross section of the electrode is defined by the lower base surface 122c, a distal surface 121a, and a proximal surface 121b. The loop electrode is angled approximately 10° proximally relative to a plane substantially perpendicular to the arms. Tests demonstrated that the electrode is 90% more effective in coagulation than the prior art loop electrodes. It is believed that the sharp distal and proximal edges aid in cutting and focus cautery current to this effect while the relatively broad base serves to enhance coagulation.
However, it has been found that this probe configuration, when used over a long period of time, is prone to having the insulation 123a, 125a around the arms of the probe degrade. Once the insulation degrades, it is technically possible for the electrode to electrically arc to the endoscope through which the probe is inserted. SUMMARY OF THE INVENTION
It is therefore an object of the invention to provide an electrocautery probe with a loop electrode which is useful for cutting and for coagulating.
It is another of the invention to provide an electrocautery probe with a loop electrode having a relatively sharp current focusing edge.
It is also an object of the invention to provide an insulated electrocautery probe with a cutting and coagulating loop electrode which is arranged such that the insulation on the probe does not degrade.
It is another object of the invention to provide an electrocautery probe with a loop electrode which has an increased surface area for better coagulation.
Another object of the invention is to provide an electrocautery probe with a loop electrode which has two sharp edges, one for plunging and another for scything.
In accord with these objects which will be discussed in detail below, the electrocautery probe of the present invention includes a distal loop electrode mounted between a pair of arms which are joined at their proximal ends to an electrode lead, and a mounting sleeve for slideably coupling the probe to the guide tube of a resectoscope. The electrode lead defines a longitudinal axis. The arms of the electrocautery probe are covered with an insulative material which terminates in an edge perpendicular to the axis of the arms. The arms are also skewed from the axis of the electrode lead. The loop electrode is angled approximately 25° - 35° proximally relative to a plane substantially perpendicular to the axis of the electrode lead. The electrode defines sharp upper distal and proximal edges. A cross-section of the electrode defines an upper surface, a leading distal surface, a lower distal surface, and a lower proximal surface. With the provided electrocautery probe the insulation on the arms does not degrade and the possibility of arcing from the electrode to the endoscope is reduced. At the same time, the cautery current is focused and can coagulate tissue as described in the parent application U.S. Serial No. 08/425,386.
Additional objects and advantages of the invention will become apparent to those skilled in the art upon reference to the detailed description taken in conjunction with the provided figures .
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is a perspective view of a prior art resectoscope with an electrocautery probe having a loop electrode;
Figure 2 is an enlarged broken perspective view of the prior art electrocautery probe of Figure 1;
Figure 3 is an enlarged broken perspective view of the distal end of an electrocautery probe as disclosed in the parent application;
Figure 4 is a view similar to Figure 3 showing the proximal side of an electrode as disclosed in the parent application;
Figure.5 is an enlarged broken perspective view of the distal end of an electrocautery probe of the invention;
Figure 6 is a view similar to Figure 5 showing the proximal side of an electrocautery probe of the invention; and
Figure 7 is a broken cross-sectional view taken along line 7-7 in Figure 5. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Referring now to Figures 5 through 7, a cautery probe 112 according to the invention has a distal electrode 222 which is mounted between a pair of arms 223, 225. The arms 223, 225 are joined at their proximal ends to an electrode lead 227 and a resectoscope mounting sleeve 229 is provided preferably at the location where the arms 223, 225 are joined to the electrode lead 227. The resectoscope mounting sleeve 229 is preferably made of a low dielectric material, e.g., plastic, which will reduce capacitive coupling. The electrode lead 227 defines a longitudinal axis. The arms 223, 225 extend distally and preferably angle slightly upwards, i.e., the arms skew from the longitudinal axis of the electrode lead 227. The arms 223, 225 are covered in an insulative material 231, 233, e.g., FEP, which extends over the arms to the distal ends of the arms and terminates preferably in a straight edge which is perpendicular to a plane formed by the arms. The electrode 222 is a substantially U-shaped loop coupled by its upper ends to the distal ends of the arms 223, 225. The U-shaped loop is angled approximately between 25° - 35°, and preferably 30°, proximally relative to a plane substantially perpendicular to the longitudinal axis of the electrode lead 227.
The geometry of the electrode loop defines a plurality of edges. The edges include a substantially sharp upper distal edge 226a, a substantially sharp upper proximal edge 226b, a lower distal edge 226c, and a lower proximal edge 226d. A cross- section of the electrode loop defines a plurality of surfaces seen best in Figure 7. The surfaces include a broad upper surface 224a, a leading distal surface 224b, a lower distal surface 224c, and a proximal surface 224d. The broad upper surface 224a defines a plane substantially parallel to the longitudinal axis of the electrode lead 227.
According to a presently preferred embodiment of the invention, the broad upper surface 224a of the loop electrode is approximately .043 - .061 inches wide, the leading distal surface 224d extends approximately 0.014 - .018 inches from the upper surface 224a, and the lower distal surface 224c extends approximately .024 - .032 inches from the leading distal surface 224b to the proximal surface 224d. The electrode thereby defines a sharp upper distal edge 226a having an angle of approximately between 55° - 65°, a sharp upper proximal edge 226b having an angle of approximately 42° - 52°, a lower distal edge 226c having an angle of approximately 95° - 105°, and a lower proximal edge 226d having an angle of approximately 135° - 150°. In the presently preferred embodiment, the electrode 222 is coupled to the arms 223, 225 so that the upper distal surface 224b of the electrode lies in a plane which is angled approximately 30° proximally relative to a plane substantially perpendicular to the longitudinal axis of the electrode lead 227. The height Hx of the electrode 222 from the lower distal edge 226c to the distal end of the arms 225 is approximately .180 - .375 inches. The electrode is preferably made of chromium cobalt or carbonless stainless steel. Tests of this electrode demonstrated superior cutting and coagulation as compared to the prior art loop electrodes. It should be noted that the sharp upper distal edge 226a and the sharp upper proximal edge 226b need not be (and preferably are not) "cutting sharp". The electrode cuts with the assistance of the cautery current passing through it. It is believed that the sharp edges provide well-defined lines of focus for the cautery current and thereby improve the cutting ability of the electrode.
Observation has shown that the preferred configuration with the 25° - 35° proximal angle prevents the insulation on the arms from degrading, and thereby eliminates the possibility of arcing. In addition, the termination of the insulation in a straight edge reduces the stress placed on the insulation, and promotes longevity in the integrity of the insulation. Furthermore, the configuration maintains the superior cutting and coagulating abilities demonstrated by the loop electrode in the parent application. There have been described and illustrated herein of a loop electrode of an electrocautery probe. While a preferred embodiment of the invention has been described, it is not intended that the invention be limited thereto, as it is intended that the invention be as broad in scope as the art will allow and that the specification be read likewise. Thus, while particular dimensions and materials have been disclosed, it will be appreciated that other dimensions and materials could be utilized. Also, while a particular electrocautery probe has been shown in connection with the electrode, it will be recognized that other types of probes could be used with similar results obtained. Moreover, while the electrode and probe have been disclosed as having particular utility in connection with a resectoscope, it will be understood that desirable results can be achieved by the electrode without the use of a resectoscope. It will therefore be appreciated by those skilled in the art that yet other modifications could be made to the provided invention without deviating from its spirit and scope as so claimed.

Claims

We Claim :
1. A loop electrode for use in an electrocautery probe having two arms between which said electrode is mounted, said electrode comprising: a substantially U-shaped conductive member having a cross section defining a leading distal surface, said leading distal surface angled approximately 25° - 35° proximal relative to a plane perpendicular to a longitudinal axis of the electrocautery probe.
2. A loop electrode according to claim 1, wherein: said cross section further defines an upper surface, a lower distal surface and a proximal surface.
3. A loop electrode according to claim 2, wherein: said lower distal and proximal surfaces form a lower proximal edge having an obtuse angle, and said leading distal surface and said lower distal surface form a lower distal edge.
4. A loop electrode according to claim 3, wherein: said lower distal edge has an angle of approximately 95° - 105°, and said lower proximal edge has an angle of approximately 135° - 150°.
5. A loop electrode according to claim 3, wherein: said broad upper surface has a length of approximately .043 - .061 inches.
6. A loop electrode according to claim 5, wherein: said leading distal surface extends approximately .018 - .022 inches between said lower surface and said proximal surface, and said lower distal surface extends approximately .024 - .032 inches between said leading distal surface and said proximal surface .
7. A loop electrode according to claim 1, wherein: said cross section defines a sharp upper distal edge and a sharp upper proximal edge.
8. A loop electrode according to claim 7, wherein: said upper distal edge has an angle of approximately between 55° - 65°, and said upper proximal edge has an angle of approximately 42° - 52°.
9. A loop electrode according to claim 1, wherein: said U-shaped conductive member has a height approximately .180 - .220 inches.
10. An electrocautery probe for use with a resectoscope, comprising: a) a pair of conductive arms having proximal and distal ends, said arms joined together at their said proximal ends; b) an electrode lead coupled to said proximal ends of said conductive arms and extending proximally therefrom, said electrode lead defining a longitudinal axis; and c) a substantially U-shaped electrode having two upper ends, each of which is coupled to a respective one of said distal ends of said pair of conductive arms, said electrode having a leading distal surface angled approximately 25° - 35° proximal relative to a plane perpendicular to said longitudinal axis of said electrode lead.
11. An electrocautery probe according to claim 10, wherein: said arms lie in a first plane which is skewed from said axis of said electrode lead.
12. An electrocautery probe according to claim 10, wherein: said cross section further defines an upper surface, a lower distal surface and a proximal surface.
13. An electrocautery probe according to claim 12, wherein: said lower distal and proximal surfaces form a lower proximal edge having an obtuse angle, and said leading distal surface and said lower distal surface form a lower distal edge.
14. An electrocautery probe according to claim 13, wherein: said lower distal edge has an angle of approximately 95° -
105°, and said lower proximal edge has an angle of approximately 135° - 150°.
15. An electrocautery probe according to claim 13, wherein: said broad upper surface has a length of approximately .043
- .061 inches.
16. An electrocautery probe according to claim 15, wherein: said leading distal surface extends approximately .018 -
.022 inches between said lower surface and said proximal surface, and said lower distal surface extends approximately .024 - .032 inches between said leading distal surface and said proximal surface .
17. An electrocautery probe according to claim 10, wherein: said cross section defines a sharp upper distal edge and a sharp upper proximal edge.
18. An electrocautery probe according to claim 17, wherein: said upper distal edge has an angle of approximately between
55° - 65°, and said upper proximal edge has an angle of approximately 42° - 52 >co
19. An electrocautery probe according to claim 10, further comprising: d) an insulative sheath extending over said arms and terminating at said distal end of said arms in a straight edge substantially perpendicular to a plane formed by said arms.
20. An electrocautery probe according to claim 10, wherein: said U-shaped member has a height approximately .180 - .220 inches .
21. An electrocautery probe according to claim 10, further comprising: d) a mounting sleeve for slideably coupling said probe to the resectoscope, said mounting sleeve made of a material which reduces capacitive coupling.
PCT/US1997/018154 1996-10-07 1997-10-07 Improved loop electrodes for electrocautery probes for use with a resectoscope WO1998015230A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU46083/97A AU4608397A (en) 1996-10-07 1997-10-07 Improved loop electrodes for electrocautery probes for use with a resectoscope

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/725,937 US5957923A (en) 1995-04-20 1996-10-07 Loop electrodes for electrocautery probes for use with a resectoscope
US08/725,937 1996-10-07

Publications (1)

Publication Number Publication Date
WO1998015230A1 true WO1998015230A1 (en) 1998-04-16

Family

ID=24916539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1997/018154 WO1998015230A1 (en) 1996-10-07 1997-10-07 Improved loop electrodes for electrocautery probes for use with a resectoscope

Country Status (3)

Country Link
US (1) US5957923A (en)
AU (1) AU4608397A (en)
WO (1) WO1998015230A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006039696A1 (en) * 2006-08-21 2008-02-28 Hamou, Jacques, Dr. Apparatus for resection and / or ablation of organic tissue by means of high frequency current and resectoscope

Families Citing this family (130)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7384423B1 (en) 1995-07-13 2008-06-10 Origin Medsystems, Inc. Tissue dissection method
US6245069B1 (en) * 1995-12-22 2001-06-12 Karl Storz Gmbh & Co. Kg Cutting loop electrode for high-frequency instrument
US5919190A (en) * 1996-12-20 1999-07-06 Vandusseldorp; Gregg A. Cutting loop for an electrocautery probe
US6267761B1 (en) * 1997-09-09 2001-07-31 Sherwood Services Ag Apparatus and method for sealing and cutting tissue
WO2002080786A1 (en) 2001-04-06 2002-10-17 Sherwood Services Ag Electrosurgical instrument which reduces collateral damage to adjacent tissue
US7435249B2 (en) 1997-11-12 2008-10-14 Covidien Ag Electrosurgical instruments which reduces collateral damage to adjacent tissue
US6726686B2 (en) 1997-11-12 2004-04-27 Sherwood Services Ag Bipolar electrosurgical instrument for sealing vessels
US6228083B1 (en) 1997-11-14 2001-05-08 Sherwood Services Ag Laparoscopic bipolar electrosurgical instrument
US6830546B1 (en) 1998-06-22 2004-12-14 Origin Medsystems, Inc. Device and method for remote vessel ligation
US6976957B1 (en) 1998-06-22 2005-12-20 Origin Medsystems, Inc. Cannula-based surgical instrument and method
US7326178B1 (en) 1998-06-22 2008-02-05 Origin Medsystems, Inc. Vessel retraction device and method
EP0979635A2 (en) 1998-08-12 2000-02-16 Origin Medsystems, Inc. Tissue dissector apparatus
US7364577B2 (en) 2002-02-11 2008-04-29 Sherwood Services Ag Vessel sealing system
US7582087B2 (en) 1998-10-23 2009-09-01 Covidien Ag Vessel sealing instrument
US7118570B2 (en) 2001-04-06 2006-10-10 Sherwood Services Ag Vessel sealing forceps with disposable electrodes
US7267677B2 (en) 1998-10-23 2007-09-11 Sherwood Services Ag Vessel sealing instrument
US6287304B1 (en) 1999-10-15 2001-09-11 Neothermia Corporation Interstitial cauterization of tissue volumes with electrosurgically deployed electrodes
US6514248B1 (en) 1999-10-15 2003-02-04 Neothermia Corporation Accurate cutting about and into tissue volumes with electrosurgically deployed electrodes
US7887535B2 (en) 1999-10-18 2011-02-15 Covidien Ag Vessel sealing wave jaw
US20030109875A1 (en) 1999-10-22 2003-06-12 Tetzlaff Philip M. Open vessel sealing forceps with disposable electrodes
US6471659B2 (en) 1999-12-27 2002-10-29 Neothermia Corporation Minimally invasive intact recovery of tissue
US6277083B1 (en) 1999-12-27 2001-08-21 Neothermia Corporation Minimally invasive intact recovery of tissue
US6558313B1 (en) 2000-11-17 2003-05-06 Embro Corporation Vein harvesting system and method
US10849681B2 (en) 2001-04-06 2020-12-01 Covidien Ag Vessel sealer and divider
JP4499992B2 (en) 2001-04-06 2010-07-14 コヴィディエン アクチェンゲゼルシャフト Vascular sealing machine and splitting machine having non-conductive stop member
US7101371B2 (en) 2001-04-06 2006-09-05 Dycus Sean T Vessel sealer and divider
US7270664B2 (en) 2002-10-04 2007-09-18 Sherwood Services Ag Vessel sealing instrument with electrical cutting mechanism
US7931649B2 (en) 2002-10-04 2011-04-26 Tyco Healthcare Group Lp Vessel sealing instrument with electrical cutting mechanism
US7276068B2 (en) 2002-10-04 2007-10-02 Sherwood Services Ag Vessel sealing instrument with electrical cutting mechanism
US7799026B2 (en) 2002-11-14 2010-09-21 Covidien Ag Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US7776036B2 (en) 2003-03-13 2010-08-17 Covidien Ag Bipolar concentric electrode assembly for soft tissue fusion
US7160299B2 (en) 2003-05-01 2007-01-09 Sherwood Services Ag Method of fusing biomaterials with radiofrequency energy
US8128624B2 (en) 2003-05-01 2012-03-06 Covidien Ag Electrosurgical instrument that directs energy delivery and protects adjacent tissue
AU2004237772B2 (en) 2003-05-01 2009-12-10 Covidien Ag Electrosurgical instrument which reduces thermal damage to adjacent tissue
US7491201B2 (en) 2003-05-15 2009-02-17 Covidien Ag Tissue sealer with non-conductive variable stop members and method of sealing tissue
US7150749B2 (en) 2003-06-13 2006-12-19 Sherwood Services Ag Vessel sealer and divider having elongated knife stroke and safety cutting mechanism
US7156846B2 (en) 2003-06-13 2007-01-02 Sherwood Services Ag Vessel sealer and divider for use with small trocars and cannulas
USD956973S1 (en) 2003-06-13 2022-07-05 Covidien Ag Movable handle for endoscopic vessel sealer and divider
US7857812B2 (en) 2003-06-13 2010-12-28 Covidien Ag Vessel sealer and divider having elongated knife stroke and safety for cutting mechanism
US9848938B2 (en) 2003-11-13 2017-12-26 Covidien Ag Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US7367976B2 (en) * 2003-11-17 2008-05-06 Sherwood Services Ag Bipolar forceps having monopolar extension
US7131970B2 (en) 2003-11-19 2006-11-07 Sherwood Services Ag Open vessel sealing instrument with cutting mechanism
US7811283B2 (en) 2003-11-19 2010-10-12 Covidien Ag Open vessel sealing instrument with hourglass cutting mechanism and over-ratchet safety
US7500975B2 (en) 2003-11-19 2009-03-10 Covidien Ag Spring loaded reciprocating tissue cutting mechanism in a forceps-style electrosurgical instrument
US7442193B2 (en) 2003-11-20 2008-10-28 Covidien Ag Electrically conductive/insulative over-shoe for tissue fusion
JP2005204773A (en) * 2004-01-21 2005-08-04 Pentax Corp High-frequency incision equipment for endoscope
JP2005204768A (en) * 2004-01-21 2005-08-04 Pentax Corp High-frequency incision equipment for endoscope
US7780662B2 (en) 2004-03-02 2010-08-24 Covidien Ag Vessel sealing system using capacitive RF dielectric heating
US7195631B2 (en) 2004-09-09 2007-03-27 Sherwood Services Ag Forceps with spring loaded end effector assembly
US7540872B2 (en) 2004-09-21 2009-06-02 Covidien Ag Articulating bipolar electrosurgical instrument
US7384421B2 (en) * 2004-10-06 2008-06-10 Sherwood Services Ag Slide-activated cutting assembly
US7955332B2 (en) 2004-10-08 2011-06-07 Covidien Ag Mechanism for dividing tissue in a hemostat-style instrument
US7686827B2 (en) 2004-10-21 2010-03-30 Covidien Ag Magnetic closure mechanism for hemostat
US7909823B2 (en) 2005-01-14 2011-03-22 Covidien Ag Open vessel sealing instrument
US7686804B2 (en) 2005-01-14 2010-03-30 Covidien Ag Vessel sealer and divider with rotating sealer and cutter
US7491202B2 (en) 2005-03-31 2009-02-17 Covidien Ag Electrosurgical forceps with slow closure sealing plates and method of sealing tissue
US7837685B2 (en) 2005-07-13 2010-11-23 Covidien Ag Switch mechanisms for safe activation of energy on an electrosurgical instrument
US7628791B2 (en) 2005-08-19 2009-12-08 Covidien Ag Single action tissue sealer
ES2381560T3 (en) 2005-09-30 2012-05-29 Covidien Ag Insulating sleeve for electrosurgical forceps
US7789878B2 (en) 2005-09-30 2010-09-07 Covidien Ag In-line vessel sealer and divider
US7922953B2 (en) 2005-09-30 2011-04-12 Covidien Ag Method for manufacturing an end effector assembly
US7722607B2 (en) 2005-09-30 2010-05-25 Covidien Ag In-line vessel sealer and divider
US7879035B2 (en) 2005-09-30 2011-02-01 Covidien Ag Insulating boot for electrosurgical forceps
CA2561034C (en) 2005-09-30 2014-12-09 Sherwood Services Ag Flexible endoscopic catheter with an end effector for coagulating and transfecting tissue
US8298232B2 (en) 2006-01-24 2012-10-30 Tyco Healthcare Group Lp Endoscopic vessel sealer and divider for large tissue structures
US8734443B2 (en) 2006-01-24 2014-05-27 Covidien Lp Vessel sealer and divider for large tissue structures
US8882766B2 (en) 2006-01-24 2014-11-11 Covidien Ag Method and system for controlling delivery of energy to divide tissue
US8241282B2 (en) 2006-01-24 2012-08-14 Tyco Healthcare Group Lp Vessel sealing cutting assemblies
US7766910B2 (en) 2006-01-24 2010-08-03 Tyco Healthcare Group Lp Vessel sealer and divider for large tissue structures
US7846158B2 (en) 2006-05-05 2010-12-07 Covidien Ag Apparatus and method for electrode thermosurgery
US9770230B2 (en) 2006-06-01 2017-09-26 Maquet Cardiovascular Llc Endoscopic vessel harvesting system components
US7776037B2 (en) 2006-07-07 2010-08-17 Covidien Ag System and method for controlling electrode gap during tissue sealing
US7744615B2 (en) 2006-07-18 2010-06-29 Covidien Ag Apparatus and method for transecting tissue on a bipolar vessel sealing instrument
US20080033428A1 (en) * 2006-08-04 2008-02-07 Sherwood Services Ag System and method for disabling handswitching on an electrosurgical instrument
US8597297B2 (en) 2006-08-29 2013-12-03 Covidien Ag Vessel sealing instrument with multiple electrode configurations
US8070746B2 (en) 2006-10-03 2011-12-06 Tyco Healthcare Group Lp Radiofrequency fusion of cardiac tissue
US7951149B2 (en) 2006-10-17 2011-05-31 Tyco Healthcare Group Lp Ablative material for use with tissue treatment device
USD649249S1 (en) 2007-02-15 2011-11-22 Tyco Healthcare Group Lp End effectors of an elongated dissecting and dividing instrument
US8267935B2 (en) 2007-04-04 2012-09-18 Tyco Healthcare Group Lp Electrosurgical instrument reducing current densities at an insulator conductor junction
US7877852B2 (en) 2007-09-20 2011-02-01 Tyco Healthcare Group Lp Method of manufacturing an end effector assembly for sealing tissue
US7877853B2 (en) 2007-09-20 2011-02-01 Tyco Healthcare Group Lp Method of manufacturing end effector assembly for sealing tissue
US8236025B2 (en) 2007-09-28 2012-08-07 Tyco Healthcare Group Lp Silicone insulated electrosurgical forceps
US9023043B2 (en) 2007-09-28 2015-05-05 Covidien Lp Insulating mechanically-interfaced boot and jaws for electrosurgical forceps
US8235992B2 (en) 2007-09-28 2012-08-07 Tyco Healthcare Group Lp Insulating boot with mechanical reinforcement for electrosurgical forceps
US8267936B2 (en) 2007-09-28 2012-09-18 Tyco Healthcare Group Lp Insulating mechanically-interfaced adhesive for electrosurgical forceps
US8251996B2 (en) 2007-09-28 2012-08-28 Tyco Healthcare Group Lp Insulating sheath for electrosurgical forceps
US8221416B2 (en) 2007-09-28 2012-07-17 Tyco Healthcare Group Lp Insulating boot for electrosurgical forceps with thermoplastic clevis
US8235993B2 (en) 2007-09-28 2012-08-07 Tyco Healthcare Group Lp Insulating boot for electrosurgical forceps with exohinged structure
US8241283B2 (en) 2007-09-28 2012-08-14 Tyco Healthcare Group Lp Dual durometer insulating boot for electrosurgical forceps
US8764748B2 (en) 2008-02-06 2014-07-01 Covidien Lp End effector assembly for electrosurgical device and method for making the same
US8623276B2 (en) 2008-02-15 2014-01-07 Covidien Lp Method and system for sterilizing an electrosurgical instrument
US8469956B2 (en) 2008-07-21 2013-06-25 Covidien Lp Variable resistor jaw
US8257387B2 (en) 2008-08-15 2012-09-04 Tyco Healthcare Group Lp Method of transferring pressure in an articulating surgical instrument
US8162973B2 (en) * 2008-08-15 2012-04-24 Tyco Healthcare Group Lp Method of transferring pressure in an articulating surgical instrument
US9603652B2 (en) 2008-08-21 2017-03-28 Covidien Lp Electrosurgical instrument including a sensor
US8784417B2 (en) 2008-08-28 2014-07-22 Covidien Lp Tissue fusion jaw angle improvement
US8317787B2 (en) 2008-08-28 2012-11-27 Covidien Lp Tissue fusion jaw angle improvement
US8795274B2 (en) 2008-08-28 2014-08-05 Covidien Lp Tissue fusion jaw angle improvement
US8303582B2 (en) 2008-09-15 2012-11-06 Tyco Healthcare Group Lp Electrosurgical instrument having a coated electrode utilizing an atomic layer deposition technique
US9375254B2 (en) 2008-09-25 2016-06-28 Covidien Lp Seal and separate algorithm
US8968314B2 (en) 2008-09-25 2015-03-03 Covidien Lp Apparatus, system and method for performing an electrosurgical procedure
US8535312B2 (en) 2008-09-25 2013-09-17 Covidien Lp Apparatus, system and method for performing an electrosurgical procedure
US8142473B2 (en) 2008-10-03 2012-03-27 Tyco Healthcare Group Lp Method of transferring rotational motion in an articulating surgical instrument
US8469957B2 (en) 2008-10-07 2013-06-25 Covidien Lp Apparatus, system, and method for performing an electrosurgical procedure
US8636761B2 (en) 2008-10-09 2014-01-28 Covidien Lp Apparatus, system, and method for performing an endoscopic electrosurgical procedure
US8016827B2 (en) 2008-10-09 2011-09-13 Tyco Healthcare Group Lp Apparatus, system, and method for performing an electrosurgical procedure
US8486107B2 (en) 2008-10-20 2013-07-16 Covidien Lp Method of sealing tissue using radiofrequency energy
US8197479B2 (en) 2008-12-10 2012-06-12 Tyco Healthcare Group Lp Vessel sealer and divider
US8114122B2 (en) 2009-01-13 2012-02-14 Tyco Healthcare Group Lp Apparatus, system, and method for performing an electrosurgical procedure
US8187273B2 (en) 2009-05-07 2012-05-29 Tyco Healthcare Group Lp Apparatus, system, and method for performing an electrosurgical procedure
US8246618B2 (en) 2009-07-08 2012-08-21 Tyco Healthcare Group Lp Electrosurgical jaws with offset knife
US8133254B2 (en) 2009-09-18 2012-03-13 Tyco Healthcare Group Lp In vivo attachable and detachable end effector assembly and laparoscopic surgical instrument and methods therefor
US8112871B2 (en) 2009-09-28 2012-02-14 Tyco Healthcare Group Lp Method for manufacturing electrosurgical seal plates
USD670808S1 (en) 2010-10-01 2012-11-13 Tyco Healthcare Group Lp Open vessel sealing forceps
US9345534B2 (en) 2010-10-04 2016-05-24 Covidien Lp Vessel sealing instrument
US9655672B2 (en) 2010-10-04 2017-05-23 Covidien Lp Vessel sealing instrument
US9173703B1 (en) * 2010-12-07 2015-11-03 Utah Medical Products Inc. Non-linear electrosurgical electrode extender
US9113940B2 (en) 2011-01-14 2015-08-25 Covidien Lp Trigger lockout and kickback mechanism for surgical instruments
USD680220S1 (en) 2012-01-12 2013-04-16 Coviden IP Slider handle for laparoscopic device
US9265566B2 (en) 2012-10-16 2016-02-23 Covidien Lp Surgical instrument
CN105451670B (en) 2013-08-07 2018-09-04 柯惠有限合伙公司 Surgery forceps
USD788302S1 (en) 2013-10-01 2017-05-30 Covidien Lp Knife for endoscopic electrosurgical forceps
US10231777B2 (en) 2014-08-26 2019-03-19 Covidien Lp Methods of manufacturing jaw members of an end-effector assembly for a surgical instrument
US9987078B2 (en) 2015-07-22 2018-06-05 Covidien Lp Surgical forceps
US10987159B2 (en) 2015-08-26 2021-04-27 Covidien Lp Electrosurgical end effector assemblies and electrosurgical forceps configured to reduce thermal spread
US10213250B2 (en) 2015-11-05 2019-02-26 Covidien Lp Deployment and safety mechanisms for surgical instruments
US10856933B2 (en) 2016-08-02 2020-12-08 Covidien Lp Surgical instrument housing incorporating a channel and methods of manufacturing the same
US10918407B2 (en) 2016-11-08 2021-02-16 Covidien Lp Surgical instrument for grasping, treating, and/or dividing tissue
US11166759B2 (en) 2017-05-16 2021-11-09 Covidien Lp Surgical forceps
USD943099S1 (en) * 2019-08-28 2022-02-08 Olympus Corporation Bipolar cutting electrode

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3990456A (en) * 1975-04-22 1976-11-09 Iglesias Jose J Anti-arcing resectoscope loop
US5423813A (en) * 1993-03-18 1995-06-13 Coopersurgical Resectoscope and electrode assembly

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1963636A (en) * 1934-06-19 Endqscopic instrument and elec
US2090923A (en) * 1937-08-24 Electrodic endoscopic instrtjment
US1930214A (en) * 1931-03-23 1933-10-10 Wappler Frederick Charles Surgical electrode
US1971024A (en) * 1932-01-25 1934-08-21 Wappler Frederick Charles Instrument for electrosurgical resection
US2011169A (en) * 1932-04-13 1935-08-13 Wappler Frederick Charles Forcipated surgical electrode
US2004559A (en) * 1932-11-22 1935-06-11 Wappler Frederick Charles Method and instrument for electrosurgical treatment of tissue
US2002594A (en) * 1933-03-24 1935-05-28 Wappler Frederick Charles Instrument for electro-surgical treatment of tissue
US2224464A (en) * 1936-09-03 1940-12-10 Firm Georg Wolf G M B H Thoracoscope
US2487502A (en) * 1945-09-26 1949-11-08 American Cystoscope Makers Inc Instrument for electrosurgical resection
US2815757A (en) * 1956-01-18 1957-12-10 Elmer A Piar Medical electrode
US3149633A (en) * 1961-06-15 1964-09-22 Frank G Zingale Resectoscope
US3752159A (en) * 1971-05-03 1973-08-14 American Cystoscope Makers Inc Resectoscope cutting electrode
US3973568A (en) * 1972-01-21 1976-08-10 Iglesias Jose J Stabilized cutting loop for resectoscope with unimpaired vision of the operative field
US3856015A (en) * 1972-01-21 1974-12-24 J Iglesias Stabilized cutting loop for resectoscope
US3939839A (en) * 1974-06-26 1976-02-24 American Cystoscope Makers, Inc. Resectoscope and electrode therefor
US4030502A (en) * 1975-12-05 1977-06-21 Jose Juan Iglesias Anti-arcing resectoscope
DE2521719C2 (en) * 1975-05-15 1985-06-20 Delma, Elektro- Und Medizinische Apparatebaugesellschaft Mbh, 7200 Tuttlingen Electrosurgical device
DE2525982C3 (en) * 1975-06-11 1978-03-09 Richard Wolf Gmbh, 7134 Knittlingen Cutting electrode for resectoscopes
US4134406A (en) * 1976-10-19 1979-01-16 Iglesias Jose J Cutting loop for suction resectoscopes
US4149538A (en) * 1977-08-15 1979-04-17 American Hospital Supply Corporation Resectoscope electrode assembly with non-conductive bearing tube and method of making the same
GB2053691B (en) * 1979-07-24 1983-04-27 Wolf Gmbh Richard Endoscopes
DE3223361A1 (en) * 1982-06-23 1983-12-29 Olympus Winter & Ibe GmbH, 2000 Hamburg HIGH-FREQUENCY RESECTOSCOPE WITH INSULATION TIP
US4657018A (en) * 1983-08-19 1987-04-14 Hakky Said I Automatic/manual resectoscope
JPS60106603U (en) * 1983-12-26 1985-07-20 オリンパス光学工業株式会社 resect scope
DE3603758A1 (en) * 1985-02-09 1986-08-14 Olympus Optical Co., Ltd., Tokio/Tokyo RESECTOSCOPE DEVICE
DE3707403C2 (en) * 1986-03-11 1996-08-01 Olympus Optical Co Medical resection device
US5007907A (en) * 1987-10-07 1991-04-16 Olympus Optical Co., Ltd. Resectoscope apparatus
US4917082A (en) * 1988-06-02 1990-04-17 Circon Corporation Resectoscope electrode
US5088998A (en) * 1988-09-16 1992-02-18 Olympus Optical Co., Ltd. Resectoscope apparatus
DE3916161A1 (en) * 1989-05-18 1990-11-22 Wolf Gmbh Richard ELECTROSURGICAL INSTRUMENT
US5080660A (en) * 1990-05-11 1992-01-14 Applied Urology, Inc. Electrosurgical electrode
US5201741A (en) * 1990-07-24 1993-04-13 Andrew Surgical, Inc. Surgical snare with shape memory effect wire
DE4032601A1 (en) * 1990-10-15 1992-04-16 Winter & Ibe Olympus CUTTING ELECTRODE FOR MEDICAL RESECTOSCOPE
US5324288A (en) * 1991-04-30 1994-06-28 Utah Medical Products, Inc. Electrosurgical loop with a depth gauge
US5395312A (en) * 1991-10-18 1995-03-07 Desai; Ashvin Surgical tool
US5318564A (en) * 1992-05-01 1994-06-07 Hemostatic Surgery Corporation Bipolar surgical snare and methods of use
US5376087A (en) * 1992-08-21 1994-12-27 Habley Medical Technology Corporation Multiple function cauterizing instrument
US5342357A (en) * 1992-11-13 1994-08-30 American Cardiac Ablation Co., Inc. Fluid cooled electrosurgical cauterization system
US5354296A (en) * 1993-03-24 1994-10-11 Symbiosis Corporation Electrocautery probe with variable morphology electrode
US5395368A (en) * 1993-05-20 1995-03-07 Ellman; Alan G. Multiple-wire electrosurgical electrodes
US5374188A (en) * 1993-07-19 1994-12-20 Bei Medical Systems, Inc. Electro-surgical instrument and method for use with dental implantations
US5569244A (en) * 1995-04-20 1996-10-29 Symbiosis Corporation Loop electrodes for electrocautery probes for use with a resectoscope
US5766168A (en) * 1996-01-11 1998-06-16 Northgate Technologies, Inc. Perforated resectoscope electrode assembly
US5749870A (en) * 1996-08-23 1998-05-12 Nebl, Inc. Electrode for coagulation and resection

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3990456A (en) * 1975-04-22 1976-11-09 Iglesias Jose J Anti-arcing resectoscope loop
US5423813A (en) * 1993-03-18 1995-06-13 Coopersurgical Resectoscope and electrode assembly

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006039696A1 (en) * 2006-08-21 2008-02-28 Hamou, Jacques, Dr. Apparatus for resection and / or ablation of organic tissue by means of high frequency current and resectoscope
US8267933B2 (en) 2006-08-21 2012-09-18 Jacques Hamou Device for resection and/or ablation of organic tissue by means of high-frequency current and resectoscope

Also Published As

Publication number Publication date
US5957923A (en) 1999-09-28
AU4608397A (en) 1998-05-05

Similar Documents

Publication Publication Date Title
US5957923A (en) Loop electrodes for electrocautery probes for use with a resectoscope
EP0955921B1 (en) Loop electrodes for electrocautery probes for use with a resectoscope
US5192280A (en) Pivoting multiple loop bipolar cutting device
US5938661A (en) Single arm electrocautery probes for use with a resectoscope
US5158561A (en) Monopolar polypectomy snare with coagulation electrode
US6773432B1 (en) Electrosurgical snare
EP0527848B1 (en) Electrosurgical electrode
US6371956B1 (en) Monopolar electrosurgical end effectors
US6692445B2 (en) Biopsy sampler
US6852111B1 (en) Laparoscopic electrotome
US5626577A (en) Manually extendable electrocautery surgical apparatus
KR19990077133A (en) Underwater Electrosurgical Surgical Instruments
US20050267469A1 (en) Bipolar medical instrument and electrosurgical system comprising such an instrument
EP1011497A1 (en) Serpentine ablation/coagulation electrode
JP2001504000A (en) Coagulation and resection electrodes
US5902300A (en) Electrodes having upper and lower operating surfaces for electrocautery probes for use with a resectoscope
US6447510B1 (en) Microlarynx electrosurgical probe for treating tissue
US20050222567A1 (en) High-frequency treating instrument for endoscope
US20070282336A1 (en) Bipolar high-frequency treatment tool for endoscope
US20070179498A1 (en) Electrosurgery electrode
US20070049928A1 (en) Nickel titanium alloy electrosurgery instrument
US5908419A (en) Resectoscope roller electrode having high heat zone insert
EP1072230A1 (en) A bipolar ablation/coagulation electrode
WO1998033445A1 (en) Single arm electrocautery probes and probes with upper and lower operating surfaces for use with a resectoscope
WO1998033445A9 (en) Single arm electrocautery probes and probes with upper and lower operating surfaces for use with a resectoscope

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA