WO1998000681A1 - Straddle inspection system - Google Patents

Straddle inspection system Download PDF

Info

Publication number
WO1998000681A1
WO1998000681A1 PCT/US1997/010357 US9710357W WO9800681A1 WO 1998000681 A1 WO1998000681 A1 WO 1998000681A1 US 9710357 W US9710357 W US 9710357W WO 9800681 A1 WO9800681 A1 WO 9800681A1
Authority
WO
WIPO (PCT)
Prior art keywords
detector
frame
container
radiographic
detectors
Prior art date
Application number
PCT/US1997/010357
Other languages
French (fr)
Inventor
Robert A. Armistead
Original Assignee
Advanced Research And Applications Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Research And Applications Corporation filed Critical Advanced Research And Applications Corporation
Priority to EP97928975A priority Critical patent/EP0991916B1/en
Priority to AU33114/97A priority patent/AU3311497A/en
Priority to DE69734118T priority patent/DE69734118T2/en
Priority to JP50416198A priority patent/JP3739097B2/en
Publication of WO1998000681A1 publication Critical patent/WO1998000681A1/en

Links

Classifications

    • G01V5/223
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C19/00Cranes comprising trolleys or crabs running on fixed or movable bridges or gantries
    • B66C19/007Cranes comprising trolleys or crabs running on fixed or movable bridges or gantries for containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C19/00Cranes comprising trolleys or crabs running on fixed or movable bridges or gantries
    • B66C19/02Cranes comprising trolleys or crabs running on fixed or movable bridges or gantries collapsible
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01V5/234
    • G01V5/281

Definitions

  • the invention relates to X-ray inspection systems for large objects such as cargo containers, and particularly for international shipping containers.
  • This invention addresses the growing problem of stolen cars being shipped to other countries for resale.
  • the National Insurance Crime Bureau estimates that of the 1.5 million vehicles stolen annually in the USA, 200,000 are shipped overseas. This costs insurance companies and consumers $1 billion to $4 billion annually.
  • a principal method for exporting these stolen vehicles is to conceal them within the large, international, ocean-going shipping containers which are up to 44-ft long. Since one container can contain four automobiles and some ships can hold approximately 4 , 000 containers, the potential for loss is large and the problem of detection is considerable.
  • Containers are loaded and closed at their departure point. The physical inspection of a high percentage of containers by U.S. Customs personnel is not a practical solution. It has been estimated that 15 person hours are required to unload and inspect a container. In addition to the direct cost of physical inspection, the delivery of the container is correspondingly delayed and such inspections break the shipper's trust and invalidates the carrier's insurance, opening up the possibility of claims for loss and damage.
  • X-ray systems by Europscan of France have been installed at either end of the Eurotunnel (Channel Tunnel) to detect explosives in vehicles.
  • Two X-ray systems (one Heimann; one British Aerospace) have been installed at the Hong Kong-China border for verifying the contents of trucks and truck-borne shipping containers.
  • Large X-ray systems were also installed at the Port of LaHavre, France (Europscan) and the Port of Hamburg, Germany (Heimann) .
  • U.S. Pat. No. 4,366,382 to Kotowski discloses a fixed-site baggage inspection system that uses a conveyor belt to pass baggage between an X-ray beam and a line array of detectors.
  • U.S. Pat. No. 4,430,568 to Yoshida presents an X-ray system for the inspection of packages, including large shipping containers.
  • the system is installed in a fixed site and employs a conveyor to move the package or container between the X-ray source and detector array.
  • U.S. Pat. No. 4,599,740 to Cable discloses another variation of the fixed-site inspection approach, particularly addressing the inspection of large items such as international shipping containers.
  • the system of this patent again is in a fixed site and uses a conveyor to move the container between the X-ray source and the detectors, the invention relates to the use of a "folded" sensor screen or device that requires less height than previous straight detector arrays.
  • U.S. Pat. No. 5,237,598 to Albert discloses a mobile system for large objects such as aircraft, boat hulls or lengthy pipelines.
  • This invention instead of using a small X-ray spot and a large detector array for imaging large objects, employs a large area source and a single X-ray detector, or plurality of individual detectors spaced over the objects, which has a small X-ray sensitive area.
  • Using this "reverse geometry" approach an image is obtained of an area of the object approximately equal to the area of the source.
  • By moving the source to the location of another detector, or by moving the object relative to the source other areas of the object can be inspected in sequence.
  • the principal advantage cited for this approach is that precise alignment is not required between the source and the detector, therefore, the source and detector do not have to be secured with respect to one another.
  • the "car wash” inspection facility has a number of problems that will limit its use, especially at ports which are typically spread out over many areas, congested, and with a large number of separate terminals.
  • the prototype X-ray inspection facility evaluated at the Port of Tacoma had to be located a few miles from the docks, was in a 6-acre site and employed an X-ray examination building that was 242 feet long.
  • the inspection system had a reported throughput capability of only four to six vehicles or containers per hour.
  • cost and logistics issues prevent the use of fixed-site X-ray inspection facilities at most, if not all, ports.
  • the patent to Albert deals with a mobile system in which the large area X-ray source required is limited to low energies. Thus, this system is primarily useful for thin walls of aircraft or ship hulls, not for highly attenuating vehicles or cargo containers. Summary of Invention
  • An object of the present invention is to provide a radioscopic inspection system for the inspection of large shipping containers and, possibly, vehicles and rail cars principally to detect such contraband as stolen cars and drugs, but possibly also for verifying that manifests are accurate.
  • the present invention provides a radiographic inspection system that is mobile; is self scanning in that it moves the source and detectors past the object being inspected; and, images the contents of a container or vehicle without touching or moving it. Consequently, it is not encumbered by the problems and limitations of the fixed-site systems. It does not require any dedicated space and does not require movement of the containers or vehicles to a fixed inspection site. The present invention does not require any transport apparatus to move the object through the X-ray beam. Moreover, for rows of containers, the inspection rate is projected to be ten times that of the car wash type systems. Furthermore, for port facilities, the self- contained system can move under its own power to various port areas implying that one (or a few) systems can satisfy the inspection needs of a large port. Also, the system can use any of a number of commercial "point" X- ray sources selected on the basis of the energy and intensity required for the application.
  • the present invention features a self- propelled, wheeled vehicle "straddling” (passing over the object with one set of wheels on each side) the object to be inspected (international container, vehicle, rail car or other large object) .
  • a penetrating radiation source such as an X-ray source, is mounted on one side of the vehicle and a linear detector array on the other side so that the X-ray beam passes through the object being inspected as the vehicle straddles it and moves past it.
  • the electrical signals generated in the detectors due to the impinging X rays are transmitted to an "imaging computer" , associated with the detector array, where the digital signals are processed and displayed on a workstation or some other display screen or recorder.
  • the straddling of a container combined with vehicle motion, sweeps a colli ated X-ray beam along the length of the container.
  • the vertical column of image data produced at each increment of time is summed over time to produce a complete radiographic image.
  • Images can be evaluated in real-time by an operator/analyst; can be printed or photographed to provide hard-copy evidence; or can be recorded for data transmission or later evaluation, and for archival purposes.
  • a telemetry system could also be used for transmission of the inspection data to a control center.
  • Fig. 1 is a perspective view of a straddle inspection vehicle astride a shipping container in accord with the present invention.
  • Fig. 2 is a perspective view of a straddle inspection vehicle, with extended legs, astride two shipping containers, in accord with the present invention.
  • Fig. 3 is a perspective view of a straddle crane mounting an inspection system in accord with the present invention.
  • Fig. 4 is a side plan view of radiographic inspection of a container in accord with the present invention.
  • the straddle carrier vehicle 11 serves as the support structure for an X-ray source 13; a detector array, not seen on the opposite side of container 15; the associated computer and image display system 17; shielding platform 19 for supporting and protecting the operator/analyst and for general operational safety; the operator/analyst room 21; and for associated power supplies, air conditioning equipment, power generating equipment, and radiation sensors, all contained in housing 23.
  • the straddle carrier vehicle 11 has an engine under shielding platform 19, not seen, to enable movement under its own power to other locations within an inspection area or to other inspection areas.
  • the vehicle's movement also provides the relative motion between the source 13 and detectors (held fixed with respect to each other) on the one hand and the container 15 or vehicle being inspected on the other hand, enabling an image to be formed of the object being inspected as the straddle vehicle passes over the object, thereby continuously illuminating the object by a beam of X rays which is collimated for sharpness.
  • the straddle carrier vehicle 11 may be of the type currently used at seaports to move ocean-going shipping containers. Manufacturers of such straddle carriers include Shuttlelift, Noell and others. The main difference between the straddle carrier vehicle 11 of this invention and the commercial units of the prior art is that there will not be a container "spreader" or
  • a radiation source housing 13 and a detector mounting housing are disposed across opposed legs 29.
  • Platform 19 with supporting shielding, the operator/analyst cab 21, and the previously mentioned ancillary equipment are added to the top of the vehicle.
  • the straddle carrier vehicle is seen to have four wheels 25; a heavy-duty, rigid structural steel, inverted U-shaped frame 27; travel warning alarms; an industrial engine, either gasoline or diesel; and all controls required for operation.
  • the inverted U-shaped frame 27 may have telescoping legs 29 and cross beams 31, as in Fig. 2. If employed, the telescoping legs 29 extend so that the straddle carrier is able to straddle two stacked containers with radiation source 13 sufficiently high to direct a beam to traverse the space through a container to detectors at the other side.
  • the U-shaped frame 27 is U-shaped both in the longitudinal direction as well as in the crosswise direction.
  • the cross beam 31 and similar peripheral beams supporting radiation shielding platform 19 should be braced to carry additional shielding where intense sources are used.
  • Such intense sources may be linear accelerators producing electron beams which bombard a target, usually a metal film, emitting X rays. More than one source may be used. In particular, for some vehicles/containers a plurality of low-energy tube-type X-ray sources, or isotope sources which emit gamma-rays produce sufficient radiation to be measured at a plurality of detectors on the opposite side of the space between the legs.
  • the choice of source type and its intensity and energy depends upon the sensitivity of the detectors, the radiographic density of the cargo in the space between the source and detectors; radiation safety considerations; and operational requirements, such as the inspection speed.
  • An alternative control system may be employed, particularly if the radiation safety of the operator/analyst or the weight of the shielding, etc. become issues.
  • a remote operational feature is presently available on commercial straddle carriers permitting full operation of the vehicle from up to 200 yards away, with radio or cable transmission of control signals. This may eliminate the cab 21, display, and some of the controls from the straddle carrier, reducing the shielding and power consumption. In this case, the image data could be recorded digitally or transmitted for analysis at a different location. In scanning a container, a new inspection method is used. A straddle carrier moves relative to a fixed container making one or more passes back and forth over the length of the container.
  • the source and detector array are moved along the length of the container, continually recording the radiographic transmission image as the collimated radiation beam is swept along the container.
  • the source and detector position are fixed.
  • the height of the source and detector may need to be adjusted in elevation so that in one pass, a first elevation is scanned and then on another pass, a different elevation is scanned. In many instances, a single pass will be sufficient, but to verify data from a single pass, a second pass may be used.
  • straddle vehicle An alternative to the straddle vehicle would be any other type of movable conveyance that provides the requisite support for the source, detector array and ancillary apparatus; enables the source and detector to be held in alignment; and enables the source and detector to be passed at a uniform speed simultaneously on opposite sides of the container or vehicle being inspected.
  • a straddle crane 51 shown in Fig. 3, uses a robotic gripper 55 and a connecting cable system 53, supported from rail mounted carriage 52, to maintain the spaced apart alignment of the source 57 and detectors, not seen behind container 54. Cable system 53 is raised and lowered by motors 56 in response to commands from the operator/analyst room 61.
  • Associated power supplies, air conditioning equipment and radiation sensors are mounted in housing 63.
  • Wheel and steering power engines or motors are mounted in housings 65.
  • straddle cranes or "straddle lifts”.
  • a way to enhance radiographic images made by a moving source and detector has been found.
  • the motion of the straddle vehicle as it passes over and alongside the object being inspected is made steady and with constant velocity. Any irregularities in the motion of the straddle vehicle will result in distortions in the image, and so in the first embodiment motion is made as regular, even and constant as feasible using known control systems.
  • one or more motion encoders can be affixed to one wheel of the straddle vehicle.
  • an encoder measures the rotational velocity of the wheel and transmits a corresponding electrical signal to the imaging system's computer.
  • Wheel encoders are sometimes known as shaft angle encoders. If there is a change in speed, the computer automatically includes a corresponding compensation in the timing of the detector signals for that location, thereby eliminating nonuniform-motion-induced image distortions.
  • a linear strip bearing evenly spaced bars can be attached to the side of each container using magnetic attachment, tape or other suitable means.
  • the strip can be "read" by one of several commercially available detectors.
  • the linear strip and detector form an optical encoder producing a signal from the reflected or scattered light that can be used to correct the image data for motion-induced irregu- larities.
  • Vertical as well as horizontal motion can be measured.
  • the preferred source is a linear accelerator (linac) operating with an accelerating potential in the millions of volts (MV) range.
  • linacs are commercially available with accelerating potentials over the range from 2 MV to 15 MV.
  • the higher the energy of the source the more X rays that are produced.
  • the mass attenuation coefficient of materials decreases, so that the X rays can penetrate a greater thickness of the material .
  • Linac sources produce high-energy bremmstrahlung X rays in a series of low- duty-cycle pulses.
  • This signal format conveniently lends itself to the use of electronic techniques which correct for drift in the detector dark current and for amplifier offsets and, with the use of a suitable reference detector, for variations in source output. These techniques improve the noise and linearity and, thus, the quality of the radiographic images.
  • Alternatives to a linac would be a radioisotopic source or an X-ray tube.
  • the intensity of the radiation from isotopes is several orders of magnitude lower than that from linacs and that from tubes is of lower intensity and less penetrating, in both cases generally limiting image quality and inspection speed.
  • the preferred detector arrangement consists of a linear array of solid-state detectors of the crystal- diode type.
  • a typical arrangement uses cadmium tungstate scintillating crystals to absorb the X rays transmitted through the object being inspected and to convert the absorbed X rays into photons of visible light.
  • crystals such as bismuth germinate and sodium iodide.
  • the crystals can be directly coupled to a suitable detector, such as a photodiode or photomulti- plier; however, it is preferred to use optical light pipes to carry the light to the detectors along a path at a sharp angle to the X-ray beam so that the detectors can be shielded from the direct X rays and from most of the scattered X rays.
  • the preferred detectors are a linear arrangement of photodiodes, which though unity-gain devices, provide advantages over photomultiplier detectors in terms of operating range, linearity and detector-to-detector matching.
  • An area detector is an alternative to linear array detectors. Such an area detector could be a scintillating strip, such as cesium iodide or other, viewed by a suitable camera or optically coupled to a charge coupled device (CCD) .
  • CCD charge coupled device
  • light pipes map the light from the linear scintillator onto discrete areas of the area detector.
  • the signals from the area detector are remapped back to a linear column of data and stored in memory.
  • a two-dimensional image is formed by the concatenation of individual columns over the time necessary for the straddle vehicle to pass over the container or other object being inspected.
  • the electronics used to read out the detector signals typically feature auto-zeroed, double-correlated sampling to achieve ultra-stable zero drift and low-offset-noise data acquisition.
  • Automatic gain ranging may be used to accommodate the wide attenuation ranges that can be encountered with large containers and vehicles.
  • an X-ray source 71 is used to produce X rays 73 which are collimated to a narrow beam with essentially parallel sides.
  • a collimator 74 is designed to produce either a fan of X rays or a cone beam or a series of "pencil beams" .
  • Collimation serves to limit the X rays that are scattered from the object to be inspected 77 into the detectors 75, which reduces the contrast in the images. Collimation also reduces the shielding required for radiation protection.
  • the height of the detectors, which determines how much of the containers are inspected, is selected on the basis of the objective of the inspection.
  • the characteristic signatures identifying the presence of the car could be the large metal components such as the engine block, transmission and axles.
  • the inspection height at the center of the container may be limited to four or five feet from the floor level.
  • Other areas of interest may be the detection of hidden compartments under the floor, in the ceiling and behind false walls at the end of the container.
  • the detector array is approximately equal to the container height, in this case, eight feet. This configuration enables coverage from just above ground level to six feet (6 ft.) at the container center as well as examining areas of the back and side walls.
  • a detector array can, in addition, be employed on the source side of the straddle vehicle. These detectors would be aligned to detect a portion of the Compton scattered, i.e. "backscattered” , X rays.
  • another detector array can also be employed on the detector side of the vehicle, but out of the transmitted X-ray beam, to detect the forward scattered X rays.
  • Such scattered X rays have proven efficacious in detecting the presence of low-atomic-number contraband such as drugs and explosives hidden within the walls of containers, trucks, etc.
  • a portion of the container or large vehicle would not be imaged.
  • the full inspection of containers and cars may be desired for other applications, such as the verifications of manifests.
  • alternative configurations could be used.
  • the availability of straddle carriers with telescoping legs allows the source and detector array to be mounted so that they could be moved to different elevations.
  • the source could be mounted near the midplane on a tilt apparatus which would direct the X rays upwards or downwards and a taller detector array, or one that could be moved to different heights, could be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

A radiographic inspection apparatus (11) for large containers, vehicles and structures having a movable frame (27) which can straddle the container (15) or object being inspected. The straddling frame has opposed parallel sides which carry a source (71) of penetrating radiation and a detector array (75). The source or sources and detectors are moved along the length of a container while radiographic image data is being sequentially recorded. By summing or collecting the sequence of data over the length of a container as the straddling frame moves along, a full two-dimensional radiographic image of the container may be obtained. Radiographic images may be enhanced either by providing uniform motion for the straddling frame or by measuring non-uniform motion and compensating corresponding regions of the radiographic image.

Description

Description
Straddle Inspection System
Technical Field
The invention relates to X-ray inspection systems for large objects such as cargo containers, and particularly for international shipping containers.
Background of the Invention
There is an increasing interest in being able to noninvasively inspect the contents of such large objects as automobiles, trucks, rail cars and the international shipping containers used at seaports and air- ports. The objectives of such inspections are varied and include the detection of contraband at ports of entry; the detection of explosives at entrances to buildings or within baggage and containers; and, for commercial reasons, such as verifying the accuracy of customs decla- rations and shipping manifests.
This invention, in particular, addresses the growing problem of stolen cars being shipped to other countries for resale. The National Insurance Crime Bureau estimates that of the 1.5 million vehicles stolen annually in the USA, 200,000 are shipped overseas. This costs insurance companies and consumers $1 billion to $4 billion annually. A principal method for exporting these stolen vehicles is to conceal them within the large, international, ocean-going shipping containers which are up to 44-ft long. Since one container can contain four automobiles and some ships can hold approximately 4 , 000 containers, the potential for loss is large and the problem of detection is considerable. Containers are loaded and closed at their departure point. The physical inspection of a high percentage of containers by U.S. Customs personnel is not a practical solution. It has been estimated that 15 person hours are required to unload and inspect a container. In addition to the direct cost of physical inspection, the delivery of the container is correspondingly delayed and such inspections break the shipper's trust and invalidates the carrier's insurance, opening up the possibility of claims for loss and damage.
An example is provided by the Port of Miami. Nearly 10,000 cargo vessels dock at Miami every year, unloading 35 million tons of freight. Tonnage at the port is growing at an annual rate of 10 percent. Currently, U.S. Customs can physically inspect less than 3 percent of the 200,000 ocean-going containers that enter Miami every year. Moreover, the Customs inspectors emphasize incoming cargo and a somewhat smaller fraction of exiting cargo is inspected. The Miami airport handles most of the U.S. air traffic for Central and South
America with very large numbers of air cargo containers. While these containers are too small to conceal cars, other contraband is sometimes present, particularly upon import to the U.S. Noninvasive inspections using X-ray beams to image the contents of containers as well as vehicles and rail cars are considered to be one of the most practical approaches to contraband detection and manifest verification. Many nations are implementing some form of X-ray imaging. In the U.S., a prototype system by Analytical Systems Engineering Corp. for inspecting containers was evaluated at the Port of Tacoma. U.S. Customs is employing X-ray inspection systems manufactured by American Science and Engineering at the U.S.- Mexican border to search for contraband in cars and trucks. In Europe, X-ray systems by Europscan of France have been installed at either end of the Eurotunnel (Channel Tunnel) to detect explosives in vehicles. Two X-ray systems (one Heimann; one British Aerospace) have been installed at the Hong Kong-China border for verifying the contents of trucks and truck-borne shipping containers. Large X-ray systems were also installed at the Port of LaHavre, France (Europscan) and the Port of Hamburg, Germany (Heimann) .
There have been several patents issued that cover variations of the fixed-site inspection approach. For example, U.S. Pat. No. 4,366,382 to Kotowski discloses a fixed-site baggage inspection system that uses a conveyor belt to pass baggage between an X-ray beam and a line array of detectors.
Likewise, U.S. Pat. No. 4,430,568 to Yoshida presents an X-ray system for the inspection of packages, including large shipping containers. Here again, the system is installed in a fixed site and employs a conveyor to move the package or container between the X-ray source and detector array. U.S. Pat. No. 4,599,740 to Cable discloses another variation of the fixed-site inspection approach, particularly addressing the inspection of large items such as international shipping containers. Although the system of this patent again is in a fixed site and uses a conveyor to move the container between the X-ray source and the detectors, the invention relates to the use of a "folded" sensor screen or device that requires less height than previous straight detector arrays.
U.S. Pat. No. 5,237,598 to Albert discloses a mobile system for large objects such as aircraft, boat hulls or lengthy pipelines. This invention instead of using a small X-ray spot and a large detector array for imaging large objects, employs a large area source and a single X-ray detector, or plurality of individual detectors spaced over the objects, which has a small X-ray sensitive area. Using this "reverse geometry" approach, an image is obtained of an area of the object approximately equal to the area of the source. By moving the source to the location of another detector, or by moving the object relative to the source, other areas of the object can be inspected in sequence. The principal advantage cited for this approach is that precise alignment is not required between the source and the detector, therefore, the source and detector do not have to be secured with respect to one another.
Except for the Albert patent, these systems have an objective related to that of the present invention — the noninvasive X-ray inspection of large objects, such as vehicles and international shipping containers. However, they all are different from the present invention in several fundamental ways. All of the systems installed to date are of the "car wash" type, i.e., they are permanently installed in large shielded structures, thus requiring that the object to be inspected (container, truck, car, etc.) be brought to the facility. Once at the facility, some form of conveyance is employed to transport the container or vehicle through the stationary X-ray source and detectors. Then, the conveyance must be returned to the starting point to pick up another container or car. This is a time consuming operation. The "car wash" inspection facility has a number of problems that will limit its use, especially at ports which are typically spread out over many areas, congested, and with a large number of separate terminals. As an example, the prototype X-ray inspection facility evaluated at the Port of Tacoma had to be located a few miles from the docks, was in a 6-acre site and employed an X-ray examination building that was 242 feet long. Furthermore, the inspection system had a reported throughput capability of only four to six vehicles or containers per hour. Thus, it is obvious that cost and logistics issues prevent the use of fixed-site X-ray inspection facilities at most, if not all, ports. The patent to Albert, on the other hand, deals with a mobile system in which the large area X-ray source required is limited to low energies. Thus, this system is primarily useful for thin walls of aircraft or ship hulls, not for highly attenuating vehicles or cargo containers. Summary of Invention
An object of the present invention is to provide a radioscopic inspection system for the inspection of large shipping containers and, possibly, vehicles and rail cars principally to detect such contraband as stolen cars and drugs, but possibly also for verifying that manifests are accurate.
The present invention provides a radiographic inspection system that is mobile; is self scanning in that it moves the source and detectors past the object being inspected; and, images the contents of a container or vehicle without touching or moving it. Consequently, it is not encumbered by the problems and limitations of the fixed-site systems. It does not require any dedicated space and does not require movement of the containers or vehicles to a fixed inspection site. The present invention does not require any transport apparatus to move the object through the X-ray beam. Moreover, for rows of containers, the inspection rate is projected to be ten times that of the car wash type systems. Furthermore, for port facilities, the self- contained system can move under its own power to various port areas implying that one (or a few) systems can satisfy the inspection needs of a large port. Also, the system can use any of a number of commercial "point" X- ray sources selected on the basis of the energy and intensity required for the application.
The present invention features a self- propelled, wheeled vehicle "straddling" (passing over the object with one set of wheels on each side) the object to be inspected (international container, vehicle, rail car or other large object) . A penetrating radiation source, such as an X-ray source, is mounted on one side of the vehicle and a linear detector array on the other side so that the X-ray beam passes through the object being inspected as the vehicle straddles it and moves past it. The electrical signals generated in the detectors due to the impinging X rays are transmitted to an "imaging computer" , associated with the detector array, where the digital signals are processed and displayed on a workstation or some other display screen or recorder. The straddling of a container, combined with vehicle motion, sweeps a colli ated X-ray beam along the length of the container. In this way the vertical column of image data produced at each increment of time is summed over time to produce a complete radiographic image. Images can be evaluated in real-time by an operator/analyst; can be printed or photographed to provide hard-copy evidence; or can be recorded for data transmission or later evaluation, and for archival purposes. A telemetry system could also be used for transmission of the inspection data to a control center.
Brief Description of the Drawings
Fig. 1 is a perspective view of a straddle inspection vehicle astride a shipping container in accord with the present invention. Fig. 2 is a perspective view of a straddle inspection vehicle, with extended legs, astride two shipping containers, in accord with the present invention.
Fig. 3 is a perspective view of a straddle crane mounting an inspection system in accord with the present invention.
Fig. 4 is a side plan view of radiographic inspection of a container in accord with the present invention.
Best Mode for Carrying Out the Invention
With reference to Figs. 1 and 2, the straddle carrier vehicle 11 serves as the support structure for an X-ray source 13; a detector array, not seen on the opposite side of container 15; the associated computer and image display system 17; shielding platform 19 for supporting and protecting the operator/analyst and for general operational safety; the operator/analyst room 21; and for associated power supplies, air conditioning equipment, power generating equipment, and radiation sensors, all contained in housing 23. The straddle carrier vehicle 11 has an engine under shielding platform 19, not seen, to enable movement under its own power to other locations within an inspection area or to other inspection areas. The vehicle's movement also provides the relative motion between the source 13 and detectors (held fixed with respect to each other) on the one hand and the container 15 or vehicle being inspected on the other hand, enabling an image to be formed of the object being inspected as the straddle vehicle passes over the object, thereby continuously illuminating the object by a beam of X rays which is collimated for sharpness.
The straddle carrier vehicle 11 may be of the type currently used at seaports to move ocean-going shipping containers. Manufacturers of such straddle carriers include Shuttlelift, Noell and others. The main difference between the straddle carrier vehicle 11 of this invention and the commercial units of the prior art is that there will not be a container "spreader" or
"hoist" in the present invention. Instead, a radiation source housing 13 and a detector mounting housing are disposed across opposed legs 29. Platform 19 with supporting shielding, the operator/analyst cab 21, and the previously mentioned ancillary equipment are added to the top of the vehicle.
The straddle carrier vehicle is seen to have four wheels 25; a heavy-duty, rigid structural steel, inverted U-shaped frame 27; travel warning alarms; an industrial engine, either gasoline or diesel; and all controls required for operation. The inverted U-shaped frame 27 may have telescoping legs 29 and cross beams 31, as in Fig. 2. If employed, the telescoping legs 29 extend so that the straddle carrier is able to straddle two stacked containers with radiation source 13 sufficiently high to direct a beam to traverse the space through a container to detectors at the other side. The U-shaped frame 27 is U-shaped both in the longitudinal direction as well as in the crosswise direction. The cross beam 31 and similar peripheral beams supporting radiation shielding platform 19 should be braced to carry additional shielding where intense sources are used. Such intense sources may be linear accelerators producing electron beams which bombard a target, usually a metal film, emitting X rays. More than one source may be used. In particular, for some vehicles/containers a plurality of low-energy tube-type X-ray sources, or isotope sources which emit gamma-rays produce sufficient radiation to be measured at a plurality of detectors on the opposite side of the space between the legs. The choice of source type and its intensity and energy depends upon the sensitivity of the detectors, the radiographic density of the cargo in the space between the source and detectors; radiation safety considerations; and operational requirements, such as the inspection speed.
An alternative control system may be employed, particularly if the radiation safety of the operator/analyst or the weight of the shielding, etc. become issues. A remote operational feature is presently available on commercial straddle carriers permitting full operation of the vehicle from up to 200 yards away, with radio or cable transmission of control signals. This may eliminate the cab 21, display, and some of the controls from the straddle carrier, reducing the shielding and power consumption. In this case, the image data could be recorded digitally or transmitted for analysis at a different location. In scanning a container, a new inspection method is used. A straddle carrier moves relative to a fixed container making one or more passes back and forth over the length of the container. The source and detector array are moved along the length of the container, continually recording the radiographic transmission image as the collimated radiation beam is swept along the container. For the detection of cars in a container, the source and detector position are fixed. However, for other inspection objectives, the height of the source and detector may need to be adjusted in elevation so that in one pass, a first elevation is scanned and then on another pass, a different elevation is scanned. In many instances, a single pass will be sufficient, but to verify data from a single pass, a second pass may be used.
An alternative to the straddle vehicle would be any other type of movable conveyance that provides the requisite support for the source, detector array and ancillary apparatus; enables the source and detector to be held in alignment; and enables the source and detector to be passed at a uniform speed simultaneously on opposite sides of the container or vehicle being inspected. In particular, a straddle crane 51, shown in Fig. 3, uses a robotic gripper 55 and a connecting cable system 53, supported from rail mounted carriage 52, to maintain the spaced apart alignment of the source 57 and detectors, not seen behind container 54. Cable system 53 is raised and lowered by motors 56 in response to commands from the operator/analyst room 61. Associated power supplies, air conditioning equipment and radiation sensors are mounted in housing 63. Wheel and steering power engines or motors are mounted in housings 65. There are cranes of this general type in common use at ports designated as "straddle cranes" or "straddle lifts". In some instances, it may be desirable to operate the straddle vehicle or crane along a fixed route using wheel guides or mounted on rails. A way to enhance radiographic images made by a moving source and detector has been found. In one embodiment, the motion of the straddle vehicle as it passes over and alongside the object being inspected is made steady and with constant velocity. Any irregularities in the motion of the straddle vehicle will result in distortions in the image, and so in the first embodiment motion is made as regular, even and constant as feasible using known control systems. For the detection of large contraband, such as stolen cars hidden within international shipping containers, only coarse spatial resolution in the image is required, i.e. approximately one inch. In such cases, it may be sufficient to control the motion procedurally, i.e., by bringing the straddle vehicle to approximately a constant speed with a speed controller, i.e. "cruise control", prior to passing over the container or rail car being inspected and by maintaining that speed as accurately as possible using the straddle vehicle's throttle.
In a second embodiment, for applications such as the detection of drugs, hidden compartments, false walls, and the verification of manifests, higher resolution will be required. For this purpose, irregularities of motion are measured and the radiographic image is correspondingly corrected. To accomplish this, one or more motion encoders can be affixed to one wheel of the straddle vehicle. For example, an encoder measures the rotational velocity of the wheel and transmits a corresponding electrical signal to the imaging system's computer. Wheel encoders are sometimes known as shaft angle encoders. If there is a change in speed, the computer automatically includes a corresponding compensation in the timing of the detector signals for that location, thereby eliminating nonuniform-motion-induced image distortions. As an alternative to the wheel encoder, a linear strip bearing evenly spaced bars can be attached to the side of each container using magnetic attachment, tape or other suitable means. During the imaging procedure, the strip can be "read" by one of several commercially available detectors. The linear strip and detector form an optical encoder producing a signal from the reflected or scattered light that can be used to correct the image data for motion-induced irregu- larities. Vertical as well as horizontal motion can be measured. In addition to linear translation encoding, for some applications it may be desirable to encode other system motions, such as the pitch and yaw of the vehicle. Both embodiments are defined as a radiographic image enhancement means.
Due to the large size of the containers or cars and the possibility of cargo that highly attenuates the X-ray beam, the preferred source is a linear accelerator (linac) operating with an accelerating potential in the millions of volts (MV) range. Such linacs are commercially available with accelerating potentials over the range from 2 MV to 15 MV. The higher the energy of the source, the more X rays that are produced. Also, at higher energies, the mass attenuation coefficient of materials decreases, so that the X rays can penetrate a greater thickness of the material . Linac sources produce high-energy bremmstrahlung X rays in a series of low- duty-cycle pulses. This signal format conveniently lends itself to the use of electronic techniques which correct for drift in the detector dark current and for amplifier offsets and, with the use of a suitable reference detector, for variations in source output. These techniques improve the noise and linearity and, thus, the quality of the radiographic images. Alternatives to a linac, would be a radioisotopic source or an X-ray tube. However, the intensity of the radiation from isotopes is several orders of magnitude lower than that from linacs and that from tubes is of lower intensity and less penetrating, in both cases generally limiting image quality and inspection speed.
The preferred detector arrangement consists of a linear array of solid-state detectors of the crystal- diode type. A typical arrangement uses cadmium tungstate scintillating crystals to absorb the X rays transmitted through the object being inspected and to convert the absorbed X rays into photons of visible light. There are alternative crystals such as bismuth germinate and sodium iodide. The crystals can be directly coupled to a suitable detector, such as a photodiode or photomulti- plier; however, it is preferred to use optical light pipes to carry the light to the detectors along a path at a sharp angle to the X-ray beam so that the detectors can be shielded from the direct X rays and from most of the scattered X rays. The preferred detectors are a linear arrangement of photodiodes, which though unity-gain devices, provide advantages over photomultiplier detectors in terms of operating range, linearity and detector-to-detector matching. An area detector is an alternative to linear array detectors. Such an area detector could be a scintillating strip, such as cesium iodide or other, viewed by a suitable camera or optically coupled to a charge coupled device (CCD) . When an area detector is used, light pipes map the light from the linear scintillator onto discrete areas of the area detector. In the computer, the signals from the area detector are remapped back to a linear column of data and stored in memory. As the beam and detectors move with the straddle vehicle, a two-dimensional image is formed by the concatenation of individual columns over the time necessary for the straddle vehicle to pass over the container or other object being inspected.
For high-resolution applications, the electronics used to read out the detector signals typically feature auto-zeroed, double-correlated sampling to achieve ultra-stable zero drift and low-offset-noise data acquisition. Automatic gain ranging may be used to accommodate the wide attenuation ranges that can be encountered with large containers and vehicles.
With reference to Fig. 4, an X-ray source 71 is used to produce X rays 73 which are collimated to a narrow beam with essentially parallel sides. A collimator 74 is designed to produce either a fan of X rays or a cone beam or a series of "pencil beams" . Collimation serves to limit the X rays that are scattered from the object to be inspected 77 into the detectors 75, which reduces the contrast in the images. Collimation also reduces the shielding required for radiation protection. The height of the detectors, which determines how much of the containers are inspected, is selected on the basis of the objective of the inspection. For example, if the objective is to detect cars hidden within an international shipping container 77, the characteristic signatures identifying the presence of the car could be the large metal components such as the engine block, transmission and axles. In such a case, the inspection height at the center of the container may be limited to four or five feet from the floor level. Other areas of interest may be the detection of hidden compartments under the floor, in the ceiling and behind false walls at the end of the container. In Fig. 4, the detector array is approximately equal to the container height, in this case, eight feet. This configuration enables coverage from just above ground level to six feet (6 ft.) at the container center as well as examining areas of the back and side walls.
In addition to the use of detectors opposite from the source and in direct line with it to measure the transmitted X rays, a detector array can, in addition, be employed on the source side of the straddle vehicle. These detectors would be aligned to detect a portion of the Compton scattered, i.e. "backscattered" , X rays. Likewise, another detector array can also be employed on the detector side of the vehicle, but out of the transmitted X-ray beam, to detect the forward scattered X rays. Such scattered X rays have proven efficacious in detecting the presence of low-atomic-number contraband such as drugs and explosives hidden within the walls of containers, trucks, etc.
With the geometry shown in Fig. 4, a portion of the container or large vehicle would not be imaged. Although not necessary to detect stolen cars, drugs submerged in tanker cars, etc., the full inspection of containers and cars may be desired for other applications, such as the verifications of manifests. For such requirements, alternative configurations could be used. For example, as discussed previously, the availability of straddle carriers with telescoping legs allows the source and detector array to be mounted so that they could be moved to different elevations. Also, the source could be mounted near the midplane on a tilt apparatus which would direct the X rays upwards or downwards and a taller detector array, or one that could be moved to different heights, could be used.

Claims

Clai s
1. An apparatus for radiographic inspection of vehicles and large containers comprising, a movable, inverted U-shaped frame having first and second parallel vertical sides spaced apart by a distance greater than a container to be inspected, means for moving the frame relative to a container to be inspected, a penetrating radiation source disposed on a first side of the frame having a beam directed toward the second side, a detector disposed to record radiation traversing the space between the sides, producing a radiographic signal indicative of material in the space, and means for summing radiographic signals along a dimension of the container thereby forming a radiographic image of the contents of the container.
2. The apparatus of claim 1 wherein the inverted U-shaped frame is the frame of a straddle carrier vehicle having two pairs of spaced apart wheels, one pair of wheels associated with each of the sides.
3. The apparatus of claim 2 wherein the means for moving the frame relative to a container comprises an engine mounted on the frame.
4. The apparatus of claim 3 wherein said means for moving the frame further includes a remote control means for guiding said frame.
5. The apparatus of claim 3 wherein said means for moving the frame includes control means for guiding said frame at constant velocity.
6. The apparatus of claim 1 wherein the inverted U-shaped frame comprises a straddle crane.
7. The apparatus of claim 1 wherein the radiation source comprises a linear accelerator.
8. The apparatus of claim 1 wherein the radiation source comprises an X-ray tube.
9. The apparatus of claim 1 wherein the radiation source comprises an isotope.
10. The apparatus of claim 1 further comprising a plurality of penetrating radiation sources having beams traversing said space and a plurality of detectors disposed to intercept said beams after traversing said space.
11. The apparatus of claim 1 wherein the detector comprises a linear array of detectors.
12. The apparatus of claim 1 wherein the detector comprises an area array of detectors.
13. The apparatus of claim l wherein the detector comprises fluorescent material emitting visible light in response to penetrating beam impingement and an optical detector disposed to receive light from the fluorescent material.
14. The apparatus of claim 13 wherein said optical detector comprises a photodiode detector.
15. The apparatus of claim 13 wherein said optical detector comprises a photomultiplier detector.
16. The apparatus of claim 13 wherein said optical detector comprises an area detector.
17. The apparatus of claim 16 wherein said area detector is a video camera.
18. The apparatus of claim 16 wherein said area detector is a charge coupled device (CCD) array.
19. The apparatus of claim 16 wherein said area detector is a photodiode array.
20. The apparatus of claim 16 wherein said area detector is a photomultiplier array.
21. The apparatus of claim 16 wherein light pipes couple the area detector to said strip of fluorescent material.
22. The apparatus of claim 1 further comprising a beam collimator means for producing a fan-shaped beam.
23. The apparatus of claim 1 further comprising a beam collimator means for producing a plurality of pencil beams.
24. The apparatus of claim 1 further comprising a beam collimator means for producing a cone beam of X rays.
25. The apparatus of claim 1 further comprising a radiographic image enhancement means operatively associated with the means for summing radiographic signals.
26. The apparatus of claim 25 wherein the radiographic image enhancement means comprises a speed controller for the means for moving the frame.
27. The apparatus of claim 25 wherein the radiographic image enhancement means comprises motion encoders.
28. The apparatus of claim 27 wherein said motion encoders are wheel encoders.
29. The apparatus of claim 27 wherein said motion encoders are linear strip optical encoders.
PCT/US1997/010357 1996-07-03 1997-06-05 Straddle inspection system WO1998000681A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP97928975A EP0991916B1 (en) 1996-07-03 1997-06-05 Straddle inspection system
AU33114/97A AU3311497A (en) 1996-07-03 1997-06-05 Straddle inspection system
DE69734118T DE69734118T2 (en) 1996-07-03 1997-06-05 TORQUE CONTROL SYSTEM
JP50416198A JP3739097B2 (en) 1996-07-03 1997-06-05 Straddle inspection system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/674,919 1996-07-03
US08/674,919 US5638420A (en) 1996-07-03 1996-07-03 Straddle inspection system

Publications (1)

Publication Number Publication Date
WO1998000681A1 true WO1998000681A1 (en) 1998-01-08

Family

ID=24708409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1997/010357 WO1998000681A1 (en) 1996-07-03 1997-06-05 Straddle inspection system

Country Status (7)

Country Link
US (1) US5638420A (en)
EP (1) EP0991916B1 (en)
JP (1) JP3739097B2 (en)
CN (1) CN1129775C (en)
AU (1) AU3311497A (en)
DE (1) DE69734118T2 (en)
WO (1) WO1998000681A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004036201A1 (en) * 2002-10-16 2004-04-29 Tsinghua University A mobile container inspecting system
US7216548B2 (en) 2004-08-24 2007-05-15 Mitsubishi Heavy Industries, Ltd. Crane equipped with inspection device
US7420174B2 (en) 2004-08-05 2008-09-02 Mitsubishi Heavy Industries, Ltd. Nondestructive inspection device and crane equipped with nondestructive inspection device
WO2010006295A2 (en) * 2008-07-10 2010-01-14 Innovative American Technology Inc. High performance straddle carrier cbrne radiation verification system
US7851766B2 (en) 2001-10-26 2010-12-14 Innovative American Technology Inc. Multi-stage system for verification of container contents
US7864061B2 (en) 2001-10-26 2011-01-04 Innovative American Technology, Inc. Multi-stage system for verification of container contents
US7868295B2 (en) 2007-01-05 2011-01-11 Innovative American Technology, Inc. Advanced calorimetric spectroscopy for commercial applications of chemical and biological sensors
US7994482B2 (en) 2008-03-24 2011-08-09 Innovative American Technology, Inc. Radiation directional finder and isotope identification system
US8110808B2 (en) 2001-10-26 2012-02-07 Innovative American Technology, Inc. Floating intelligent perimeter sensor system
US8183032B2 (en) 2008-08-28 2012-05-22 Innovative American Technology Inc. Semi-closed loop alga-diesel fuel photobioreactor using waste water
US8247781B2 (en) 2005-12-01 2012-08-21 Innovative American Technology, Inc. Fabrication of a high performance neutron detector with near zero gamma cross talk
US8304740B1 (en) 2008-05-19 2012-11-06 Innovative American Technology, Inc. Mobile frame structure with passive/active sensor arrays for non-invasive identification of hazardous materials
US8888364B2 (en) 2004-07-30 2014-11-18 Neurologica Corp. Anatomical imaging system with centipede scanning drive, bottom notch to accommodate base of patient support, and motorized drive for transporting the system between scanning locations
US8905637B2 (en) 2004-07-30 2014-12-09 Neurologica Corp. X-ray transparent bed and gurney extender for use with mobile computerized tomography (CT) imaging systems
US8971482B2 (en) 2004-07-30 2015-03-03 Neurologica Corp. Anatomical imaging system with centipede belt drive and bottom notch to accommodate base of patient support
US9016941B2 (en) 2004-07-30 2015-04-28 Neurologica Corp. Anatomical imaging system with a crawl drive
US11298093B2 (en) 2004-07-30 2022-04-12 Neurologica Corp. Anatomical imaging system with centipede belt drive
US20220297982A1 (en) * 2019-07-05 2022-09-22 Camco Technologies Nv A container scanning system with washing station

Families Citing this family (190)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6255654B1 (en) 1995-10-23 2001-07-03 Science Applications International Corporation Density detection using discrete photon counting
US6507025B1 (en) * 1995-10-23 2003-01-14 Science Applications International Corporation Density detection using real time discrete photon counting for fast moving targets
US7045787B1 (en) 1995-10-23 2006-05-16 Science Applications International Corporation Density detection using real time discrete photon counting for fast moving targets
US7388205B1 (en) 1995-10-23 2008-06-17 Science Applications International Corporation System and method for target inspection using discrete photon counting and neutron detection
USRE39396E1 (en) * 1996-02-12 2006-11-14 American Science And Engineering, Inc. Mobile x-ray inspection system for large objects
US5764683B1 (en) 1996-02-12 2000-11-21 American Science & Eng Inc Mobile x-ray inspection system for large objects
US5838759A (en) * 1996-07-03 1998-11-17 Advanced Research And Applications Corporation Single beam photoneutron probe and X-ray imaging system for contraband detection and identification
US6058158A (en) * 1997-07-04 2000-05-02 Eiler; Peter X-ray device for checking the contents of closed cargo carriers
DE19826560B4 (en) * 1997-07-04 2009-08-27 Eiler, Peter, Dr.-Ing. Apparatus for checking the contents of closed load carriers, in particular containers, using X-rays
US6301326B2 (en) * 1998-11-02 2001-10-09 Perkinelmer Detection Systems, Inc. Sheet detection system
US6459764B1 (en) * 1999-01-27 2002-10-01 American Science And Engineering, Inc. Drive-through vehicle inspection system
US6370222B1 (en) * 1999-02-17 2002-04-09 Ccvs, Llc Container contents verification
CA2397297A1 (en) * 2000-01-14 2001-07-19 Ao-Entwicklungsinstitut Davos Device for moving a medical apparatus in a controlled manner
US7010094B2 (en) * 2000-02-10 2006-03-07 American Science And Engineering, Inc. X-ray inspection using spatially and spectrally tailored beams
DE10196075B3 (en) * 2000-03-01 2015-08-20 Tsinghua University Container inspection device
US20020082977A1 (en) * 2000-09-25 2002-06-27 Hammond Mark S. Aggregation of on-line auction listing and market data for use to increase likely revenues from auction listings
US6658087B2 (en) 2001-05-03 2003-12-02 American Science And Engineering, Inc. Nautical X-ray inspection system
JP3759429B2 (en) * 2001-05-23 2006-03-22 株式会社東芝 Obstacle detection apparatus and method
DE10160928A1 (en) * 2001-12-12 2003-06-26 Noell Crane Sys Gmbh Device and method for contactless load control on crane systems
DE10201202B4 (en) * 2002-01-14 2009-11-26 Otmar Fahrion Docking unit for servicing an aircraft or the like
US20040256565A1 (en) * 2002-11-06 2004-12-23 William Adams X-ray backscatter mobile inspection van
FR2836994B1 (en) * 2002-03-05 2004-12-17 Airbus France METHOD AND DEVICE FOR CHECKING PARTS BY X-RAY
AU2003231145A1 (en) * 2002-04-26 2003-11-10 Bartlett Support Services, Inc. Crane mounted cargo container inspection apparatus and method
US6622063B1 (en) * 2002-04-29 2003-09-16 The United States Of America As Represented By The Secretary Of The Navy Container-based product dispensing system
US7162005B2 (en) * 2002-07-19 2007-01-09 Varian Medical Systems Technologies, Inc. Radiation sources and compact radiation scanning systems
US6843599B2 (en) * 2002-07-23 2005-01-18 Rapiscan, Inc. Self-contained, portable inspection system and method
US7369643B2 (en) * 2002-07-23 2008-05-06 Rapiscan Security Products, Inc. Single boom cargo scanning system
US9958569B2 (en) 2002-07-23 2018-05-01 Rapiscan Systems, Inc. Mobile imaging system and method for detection of contraband
US7486768B2 (en) * 2002-07-23 2009-02-03 Rapiscan Security Products, Inc. Self-contained mobile inspection system and method
US8503605B2 (en) * 2002-07-23 2013-08-06 Rapiscan Systems, Inc. Four sided imaging system and method for detection of contraband
US7783004B2 (en) 2002-07-23 2010-08-24 Rapiscan Systems, Inc. Cargo scanning system
US8275091B2 (en) 2002-07-23 2012-09-25 Rapiscan Systems, Inc. Compact mobile cargo scanning system
US7963695B2 (en) 2002-07-23 2011-06-21 Rapiscan Systems, Inc. Rotatable boom cargo scanning system
US7322745B2 (en) * 2002-07-23 2008-01-29 Rapiscan Security Products, Inc. Single boom cargo scanning system
US7356115B2 (en) 2002-12-04 2008-04-08 Varian Medical Systems Technology, Inc. Radiation scanning units including a movable platform
US7103137B2 (en) * 2002-07-24 2006-09-05 Varian Medical Systems Technology, Inc. Radiation scanning of objects for contraband
US20040077849A1 (en) * 2002-10-16 2004-04-22 Orchid Chemicals & Pharmaceuticals Limited Process for the preparation of cefadroxil
JP4929312B2 (en) * 2002-10-31 2012-05-09 三菱重工業株式会社 crane
US20090257555A1 (en) * 2002-11-06 2009-10-15 American Science And Engineering, Inc. X-Ray Inspection Trailer
US7505556B2 (en) * 2002-11-06 2009-03-17 American Science And Engineering, Inc. X-ray backscatter detection imaging modules
US7099434B2 (en) * 2002-11-06 2006-08-29 American Science And Engineering, Inc. X-ray backscatter mobile inspection van
US7672426B2 (en) * 2002-12-04 2010-03-02 Varian Medical Systems, Inc. Radiation scanning units with reduced detector requirements
US6785357B2 (en) * 2003-01-16 2004-08-31 Bio-Imaging Research, Inc. High energy X-ray mobile cargo inspection system with penumbra collimator
US6768421B1 (en) 2003-01-31 2004-07-27 Veritainer Corporation Container crane radiation detection systems and methods
US7026944B2 (en) * 2003-01-31 2006-04-11 Veritainer Corporation Apparatus and method for detecting radiation or radiation shielding in containers
US7317782B2 (en) * 2003-01-31 2008-01-08 Varian Medical Systems Technologies, Inc. Radiation scanning of cargo conveyances at seaports and the like
TWI380080B (en) * 2003-03-07 2012-12-21 Semiconductor Energy Lab Liquid crystal display device and method for manufacturing the same
DE20309047U1 (en) * 2003-03-25 2003-10-16 Noell Crane Sys Gmbh Mobile multifunctional platform
DE10313248A1 (en) * 2003-03-25 2004-11-11 Noell Crane Systems Gmbh Mobile multi-functional platform for contactless load scanning and transporting of containers has crane on platform for transferring of containers, an X-ray unit, a screen movable over and along container, and wheels for platform
US20040240618A1 (en) * 2003-04-04 2004-12-02 Mcguire Edward L. Multi-spectrum X-ray generation
US8223919B2 (en) 2003-04-25 2012-07-17 Rapiscan Systems, Inc. X-ray tomographic inspection systems for the identification of specific target items
US7949101B2 (en) 2005-12-16 2011-05-24 Rapiscan Systems, Inc. X-ray scanners and X-ray sources therefor
GB0525593D0 (en) 2005-12-16 2006-01-25 Cxr Ltd X-ray tomography inspection systems
US9113839B2 (en) 2003-04-25 2015-08-25 Rapiscon Systems, Inc. X-ray inspection system and method
US20050058242A1 (en) * 2003-09-15 2005-03-17 Peschmann Kristian R. Methods and systems for the rapid detection of concealed objects
US8451974B2 (en) 2003-04-25 2013-05-28 Rapiscan Systems, Inc. X-ray tomographic inspection system for the identification of specific target items
US8837669B2 (en) 2003-04-25 2014-09-16 Rapiscan Systems, Inc. X-ray scanning system
US8243876B2 (en) 2003-04-25 2012-08-14 Rapiscan Systems, Inc. X-ray scanners
US7508956B2 (en) 2003-06-04 2009-03-24 Aps Technology Group, Inc. Systems and methods for monitoring and tracking movement and location of shipping containers and vehicles using a vision based system
US6937692B2 (en) * 2003-06-06 2005-08-30 Varian Medical Systems Technologies, Inc. Vehicle mounted inspection systems and methods
US6998617B2 (en) 2003-06-11 2006-02-14 Cargo Sentry, Inc. Apparatus and method for detecting weapons of mass destruction
US6928141B2 (en) 2003-06-20 2005-08-09 Rapiscan, Inc. Relocatable X-ray imaging system and method for inspecting commercial vehicles and cargo containers
US7856081B2 (en) * 2003-09-15 2010-12-21 Rapiscan Systems, Inc. Methods and systems for rapid detection of concealed objects using fluorescence
US7677857B2 (en) * 2003-08-12 2010-03-16 Paceco Corp. Mobile cargo container scanning buffer crane
DE10352411B4 (en) * 2003-11-10 2007-02-22 Yxlon International Security Gmbh Method for equalizing an X-ray image of a piece of luggage
CN1627061A (en) * 2003-12-10 2005-06-15 清华同方威视技术股份有限公司 Composite movable type system for inspecting container in low target point
CN100430718C (en) * 2004-03-25 2008-11-05 宝钢集团上海梅山有限公司 Equipment and method for detecting steel solidification shrinkage rate
US7809109B2 (en) * 2004-04-09 2010-10-05 American Science And Engineering, Inc. Multiple image collection and synthesis for personnel screening
DK1733213T3 (en) * 2004-04-09 2010-05-03 American Science & Eng Inc Eliminating cross-talk in a multi-source retransmission inspection portal by ensuring that only one source emits radiation at a time
US7505562B2 (en) * 2006-04-21 2009-03-17 American Science And Engineering, Inc. X-ray imaging of baggage and personnel using arrays of discrete sources and multiple collimated beams
US7762760B2 (en) * 2004-06-24 2010-07-27 Paceco Corp. Method of operating a cargo container scanning crane
US7100424B2 (en) * 2004-07-22 2006-09-05 Marshall Wilson Apparatus for accessing container security threats and method of use
US7736056B2 (en) 2004-07-30 2010-06-15 Neurologica Corp. X-ray transparent bed and gurney extender for use with mobile computerized tomography (CT) imaging systems
RO121293B1 (en) * 2004-09-30 2007-02-28 Mb Telecom Ltd. - S.R.L. Non-intrusive control system and method
US20060138331A1 (en) * 2004-10-18 2006-06-29 Technology Management Consulting Services, Inc. Detector system for traffic lanes
US20060081782A1 (en) * 2004-10-18 2006-04-20 Technology Management Consulting Services, Inc. Remote detector system
US7847260B2 (en) 2005-02-04 2010-12-07 Dan Inbar Nuclear threat detection
US8173970B2 (en) * 2005-02-04 2012-05-08 Dan Inbar Detection of nuclear materials
US7820977B2 (en) * 2005-02-04 2010-10-26 Steve Beer Methods and apparatus for improved gamma spectra generation
GB2423687B (en) * 2005-02-25 2010-04-28 Rapiscan Security Products Ltd X-ray security inspection machine
US7471764B2 (en) 2005-04-15 2008-12-30 Rapiscan Security Products, Inc. X-ray imaging system having improved weather resistance
WO2006116100A1 (en) * 2005-04-22 2006-11-02 American Science And Engineering, Inc. X-ray backscatter inspection with coincident optical beam
CA2608119A1 (en) 2005-05-11 2006-11-16 Optosecurity Inc. Method and system for screening luggage items, cargo containers or persons
WO2006119605A1 (en) * 2005-05-11 2006-11-16 Optosecurity Inc. Method and system for screening cargo containers
US7991242B2 (en) 2005-05-11 2011-08-02 Optosecurity Inc. Apparatus, method and system for screening receptacles and persons, having image distortion correction functionality
US7351982B2 (en) * 2005-05-24 2008-04-01 Washington Savannah River Company Llp Portable nuclear material detector and process
EP1949139A2 (en) * 2005-10-24 2008-07-30 American Science & Engineering, Inc. X-ray inspection based on scatter detection
US8330115B2 (en) * 2005-12-01 2012-12-11 Innovative American Technology, Inc. High performance neutron detector with near zero gamma cross talk
US20100226580A1 (en) * 2005-12-01 2010-09-09 Innovative American Technology Inc. System and method for increased gamma/neutron detection
US20070170141A1 (en) * 2006-01-25 2007-07-26 Robert Newhouse Cargo scanning device
US8213570B2 (en) 2006-02-27 2012-07-03 Rapiscan Systems, Inc. X-ray security inspection machine
US7531806B2 (en) * 2006-04-14 2009-05-12 Shipeng Song Cargo container craning apparatus equipped with radiation detection device
US7508909B2 (en) * 2006-04-24 2009-03-24 Battelle Energy Alliance, Llc Apparatus and method for inspecting a sealed container
US7526064B2 (en) 2006-05-05 2009-04-28 Rapiscan Security Products, Inc. Multiple pass cargo inspection system
US7899232B2 (en) 2006-05-11 2011-03-01 Optosecurity Inc. Method and apparatus for providing threat image projection (TIP) in a luggage screening system, and luggage screening system implementing same
US8494210B2 (en) 2007-03-30 2013-07-23 Optosecurity Inc. User interface for use in security screening providing image enhancement capabilities and apparatus for implementing same
EP2049888B1 (en) 2006-08-11 2014-05-14 American Science & Engineering, Inc. X-ray inspection with contemporaneous and proximal transmission and backscatter imaging
CN101162207B (en) * 2006-10-13 2011-04-13 同方威视技术股份有限公司 Slope device and vehicle mounted mobile vehicle inspection system with the same
US20080165362A1 (en) * 2006-12-14 2008-07-10 Antonios Aikaterinidis Method and apparatus for inspection of containers
CN101210893A (en) * 2006-12-28 2008-07-02 同方威视技术股份有限公司 Vehicle mounted type radiation checking system
US8576982B2 (en) 2008-02-01 2013-11-05 Rapiscan Systems, Inc. Personnel screening system
US8995619B2 (en) 2010-03-14 2015-03-31 Rapiscan Systems, Inc. Personnel screening system
US8638904B2 (en) 2010-03-14 2014-01-28 Rapiscan Systems, Inc. Personnel screening system
US7929664B2 (en) * 2007-02-13 2011-04-19 Sentinel Scanning Corporation CT scanning and contraband detection
US7957505B1 (en) 2007-03-12 2011-06-07 The United States Of America As Represented By The United States Department Of Energy X-ray radiography for container inspection
US7734008B1 (en) * 2007-05-24 2010-06-08 George Sanders Vehicle cargo inspection station and associated method
US7999233B1 (en) * 2007-07-20 2011-08-16 The United States Of America As Represented By The United States Department Of Energy System for inspection of stacked cargo containers
US7630474B2 (en) * 2007-09-28 2009-12-08 Varian Medical Systems, Inc. Radiation scanning with photon tagging
US7593510B2 (en) * 2007-10-23 2009-09-22 American Science And Engineering, Inc. X-ray imaging with continuously variable zoom and lateral relative displacement of the source
GB0803642D0 (en) 2008-02-28 2008-04-02 Rapiscan Security Products Inc Drive-through scanning systems
GB0803641D0 (en) 2008-02-28 2008-04-02 Rapiscan Security Products Inc Scanning systems
GB0803640D0 (en) 2008-02-28 2008-04-02 Rapiscan Security Products Inc Scanning systems
GB0803643D0 (en) * 2008-02-28 2008-04-02 Rapiscan Security Products Inc Mobile scanning systems
US9036779B2 (en) 2008-02-28 2015-05-19 Rapiscan Systems, Inc. Dual mode X-ray vehicle scanning system
UA102386C2 (en) * 2008-02-29 2013-07-10 Басф Се Process for preparing alkyl 2-alkoxymethylene-4,4-difluoro-3-oxobutyrates
GB0809107D0 (en) * 2008-05-20 2008-06-25 Rapiscan Security Products Inc Scannign systems
GB0809109D0 (en) * 2008-05-20 2008-06-25 Rapiscan Security Products Inc Scanner systems
GB0809110D0 (en) 2008-05-20 2008-06-25 Rapiscan Security Products Inc Gantry scanner systems
US8963094B2 (en) 2008-06-11 2015-02-24 Rapiscan Systems, Inc. Composite gamma-neutron detection system
GB0810638D0 (en) 2008-06-11 2008-07-16 Rapiscan Security Products Inc Photomultiplier and detection systems
US20090312953A1 (en) * 2008-06-17 2009-12-17 Veritainer Corporation Mitigation of Nonlinear Background Radiation During Real Time Radiation Monitoring of Containers at a Quayside Crane
WO2009155658A1 (en) * 2008-06-25 2009-12-30 Australian Nuclear Science And Technology Organisation Imaging test piece for medium and large security x-ray scanners
US8198587B2 (en) 2008-11-24 2012-06-12 Varian Medical Systems, Inc. Compact, interleaved radiation sources
US20100128852A1 (en) * 2008-11-24 2010-05-27 Veritainer Corporation Detector Characterization and Calibration
US9310323B2 (en) 2009-05-16 2016-04-12 Rapiscan Systems, Inc. Systems and methods for high-Z threat alarm resolution
WO2010141101A1 (en) * 2009-06-05 2010-12-09 Sentinel Scanning Corporation Transportation container inspection system and method
US8824632B2 (en) 2009-07-29 2014-09-02 American Science And Engineering, Inc. Backscatter X-ray inspection van with top-down imaging
CN102483383A (en) * 2009-07-29 2012-05-30 美国科技工程公司 Top-down X-ray inspection trailer
TW201115513A (en) * 2009-10-16 2011-05-01 zhao-kai Wang Security monitoring system for vehicles entering and leaving
US8314394B1 (en) 2009-11-04 2012-11-20 Science Applications International Corporation System and method for three-dimensional imaging using scattering from annihilation coincidence photons
WO2011149566A2 (en) 2010-02-12 2011-12-01 American Science And Engineering, Inc. Disruptor guidance system and methods based on scatter imaging
MX2012009921A (en) * 2010-02-25 2012-12-17 Rapiscan Systems Inc A high-energy x-ray spectroscopy-based inspection system and methods to determine the atomic number of materials.
US11570369B1 (en) 2010-03-09 2023-01-31 Stephen Michael Swinford Indoor producing of high resolution images of the commonly viewed exterior surfaces of vehicles, each with the same background view
US8576989B2 (en) 2010-03-14 2013-11-05 Rapiscan Systems, Inc. Beam forming apparatus
US8687764B2 (en) 2010-04-14 2014-04-01 Uday S. Roy Robotic sensor
US8472583B2 (en) 2010-09-29 2013-06-25 Varian Medical Systems, Inc. Radiation scanning of objects for contraband
EP3270185B1 (en) 2011-02-08 2023-02-01 Rapiscan Systems, Inc. Covert surveillance using multi-modality sensing
US9224573B2 (en) 2011-06-09 2015-12-29 Rapiscan Systems, Inc. System and method for X-ray source weight reduction
US9218933B2 (en) 2011-06-09 2015-12-22 Rapidscan Systems, Inc. Low-dose radiographic imaging system
EP2546185B1 (en) * 2011-07-14 2014-03-19 Siemens Aktiengesellschaft Vibration absorber
US9632188B2 (en) * 2011-08-02 2017-04-25 Raytheon Company Noble gas detector for fissile content determination
KR102067367B1 (en) 2011-09-07 2020-02-11 라피스캔 시스템스, 인코포레이티드 X-ray inspection method that integrates manifest data with imaging/detection processing
JP6014329B2 (en) * 2012-01-17 2016-10-25 キヤノン株式会社 X-ray equipment
CN104170051B (en) 2012-02-03 2017-05-31 拉皮斯坎系统股份有限公司 Combination scattering and the imaging multiple views system of transmission
US10670740B2 (en) 2012-02-14 2020-06-02 American Science And Engineering, Inc. Spectral discrimination using wavelength-shifting fiber-coupled scintillation detectors
MX349323B (en) 2013-01-07 2017-07-21 Rapiscan Systems Inc X-ray scanner with energy discriminating detector array.
KR102167245B1 (en) 2013-01-31 2020-10-19 라피스캔 시스템스, 인코포레이티드 Portable security inspection system
JP6214186B2 (en) * 2013-03-29 2017-10-18 キヤノン株式会社 Radiation generating apparatus and radiation imaging apparatus
EP2992316B1 (en) * 2013-04-29 2018-04-18 Decision Sciences International Corporation Muon detector array stations
CN105612416B (en) * 2013-07-25 2019-01-01 模拟技术公司 The generation of the diffractive features of article in object
US9086496B2 (en) 2013-11-15 2015-07-21 Varian Medical Systems, Inc. Feedback modulated radiation scanning systems and methods for reduced radiological footprint
CN103558645B (en) * 2013-11-18 2016-10-12 公安部第一研究所 A kind of middle-size and small-size vehicle radiating scanning detection apparatus
CN104698012B (en) * 2013-12-06 2018-07-03 北京固鸿科技有限公司 The horizontal automatic nondestructive detection systems of X ray industrial DR/CT and its fixture
US9557427B2 (en) 2014-01-08 2017-01-31 Rapiscan Systems, Inc. Thin gap chamber neutron detectors
GB2538921B (en) 2014-03-07 2020-06-03 Rapiscan Systems Inc Ultra wide band detectors
US11280898B2 (en) 2014-03-07 2022-03-22 Rapiscan Systems, Inc. Radar-based baggage and parcel inspection systems
US20160116630A1 (en) * 2014-10-21 2016-04-28 Decision Sciences International Corporation Scalable configurations for multimode passive detection system
BR112017011068A2 (en) 2014-11-25 2018-07-10 Rapiscan Systems, Inc. smart security management system
CN105712265B (en) * 2014-12-05 2019-09-10 惠普发展公司,有限责任合伙企业 Cargo overturns external member
CN104569005A (en) * 2015-01-09 2015-04-29 云南电网有限责任公司电力科学研究院 Mobile platform of X-ray emission device
JP6746603B2 (en) 2015-03-20 2020-08-26 ラピスカン システムズ、インコーポレイテッド Handheld portable backscatter inspection system
US10345479B2 (en) 2015-09-16 2019-07-09 Rapiscan Systems, Inc. Portable X-ray scanner
US10301153B2 (en) * 2015-09-18 2019-05-28 J & R Engineering Company, Inc. Pivoting axle wheeled mobile gantry
US9989669B2 (en) * 2015-10-23 2018-06-05 The United States of America, as Represented by the Secretary of Homeland Security Intermodal container scanning
KR101627276B1 (en) * 2016-01-13 2016-06-03 주식회사 선광티앤에스 A hand pallet truck for transport to disposal the drums of radioactive wastes
EP3764281A1 (en) 2016-02-22 2021-01-13 Rapiscan Systems, Inc. Methods of identifying firearms in radiographic images
US10416341B2 (en) 2016-06-13 2019-09-17 Decision Sciences International Corporation Integration of inspection scanners to cargo container processing system for efficient processing and scanning of cargo containers at a port
CN106114681B (en) * 2016-08-30 2021-01-29 北京华力兴科技发展有限责任公司 Vehicle parking early warning system and vehicle
CN106291729A (en) * 2016-08-30 2017-01-04 北京华力兴科技发展有限责任公司 For carrying anticollision device, collision-prevention device and the container/vehicle inspection equipment of car from walking
CN106218482B (en) * 2016-08-30 2019-11-22 北京华力兴科技发展有限责任公司 From the portal frame assembling structure and container/vehicle inspection equipment of walking carrier vehicle
CN106353830B (en) * 2016-08-30 2019-04-16 北京华力兴科技发展有限责任公司 For the drive system and container/vehicle inspection equipment from carrier vehicle of walking
CN106353829B (en) * 2016-08-30 2019-02-26 北京华力兴科技发展有限责任公司 For the rack construction and container/vehicle inspection equipment from carrier vehicle of walking
CN106324693B (en) * 2016-08-30 2019-04-19 北京华力兴科技发展有限责任公司 Self-travel type container/vehicle inspection equipment
CN206074828U (en) * 2016-08-30 2017-04-05 北京华力兴科技发展有限责任公司 Self-travel type container/vehicle inspection equipment
WO2018064434A1 (en) 2016-09-30 2018-04-05 American Science And Engineering, Inc. X-ray source for 2d scanning beam imaging
CN108240997B (en) * 2016-12-26 2020-09-04 同方威视技术股份有限公司 Inspection apparatus and method of inspecting container
CN106645225B (en) * 2016-12-29 2024-04-12 同方威视技术股份有限公司 Movable article inspection system
CN107817254B (en) * 2017-10-11 2020-10-30 梁婷婷 Mechanical device for package inspection by adopting X-ray detection technology
CN107765320A (en) * 2017-11-24 2018-03-06 同方威视技术股份有限公司 Inspection system
FI127956B (en) * 2018-01-17 2019-06-14 Cargotec Finland Oy Service platform, container handling carrier and method
US11047813B2 (en) 2018-05-21 2021-06-29 Volodymyr Pavlovich ROMBAKH Non-invasive monitoring of atomic reactions to detect structural failure
WO2019245636A1 (en) 2018-06-20 2019-12-26 American Science And Engineering, Inc. Wavelength-shifting sheet-coupled scintillation detectors
CN109407162B (en) * 2018-12-24 2024-04-02 同方威视技术股份有限公司 Inspection system and imaging method
GB2607516B (en) 2020-01-23 2024-01-03 Rapiscan Systems Inc Systems and methods for Compton scatter and/or pulse pileup detection
US11175245B1 (en) 2020-06-15 2021-11-16 American Science And Engineering, Inc. Scatter X-ray imaging with adaptive scanning beam intensity
US11340361B1 (en) 2020-11-23 2022-05-24 American Science And Engineering, Inc. Wireless transmission detector panel for an X-ray scanner
US11796489B2 (en) 2021-02-23 2023-10-24 Rapiscan Systems, Inc. Systems and methods for eliminating cross-talk signals in one or more scanning systems having multiple X-ray sources
CN113979381A (en) * 2021-10-21 2022-01-28 河北省特种设备监督检验研究院 Tank car inspection safety work platform based on can control by universal moving wheel
CN116223535A (en) * 2021-12-30 2023-06-06 同方威视技术股份有限公司 Radiation inspection system
CN114419773B (en) * 2022-03-28 2022-06-07 成都古河云科技有限公司 Self-service truck check-in duty system and truck self-service entry method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2831123A (en) * 1956-07-11 1958-04-15 Webster J Daly X-ray fluoroscopic device
US3766387A (en) * 1972-07-11 1973-10-16 Us Navy Nondestructive test device using radiation to detect flaws in materials

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4366382B2 (en) * 1980-09-09 1997-10-14 Scanray Corp X-ray line scan system for use in baggage inspection
JPS5756740A (en) * 1980-09-22 1982-04-05 Mitsubishi Electric Corp Object inspecting device
US4599740A (en) * 1983-01-06 1986-07-08 Cable Arthur P Radiographic examination system
DE4023413A1 (en) * 1989-08-09 1991-02-14 Heimann Gmbh Security arrangement passing fan-shaped beam through objects - has transport path through which object is moved on palette by driven rollers
EP0491977B1 (en) * 1990-12-21 1994-06-08 Heimann Systems GmbH & Co. KG Testing system for vehicle loads
US5237598A (en) * 1992-04-24 1993-08-17 Albert Richard D Multiple image scanning X-ray method and apparatus
DE4311174C2 (en) * 1993-04-05 1996-02-15 Heimann Systems Gmbh & Co X-ray inspection system for containers and trucks

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2831123A (en) * 1956-07-11 1958-04-15 Webster J Daly X-ray fluoroscopic device
US3766387A (en) * 1972-07-11 1973-10-16 Us Navy Nondestructive test device using radiation to detect flaws in materials

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0991916A4 *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7851766B2 (en) 2001-10-26 2010-12-14 Innovative American Technology Inc. Multi-stage system for verification of container contents
US8183538B2 (en) 2001-10-26 2012-05-22 Innovative American Technology Inc. Sensor interface system
US8110808B2 (en) 2001-10-26 2012-02-07 Innovative American Technology, Inc. Floating intelligent perimeter sensor system
US7864061B2 (en) 2001-10-26 2011-01-04 Innovative American Technology, Inc. Multi-stage system for verification of container contents
US6920197B2 (en) 2002-10-16 2005-07-19 Tsinghua University Vehicle-carried mobile container inspection apparatus
WO2004036201A1 (en) * 2002-10-16 2004-04-29 Tsinghua University A mobile container inspecting system
US9016941B2 (en) 2004-07-30 2015-04-28 Neurologica Corp. Anatomical imaging system with a crawl drive
US9561010B2 (en) 2004-07-30 2017-02-07 Neurologica Corp. Anatomical imaging system with centipede scanning drive, bottom notch to accommodate base of patient support, and motorized drive for transporting the system between scanning locations
US11883218B2 (en) 2004-07-30 2024-01-30 Neurologica Corp. Anatomical imaging system with centipede belt drive
US11298093B2 (en) 2004-07-30 2022-04-12 Neurologica Corp. Anatomical imaging system with centipede belt drive
US10548545B2 (en) 2004-07-30 2020-02-04 Neurologica Corp. Anatomical imaging system with centipede belt drive
US10178981B2 (en) 2004-07-30 2019-01-15 Neurologica Corp. Anatomical imaging system with centipede scanning drive, bottom notch to accommodate base of patient support, and motorized drive for transporting the system between scanning locations
US9820704B2 (en) 2004-07-30 2017-11-21 Neurologica Corp. Anatomical imaging system with centipede belt drive
US8971482B2 (en) 2004-07-30 2015-03-03 Neurologica Corp. Anatomical imaging system with centipede belt drive and bottom notch to accommodate base of patient support
US8905637B2 (en) 2004-07-30 2014-12-09 Neurologica Corp. X-ray transparent bed and gurney extender for use with mobile computerized tomography (CT) imaging systems
US8888364B2 (en) 2004-07-30 2014-11-18 Neurologica Corp. Anatomical imaging system with centipede scanning drive, bottom notch to accommodate base of patient support, and motorized drive for transporting the system between scanning locations
US7420174B2 (en) 2004-08-05 2008-09-02 Mitsubishi Heavy Industries, Ltd. Nondestructive inspection device and crane equipped with nondestructive inspection device
US7216548B2 (en) 2004-08-24 2007-05-15 Mitsubishi Heavy Industries, Ltd. Crane equipped with inspection device
US8247781B2 (en) 2005-12-01 2012-08-21 Innovative American Technology, Inc. Fabrication of a high performance neutron detector with near zero gamma cross talk
US7868295B2 (en) 2007-01-05 2011-01-11 Innovative American Technology, Inc. Advanced calorimetric spectroscopy for commercial applications of chemical and biological sensors
US7994482B2 (en) 2008-03-24 2011-08-09 Innovative American Technology, Inc. Radiation directional finder and isotope identification system
US8304740B1 (en) 2008-05-19 2012-11-06 Innovative American Technology, Inc. Mobile frame structure with passive/active sensor arrays for non-invasive identification of hazardous materials
WO2010006295A3 (en) * 2008-07-10 2010-05-14 Innovative American Technology Inc. High performance straddle carrier cbrne radiation verification system
WO2010006295A2 (en) * 2008-07-10 2010-01-14 Innovative American Technology Inc. High performance straddle carrier cbrne radiation verification system
US8183032B2 (en) 2008-08-28 2012-05-22 Innovative American Technology Inc. Semi-closed loop alga-diesel fuel photobioreactor using waste water
US20220297982A1 (en) * 2019-07-05 2022-09-22 Camco Technologies Nv A container scanning system with washing station

Also Published As

Publication number Publication date
CN1129775C (en) 2003-12-03
JP3739097B2 (en) 2006-01-25
JP2000514183A (en) 2000-10-24
US5638420A (en) 1997-06-10
AU3311497A (en) 1998-01-21
CN1224495A (en) 1999-07-28
EP0991916A4 (en) 2000-08-23
EP0991916A1 (en) 2000-04-12
DE69734118T2 (en) 2006-06-22
EP0991916B1 (en) 2005-08-31
DE69734118D1 (en) 2005-10-06

Similar Documents

Publication Publication Date Title
US5638420A (en) Straddle inspection system
US5838759A (en) Single beam photoneutron probe and X-ray imaging system for contraband detection and identification
US7408160B2 (en) Density detection using real time discrete photon counting for fast moving targets
US6507025B1 (en) Density detection using real time discrete photon counting for fast moving targets
RU2334219C2 (en) Device and method of inspection object check
US5910973A (en) Rapid X-ray inspection system
US7388209B1 (en) Target density imaging using discrete photon counting to produce high-resolution radiographic images
JP4664907B2 (en) On-vehicle inspection system and method
US7099434B2 (en) X-ray backscatter mobile inspection van
JP6465867B2 (en) Muon detection array station
WO1998003889A9 (en) System for rapid x-ray inspection of enclosures
US7388205B1 (en) System and method for target inspection using discrete photon counting and neutron detection
JP2011085593A (en) X-ray back scatter mobile inspection van
CN1051616C (en) Nondestructive testing method and apparatus and its application mobile gamma digital radiation imaging
US20150346363A1 (en) Method and System for Detecting and Identifying Radioactive Materials

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97196160.3

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN JP MX RU

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997928975

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: CA

WWP Wipo information: published in national office

Ref document number: 1997928975

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1997928975

Country of ref document: EP