WO1997024288A1 - Octahedrite stable et son procede de preparation - Google Patents

Octahedrite stable et son procede de preparation Download PDF

Info

Publication number
WO1997024288A1
WO1997024288A1 PCT/JP1996/003843 JP9603843W WO9724288A1 WO 1997024288 A1 WO1997024288 A1 WO 1997024288A1 JP 9603843 W JP9603843 W JP 9603843W WO 9724288 A1 WO9724288 A1 WO 9724288A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium dioxide
aluminum
zinc
crystal
anatase
Prior art date
Application number
PCT/JP1996/003843
Other languages
English (en)
French (fr)
Inventor
Makoto Tunashima
Kazuyoshi Muraoka
Kohji Yamamoto
Masaru Mikami
Suzuo Sasaki
Original Assignee
Tohkem Products Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohkem Products Corporation filed Critical Tohkem Products Corporation
Priority to EP96943323A priority Critical patent/EP0870730A4/en
Priority to US09/091,742 priority patent/US6113873A/en
Priority to AU12091/97A priority patent/AU1209197A/en
Publication of WO1997024288A1 publication Critical patent/WO1997024288A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3692Combinations of treatments provided for in groups C09C1/3615 - C09C1/3684
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • C01G23/0532Producing by wet processes, e.g. hydrolysing titanium salts by hydrolysing sulfate-containing salts
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3653Treatment with inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/04Physical treatment, e.g. grinding, treatment with ultrasonic vibrations
    • C09C3/043Drying, calcination
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/06Treatment with inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/06Treatment with inorganic compounds
    • C09C3/063Coating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • the present invention relates to a titanium dioxide powder having a bluish tint and a high degree of whiteness, which contains a trace amount of aluminum and / or zinc in a crystal, so that it does not easily discolor during high-temperature treatment, and has light resistance and weather resistance.
  • the present invention relates to anatase-type titanium dioxide having excellent chemical stability and high chemical stability, and a method for producing the same. Background technology
  • Titanium dioxide is widely used as a white pigment or the like. Titanium dioxide has two crystal systems, anatase type, which is a low-temperature stable phase, and rutile type, which is a high-temperature stable phase. When used as a pigment, they are used to take advantage of their respective characteristics. For example, anatase type titanium dioxide has a characteristic that the color tone is bluish compared to rutile type.
  • anatase-type titanium dioxide is industrially produced by a sulfuric acid method.
  • an aqueous titanium dioxide slurry is usually produced by hydrolyzing an aqueous solution of titanyl sulfate, and this slurry is calcined at 850 to 110 ⁇ to anatase-type titanium dioxide having a predetermined particle size. This is a method for producing powder.
  • Such conventional anatase-type titanium dioxide has a problem that it is easily discolored as compared with rutile-type titanium dioxide and has low light resistance or low weather resistance. That is, in general, titanium dioxide crystals have some or some partial structural defects, and when these structural defects increase, the chemical stability decreases, and when used as a pigment, ultraviolet rays, heat, and grinding power It is easy to discolor due to external energy such as.
  • Anatase-type titanium dioxide produced by the conventional sulfuric acid method has more crystal defects than rutile-type titanium dioxide and tends to discolor. In particular, when used as a coloring agent for blastix, the kneading temperature has recently increased, and the processing temperature may exceed 300 in some cases.
  • Conventional anatase-type titanium dioxide has a significant discoloration at a processing temperature of 300 or more, which impairs the color tone of plastics. There is a title.
  • the present invention has solved the above-mentioned problems in the conventional anatase-type titanium dioxide, has high whiteness, is hardly discolored even under high temperature treatment, and has good chemical stability excellent in light resistance and weather resistance.
  • An object of the present invention is to provide an anatase type titanium dioxide and a method for producing the same.
  • color stability is sometimes referred to as high because, for convenience, high whiteness, high resistance to discoloration under high-temperature treatment, and good chemical stability with good light resistance and weather resistance are provided. Disclosure of the invention
  • the titanium dioxide of the present invention comprises: (1) a titanium dioxide crystal containing a divalent or trivalent uncolored cation having a 6-coordinate ionic radius of 0.6 A or more and 0.9 A or less. This is an anatase-type titanium dioxide characterized by improved color stability. (2) At least one of aluminum and zinc is introduced into the crystal as the preferable non-colored ion.
  • the content of aluminum and zinc introduced into the crystal is (3) 0.02 to 0.4%, preferably 0.04 to 0.3% aluminum, (4) 0.05 to 0.5%. 1.0%, preferably 0.1 to 0.6% zinc is suitable, and when both are used in combination, (5) the total amount of both is 0.02 to 1.0%, preferably Is 0.44 to 0.6%, provided that the content of aluminum is 0.4% or less. (6) It is appropriate that the titanium dioxide particles have an average primary particle diameter of 0.01 to 1.0 / im.
  • the present invention provides (7) anatase in which aluminum and / or zinc is contained in crystal II by calcining a hydrous titanium dioxide obtained by hydrolysis of titanium sulfate by adding an aluminum compound and / or a zinc compound.
  • This is a method for producing titanium dioxide, characterized by producing type titanium dioxide.
  • An anatase-type titanium dioxide with high color stability containing aluminum and zinc with an aluminum content of 0.4% or less can be obtained.
  • the production method of the present invention comprises the steps of: (9) dissolving a water-soluble ethanol compound and / or a water-soluble zinc compound in a slurry of hydrated titanium dioxide; After drying, the mixture is calcined at 850 to 1100. (10) An aluminum compound powder and / or a zinc compound powder are mixed with a titanium dioxide powder obtained by drying a slurry of hydrous titanium dioxide. Calcining the mixture at 850-1100.
  • Titanium dioxide crystals have a structure in which six oxygen ions are coordinated to one titanium ion. Anatase-type crystals are more covalent than ionic rutile-type crystals. In the present invention, the color stability of the anatase type titanium dioxide is improved.
  • the main reason for the discoloration of titanium dioxide is that the free electrons generated by crystal defects are taken into tetravalent titanium ions and become trivalent titanium (purple), which is the main reason for the crystal structure.
  • This free electron can be captured by doping a divalent or trivalent metal ion to generate holes.
  • This dove ion is combined with a tetravalent titanium ion and an ion radius (Ti 4+ : 0.75A) It is required that the ion be an ion that is close to and not colored as much as possible so as not to impair the white color of titanium dioxide.
  • titanium dioxide of the present invention Since it was formed by the crystals of the 6-coordinated titanium ions titanium dioxide (Ti 4+), titanium dioxide of the present invention, six-coordinate titanium ions (Ti 4+) and the 0. 6 A more approximate Anatase-type titanium dioxide having an ionic radius of up to 0.9 A or less and having improved color stability by containing divalent or trivalent uncolored cations in titanium dioxide crystals.
  • the above ionic radius is the value based on the radii of 6-coordinate O 2 — and F— set to 1.26 A and 1.19 A, respectively.
  • Al 3 + for the purposes of the present invention, Zn 2+, Ga 3 +, Mg 2 + is suitable. Especially effects and Al 3+ and Zn 2+ are preferable from the viewpoint of economy.
  • the present invention is intended to contain at least one kind of aluminum ion or zinc ion in titanium dioxide crystal, which compensates for crystal defects and improves stability. It is hardly discolored even under, and has excellent light and weather resistance, and a powder with strong bluish color and high whiteness can be obtained.
  • the amount of aluminum and / or zinc introduced into the crystal may be from 0.02 to 0.4% as aluminum ions, preferably from 0.04 to 0.3% and / or from 0.05 to 0.5% as zinc ions. 1.0%, preferably 0.1 to 0.6% is appropriate. When aluminum and zinc are used together, the total amount of these ions is 0.02 to: 1.0%, preferably 0%. A suitable range is 0.4 to 0.6% and the aluminum content is 0.4% or less.
  • the amount of aluminum or zinc introduced is less than the above range, the effect of improving the chemical stability of titanium dioxide is insufficient. Further, when the introduction amount exceeds the above range, free aluminum and zinc which do not enter the crystal are mixed with the titanium dioxide particles in the form of oxide, so that pigment performance such as whitening and whiteness is deteriorated. Absent.
  • the upper limit of the doping amount of aluminum is about half that of zinc. However, in the case of aluminum, if the addition amount is too large, the particles are likely to solidify and the dispersibility as a pigment is impaired. This is because Zinc is less likely to do this.
  • Aluminum and zinc may be attached to the particle surface in addition to those incorporated into the crystal, but the aluminum content and zinc content of the present invention are the amounts introduced into the titanium dioxide crystal. It does not include the amount attached to the particle surface.
  • anatase-type titanium dioxide contains about 0.01% aluminum, including those derived from raw material ores and those mixed in during the manufacturing process. However, with this amount, the effect of improving the chemical stability (color stability) cannot be obtained.
  • the average particle size of the primary particles of the anatase type titanium dioxide of the present invention is suitably from 0.01 to 1.0 ⁇ m. If the average particle size of the primary particles is less than 0.01 ⁇ m, the ratio of the surface with high free energy in the whole particles increases. Oftens chemically unstable. On the other hand, if the particle size exceeds 1.0 n, the basic physical properties of the pigment cannot be maintained, and thus it is not appropriate. In order to obtain titanium dioxide particles having an average primary particle diameter in the above range, adjustment of precipitation conditions in the hydrolysis of titanium sulfate or adjustment of the temperature in the subsequent calcination step in the production method described below is performed. Good.
  • the anatase-type titanium dioxide of the present invention can be produced based on a sulfuric acid method, and an aluminum compound and / or zinc is added to hydrous titanium dioxide obtained by hydrolysis of titanium sulfate in accordance with the introduced amount (dope amount). It can be obtained by adding a compound and firing.
  • an aqueous solution of titanium sulfate obtained by dissolving ores such as ilmenite and titanium slag with sulfuric acid is hydrolyzed to form a slurry of hydrous titanium dioxide, which is washed and dried. , 850-110, to obtain an anatase type titanium dioxide powder.
  • the hydrated titanium dioxide is washed, the concentration of titanium dioxide in the suspension is adjusted, an aluminum compound and / or a zinc compound are added in an amount corresponding to the amount introduced, and the mixed slurry is dried. Bake.
  • the aluminum compound and the zinc compound may be added in a wet manner using a water-soluble one, or may be added in a dry manner using a powdery one.
  • Aluminum sulfate or the like can be used as the water-soluble aluminum compound, and alumina or the like can be used as the powdery aluminum compound.
  • zinc sulfate or the like can be used as the water-soluble zinc compound, and zinc oxide or the like is used as the powdery zinc compound.
  • a predetermined amount of aluminum sulfate, zinc sulfate, or the like is dissolved in the above-mentioned hydrated titanium dioxide slurry, and then this slurry is dried and fired.
  • a small amount of power rim and phosphorus compound are added before firing in order to adjust the grain size and hardness and to suppress the formation of rutile-type crystals. Added. If these additions are omitted, the particle size and hardness become non-uniform and the pigment properties are lost. Specifically, the force beam adjusts the combination of the particles during firing and reduces the variation in particle size.
  • potassium carbonate is used as a potassium source, and the amount of potassium carbonate added is about 0.2 to 0.5%. Phosphorus also suppresses the transfer to rutile.
  • phosphorus pentoxide Usually, as a source of phosphorus, primary to primary ammonium phosphates are used, and the amount of addition is about 0.05 to 0.2% in terms of phosphorus pentoxide. It is to be noted that tribasic lithium phosphate and potassium carbonate may be added in place of the carbonic acid rim and the first to third ammonium phosphates. Note that potassium is washed away in the wet finishing process after firing.
  • the slurry or raw material mixed powder obtained in the above step is fired at 850 to 110. If the firing temperature is lower than 85 Ot, the firing is not sufficiently performed. On the other hand, if it exceeds 1100%, sintering of the particles occurs, and the whiteness and dispersibility as a pigment are significantly impaired. Sintering at a relatively low temperature for a long period of time is less sintering than a short time at a high temperature.
  • the amounts of aluminum and zinc contained in titanium dioxide were measured by the following method.
  • the particle diameter the size of the primary particles was measured using a transmission electron microscope, and the average diameter was determined by weight average.
  • titanium sulfate was hydrolyzed to obtain a hydrous titanium dioxide slurry.
  • the slurry ⁇ , after rinsing, a titanium dioxide concentration of 3 3% aqueous suspension stagnation solution, relative to the suspension 1 000 g (Ti0 2 in terms of 330 g), carbonate force Li um 1. 3 g, 0.7 g of diammonium phosphate and 0.333 g of aluminum sulfate (A1 addition rate: 0.10%) were added to aluminum sulfate.
  • Example 2 X-ray diffraction confirmed that the powder was anatase-type titanium dioxide.
  • the aluminum content of this titanium dioxide powder was measured, the aluminum content of the entire particle was 0.12%, and the aluminum content of the particle surface was 0.11%, and thus contained in the crystal.
  • the aluminum content was 0.11%.
  • Titanium dioxide powder was produced under the same conditions as in Example 1 except that the addition amount of aluminum sulfate was changed to 1.0% in terms of aluminum (A1 addition rate: 0.30%).
  • the total aluminum content of this titanium dioxide powder was 0.31%, the aluminum content on the particle surface was 0.02%, and the aluminum content inside the crystal was 0.29%.
  • the average particle size of the primary particles was 0.23 m.
  • EXAMPLE powder (Ti02 concentration 75%) of the hydrous titanium dioxide slurry one obtained by drying with in 1 440 g (Ti0 2 in terms of 330 g) carbonate potassium respect 1.
  • 3 g,-phosphate two Anmoyuumu 0. 7 g and 0.33 g of alumina powder in terms of aluminum (A1 addition rate 0.10%) were added, and this mixture was allowed to stand in a heating furnace at 800 at 1 hour, and calcined at 96 for 3 hours. This was pulverized to obtain an anatase type titanium dioxide powder having a particle diameter of 0.20 iin.
  • the aluminum content of this dioxide powder was measured in the same manner as in Example 1, the total aluminum content was 0.11%. : 0.04%, therefore the amount of aluminum in the crystal part is 0.07. /. Met.
  • a titanium dioxide powder was produced under the same conditions as in Example 1 except that the amount of aluminum sulfate added was 0.165 g in terms of aluminum (A1 addition rate: 0.05%).
  • the total aluminum content of this titanium dioxide powder was 0.05%, the aluminum content on the surface of the particles was 0.01%, and therefore the aluminum content of the crystal grains was 0.04%.
  • the average particle size of the primary particles was 0.18 ⁇ m.
  • titanium sulfate was hydrolyzed to obtain a hydrous titanium dioxide slurry.
  • the slurry «over, after rinsing, a titanium dioxide concentration of 3 3% aqueous suspension, with respect to the suspension 1 000 g (Ti0 2 in terms of 330 g), potassium carbonate 1. 3 g, dihydrogen phosphate 0.7 g of ammonium and 0.8 Og (Zn addition: 0.10%) of zinc sulfate in terms of zinc were added. After drying this mixed slurry, it is left in a heating furnace at 800 for 1 hour, calcined at 960 for 3 hours, and pulverized to obtain titanium dioxide powder having an average primary particle diameter of 0.20 Um. Obtained.
  • the titanium dioxide powder was confirmed to be an anatase type by X-ray diffraction.
  • Titanium dioxide powder was produced under the same conditions as in Example 5, except that the amount of zinc sulfate added was 2.4 Og (Zn addition rate 0.30%) in terms of zinc.
  • the total zinc content of this titanium dioxide powder was 0.29%, the zinc content on the particle surface was 0.13%, and the zinc content inside the crystal was 0.16%.
  • the average particle size of the primary particles was 0.23 m.
  • EXAMPLE powder hydrous titanium dioxide slurry one obtained by drying with in 1 (Ti0 2 concentration 75%) 4 4 0 g ( Ti0 2 in terms of 330 g) carbonate potassium 1 against. 3 g,-phosphate 2 0.7 g of ammonium and 0.80 g of zinc oxide powder in terms of zinc (Zn addition rate: 0.10%) were added, and the mixture was allowed to stand in a heating furnace at 800 for 1 hour. The mixture was calcined at 0 ⁇ for 3 hours and pulverized to obtain an anatase type titanium dioxide powder having a particle diameter of 0.20 / zn.
  • Example 8 When the zinc content of this dioxide powder was measured in the same manner as in Example 1, the total zinc content was 0.20%, and the zinc content on the particle surface was 0.12%. The amount was 0.08%.
  • Example 8 When the zinc content of this dioxide powder was measured in the same manner as in Example 1, the total zinc content was 0.20%, and the zinc content on the particle surface was 0.12%. The amount was 0.08%.
  • a titanium dioxide powder was produced under the same conditions as in Example 1 except that the amount of zinc sulfate added was 8. O g (Zn addition rate: 1.0%) in terms of zinc.
  • the total zinc content of this titanium dioxide powder was 0.95%, the zinc content on the particle surface was 0.38%, and the zinc content inside the crystal was 0.57%.
  • the average particle size of the primary particles was 0.18 ⁇ .
  • a titanium dioxide powder was obtained in the same manner as in Example 1, except that a mixture of aluminum sulfate and zinc sulfate was used instead of aluminum sulfate. The amounts of aluminum and zinc contained in these crystals were measured. Table 1 shows the results. Comparative Examples 1 to 4
  • An anatase-type titanium dioxide powder was produced in the same manner as in Example 1 except that aluminum sulfate was not added (Comparative Example No. 4).
  • anatase-type titanium dioxide powder was produced in the same manner as in Example 1 except that the aluminum content and / or the zinc content were changed as shown in Table 1 (Comparative Examples No. 1 to No. 3).
  • a color difference meter specified by JIS-Z-8722 (Color-commutator SM-5, manufactured by Suga Test Instruments Co., Ltd.) is used for measurement, and the color difference is indicated by the color difference of the hunter specified by JIS-Z-8730.
  • the results are shown in Table 1. Evaluation method of whiteness
  • the polyethylene sheets containing titanium dioxide of the above Examples and Comparative Samples were ripened in a small Matsufuru furnace at 310 ° for 20 minutes. The sheet was measured using the above color difference meter. The color difference from the unripened sheet was calculated using the hunter one-color difference formula specified in JIS-Z-8370. The results are shown in Table 1. As shown in the results in Table 1, the comparative sample corresponding to the conventional titanium dioxide (Comparative Example No. 4) had a color difference of 2 or more in the light stability test and a color difference of 7 or more in the thermal stability test. It is easy to discolor greatly above.
  • each of the titanium dioxides according to the present invention has a high whiteness of 96 or more, a light difference of 1.2 or less in a light stability test, and a small color difference of 5.7 or less in a thermal stability test. It was confirmed that it had good stability to light and heat.
  • the anatase-type titanium dioxide of the present invention has higher whiteness than conventional products, and has high taste white which is the most important required characteristic of the anatase-type titanium oxide. Further, the anatase-type titanium dioxide of the present invention has an optimum property as a pigment which is remarkably high in light resistance and hardly discolored. Especially when kneading with plastics, discoloration is greatly suppressed even in high temperature treatment around 300 ⁇ Is done. According to the production method of the present invention, the titanium dioxide powder having excellent light resistance can be easily and economically obtained.

Description

明 細 害 安定なアナターゼ型ニ酸化チタンとその製造方法 技 術 分 野
本発明は、 青味を帯びた白色度の高い二酸化チタン粉末であって、 結晶 内に微量のアルミニウムおよび/または亜铅を含有することにより、高温処 理時において変色し難く、 耐光性および耐侯性に優れた化学的安定性の高 いアナターゼ型ニ酸化チタンとその製造方法に関する。 背 景 技 術
二酸化チタンは白色顔料等として広く使用されている。 二酸化チタンに は低温安定相のアナターゼ型と高温安定相のルチル型の 2つの結晶系があ り、 顔料として用いる場合、 それぞれの特徴を生かすように使い分けられ ている。 例えば、 アナターゼ型の二酸化チタンはルチル型に比較して色調 に青味を有する特徴がある。
従来、 アナタ一ゼ型の二酸化チタンは工業的には硫酸法によって製造さ れている。 この製法は、 通常、 硫酸チタニル水溶液を加水分解して含水二 酸化チタンスラリーを生成させ、 これを 8 5 0〜 1 1 0 0 ^で焼成して所 定の粒子径を有するアナターゼ型の二酸化チタン粉末を製造する方法であ る。
このような従来のアナタ一ゼ型ニ酸化チタンはルチル型二酸化チタンに 比べて変色し易く、 耐光性ないし耐候性が低い問題がある。 すなわち、 一 般にニ酸化チタン結晶には部分的な構造欠陥が多少なりとも存在し、 この 構造欠陥が多くなると化学的安定性が低下し、 顔料として使用した場合に 紫外線、 熱、 摩砕力などの外的エネルギーなどにより変色し易くなる。 従 来の硫酸法によって製造されるアナターゼ型ニ酸化チタンはルチル型二酸 化チタンより結晶欠陥が多く変色し易い。 特に、 ブラスチックスの着色料 として用いる場合、最近は混練温度が高くなっており、処理温度が 3 0 0 を超える場合がある。 従来のアナターゼ型ニ酸化チタンは 3 0 0 以上の 処理温度では変色が著しくなり、 プラスチックスの色調を損ねると云う問 題がある。
本発明は従来のアナターゼ型ニ酸化チタンにおける上記問題を解決した ものであり、 白色度が高く、 かつ高温処理下においても変色し難く、 耐光 性および耐侯性に便れた化学的安定性の良いアナタ一ゼ型ニ酸化チタンと その製造方法を提供することを目的とする。 なお、 以下の説明において、 白色度が高く、 高温処理下において変色し難く、 耐光性および耐侯性に便 れた化学的安定性の良いことを便宜上、 色安定性が高いと云う場合がある。 発 明 の 開 示
本発明の二酸化チタンは、 ( 1 ) 6配位のイオン半径が 0. 6 A以上であ つて 0. 9 A以下の 2価ないし 3価の無着色陽イオンを二酸化チタン結晶 內に含有させることにより色安定性を髙めたことを特徴とするアナタ一ゼ 型二酸化チタンである。 この好適な無着色囌イオンとして、 (2 )アルミ二 ゥムまたは亜鉛の少なく とも 1種が結晶内に導入される。
結晶內に導入されたアルミェゥムおよび亜鉛の含有量は、(3 ) 0. 0 2〜 0. 4 %、 好ま しく は 0. 0 4〜 0. 3 %のアルミニウム、 (4 ) 0. 0 5 ~ 1 . 0 %、好ましくは 0. 1 ~ 0. 6 %の亜鉛が適当であり、両者を併用する 場合には、 (5 )両者の合計量が 0. 0 2 ~ 1 . 0 «½、 好ましくは 0. 0 4〜 0. 6 %、 但しアルミニウムの含有量が 0. 4 %以下であるものが適当であ る。 また、 (6 )二酸化チタン粒子の大きさは一次粒子の平均粒子径が 0. 0 1〜 1 . 0 /i mのものが適当である。
さらに本発明は、 (7 )硫酸チタンの加水分解により得た含水二酸化チタ ンに、アルミニウム化合物および/または亜鉛化合物を加えて焼成すること により、結晶內にアルミニウムおよび/または亜鉛を含有させたアナターゼ 型二酸化チタンを製造することを特徴とする二酸化チタンの製造方法であ る。 (8 )この製造方法により結晶内に 0. 0 2〜 0. 4 %のアルミニウム、 0. 0 5〜 1 . 0 %の亜鉛、 または合計量が 0. 0 2〜 1 . 0 %であってアル ミニゥム量が 0. 4 %以下のアルミ二ゥムと亜鉛を含有した色安定性の高 いアナタ一ゼ型ニ酸化チタンが得られる。
本発明の上記製造方法は、 (9 )含水二酸化チタンのスラリーに水溶性ァ ノレミニゥム化合物および/または水溶性亜鉛化合物を溶解し、このスラリ一 を乾燥後、 8 50〜 1 1 00 で焼成する方法、 (1 0)含水二酸化チタン のスラリ一を乾燥して得た二酸化チタン粉末にアルミニウム化合物粉末お よび/または亜鉛化合物粉末を混合し、この混合物を 850〜 1 1 00 で 焼成する方法を含む。 発明を実施するための最良の形態
( I )本発明の二酸化チタン
二酸化チタン結晶は、 1つのチタンイオンに対して 6つの酸素イオンが 配位した構造を有し、 アナターゼ型結晶はイオン性のルチル型結晶よりも 共有性が強い結晶である。 本発明はこのアナターゼ型ニ酸化チタンについ て、 その色安定性を高めたものである。
二酸化チタンの変色原因は、 結晶欠陥により生じた自由電子が 4価のチ タンイオンに取り込まれて 3価のチタン(紫色)となることが結晶構造上の 主な理由であると考えられる。 この自由電子を捕捉するには 2価あるいは 3価の金属イオンをドーブして正孔を生成させればよいが、 このドーブイ オンは 4価のチタンイオンとイオン半径 (Ti4+:0.75A) が近似し、 かつ二 酸化チタンの白色を損なわないように出来るだけ着色しないイオンである ことが求められる。
二酸化チタンの結晶は 6配位のチタンイオン(Ti4+)によって形成されて いることから、 本発明の二酸化チタンは、 6配位のチタンイオン(Ti4+)と 近似した 0. 6 A以上〜 0.9 A以下のイオン半径を有し、 2価ないし 3価 の無着色陽イオンを二酸化チタン結晶內に含有させることにより色安定性 を高めたアナターゼ型ニ酸化チタンである。 なお、 上記イオン半径は 6配 位の O2—および F—の半径をおのおの 1.26Aおよび 1.19Aとし、これを基準 にした値である。 「化学便覽基礎編」 改訂 3版の 11-717頁の表 15·23によれ ば、 4価のチタンイオンとイオン半径が近似するものとして次のイオンが 掲げられている (括弧內の値は 6配位のイオン半径) 。
Fe3+(0.69A)、 Co3+(0.69〜0· 75A)、 Ni2+ (0.70〜0.74 A )、 Cu2+(0.87 Α)、 Α13+(0.68Α)、 Ζη2+(0.88Α)、 Ga3+(0.76A)、 Mg2+ (0.86 A)
このうち Fe3 +、 Co3 +、 Ni2 +、 Cu2+は着色イオンであるので好ましくない。 本発明の目的には Al3 +、 Zn2+、 Ga3 +、 Mg2 +が適する。 なかでも効果および 経済性の点から Al3+および Zn2 +が好ましい。
本発明は、 好適な態様として、 二酸化チタンの結晶內にアルミニウムィ オンまたは亜鉛イオンの少なく とも 1種を含有させたものであり、 これに より結晶欠陥が補われ、 安定性が向上するので高温下でも変色し難く、 耐 光性および耐候性に優れ、 また青味が強く白色度の高い粉末が得られる。 結晶内に導入されるアルミェゥムおよび/または亜鉛の量は、アルミユウ ムイオンとして 0. 0 2〜 0. 4 %、 好ましくは 0. 0 4〜 0. 3 %および/ または亜鉛ィオンとして 0. 0 5〜 1. 0%、 好ましくは 0. 1〜0. 6 %が 適当であり、 アルミニウムと亜鉛を併用する場合には、 これらイオンの合 計量が 0. 0 2〜: 1. 0%、 好ましくは 0. 0 4〜 0. 6 %であってアルミ二 ゥム量が 0. 4 %以下の範囲が適当である。
アルミニウムないし亜鉛の導入量が上記範囲よりも少ないと二酸化チタ ンの化学的な安定性を向上する効果が不十分である。 また、 導入量が上記 範囲を上回ると結晶内に入らない遊離のアルミニウムや亜鉛が酸化物の状 態で二酸化チタン粒子に混在するため隨蔽カや白色度などの顔料性能が低 下するので好ましくない。
なお、 アルミニウムのドープ量の上限は亜鉛の約半分程度であるが、 こ れはアルミ二ゥムの場合には添加量が多過ぎると粒子が固結し易くなり、 顔料としての分散性が損なわれるためである。 亜鉛はこのような傾向は少 ない。
アルミニウムおよび亜鉛は結晶内部に取り込まれているものの他に粒子 表面に付着されているものもあるが、 本発明のアルミニゥム含有量および 亜鉛含有量は二酸化チタン結晶の内部に導入されている量であり、 粒子表 面に付着した量を含まない。
なお、 工業的に生産されるアナターゼ型ニ酸化チタンには、 原料鉱石 に由来するものや製造工程の途中から混入するものなどを含めて、 約 0. 0 1 %程度のアルミ二ゥムを含有するものがあるが、この量では化学的 安定性(色安定性)を向上させる効果は得られない。
次に、 本発明のアナターゼ型ニ酸化チタンは一次粒子の平均粒子径が 0. 0 1〜 1. 0 μ mのものが適当である。 一次粒子の平均粒子径が 0. 0 1 u m未満では粒子全体の中で自由エネルギーの高い表面の比率が増大して 化学的に不安定になる。 一方、 粒子径が 1 . 0 nを越えると顔料としての 基礎的な物性が保てないので適当ではない。 一次粒子の平均粒子径が上記 範囲の二酸化チタン粒子を得るには、 後述する製造方法において硫酸チタ ンの加水分解における沈殿条件の調整、 あるいはその後の焼成工程におけ る温度の調整などを行えばよい。
(II)本発明の製造方法
本発明のアナターゼ型ニ酸化チタンは硫酸法に基づいて製造することが でき、硫酸チタンの加水分解によって得た含水二酸化チタンに、導入量(ド ープ量)に応じたアルミニウム化合物および/または亜鉛化合物を加えて焼 成することにより得ることができる。
硫酸法によるアナターゼ型ニ酸化チタンの製造方法では、 ィルメナイ ト、 チタンスラグなどの鉱石を硫酸で溶解した硫酸チタン水溶液を加水分解し、 含水二酸化チタンのスラリーを生成させ、 これを洗浄して乾燥後、 8 5 0 〜 1 1 0 0 に焼成することによりアナターゼ型ニ酸化チタン粉末を得る。 本発明の製法では、 この含水二酸化チタンを洗浄し、 懸獨液の二酸化チ タン濃度を調整後、導入量に応じた量のアルミニウム化合物および/または 亜鉛化合物を加え、 この混合スラリーを乾燥後、 焼成する。
アルミニウム化合物および亜鉛化合物は水溶性のものを用いて湿式にて 添加しても良く、 また粉末状のものを用いて乾式にて添加しても良い。 水 溶性のアルミニウム化合物としては硫酸アルミニウムなどを用いることが でき、 粉末状のアルミニウム化合物としてはアルミナなどが用いられる。 また、 水溶性の亜鉛化合物としては硫酸亜鉛などを用いることができ、 粉 末状の亜鉛化合物としては酸化亜鉛などが用いられる。
湿式で添加するには、 上記含水二酸化チタンのスラリーに所定量の硫酸 アルミニウム、 硫酸亜鉛などを溶解させた後に、 このスラリーを乾燥して 焼成する。 乾式で添加するには上記含水二酸化チタンのスラリーを乾燥し て粉末とし、 これに所定量のアルミナ粉末、 酸化亜鉛粉末を混合し、 撹拌 して均一に分散させると良い。
なお、 湿式および乾式のいずれの製造方法においても、 二酸化チタンに 添加したアルミニゥム化合物ないし亜鉛化合物に含まれるアルミ二ゥムゃ 亜鉛の全量が結晶内に取り込まれるわけではなく、 添加方法や混合方法お よび焼成条件等によっても導入歩留まりは大きく変動するため、 これらの 条件に応じて添加量を定めるのが好ましい。
以上のほかに、 アナターゼ型ニ酸化チタンの工業的製法においては、 粒 度や硬度を整え、 さらにはルチル型結晶の生成を抑制するために、 焼成前 に少量の力リ ゥムおよび燐化合物を添加する。 これらの添加を省略すると 粒度や硬度が不均一となり顔料としての特性が失われる。 具体的には、 力 リ ゥムは焼成中における粒子どう しの »合を調整し、 粒度のバラツキを少 なくする。 通常、 カリ ウム源としては炭酸カリウムが用いられ、 添加量は 炭酸カリ ウムとして 0 . 2〜0 . 5 %程度である。 また、 燐はルチルへの転 移を抑制する。 通常、 燐の供給源としては第 1〜 3燐酸アンモニゥムが用 いられ、 添加量は五酸化燐換算で 0 . 0 5〜0 . 2 %程度である。 なお、 炭 酸力リ ゥムおよび第 1〜 3燐酸アンモニゥムの代わりに燐酸 3力リ ウムと 炭酸カリ ウムとを加えても良い。 なお、 カリ ウムは焼成後湿式仕上げ工程 で洗い流される。
上記工程で得たスラリ一あるいは原料混合粉末を 8 5 0〜1 1 0 0 で 焼成する。 焼成温度が 8 5 O t未満では焼成が十分に行われない。 また 1 1 0 0 ¾を上回ると粒子の焼結が生じ、 顔料としての白色度や分散性が 著しく損なわれる。 焼成は高温度で短時間に行うよりも比較的低温で長時 間行うほうが焼結が少なく分歉性の良い粉末が得られる。
以上の製造方法により、 化学的に安定な耐光性に優れたアナターゼ型ニ 酸化チタン粉末が得られる。
(III) 実 施 例
本発明の実施例を以下に示す。 なお、 これらは例示であり本発明の範囲 を限定するものではない。 これらの例において、 二酸化チタンに含まれる アルミニウムおよび亜鉛の量は以下の方法によって測定した。 また、 粒子 径は透過型電子顕微鏡を用いて一次粒子の大きさを計測し、 重量平均によ つて平均径を求めた。
( 1) 粒子表面のアルミニウム含有量、 亜鉛含有量:
二酸化チタン粒子 1 gを 5 %塩酸 1 0 O gに混合して加熱抽出し、 抽出液 中のアルミニウム濃度および亜鉛濃度を I C Pなどにより検量する。
(2) 結晶内部のアルミニウム含有量、 亜鉛含有量:
濃硫酸 1 0〜1 5mlに濃硝酸 5mlを加え、この混合液に二酸化チタン 1 g を加えて加熱し、 必要に応じてフッ酸を添加することにより二酸化チタン を溶解し、 この溶解液中のアルミニウム濃度および亜鉛濃度を I C Pなど により検量する。 この量から粒子表面のアルミニウム量および亜鉛量を差 し引いて結晶内部に含まれるアルミニウム含有量および亜鉛含有量が得ら れる。 実施例
一般的な硫酸法による二酸化チタンの製造方法に基づき、 硫酸チタンを 加水分解して含水二酸化チタンスラリーを得た。 このスラリーを爐過、 洗 浄後、 二酸化チタン濃度が 3 3 %の水性懸滞液とし、 この懸濁液 1 000 g (Ti02換算 330g)に対して、 炭酸力リ ウム 1. 3 g、 リ ン酸二アンモニゥ ム 0. 7 gおよびアルミニウム換算として 0. 3 3 g (A1添加率 0.10%)の硫 酸アルミ二ゥムを加えた。この混合スラリ一を乾燥後、加熟炉中に 800*C で 1時間静置後、 9 60^で 3時間焼成し、 粉砕して一次粒子の平均粒子 径が 0. 20 μ mの二酸化チタン粉末を得た。
この粉末は X線回折によりアナターゼ型ニ酸化チタンであることを確認 した。 また、 この二酸化チタン粉末についてアルミニウム含有量を測定し たところ、粒子全体のアルミ二ゥム量は 0. 1 2%、粒子表面のアルミユウ ム量は 0. 0 1 %、 従って結晶内部に含まれるアルミニウム量は 0. 1 1 % であった。 実施例 2
硫酸アルミニウムの添加量をアルミニウム換算で 1. 0 % (A1添加率 0.30%) とした以外は実施例 1 と同一の条件で二酸化チタン粉末を製造し た。 この二酸化チタン粉末の全アルミ二ゥム量は 0. 3 1 %、粒子表面のァ ルミユウム量は 0.02%、 従って結晶内部のアルミニム量は 0. 2 9 %で あった。 また一次粒子の平均粒子径が 0. 2 3 m であった。 実施例 3
実施例 1で用いた含水二酸化チタンスラリ一を乾燥して得た粉末(Ti02 濃度 75%) 440 g (Ti02 換算 330g)に対して炭酸カリ ウム 1. 3 g、 リ ン 酸二アンモユウム 0. 7 gおよびアルミニウム換算として 0. 3 3 g (A1添 加率 0.10%) のアルミナ粉末を加え、 この混合物を加熱炉中に 80 0でで 1時間静置後、 9 6 で 3時間焼成し、 粉砕して粒子径 0. 20 iinのァ ナターゼ型ニ酸化チタン粉末を得た。 この二酸化粉末について、 実施例 1 と同様にしてアルミニゥム含有量を測定したところ、 全アルミ二ゥム量は 0. 1 1 %であり、 粒子表面のアルミニウム!:は 0.04%、 従って、 結晶 內部のアルミニム量は 0.07。/。であった。 実施例 4
硫酸アルミ二ゥムの添加量をアルミニゥム換算で 0. 1 6 5 g (A1添加率 0.05%)とした以外は実施例 1 と同一の条件で二酸化チタンの粉末を製造 した。 この二酸化チタン粉末の全アルミ -ゥム量は 0.0 5 %であり、粒子 表面のアルミニウム量は 0. 0 1 %、 従って結晶內都のアルミ二ゥム量は 0. 04 %であった。 また、 一次粒子の平均粒子径は 0. 1 8 μ Β であった。 実施例 5
一般的な硫酸法による二酸化チタンの製造方法に基づき、 硫酸チタンを 加水分解して含水二酸化チタンスラリーを得た。 このスラリーを «過、 洗 浄後、 二酸化チタン濃度 3 3 %の水性懸濁液とし、 この懸濁液 1 000 g (Ti02換算 330g) に対して、 炭酸カリウム 1. 3g、 リン酸二アンモニゥム 0. 7 gおよび亜鉛換算として 0. 8 Og (Zn添加率 0.10%) の硫酸亜鉛を加 えた。 この混合スラリーを乾燥した後、 加熱炉中に 800 で 1時間静置 後、 9 6 0でで 3時間焼成し、 粉砕して一次粒子の平均粒子径が 0. 20 U m の二酸化チタン粉末を得た。
この二酸化チタン粉末について亜鉛含有量を測定したところ、 全亜鉛量 は 0. 0 8%、 粒子表面の亜鉛量は 0.0 1 <½、 従って、 結晶內部の亜鉛量 は 0. 0 7 %であった。なお上記二酸化チタン粉末は X線回折によりアナタ —ゼ型であることを確認した。 実施例 6
硫酸亜鉛の添加量を亜鉛換算で 2. 4 O g (Zn添加率 0.30%) とした以外 は実施例 5と同一の条件で二酸化チタン粉末を製造した。 この二酸化チタ ン粉末の全亜鉛量は 0. 2 9 %であり、 粒子表面の亜鉛量は 0. 1 3 %、 従 つて結晶内部の亜鉛量は 0. 1 6 %であった。また一次粒子の平均粒子径が 0. 2 3 m であった。 実施例 7
実施例 1で用いた含水二酸化チタンスラリ一を乾燥して得た粉末(Ti02 濃度 75%) 4 4 0 g(Ti02 換算 330g) に対して炭酸カリ ウム 1 . 3 g、 リ ン 酸 2アンモニゥム 0. 7 gおよび亜鉛換算として 0. 8 0 g(Zn添加率 0. 10%) の酸化亜鉛粉末を加え、 この混合物を加熱炉中に 8 0 0でで 1時間静置後、 9 6 0 ^で 3時間焼成し、粉砕して、粒子径 0. 2 0 /z n のアナターゼ型ニ 酸化チタン粉末を得た。
この二酸化粉末について、 実施例 1 と同様にして亜鉛量を測定したとこ ろ、 全亜鉛量は 0. 2 0 %であり、 粒子表面の亜鉛量は 0. 1 2 %、 従って、 結晶内部の亜鉛量は 0. 0 8 %であった。 実施例 8
硫酸亜鉛の添加量を亜鉛換算で 8. O g (Zn添加率 1· 0%) とした以外は実 施例 1 と同一の条件で二酸化チタンの粉末を製造した。 この二酸化チタン 粉末の全亜鉛量は 0. 9 5 %であり、 粒子表面の亜鉛量は 0. 3 8 %、 従つ て結晶内部の亜鉛量は 0. 5 7 %であった。 また一次粒子の平均粒子径は 0. 1 8 μ α であった。 実施例 9〜: I 2
実施例 1において、 硫酸アルミニウムに代えて、 硫酸アルミニウムと硫 酸亜鉛の混合物を用いた以外はおのおの同様にして二酸化チタン粉末を得 た。 これらの結晶内部に含まれるアルミニウムと亜鉛の量を測定した。 こ の結果を表 1に示した。 比較例 1 〜4
硫酸アルミニウムを加えない他は実施例 1 と同様にしてアナタ一ゼ型ニ 酸化チタン粉末を製造した (比較例 No. 4) 。 また、 アルミニウム含有量お よび/または亜鉛含有量を表 1のように変えた他は実施例 1 と同様にして アナターゼ型ニ酸化チタン粉末を製造した (比較例 No. l〜No. 3) 。 光安定性の評価方法
上記実施例および比較試料の二酸化チタン粉末 2 gを水溶性メチロール メラミン榭脂塗料 1 . 6 mlに加えて混練した後に、 アブリケータ (4mi l) で ガラス板に塗布し、 乾燥させた。 この板を平面上で回転させながら紫外線 下に 8時間曝し (紫外線ランプ:東芝社製 SHL- 1000UVQ- 2) 、 ガラス板表 面の色について紫外線照射前後の色差を測定した。 測定には JIS- Z-8722に 規定された色差計 (スガ試験機社製カラ-コンビュ-タ SM- 5型) を用い、 色差の表 示は JIS-Z- 8730に規定されたハンターの色差式に従った。 この結果を表 1 に示した。 白色度の評価方法
上記実施例および比較試料の二酸化チタン粉末 5 gをポリ エチレン榭 脂(三井石油化学工業社製ミラ;;ン 402) 4 5 gに加えて、 二本ロールを用い 1 5 0 で混練した後に 1 mm厚のシ一トに成型する。 このシートの白色度 を上記色差計を用い測定した。 この結果を表 1に示した。 熱安定性の評価方法
上記実施例および比較試料の二酸化チタンを含むポリエチレンシートを 小型マツフル炉を用い 3 1 0 ^で 2 0分加熟した。 そのシートを上記色差 計を用い測定した。 加熟前のシートとの色差を JIS- Z-8370に規定されたハ ンタ一色差式を用いて算出した。 この結果を表 1に示した。 表 1の結果に示されるように、 従来の二酸化チタンに相当する比較試料 (比較例 No. 4)は光安定性試験の色差が 2以上、 熱安定性試験の色差が 7以 上と大きく変色し易い。 一方、 本発明に係る二酸化チタンは、 いずれも白 色度が 9 6以上と高く、 また光安定性試験の色差が 1 . 2以下、熱安定性試 験の色差が 5 . 7以下と小さく、光および熱に対する安定性に傻れることが 確認された。
また、 アルミニウムと亜鉛のド一プ量が本発明の下限未満の試料 (比較 試料 No. 1〜3)は光安定性および熱安定性の色差が従来品に近く、改良効果 が小さい。一方、 ドーブ!:が本発明の上限を超える試料(比較試料 No. 1〜3) は白色度が低下している。
Figure imgf000014_0001
産業上の利用可能性
本発明のアナタ一ゼ型ニ酸化チタンは、 従来品よりも白色度が高く、 ァ ナターゼ型酸化チタ ンの最も重要な要求特性である靑味の高い白色を有す る。 また本発明のアナターゼ型ニ酸化チタンは、 耐光性が格段に高く変色 し難いと云う顔料として最適な特性を有する。 特にプラスチックスとの混 練加工時において、 3 0 0 ^付近の高温処理においても変色が大幅に抑制 される。 また本発明の製造方法によれば耐光性に優れた上記二酸化チタン 粉末を容易に経済的に得ることができる。

Claims

請 求 の 範 囲
( 1 ) 6配位のイオン半径が 0. 6 A以上であって 0. 9 A以下の 2価な いし 3価の無着色陽イオンを二酸化チタン結晶内に含有させることにより 色安定性を高めたことを特徴とするアナターゼ型ニ酸化チタン。
( 2 ) アルミニウムまたは亜鉛の少なく とも 1種を結晶内に含有させた 請求項 1の二酸化チタン。
( 3 ) 0. 0 2〜 0. 4 %、 好ましくは 0. 0 4〜 0. 3 %のアルミニウム を含有させた請求項 2の二酸化チタン。
(4 ) 0. 0 5〜: . 0 %、 好ましくは 0. 1 〜 0. 6 %の亜鉛を含有させ た請求項 2の二酸化チタン。
( 5 ) アルミニウムおよび亜鉛を含有させ、 両者の合計量が 0. 0 2〜 1. 0 %、 好ましくは 0. 0 4 ~ 0. 6 °/0、 但しアルミニウムの含有量が 0. 4 %以下である請求項 2の二酸化チタン。
( 6 )—次粒子の平均粒子径が 0. 0 l〜 1. 0 |i inである請求項 1 〜 5の いずれかの二酸化チタン。
( 7 ) 硫酸チタンの加水分解により得た含水二酸化チタンに、 アルミ二 ゥム化合物および/または亜鉛化合物を加えて焼成することにより、結晶内 にアルミニゥムおよび/または亜鉛を含有させたアナターゼ型ニ酸化チタ ンを製造することを特徴とする二酸化チタンの製造方法。
( 8) 結晶内に、 0. 0 2〜 0. 4 %のアルミニウム、 0. 0 5〜; 1. 0% の亜鉛、 または合計量が 0. 0 2〜 1 . 0 «½であってアルミニウム量が 0. 4 %以下のアルミ二ゥムと亜鈴を含有させる請求項 7の製造方法。
( 9 ) 含水二酸化チタンのスラリ一に水溶性アルミニウム化合物およ び/または水溶性亜鉛化合物を溶解し、 このスラ リーを乾燥後、 8 5 0 ~
1 1 0 0でで焼成する請求項 7または 8の製造方法。
( 1 0) 含水二酸化チタンのスラリーを乾燥して得た二酸化チタン粉末 にアルミニゥム化合物粉末および/または亜鉛化合物粉末を混合し、この混 合物を 8 5 0〜 1 1 0 0^で焼成する請求項 7または 8の製造方法。
PCT/JP1996/003843 1995-12-27 1996-12-27 Octahedrite stable et son procede de preparation WO1997024288A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP96943323A EP0870730A4 (en) 1995-12-27 1996-12-27 STABLE ANATAS TITANIUM OXIDE AND METHOD FOR THE PRODUCTION THEREOF
US09/091,742 US6113873A (en) 1995-12-27 1996-12-27 Stable anatase titanium dioxide and process for preparing the same
AU12091/97A AU1209197A (en) 1995-12-27 1996-12-27 Stable anatase titanium dioxide and process for preparing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP7/351283 1995-12-27
JP35128395 1995-12-27
JP8/142052 1996-06-05
JP14205296 1996-06-05

Publications (1)

Publication Number Publication Date
WO1997024288A1 true WO1997024288A1 (fr) 1997-07-10

Family

ID=26474185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/003843 WO1997024288A1 (fr) 1995-12-27 1996-12-27 Octahedrite stable et son procede de preparation

Country Status (4)

Country Link
US (1) US6113873A (ja)
EP (1) EP0870730A4 (ja)
AU (1) AU1209197A (ja)
WO (1) WO1997024288A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004052786A1 (ja) * 2002-12-09 2004-06-24 Tayca Corporation 有益な性質を有する酸化チタン粒子およびその製造方法
JP2015168602A (ja) * 2014-03-07 2015-09-28 堺化学工業株式会社 二酸化チタン粒子の製造方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2494787A1 (en) * 2002-08-07 2004-03-25 Ishihara Sangyo Kaisha, Ltd. Titanium dioxide pigments,method for production thereof and resin composition comprising the same
TW200422260A (en) * 2002-11-07 2004-11-01 Sustainable Titania Technology Titania-metal complex and method for preparation thereof, and film forming method using dispersion comprising the complex
US7413599B2 (en) 2004-08-26 2008-08-19 Eckart Gmbh & Co. Kg Coated pearlescent pigments with SiO2 and cerium oxide
US7699927B2 (en) 2004-08-26 2010-04-20 Eckart Gmbh SiO2 coated pearlescent pigments
DE102006009129A1 (de) 2006-02-24 2007-08-30 Eckart Gmbh & Co.Kg Wetterstabile Perlglanzpigmente mit Nachbeschichtung enthaltend α-Silane und Verfahren zu deren Herstellung
WO2010056536A1 (en) * 2008-10-29 2010-05-20 Haydock Consulting Services, Lc Removal of contaminants from by-product hydrochloric acid
US8308848B1 (en) * 2009-11-27 2012-11-13 Tda Research, Inc. High temperature gas desulfurization sorbents
DE102010001051B3 (de) * 2010-01-20 2011-06-16 Sachtleben Chemie Gmbh Anatasweißpigment mit hoher Licht- und Wetterbeständigkeit
DE102011015338A1 (de) 2011-03-28 2012-10-04 Eckart Gmbh Wetterstabile Perlglanzpigmente, Verfahren zu ihrer Herstellung und Verwendung
DE102012017854A1 (de) * 2012-09-08 2014-05-28 Kronos International, Inc. Infrarot-reflektierendes Pigment auf Basis Titandioxid sowie Verfahren zu seiner Herstellung
DE102012109407A1 (de) 2012-10-02 2014-03-27 Eckart Gmbh Wetterstabile Perlglanzpigmente, Verfahren zu ihrer Herstellung und Verwendung
EP2727966A1 (de) 2012-11-06 2014-05-07 Eckart GmbH Pigment mit photokatalytischer Aktivität, Verfahren zu dessen Herstellung und Beschichtungsmittel
SI3034562T2 (sl) 2014-12-19 2022-04-29 Eckart Gmbh Absorbirni efektni pigmenti z visoko kromatičnostjo in visokim sijajem, postopek za njihovo pripravo in njihova uporaba
WO2016097421A1 (de) 2014-12-19 2016-06-23 Eckart Gmbh Rotfarbene effektpigmente mit hohem chroma und hoher brillanz, verfahren zu ihrer herstellung und verwendung derselben
ES2726181T3 (es) 2014-12-19 2019-10-02 Eckart Gmbh Pigmento de efecto de color con alto croma y alta brillantez, procedimiento para su preparación y uso del mismo
PL3034564T3 (pl) 2014-12-19 2018-07-31 Eckart Gmbh Pigmenty efektowe o wysokiej transparentności, wysokim nasyceniu i wysokiej czystości barwy, sposób ich wytwarzania i ich zastosowanie
PL3034566T3 (pl) 2014-12-19 2019-08-30 Eckart Gmbh Metaliczne pigmenty efektowe o wysokim nasyceniu barwy i wysokim połysku, sposób ich wytwarzania oraz ich zastosowanie
DE102016112682A1 (de) * 2016-07-11 2018-01-11 Huntsman P&A Germany Gmbh Verfahren zur Herstellung von Titandioxid und das so erhaltene Titandioxid
CN109952347B (zh) * 2016-10-24 2024-03-15 石原产业株式会社 复合颜料及其制备方法,含有复合颜料的涂料组合物,以及涂膜

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5328280B1 (ja) * 1967-08-29 1978-08-14
JPS63225532A (ja) * 1987-03-13 1988-09-20 Seiko Epson Corp 酸化チタン微粒子及び光学部材
JPS63310767A (ja) * 1988-05-21 1988-12-19 Mitsubishi Heavy Ind Ltd 酸化チタン焼成品の製造方法
JPS647941A (en) * 1987-05-30 1989-01-11 Tioxide Group Plc Oil dispersion and its production
JPH05184920A (ja) * 1991-11-15 1993-07-27 Mitsubishi Petrochem Co Ltd クレゾール異性体分離用吸着剤
JPH05246717A (ja) * 1990-08-16 1993-09-24 Tioxide Group Services Ltd 核懸濁物の製造方法
JPH05310425A (ja) * 1992-05-12 1993-11-22 Kao Corp 金属酸化物微粒子の製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3658539A (en) * 1968-05-22 1972-04-25 Nl Industries Inc Method for the preparation of photoreactive titanium dioxide composition
SU975577A1 (ru) * 1980-10-17 1982-11-23 Предприятие П/Я Г-4855 Способ получени пигментной двуокиси титана анатазной модификации
JPS5937305B2 (ja) * 1980-11-18 1984-09-08 石原産業株式会社 二酸化チタン顔料
IT1161200B (it) * 1983-02-25 1987-03-18 Montedison Spa Processo e apparecchio per la preparazione di particelle di ossidi metallici monodisperse, sferiche, non aggregate e di dimensione inferiore al micron
JPS60163956A (ja) * 1984-02-04 1985-08-26 Arakawa Chem Ind Co Ltd 吸水性樹脂の製法
DE3688768T2 (de) * 1985-03-05 1993-11-11 Idemitsu Kosan Co Verfahren zur Herstellung von sehr feinen kugelförmigen Metalloxydteilchen.
JPS61293228A (ja) * 1985-06-21 1986-12-24 Arakawa Chem Ind Co Ltd 吸水性樹脂の製法
US4801509A (en) * 1985-07-05 1989-01-31 Mitsubishi Paper Mills, Ltd. Photographic resin coated paper
EP0267535B1 (en) * 1986-11-11 1990-08-08 Ishihara Sangyo Kaisha, Ltd. Acicular electroconductive titanium oxide and process for producing same
US4753829A (en) * 1986-11-19 1988-06-28 Basf Corporation Opalescent automotive paint compositions containing microtitanium dioxide pigment
GB8829402D0 (en) * 1988-12-16 1989-02-01 Tioxide Group Plc Dispersion
JP3005319B2 (ja) * 1990-10-19 2000-01-31 石原産業株式会社 針状あるいは板状低次酸化チタンおよびその製造方法
US5235071A (en) * 1991-07-10 1993-08-10 Nippon Shokubai Co., Ltd. Catalyst for producing phthalic anhydride and process by using the same
JP3537466B2 (ja) * 1993-08-17 2004-06-14 チタン工業株式会社 二酸化チタン微粉末およびその製造方法
GB9501086D0 (en) * 1995-01-20 1995-03-08 Tioxide Group Services Ltd Preparation of anatase titanium dioxide
JPH08333602A (ja) * 1995-06-05 1996-12-17 Toyo Alum Kk 着色チタンフレーク、その製造方法および着色チタンフレークを含む樹脂組成物
JP3814841B2 (ja) * 1995-07-06 2006-08-30 住友化学株式会社 金属酸化物粉末の製造方法
US5746961A (en) * 1995-12-04 1998-05-05 Michael J. Stevenson Method for enhancement of the surfaces of molded plastic products

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5328280B1 (ja) * 1967-08-29 1978-08-14
JPS63225532A (ja) * 1987-03-13 1988-09-20 Seiko Epson Corp 酸化チタン微粒子及び光学部材
JPS647941A (en) * 1987-05-30 1989-01-11 Tioxide Group Plc Oil dispersion and its production
JPS63310767A (ja) * 1988-05-21 1988-12-19 Mitsubishi Heavy Ind Ltd 酸化チタン焼成品の製造方法
JPH05246717A (ja) * 1990-08-16 1993-09-24 Tioxide Group Services Ltd 核懸濁物の製造方法
JPH05184920A (ja) * 1991-11-15 1993-07-27 Mitsubishi Petrochem Co Ltd クレゾール異性体分離用吸着剤
JPH05310425A (ja) * 1992-05-12 1993-11-22 Kao Corp 金属酸化物微粒子の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0870730A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004052786A1 (ja) * 2002-12-09 2004-06-24 Tayca Corporation 有益な性質を有する酸化チタン粒子およびその製造方法
JPWO2004052786A1 (ja) * 2002-12-09 2006-04-13 テイカ株式会社 有益な性質を有する酸化チタン粒子およびその製造方法
EP1580166A4 (en) * 2002-12-09 2010-08-25 Tayca Corp TITANIUM OXIDE PARTICLES HAVING USEFUL PROPERTIES, AND PROCESS FOR MAKING SAME
JP4546834B2 (ja) * 2002-12-09 2010-09-22 テイカ株式会社 有益な性質を有する酸化チタン粒子およびその製造方法
JP2015168602A (ja) * 2014-03-07 2015-09-28 堺化学工業株式会社 二酸化チタン粒子の製造方法

Also Published As

Publication number Publication date
EP0870730A4 (en) 1999-02-03
EP0870730A1 (en) 1998-10-14
US6113873A (en) 2000-09-05
AU1209197A (en) 1997-07-28

Similar Documents

Publication Publication Date Title
WO1997024288A1 (fr) Octahedrite stable et son procede de preparation
US3437502A (en) Titanium dioxide pigment coated with silica and alumina
US8475582B2 (en) Process for making a water dispersible titanium dioxide pigment useful in paper laminates
EP0078633B1 (en) Pigments and their preparation
USRE27818E (en) Titanium dioxide pigment coated with silica and alumina
US4455174A (en) Yellow pigment containing bismuth vanadate and having the composition BiVO4.xBi2 MoO6.yBi2 WO6
EP2178798B1 (en) Method of preparing a well-dispersable microcrystalline titanium dioxide product
JPS6411670B2 (ja)
CN107574711B (zh) 一种装饰纸用钛白粉的生产方法
JPS602338B2 (ja) 多孔質のアルミナ/シリカおよび緻密なシリカにより被覆されたTiO↓2顔料
GB2181723A (en) Stabilised zirconia
US4405376A (en) Titanium dioxide pigment and process for producing same
US6616747B2 (en) Process for producing granular hematite particles
KR100226370B1 (ko) 세라믹물질의 제조용 조성물 및 그 제조방법
JPH0230347B2 (ja)
JPH1111948A (ja) 安定なアナターゼ型二酸化チタン
JPS6240292B2 (ja)
US2817595A (en) Preparation of chalk resistant anatase pigment
US3503772A (en) Sio2-zno treated tio2 pigments for paper laminates
US3220867A (en) Sulfate-base rutile tio2 pigment and method for producing same
JPS61106414A (ja) 導電性低次酸化チタン微粉末及びその製造方法
JP6403781B2 (ja) 無機粒子、特に二酸化チタン顔料粒子を表面コーティングするための方法
JP4182669B2 (ja) 粒状ヘマタイト粒子粉末の製造法
EP2663525A1 (en) Process for controlling particle size and silica coverage in the preparation of titanium dioxide
US3561968A (en) Photoreactive titanium dioxide composition

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KR KZ LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1996943323

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09091742

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1996943323

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 1996943323

Country of ref document: EP