WO1997003614A1 - Device and method for reinforcing surgical staples - Google Patents

Device and method for reinforcing surgical staples Download PDF

Info

Publication number
WO1997003614A1
WO1997003614A1 PCT/US1996/010937 US9610937W WO9703614A1 WO 1997003614 A1 WO1997003614 A1 WO 1997003614A1 US 9610937 W US9610937 W US 9610937W WO 9703614 A1 WO9703614 A1 WO 9703614A1
Authority
WO
WIPO (PCT)
Prior art keywords
sleeve
stapler
face
surgical
tear lines
Prior art date
Application number
PCT/US1996/010937
Other languages
French (fr)
Inventor
Gary L. Rayburn
Rob G. Riffle
Frederick J. Walburn
Benjamin G. Williams
Original Assignee
W.L. Gore & Associates, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by W.L. Gore & Associates, Inc. filed Critical W.L. Gore & Associates, Inc.
Priority to AU63965/96A priority Critical patent/AU6396596A/en
Priority to DE69635139T priority patent/DE69635139T2/en
Priority to EP96923462A priority patent/EP0957779B1/en
Priority to CA002231593A priority patent/CA2231593C/en
Publication of WO1997003614A1 publication Critical patent/WO1997003614A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • A61B17/07207Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously the staples being applied sequentially
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • A61B17/07292Reinforcements for staple line, e.g. pledgets

Definitions

  • the present invention relates to surgical staple devices and methods for reinforcing the seams formed by such devices.
  • a surgical stapler comprises two stapler arms, one containing two or more lines of multiple staples and a second containing corresponding means to bend each of the staples into a closed position.
  • a surgical blade is included in the device to quickly sever tissue between the lines of staples.
  • the two stapler arms are positioned around tissue to be cut and then locked firmly together.
  • the surgeon then actuates the stapler device, which simultaneously installs two or more lines of staples through the tissue and cuts a line down the middle of the staple lines.
  • the physician can quickly cut and seal up to about 8 cm of tissue at a time.
  • This procedure is much faster than using a conventional process of cutting with scissors or a scalpel and then laboriously sealing the incision with sutures.
  • patient care is dramatically improved by minimizing bleed time from the surgical site and significantly increasing the speed with which an operation can be completed.
  • the use of bare staples, with the staples in direct contact with the patient's tissue is generally acceptable.
  • the integrity of the tissue itself will normally serve to prevent the staples from tearing out of the tissue and compromising the seam before healing has occurred.
  • the tissue that is being sealed is too fragile to securely hold the staples in place. In these instances, the tissue will tend to rip at or near the staple lines, slowing healing and possibly leading to serious complications.
  • PERI- STRIPS staple line reinforcement sleeves available from Bio- Vascular, Inc. of Saint Paul, MN. This product is specified for use in lung resection procedures in order to buttress the staple lines and help prevent air leakage that can occur through staple holes.
  • the sleeves are of tri-component construction, comprising (1) a thin strip of processed bovine pericardial tissue attached with (2) suture to (3 a section of polyethylene backing material to form a tubular sleeve. These tri-component sleeves are slid over each of the arms of a surgical stapler, with the bovine pericardial tissue carefully positioned on the operative faces of each of the stapler arms.
  • a surgeon staples and cuts through both the bovine pericardial tissue and the patient's lung tissue in order to perform the lung resection procedure. Once the staples are in place, the surgeon must then cut the suture lines holding the bovine pericardial strips in place and remove the polyethylene backing material and sutures.
  • PERI-STRIPS sleeves offer improvement in preventing lung tissue tearing, this product has numerous deficiencies.
  • bovine pericardial tissue creates numerous handling problems and costs. This natural tissue must be stored in preservatives (e.g., propylene oxide) before use and the preservatives must be carefully removed through a saline solution wash prior to use. This is viewed as a needless waste of personnel time and effort prior to use of the sleeves. Even after cleaning, the PERI-STRIPS sleeves are required to be kept moist at all times prior to use.
  • preservatives e.g., propylene oxide
  • PERI-STRIPS sleeves are quite expensive, usually constituting one of the most expensive single implements used in a typical lung resection procedure, the need to prepare extra sleeves that may not be used is not a trivial matter.
  • Another problem with the PERI-STRIPS sleeves is that they are of multiple component construction. The surgeon must exercise particular care that the sleeves are properly aligned prior to stapler actuation and that staples are driven through only the bovine pericardial tissue. Since the polyethylene backing material is not approved for human implantation, it is crucial that only the bovine pericardial tissue is attached to the staple lines and that all of the backing material is removed.
  • PERI-STRIPS sleeves Other concerns with the PERI-STRIPS sleeves include: the need to employ scissors or a scalpel to cut the sutures holding the two materials together; inconsistent product performance due to normal differences in natural animal tissues; difficulties in cutting through the bovine pericardial tissue; and possible contamination or immunological problems where preparation of the PERI-STRIPS sleeves has not been properly performed. Despite all of these constraints, the PERI-STRIPS reinforcement sleeve product remains the primary choice of surgeons performing lung resection procedures.
  • a staple reinforcement device from an artificial implantable material, such as strips of polytetrafluoroethylene (PTFE) cut from vascular grafts or similar devices.
  • the strips of material are held to the operative faces of the stapler arms by loops of suture wrapped around the stapler arms. Once staples are driven through the strip, the surgeon must then cut the suture to free the device from the surgical site.
  • This technique has not been widely employed due to difficulties in preparing, mounting, and using the strips in this form.
  • the use of relatively narrow strips of artificial implantable material has a centering problem similar to that encountered with the use of strips of bovine pericardial tissue. In both cases, the strips must be carefully centered on the operative face of the surgical arm or proper staple reinforcement will not occur.
  • the present invention is an improved device for reinforcing surgical staples. While the present device may be used for a wide variety of surgical procedures using surgical staples, it is particularly suitable for use on fragile tissue, such as lung tissue in lung resection procedures.
  • the device of the present invention is considered an important implement in establishing improved seals of surgical sites, with reduced possibility of tearing or leaks at the surgical sites through or around surgical staples.
  • the device of the present invention comprises an essentially tubular structure made entirely from implantable material.
  • the preferred device is formed from a porous polytetrafluoroethylene (PTFE), and most preferably an expanded PTFE.
  • the device comprises a sleeve that readily slides over each arm of a surgical stapler device. The surgeon then seals through both sleeves and the tissue to accomplish the stapling procedure.
  • the sleeve of the present invention is far easie*" to prepare and use than previous staple reinforcement devices.
  • expanded PTFE allows the reinforcement device of the present invention to be used directly out of the package, with no arduous preparation procedures. This not only saves personnel time, but also assures that only precise number of sleeves that are needed for the procedure need to be prepared. This saves significant expense over numerous operations.
  • the sleeve of the present invention can be easily installed and used without fear that misplacement might lead to inadequate staple reinforcement or the attachment of non-implantable material .
  • the sleeve of the present invention includes multiple operative portions or "faces.” This allows any one of the faces of the sleeve to be centered over the operative face of the stapler arm.
  • a sleeve with an essentially rectangular cross-section can provide four different operative faces that can be centered over the faces of the stapler arms.
  • the sleeve of the present invention includes pre-defined tear lines along the length of the sleeve. This allows the surgeon to quickly and easily separate the operative face of the device from, excess material after installation.
  • the tear lines can be created by selective modification of the expanded PTFE material to allow it to rip more readily along the tear lines, or merely by providing scoring along the tear lines.
  • the device of the present invention can be formed in a number of different forms.
  • the device preferably comprises an essentially tubular sleeve, either a tube of continuous material or one or more sheets of material attached to together to form a tube.
  • the tube ideally has at least one flatten face into which staples are introduced.
  • the use of one or more flatten faces makes installation of the sleeve on the stapler easier and aids in orientation of tear lines for easy separation of excess material following installation.
  • Figure 1 is a perspective view of a surgical stapler having two surgical staple reinforcement devices of the present invention mounted on its stapler arms;
  • Figure 2 is a three-quarter isometric view of one embodiment of a surgical staple reinforcement device of the present invention
  • Figure 3 is a three-quarter isometric view of another embodiment of a surgical staple reinforcement device of the present invention
  • Figure 4 is a three-quarter isometric view of still another embodiment of a surgical staple reinforcement device of the present invention
  • Figure 5 is a perspective view of two surgical staple reinforcement devices of the present invention shown attached to either side of tissue immediately following actuation of the stapler device, with the reinforcement devices shown partially separated and with the stapler not shown for clarity
  • Figure 6 is a three-quarter isometric view of yet another embodiment of a staple reinforcement device of the present invention.
  • Figure 7 is a cross-section view an embodiment of an extrusion die suitable for production of one embodiment of a reinforcement device of the present invention.
  • the present invention is an improved device for use in reinforcing staple lines created by a surgical stapler.
  • FIG. 1 Shown in Figure 1 is a conventional surgical stapler 10.
  • the stapler 10 comprises two separate halves 12, 14 that can be locked together. Each of the halves 12 and 14 has its own handle 16a and 16b, respectively, allowing manipulation of the stapler.
  • On the first half 12 is a first stapler arm 18 that is loaded with one or more rows of surgical staples.
  • a corresponding second stapler arm 20 is on the second half 14, containing means to bend each of the staples contained in the first stapler arm 18 into a closed position. This means to bend the staples usually comprises a series of contoured grooves, each corresponding to one of the staples contained in the first stapler arm 18.
  • one of the halves contains an actuation arm 22 that fires each of the staples.
  • the actuation arm 22 both fires the staples and actuates a cutting blade 24.
  • the cutting blade 24 is oriented between at least two rows of staples, allowing each row of staples to seal on either side of the cutting blade simultaneously with the cutting action.
  • the two halves 12, 14 of the stapler 10 are locked together with each of the stapler arms 18, 20 positioned on either side of tissue to be sealed.
  • the actuation arm 22 is moved forward, firing the staples and sealing the surgical site.
  • the staples are fired simultaneously with the slicing the tissue with cutting blade 24. The result is a rapid and accurate cutting and sealing of a patient's tissue that is much faster than previous cutting and suturing techniques.
  • FIG. 1 A first embodiment of the staple reinforcement device 26 of the present invention is shown in Figures 1 and 2.
  • This device 26 comprises a sleeve 28 having at least one face 30 adapted to receive the rows or lines of surgical staples and at least one side/back wall 32 adapted to surround the stapler arms 18, 20 and hold the device 26 in place.
  • An opening 34 is provided on at least one end of the sleeve 28 to allow installation of the sleeve over the stapler arms.
  • the device of the present invention is formed entirely from an implantable material. This allows the device to be mounted and used with substantially less care than previous staple reinforcement devices. For instance, a slight misalignment of the device will never result in the accidental attachment of non-implantable material within the patient or an inadequate amount of reinforcement material protecting the tissue.
  • the wall 32 comprises essentially three other operative faces 35, 36, and 37.
  • This construction allows any one of the faces 30, 35, 36, or 37 to receive and reinforce the staples in a patient's tissue.
  • the device 26 is constructed from porous polytetrafluoroethylene (PTFE), and particularly a stretched or expanded PTFE such as that made in accordance with United States Patents 3,953,566, 3,962,153, 4,096,227, and 4,187,390, all incorporated by reference.
  • PTFE and particularly expanded PTFE, has numerous properties that make it particularly suitable for use as an implantable material.
  • the material is highly inert, sterilizable, and bio-compatible. As a result, it is widely employed as vascular grafts and various other implantable tube and sheet materials.
  • PTFE has extremely low coefficient of friction, which allows the material to slide easily onto and off of the stapler arms 18, 20 as well as being easily and smoothly cut by the cutting blade 24 and sealed by the surgical staples.
  • expanded PTFE material can be selectively expanded to have exceptional strength where needed to resist staple pull-out and to have ready severability in the direction of cut of the device.
  • the preferred sleeve of expanded PTFE for use with the present invention is formed in the following manner.
  • a fine powder PTFE resin is blended with a lubricant, such as odorless mineral spirits, until a compound is formed.
  • a lubricant such as odorless mineral spirits
  • the volume of lubricant used should be sufficient to lubricate the primary particles of the PTFE recin so as to minimize the potential of the shearing of the particles prior to extruding.
  • the compound is then compressed into a billet and extruded, such as through a ram type extruder, to form a coherent extrudate.
  • the lubricant may then be removed, such as through volatilization. If desired, the extruded product may then be further expanded in at least one direction 1.1 to 50 times its original length. Expansion may be accomplished by passing the dry coherent extrudate over a series of rotating heated rollers or plates. A tube can be stretched in a hot oven to maintain its tubular structure.
  • the product should be heat set (also referred to as “amorphorously locked") to retain the material in its final expanded condition. This may be accomplished by exposing the material to a heat of about 327 to 380°C for about 25 seconds to about 4 minutes or more.
  • the extrusion step occur through a circular, semi ⁇ circular, triangular, rectangular, or other closed ring die so as to deliver a tubular product.
  • the die should be proportioned so that the final product will fit snugly over the desired stapler arms.
  • the tubular structure can be formed by creating a sheet or tape of the expanded material and then wrapping the sheet or tape into a tubular form. This can be accomplished through any suitable means, such as longitudinally wrapping (i.e., in a "cigarette” wrap fashion) or helically wrapping (e.g., over a mandrel or similar structure).
  • the wrapped product may be bonded to itself by adhesive, heat bonding, mechanical means (e.g., a suture seam) or similar means to form a sleeve that will attach over the stapler arms.
  • mechanical means e.g., a suture seam
  • small amounts of materials such as adhesives or suture may be used to bind the tubular structure together without departing from the intend scope of the present invention.
  • the final product preferably comprises an expan ⁇ ed PTFE structure with the following range of properties: an expansion/stretch ratio of 2:1 to 6:1 or more (e.g., 10:1); a fibril length of about 2 to 90 micron; a longitudinal strength of above about 10 kg; a transverse strength of above about 5 kg; a density of about 0.8 to 1.5 g/cc; and an average wall thickness of about 0.125 to 2.5 mm.
  • an expansion/stretch ratio of 2:1 to 6:1 or more (e.g., 10:1)
  • a fibril length of about 2 to 90 micron
  • a longitudinal strength of above about 10 kg a transverse strength of above about 5 kg
  • a density of about 0.8 to 1.5 g/cc a density of about 0.8 to 1.5 g/cc
  • an average wall thickness of about 0.125 to 2.5 mm.
  • Fibril length may be determined by the mean length of the fibrils extending between nodes of a sample of the expanded PTFE material measured on a scanning electromicrograph (SEM) of the sample.
  • Longitudinal and transverse strength may be determined through use of a tensile strength tester, such as an INSTRON tensile tester available from Instron Corporation.
  • Density may be determined by dividing the measured weight of the sample by the computed volume of the sample.
  • Average wall thickness may be determined through conventional means, such as through the use of calipers or measurements from SEMs.
  • Material suitable for use in the present invention is commercially available in a number of forms.
  • tubular structures of expanded PTFE that may be modified for use on surgical stapler arms are commercially available from W. L. Gore & Associates, Inc., Flagstaff, AZ, in the form of prosthetic vascular grafts under the trademark G0RE-TEX ® .
  • sheets and tapes of expanded PTFE material that may be constructed into the sleeves of the p e; invention are commercially available in a wide variety of forms from a number of sources, including W. L. Gore & Associates, Inc., Elkton, MD, under the trademark GORE-TEX®.
  • implantable materials include: nylon; polypropylene; polyurethane; silicone; DACRON ® polymer; etc.
  • a bio-absorbable implantable material such as polyglycolic acid (PGA), polylactic acid (PLA), polycaprolactone, or natural animal membranes.
  • the device of the present invention includes means to allow separation of the attached face of the sleeve from the remainder of the sleeve following actuation of the stapler.
  • This can be accomplished in any one or more of a number of ways.
  • the tubular structure of the sleeve may be modified during its formation to selectively weaken certain areas so that they will readily rip longitudinally. Where sleeve is being created by extrusion, this can be accomplished by modifying the extrusion die to reduce the thickness of the sleeve in certain areas to create tear lines. For instance, one or more projections may be provided into the flow of extrudate passing through the die that will reduce the thickness along longitudinal lengths of the tubular structure being produced. These longitudinal lengths will thereby be weakened, allowing the material to more readily separate (or "tear") along these lengths. Any structure that will provide for controlled separation of material in this manner is referred to herein as a "tear line.”
  • tear lines is shown in Figure 2.
  • the tube being extruded has an essentially rectangular cross-section, with a wall thickness of about 0.125 to 1.0 mm, with about 0.375 to 0.8 being a typical thickness. If desired, the wall thickness may be increased up to about 2.5 mm for use with most current stapler devices. By modifying the corners of the die extruding this tube, the wall thickness in corners can be reduced by about 25 to 75%, with a preferred reduction being about 65%. This produces four tear lines 40a, 40b, 40c, 40d running the length of the sleeve.
  • small cuts 43 may be provided at an end of the tear lines 40 to ease in starting the tear propagation.
  • the cut 43 may be provided by the surgical personnel before or after actuation of the stapler.
  • the cut 43 may be supplied on the sleeve by the sleeve manufacturer.
  • tear lines 40 may be provided at any desired location on the sleeve to address particular needs.
  • two folds are provided longitudinally on faces 35 and 37. Tear lines 40e and 40f may alternatively or additionally be provided along these folds to provide different or increased options for separating the sleeve following installation.
  • Another method of creating tear lines is to produce the tear lines following creation of the sleeve. This can be accomplished by stripping or modifying the sleeve material in the places where tears are desired, such as through: selective heating or altering of the sleeve material to create the tear line (e.g., through use of a laser or heated cutting implement); cutting the sleeve to a prescribed depth along the desired tear line (e.g., with a cutting blade); mechanically altering the material (e.g., through use of pinch rollers); selectively weakening the material; etc.
  • the sleeve may be scored with lines of holes or similar structures that will provide sufficient weakening to allow easier separation of remainder portions of the sleeve following installation. This can be accomplished through a number of means, such as: creating holes with lasers; punching holes; using a pinch roller with teeth; etc.; or through some combination of any of the methods described. Once tear lines are created, separation of material following installation can be easily and rapidly accomplished.
  • Shown in Figure 5 is one example of two devices 26a, 26b of the present invention essentially of the construction shown in Figures 1 and 2. As is shown, the devices 26a, 26b are attached by staples 43 to two segments of tissue 44, 46 along faces 30a and 30b. The tissue segments 44, 46 have been cut from one another along incision line 48 using a anastomotic surgical stapler and sealed by staple lines 50a, 50b, and 50c, 50d, respectively.
  • the backing material 32 of each of the sleeves can be separated from attached faces merely be ripping along tear lines 40a and 40b. This is normally done with the stapler arms still in place around the cut site.
  • the surgical stapler is not shown at the cut site so as not to obscure details concerning the surgical cut 48 and the placement of the staples 43.
  • the backing material 32a, 32b is removed, only the operative faces 30a, 30b of the sleeves are left in place.
  • the provision of tear lines that readily separate the stapler from the attached reinforcement material is considered to be an extremely useful attribute of the present invention.
  • Previous sleeve devices required some form of cutting of attachment sutures or similar action to release an applied staple reinforcement device from its backing material and the stapler itself. This is an extra step for the surgeon, but may not be particularly burdensome for many operative procedures where there is unobstructed access to the surgical site.
  • the need to perform an additional cutting step in order to separate a stapler from staple reinforcement material can be quite burdensome.
  • the presence of non-i plantable material attached to the staple reinforcement material such as that present with the PERI-STRIPS reinforcement materials, raises even more concerns for the surgeon who must be assured that all such material is completely removed from the endoscopic surgical site before terminating the procedure. If multiple staple lines are being installed, this increases the risks even more for the surgeon that non-implantable material may be accidentally attached to the surgical site. With each of these problems, the endoscopic surgeon must address these concerns with severely restricted space and tools.
  • the reinforcement device of the present invention avoids all of these problems.
  • Second, the provision of tear lines allows the surgeon to easily separate the stapler from the surgical site with little or no additional cutting procedures.
  • the tear lines are proportioned so that the mere action of separating the stapler arms from one another will completely cut the tear lines and allow removal of the stapler from the surgical site. Excess portions of the reinforcement device can then be removed by forceps or similar method.
  • means may be provided on the stapler device to aid in the extraction of excess reinforcement material following automatic reinforcement device separation.
  • the reinforcement material may be adhered to the stapler through mechanical means (e.g., clips, tether lines, etc.), pressure sensitive a ⁇ l.esive strips, etc. In this manner, excess reinforcement material can be withdrawn from the surgical site automatically along with the stapler.
  • Figure 6 illustrates two examples of means to adhere a sleeve 68 to a stapler for ease in extraction from a surgical site.
  • the sleeve 68 shown is essentially rectangular and includes an operative face 70 and two tear lines 72a, 72b.
  • That portion of the sleeve opposite the operative face 70 includes both a tether 78 and a self-adhesive strip 80 to assist in anchoring the sleeve 68 to a stapler arm.
  • the tether 78 is adapted to attach to the stapler arm, preferably to a clip or similar device provided thereon, and the adhesive strip is adapted to attach to the back of the surgical arm.
  • the remainder portion 76 is simply extracted from the surgical site by removing the surgical stapler arm. It should be understood that stapler arm attachment methods such as these may be employed alone or in combination with each other to effectuate remainder portion removal from a surgical site.
  • the exact shape and dimensions of the device of the present invention is a function of the particular constraints of the surgical apparatus and procedures with which it is to be employed.
  • the reinforcement device of the present invention may be formed in virtually any shape or size, including cross-sections comprising a circle, semi-circle, oval or other oblong shape, triangle, rectangle, pentagon, hexagon, etc., or some less defined shape.
  • the face or faces and side/back wall(s) of the device need not be entirely planar, and may include folds or other essentially concave or convex orientations. In fact, folds or concave wall structure may be useful on some or all of the faces or walls of the device in order to assure more secure grip of the stapler arms by the sleeve.
  • While devices of the present invention may be provided in plethora of different shapes and sizes to fit different types of surgical stapler arms, it is believed that the device of the present invention particularly lends itself to use with means to hold the device on a variety of different stapler arm sizes and shapes. It has been explained that the walls or faces of the device may be bent concave inward (i.e., with a sharp or smooth fold) to provide improved gripping action and greater accommodation of different sizes and shapes of stapler arms. For greater security, it may also be possible to secure an slightly oversized reinforcement device to a stapler arm using suture, elastic material, or similar means that will retain the reinforcement device in place until activation of the stapler. Such means may be applied by the surgical team at the time of use, or may be pre- installed on the device.
  • FIG. 3 Shown in Figure 3 is one example of how a supplemental attachment means may be incorporated into the device by the manufacturer.
  • This device 26 is again essentially a rectangular sleeve 52 having four operative faces 54a, 54b, 54c, 54d.
  • a constrictive device 56 is provided Toward one end of this device 26, a constrictive device 56 is provided. When the device is installed over a stapler arm, this constrictive device 56 serves to grip the arm and assist in holding the sleeve 52 in place.
  • Suitable constrictive devices for use with the present invention include: essentially non- elastic materials, such as sutures or thin wires; elastic materials, such as natural or synthetic rubbers; mechanical or chemical means to reduce the cross-section of the sleeve in the area where gripping is desired (e.g., forming a fold in the sleeve and then using clips, adhesives, etc., to hold the fold in place); etc.
  • a constrictive device that is at least somewhat elastic, such as an elastomeric band adhered to the sleeve, allowing for easy installation of the device on a wider variety of stapler arms and a surer fit of the sleeve on the arms.
  • the device 58 comprises a semi-cylindrical sleeve 60, having one relatively planar operative face 62.
  • Perforated tear lines 64a, 64b are provided to allow separation of the operative face 62 from backing material 66.
  • the entire device 58 is formed from implantable material to assure that accidental attachment of undesirable material does not occur.
  • a sleeve of the present invention was produced in the following manner.
  • the die was proportioned to provide finished sleeve having an essentially rectangular cross section with selectively weakened corners.
  • a cross section of this die is shown in Figure 7.
  • the die 82 provides a rectangular gap 84 through which the tube is expanded.
  • the gap has a first thickness of about 0.375 mm along each of operative faces 86a, 86b, 86c, 86d and a second, thinner, thickness of about 0.12 mm at each of corners 88a, 88b, 88c, 88d.
  • the odorless mineral spirit was volatilized and removed from the sleeve.
  • Expansion was then performed on the tubular sleeve at a ratio of 2.18:1 at an expansion rate of about 1000% per second.
  • Expansion was performed in a hot oven at a temperature of about 300°C.
  • the sleeve was then subjected to an amorphous locking step by exposing the sleeve to a temperature of about 350°C for about
  • the resulting sleeve had the following properties: Average fibril length of 2-5 micron Expansion/stretch ratio of 2.18:1 Longitudinal strength of about 15-20 Kg
  • EXAMPLE 2 Sleeves made in accordance with Example 1 were mounted one on each of two arms of a anastomotic surgical stapler. The stapler was then used to perform a lung volume reduction procedure on a test animal. The sleeves proved easy to mount, and to cut and staple through. Following attachment of each of two sets of sleeves, the backing material was easily removed from the attached portions of the sleeve merely by ripping the sleeves along the tear lines using forceps to apply transverse tension. Separation occurred easily and only minimal shredding of the expanded PTFE material occurred along the tear lines.
  • the present invention can be used in a host of surgical procedures.
  • various lung resection procedures e.g., blebectomies, lobectomoies, bullectomies, wedge resections, and lung reduction procedures, such as those used to treat symptoms of emphysema
  • treatment of soft tissue injuries and defects e.g., abdominal or thoracic wall procedures, gastro-intestinal procedures
  • as a tool in a variety of other surgical procedures e.g., reproductive organ repair procedures, etc.
  • the device may be used with either anastomotic staplers or non-anastomotic staplers.
  • the device of the present invention may be used in conjunction with operations on both humans and animals.
  • the device of the present invention may be used in pairs, as shown in Figure 5, it is believed that it may also be beneficial to use it to reinforce only one side of certain procedures.
  • the device may be installed on only one side of a surgical seam joining tissue or devices where a weak material is being attached to a relatively strong material (i.e., certain relatively weak tissue or prosthetic devices that may be prone to tear along staple lines may be attached to relatively strong tissue or devices that are not so inclined to tear).
  • a device of the present invention can be provided to cover only the material prone to staple damage. Without compromising seam integrity, this allows for a thinner overall seam and reduces the amount of material placed in the patient.
  • an antimicrobial or antibiotic agent may be coated on and/or filled within the porous structure of the sleeve to provide assistance in avoiding infection. This is considered to be particularly useful in various procedures (e.g., intestine resections, surgery on trauma injuries (e.g., chest or abdominal trauma), etc.) where microbial or bacterial infection is likely.
  • Other useful additives may include adhesives, radio-visible compounds, clotting agents, agents promoting healing, cancer treating agents, etc.

Abstract

A surgical staple line reinforcement device for use with a variety of surgical staplers to protect against tissue damage from surgical staples. The device comprises a tube of bio-implantable material that can be quickly and readily applied by a surgical team to provide tissue reinforcement. The device preferably comprises a stretched or expanded polytetrafluoroethylene (PTFE) with pre-established tear lines therein. The device allows for fast and safe staple reinforcement and rapid stapler separation and removal following installation.

Description

DEVICE AND METHOD FOR REINFORCING SURGICAL STAPLES
FIELD OF THE INVENTION
The present invention relates to surgical staple devices and methods for reinforcing the seams formed by such devices.
BACKGROUND OF THE INVENTION
One of the more commercially successful innovations in surgical procedures in recent years is the development of surgical stapler devices. These devices are designed to simultaneously cut and seal an extended segment of tissue in a patient, vastly reducing the time and risks of such procedures. Typically, a surgical stapler comprises two stapler arms, one containing two or more lines of multiple staples and a second containing corresponding means to bend each of the staples into a closed position. For most applications, a surgical blade is included in the device to quickly sever tissue between the lines of staples. Those stapler devices employing a cutting blade are referred to as "anastomotic staplers" and those used without a cutting blade are referred to as "non-anastomotic staplers."
In the operation of a typical anastomotic stapler, the two stapler arms are positioned around tissue to be cut and then locked firmly together. In one motion the surgeon then actuates the stapler device, which simultaneously installs two or more lines of staples through the tissue and cuts a line down the middle of the staple lines. In this manner, the physician can quickly cut and seal up to about 8 cm of tissue at a time. This procedure is much faster than using a conventional process of cutting with scissors or a scalpel and then laboriously sealing the incision with sutures. As a result, patient care is dramatically improved by minimizing bleed time from the surgical site and significantly increasing the speed with which an operation can be completed.
For most procedures, the use of bare staples, with the staples in direct contact with the patient's tissue, is generally acceptable. The integrity of the tissue itself will normally serve to prevent the staples from tearing out of the tissue and compromising the seam before healing has occurred. However, in certain circumstances the tissue that is being sealed is too fragile to securely hold the staples in place. In these instances, the tissue will tend to rip at or near the staple lines, slowing healing and possibly leading to serious complications.
One area where fragile tissue is of particular concern is the use of stapler devices in lung tissue, and especially lung tissue that is affected by emphysema or similar condition. Diseased lung tissue is very fragile and, in extreme cases, will readily tear through unprotected staple lines. With the growing use of surgical staplers in operations on diseased lung tissues such as bullectomies and volume reduction procedures, it has become increasingly important to develop some reliable means to protect fragile tissue from tissue tears due to surgical staples or surgical stapling procedures.
One product that attempts to correct these problems is PERI- STRIPS staple line reinforcement sleeves available from Bio- Vascular, Inc. of Saint Paul, MN. This product is specified for use in lung resection procedures in order to buttress the staple lines and help prevent air leakage that can occur through staple holes. The sleeves are of tri-component construction, comprising (1) a thin strip of processed bovine pericardial tissue attached with (2) suture to (3 a section of polyethylene backing material to form a tubular sleeve. These tri-component sleeves are slid over each of the arms of a surgical stapler, with the bovine pericardial tissue carefully positioned on the operative faces of each of the stapler arms.
During an operation, a surgeon staples and cuts through both the bovine pericardial tissue and the patient's lung tissue in order to perform the lung resection procedure. Once the staples are in place, the surgeon must then cut the suture lines holding the bovine pericardial strips in place and remove the polyethylene backing material and sutures.
While the PERI-STRIPS sleeves offer improvement in preventing lung tissue tearing, this product has numerous deficiencies. First, the use of bovine pericardial tissue creates numerous handling problems and costs. This natural tissue must be stored in preservatives (e.g., propylene oxide) before use and the preservatives must be carefully removed through a saline solution wash prior to use. This is viewed as a needless waste of personnel time and effort prior to use of the sleeves. Even after cleaning, the PERI-STRIPS sleeves are required to be kept moist at all times prior to use.
These demanding handling characteristics make it very difficult to quickly employ the PERI-STRIPS sleeves. As a result, it is common that the surgeon will have to waste some of these strips during each operation in order to assure that an adequate number will always be prepared and ready. Since the PERI-STRIPS sleeves are quite expensive, usually constituting one of the most expensive single implements used in a typical lung resection procedure, the need to prepare extra sleeves that may not be used is not a trivial matter. Another problem with the PERI-STRIPS sleeves is that they are of multiple component construction. The surgeon must exercise particular care that the sleeves are properly aligned prior to stapler actuation and that staples are driven through only the bovine pericardial tissue. Since the polyethylene backing material is not approved for human implantation, it is crucial that only the bovine pericardial tissue is attached to the staple lines and that all of the backing material is removed.
Other concerns with the PERI-STRIPS sleeves include: the need to employ scissors or a scalpel to cut the sutures holding the two materials together; inconsistent product performance due to normal differences in natural animal tissues; difficulties in cutting through the bovine pericardial tissue; and possible contamination or immunological problems where preparation of the PERI-STRIPS sleeves has not been properly performed. Despite all of these constraints, the PERI-STRIPS reinforcement sleeve product remains the primary choice of surgeons performing lung resection procedures.
In an effort to address some of these drawbacks, it has been attempted to form a staple reinforcement device from an artificial implantable material, such as strips of polytetrafluoroethylene (PTFE) cut from vascular grafts or similar devices. The strips of material are held to the operative faces of the stapler arms by loops of suture wrapped around the stapler arms. Once staples are driven through the strip, the surgeon must then cut the suture to free the device from the surgical site. This technique has not been widely employed due to difficulties in preparing, mounting, and using the strips in this form. Additionally, the use of relatively narrow strips of artificial implantable material has a centering problem similar to that encountered with the use of strips of bovine pericardial tissue. In both cases, the strips must be carefully centered on the operative face of the surgical arm or proper staple reinforcement will not occur.
In light of these problems, it is a primary purpose of the present invention to provide an improved staple line reinforcement material that will fully protect surgical staple lines while being easy to prepare and use.
It is still another purpose of the present invention to provide an improved staple line reinforcement material that is safe and effective in use.
These and other purposes of the present invention will become evident from review of the following specification.
SUMMARY OF THE INVENTION
The present invention is an improved device for reinforcing surgical staples. While the present device may be used for a wide variety of surgical procedures using surgical staples, it is particularly suitable for use on fragile tissue, such as lung tissue in lung resection procedures. The device of the present invention is considered an important implement in establishing improved seals of surgical sites, with reduced possibility of tearing or leaks at the surgical sites through or around surgical staples.
The device of the present invention comprises an essentially tubular structure made entirely from implantable material. The preferred device is formed from a porous polytetrafluoroethylene (PTFE), and most preferably an expanded PTFE. The device comprises a sleeve that readily slides over each arm of a surgical stapler device. The surgeon then seals through both sleeves and the tissue to accomplish the stapling procedure. The sleeve of the present invention is far easie*" to prepare and use than previous staple reinforcement devices. The use of expanded PTFE allows the reinforcement device of the present invention to be used directly out of the package, with no arduous preparation procedures. This not only saves personnel time, but also assures that only precise number of sleeves that are needed for the procedure need to be prepared. This saves significant expense over numerous operations. Moreover, the sleeve of the present invention can be easily installed and used without fear that misplacement might lead to inadequate staple reinforcement or the attachment of non-implantable material .
It is particularly preferred that the sleeve of the present invention includes multiple operative portions or "faces." This allows any one of the faces of the sleeve to be centered over the operative face of the stapler arm. For instance, a sleeve with an essentially rectangular cross-section can provide four different operative faces that can be centered over the faces of the stapler arms. With this construction, the surgical staff can quickly and easily mount the sleeves on the stapler arms without fear that a wrong face may be oriented to receive the staples.
Ideally, the sleeve of the present invention includes pre-defined tear lines along the length of the sleeve. This allows the surgeon to quickly and easily separate the operative face of the device from, excess material after installation. As is disclosed, the tear lines can be created by selective modification of the expanded PTFE material to allow it to rip more readily along the tear lines, or merely by providing scoring along the tear lines.
The device of the present invention can be formed in a number of different forms. The device preferably comprises an essentially tubular sleeve, either a tube of continuous material or one or more sheets of material attached to together to form a tube. Although not required, for ease in staple installation, the tube ideally has at least one flatten face into which staples are introduced. As has been noted, the use of one or more flatten faces makes installation of the sleeve on the stapler easier and aids in orientation of tear lines for easy separation of excess material following installation. BRIEF DESCRIPTION OF THE DRAWINGS
The operation of the present invention should become apparent from the following description when considered in conjunction with the accompanying drawings, in which: Figure 1 is a perspective view of a surgical stapler having two surgical staple reinforcement devices of the present invention mounted on its stapler arms;
Figure 2 is a three-quarter isometric view of one embodiment of a surgical staple reinforcement device of the present invention; Figure 3 is a three-quarter isometric view of another embodiment of a surgical staple reinforcement device of the present invention;
Figure 4 is a three-quarter isometric view of still another embodiment of a surgical staple reinforcement device of the present invention; Figure 5 is a perspective view of two surgical staple reinforcement devices of the present invention shown attached to either side of tissue immediately following actuation of the stapler device, with the reinforcement devices shown partially separated and with the stapler not shown for clarity; Figure 6 is a three-quarter isometric view of yet another embodiment of a staple reinforcement device of the present invention; and
Figure 7 is a cross-section view an embodiment of an extrusion die suitable for production of one embodiment of a reinforcement device of the present invention.
DETAILED DESCRIPTION OF THE INVENTION
The present invention is an improved device for use in reinforcing staple lines created by a surgical stapler.
Shown in Figure 1 is a conventional surgical stapler 10. The stapler 10 comprises two separate halves 12, 14 that can be locked together. Each of the halves 12 and 14 has its own handle 16a and 16b, respectively, allowing manipulation of the stapler. On the first half 12 is a first stapler arm 18 that is loaded with one or more rows of surgical staples. A corresponding second stapler arm 20 is on the second half 14, containing means to bend each of the staples contained in the first stapler arm 18 into a closed position. This means to bend the staples usually comprises a series of contoured grooves, each corresponding to one of the staples contained in the first stapler arm 18. Finally, one of the halves contains an actuation arm 22 that fires each of the staples. In an anastomotic stapler device, the actuation arm 22 both fires the staples and actuates a cutting blade 24. The cutting blade 24 is oriented between at least two rows of staples, allowing each row of staples to seal on either side of the cutting blade simultaneously with the cutting action.
In operation, the two halves 12, 14 of the stapler 10 are locked together with each of the stapler arms 18, 20 positioned on either side of tissue to be sealed. Once the surgeon assures that the arms 18, 20 are properly positioned, the actuation arm 22 is moved forward, firing the staples and sealing the surgical site. In an anastomotic stapler device, the staples are fired simultaneously with the slicing the tissue with cutting blade 24. The result is a rapid and accurate cutting and sealing of a patient's tissue that is much faster than previous cutting and suturing techniques.
As has been noted, while commercially available staplers function well for most cutting and sealing applications, problems have been experienced with the placement of staples in relatively weak and fragile tissue, such as the lung tissue of emphysema patients. The need for some form of staple reinforcement has been recognized, but until the present invention no fully adequate staple reinforcement device has been available.
In the present invention a staple reinforcement device is provided that overcomes many of the problems previously experienced with such devices. A first embodiment of the staple reinforcement device 26 of the present invention is shown in Figures 1 and 2. This device 26 comprises a sleeve 28 having at least one face 30 adapted to receive the rows or lines of surgical staples and at least one side/back wall 32 adapted to surround the stapler arms 18, 20 and hold the device 26 in place. An opening 34 is provided on at least one end of the sleeve 28 to allow installation of the sleeve over the stapler arms. Unlike previous tubular staple reinforcement devices, the device of the present invention is formed entirely from an implantable material. This allows the device to be mounted and used with substantially less care than previous staple reinforcement devices. For instance, a slight misalignment of the device will never result in the accidental attachment of non-implantable material within the patient or an inadequate amount of reinforcement material protecting the tissue.
In the embodiment of Figures 1 and 2, the wall 32 comprises essentially three other operative faces 35, 36, and 37. This construction allows any one of the faces 30, 35, 36, or 37 to receive and reinforce the staples in a patient's tissue. As a result, less care and manipulation is required by the surgical team to mount and center the sleeve prior to use. Preferably, the device 26 is constructed from porous polytetrafluoroethylene (PTFE), and particularly a stretched or expanded PTFE such as that made in accordance with United States Patents 3,953,566, 3,962,153, 4,096,227, and 4,187,390, all incorporated by reference. By heating and rapidly expanding PTFE in accordance with the teachings of these patents, the resulting material exhibits exceptional strength in the direction that it has been expanded.
PTFE, and particularly expanded PTFE, has numerous properties that make it particularly suitable for use as an implantable material. First, the material is highly inert, sterilizable, and bio-compatible. As a result, it is widely employed as vascular grafts and various other implantable tube and sheet materials. Further, PTFE has extremely low coefficient of friction, which allows the material to slide easily onto and off of the stapler arms 18, 20 as well as being easily and smoothly cut by the cutting blade 24 and sealed by the surgical staples. Finally, expanded PTFE material can be selectively expanded to have exceptional strength where needed to resist staple pull-out and to have ready severability in the direction of cut of the device. The preferred sleeve of expanded PTFE for use with the present invention is formed in the following manner. A fine powder PTFE resin is blended with a lubricant, such as odorless mineral spirits, until a compound is formed. The volume of lubricant used should be sufficient to lubricate the primary particles of the PTFE recin so as to minimize the potential of the shearing of the particles prior to extruding. The compound is then compressed into a billet and extruded, such as through a ram type extruder, to form a coherent extrudate. A reduction ratio of 30:1 to 300:1 may be used (i.e., reduction ratio = cross-section area of extrusion cylinder divided by the cross-section of the extrusion die). For most applications a reduction ratio of 75:1 to 150:1 is preferred. The lubricant may then be removed, such as through volatilization. If desired, the extruded product may then be further expanded in at least one direction 1.1 to 50 times its original length. Expansion may be accomplished by passing the dry coherent extrudate over a series of rotating heated rollers or plates. A tube can be stretched in a hot oven to maintain its tubular structure.
Finally, the product should be heat set (also referred to as "amorphorously locked") to retain the material in its final expanded condition. This may be accomplished by exposing the material to a heat of about 327 to 380°C for about 25 seconds to about 4 minutes or more.
To form a tubular structure for use as the present invention, it is preferred that the extrusion step occur through a circular, semi¬ circular, triangular, rectangular, or other closed ring die so as to deliver a tubular product. The die should be proportioned so that the final product will fit snugly over the desired stapler arms.
Alternatively, the tubular structure can be formed by creating a sheet or tape of the expanded material and then wrapping the sheet or tape into a tubular form. This can be accomplished through any suitable means, such as longitudinally wrapping (i.e., in a "cigarette" wrap fashion) or helically wrapping (e.g., over a mandrel or similar structure). The wrapped product may be bonded to itself by adhesive, heat bonding, mechanical means (e.g., a suture seam) or similar means to form a sleeve that will attach over the stapler arms. It should be understood that it is contemplated by the present invention that small amounts of materials such as adhesives or suture may be used to bind the tubular structure together without departing from the intend scope of the present invention. Without intending to limit the scope of the present invention, the final product preferably comprises an expanαed PTFE structure with the following range of properties: an expansion/stretch ratio of 2:1 to 6:1 or more (e.g., 10:1); a fibril length of about 2 to 90 micron; a longitudinal strength of above about 10 kg; a transverse strength of above about 5 kg; a density of about 0.8 to 1.5 g/cc; and an average wall thickness of about 0.125 to 2.5 mm.
Each of these properties may be measured in a conventional manner. Fibril length may be determined by the mean length of the fibrils extending between nodes of a sample of the expanded PTFE material measured on a scanning electromicrograph (SEM) of the sample. Longitudinal and transverse strength may be determined through use of a tensile strength tester, such as an INSTRON tensile tester available from Instron Corporation. Density may be determined by dividing the measured weight of the sample by the computed volume of the sample. Average wall thickness may be determined through conventional means, such as through the use of calipers or measurements from SEMs.
Material suitable for use in the present invention is commercially available in a number of forms. For instance, tubular structures of expanded PTFE that may be modified for use on surgical stapler arms are commercially available from W. L. Gore & Associates, Inc., Flagstaff, AZ, in the form of prosthetic vascular grafts under the trademark G0RE-TEX®. Additionally, sheets and tapes of expanded PTFE material that may be constructed into the sleeves of the p e; invention are commercially available in a wide variety of forms from a number of sources, including W. L. Gore & Associates, Inc., Elkton, MD, under the trademark GORE-TEX®.
Although not preferred, other possible implantable materials that may be employed with the present invention include: nylon; polypropylene; polyurethane; silicone; DACRON® polymer; etc. For some applications, it may be desirable to use a bio-absorbable implantable material, such as polyglycolic acid (PGA), polylactic acid (PLA), polycaprolactone, or natural animal membranes.
It is particularly preferred that the device of the present invention includes means to allow separation of the attached face of the sleeve from the remainder of the sleeve following actuation of the stapler. This can be accomplished in any one or more of a number of ways. The tubular structure of the sleeve may be modified during its formation to selectively weaken certain areas so that they will readily rip longitudinally. Where sleeve is being created by extrusion, this can be accomplished by modifying the extrusion die to reduce the thickness of the sleeve in certain areas to create tear lines. For instance, one or more projections may be provided into the flow of extrudate passing through the die that will reduce the thickness along longitudinal lengths of the tubular structure being produced. These longitudinal lengths will thereby be weakened, allowing the material to more readily separate (or "tear") along these lengths. Any structure that will provide for controlled separation of material in this manner is referred to herein as a "tear line."
One example of tear lines is shown in Figure 2. In that embodiment, the tube being extruded has an essentially rectangular cross-section, with a wall thickness of about 0.125 to 1.0 mm, with about 0.375 to 0.8 being a typical thickness. If desired, the wall thickness may be increased up to about 2.5 mm for use with most current stapler devices. By modifying the corners of the die extruding this tube, the wall thickness in corners can be reduced by about 25 to 75%, with a preferred reduction being about 65%. This produces four tear lines 40a, 40b, 40c, 40d running the length of the sleeve. When a transverse tension is applied to the sleeve, separation of material will readily occur along the tear lines and the separation will easily propagate along the length of the tube to allow the backing material to be removed from an attached face. For example, with the attachment of face 30, separation of backing material 32 can be accomplished by tearing along tear lines 40a and 40b.
For further ease in separation, small cuts 43 may be provided at an end of the tear lines 40 to ease in starting the tear propagation. The cut 43 may be provided by the surgical personnel before or after actuation of the stapler. Alternatively, the cut 43 may be supplied on the sleeve by the sleeve manufacturer.
It should be appreciated that the tear lines 40 may be provided at any desired location on the sleeve to address particular needs. For example, in the embodiment of Figure 2, two folds are provided longitudinally on faces 35 and 37. Tear lines 40e and 40f may alternatively or additionally be provided along these folds to provide different or increased options for separating the sleeve following installation.
Another method of creating tear lines is to produce the tear lines following creation of the sleeve. This can be accomplished by stripping or modifying the sleeve material in the places where tears are desired, such as through: selective heating or altering of the sleeve material to create the tear line (e.g., through use of a laser or heated cutting implement); cutting the sleeve to a prescribed depth along the desired tear line (e.g., with a cutting blade); mechanically altering the material (e.g., through use of pinch rollers); selectively weakening the material; etc.
Alternatively, the sleeve may be scored with lines of holes or similar structures that will provide sufficient weakening to allow easier separation of remainder portions of the sleeve following installation. This can be accomplished through a number of means, such as: creating holes with lasers; punching holes; using a pinch roller with teeth; etc.; or through some combination of any of the methods described. Once tear lines are created, separation of material following installation can be easily and rapidly accomplished. Shown in Figure 5 is one example of two devices 26a, 26b of the present invention essentially of the construction shown in Figures 1 and 2. As is shown, the devices 26a, 26b are attached by staples 43 to two segments of tissue 44, 46 along faces 30a and 30b. The tissue segments 44, 46 have been cut from one another along incision line 48 using a anastomotic surgical stapler and sealed by staple lines 50a, 50b, and 50c, 50d, respectively.
Once the stapler has been actuated, cutting and sealing the tissue, the backing material 32 of each of the sleeves can be separated from attached faces merely be ripping along tear lines 40a and 40b. This is normally done with the stapler arms still in place around the cut site. In the illustration of Figure 5, the surgical stapler is not shown at the cut site so as not to obscure details concerning the surgical cut 48 and the placement of the staples 43. As is shown, once the backing material 32a, 32b is removed, only the operative faces 30a, 30b of the sleeves are left in place. The provision of tear lines that readily separate the stapler from the attached reinforcement material is considered to be an extremely useful attribute of the present invention. Previous sleeve devices required some form of cutting of attachment sutures or similar action to release an applied staple reinforcement device from its backing material and the stapler itself. This is an extra step for the surgeon, but may not be particularly burdensome for many operative procedures where there is unobstructed access to the surgical site. However, with the growing use of endoscopic surgical procedures, with their intentionally limited access to the surgical site, the need to perform an additional cutting step in order to separate a stapler from staple reinforcement material can be quite burdensome. In fact, the presence of non-i plantable material attached to the staple reinforcement material, such as that present with the PERI-STRIPS reinforcement materials, raises even more concerns for the surgeon who must be assured that all such material is completely removed from the endoscopic surgical site before terminating the procedure. If multiple staple lines are being installed, this increases the risks even more for the surgeon that non-implantable material may be accidentally attached to the surgical site. With each of these problems, the endoscopic surgeon must address these concerns with severely restricted space and tools.
The reinforcement device of the present invention avoids all of these problems. First, the fact that the device is made entirely from implantable material assures the surgeon that non-implantable material will not be accidentally attached to the patient. Second, the provision of tear lines allows the surgeon to easily separate the stapler from the surgical site with little or no additional cutting procedures. In fact, it is preferred that the tear lines are proportioned so that the mere action of separating the stapler arms from one another will completely cut the tear lines and allow removal of the stapler from the surgical site. Excess portions of the reinforcement device can then be removed by forceps or similar method. Further, particularly for endoscopic procedures, it is contemplated that means may be provided on the stapler device to aid in the extraction of excess reinforcement material following automatic reinforcement device separation. For example, the reinforcement material may be adhered to the stapler through mechanical means (e.g., clips, tether lines, etc.), pressure sensitive aαl.esive strips, etc. In this manner, excess reinforcement material can be withdrawn from the surgical site automatically along with the stapler. Figure 6 illustrates two examples of means to adhere a sleeve 68 to a stapler for ease in extraction from a surgical site. The sleeve 68 shown is essentially rectangular and includes an operative face 70 and two tear lines 72a, 72b. That portion of the sleeve opposite the operative face 70, referred to as a remainder or excess portion 76, includes both a tether 78 and a self-adhesive strip 80 to assist in anchoring the sleeve 68 to a stapler arm. The tether 78 is adapted to attach to the stapler arm, preferably to a clip or similar device provided thereon, and the adhesive strip is adapted to attach to the back of the surgical arm. In operation, once the operative face 70 is attached to the surgical site and the tear lines 72 are separated, the remainder portion 76 is simply extracted from the surgical site by removing the surgical stapler arm. It should be understood that stapler arm attachment methods such as these may be employed alone or in combination with each other to effectuate remainder portion removal from a surgical site.
The exact shape and dimensions of the device of the present invention is a function of the particular constraints of the surgical apparatus and procedures with which it is to be employed. As such, the reinforcement device of the present invention may be formed in virtually any shape or size, including cross-sections comprising a circle, semi-circle, oval or other oblong shape, triangle, rectangle, pentagon, hexagon, etc., or some less defined shape. As has been noted, the face or faces and side/back wall(s) of the device need not be entirely planar, and may include folds or other essentially concave or convex orientations. In fact, folds or concave wall structure may be useful on some or all of the faces or walls of the device in order to assure more secure grip of the stapler arms by the sleeve.
While devices of the present invention may be provided in plethora of different shapes and sizes to fit different types of surgical stapler arms, it is believed that the device of the present invention particularly lends itself to use with means to hold the device on a variety of different stapler arm sizes and shapes. It has been explained that the walls or faces of the device may be bent concave inward (i.e., with a sharp or smooth fold) to provide improved gripping action and greater accommodation of different sizes and shapes of stapler arms. For greater security, it may also be possible to secure an slightly oversized reinforcement device to a stapler arm using suture, elastic material, or similar means that will retain the reinforcement device in place until activation of the stapler. Such means may be applied by the surgical team at the time of use, or may be pre- installed on the device.
Shown in Figure 3 is one example of how a supplemental attachment means may be incorporated into the device by the manufacturer. This device 26 is again essentially a rectangular sleeve 52 having four operative faces 54a, 54b, 54c, 54d. Toward one end of this device 26, a constrictive device 56 is provided. When the device is installed over a stapler arm, this constrictive device 56 serves to grip the arm and assist in holding the sleeve 52 in place. Suitable constrictive devices for use with the present invention include: essentially non- elastic materials, such as sutures or thin wires; elastic materials, such as natural or synthetic rubbers; mechanical or chemical means to reduce the cross-section of the sleeve in the area where gripping is desired (e.g., forming a fold in the sleeve and then using clips, adhesives, etc., to hold the fold in place); etc. Particularly preferred is a constrictive device that is at least somewhat elastic, such as an elastomeric band adhered to the sleeve, allowing for easy installation of the device on a wider variety of stapler arms and a surer fit of the sleeve on the arms.
Still another embodiment of a reinforcement device 58 of the present invention is shown in Figure 4. In this instance, the device 58 comprises a semi-cylindrical sleeve 60, having one relatively planar operative face 62. Perforated tear lines 64a, 64b are provided to allow separation of the operative face 62 from backing material 66. Again, the entire device 58 is formed from implantable material to assure that accidental attachment of undesirable material does not occur.
Without intending to limit the scope of the present invention, the following examples illustrate how it can be made and used. EXAMPLE 1
A sleeve of the present invention was produced in the following manner.
A fine powder PTFE resin was combined in a blender with an amount of an odorless mineral spirit (ISOPAR M available from Exxon
Corporation) until a compound was obtained. The volume of mineral spirit used per gram of fine powder PTFE resin was approximately 0.264 cc/g. The compound was compressed into a billet and extruded through a die attached to a ram type extruder to form a coherent extrudate. A reduction ratio of 127:1 was used (reduction ratio = cross section area of extrusion cylinder divided by the cross section of the extrusion die).
The die was proportioned to provide finished sleeve having an essentially rectangular cross section with selectively weakened corners. A cross section of this die is shown in Figure 7. As can be seen the die 82 provides a rectangular gap 84 through which the tube is expanded. The gap has a first thickness of about 0.375 mm along each of operative faces 86a, 86b, 86c, 86d and a second, thinner, thickness of about 0.12 mm at each of corners 88a, 88b, 88c, 88d. Following extrusion, the odorless mineral spirit was volatilized and removed from the sleeve. Expansion was then performed on the tubular sleeve at a ratio of 2.18:1 at an expansion rate of about 1000% per second. Expansion was performed in a hot oven at a temperature of about 300°C. The sleeve was then subjected to an amorphous locking step by exposing the sleeve to a temperature of about 350°C for about 70 seconds.
The resulting sleeve had the following properties: Average fibril length of 2-5 micron Expansion/stretch ratio of 2.18:1 Longitudinal strength of about 15-20 Kg
Transverse strength of about 5-10 Kg Operative face thickness of about 0.375 mm Corner (tear line) thickness of about 0.12 mm
EXAMPLE 2 Sleeves made in accordance with Example 1 were mounted one on each of two arms of a anastomotic surgical stapler. The stapler was then used to perform a lung volume reduction procedure on a test animal. The sleeves proved easy to mount, and to cut and staple through. Following attachment of each of two sets of sleeves, the backing material was easily removed from the attached portions of the sleeve merely by ripping the sleeves along the tear lines using forceps to apply transverse tension. Separation occurred easily and only minimal shredding of the expanded PTFE material occurred along the tear lines.
After a series of incisions were made in this manner, the entire lung was submerged in saline solution to test for air leakage at or around the staples or the staple reinforcement material. No air leakage could be detected.
The present invention can be used in a host of surgical procedures. Among the possible usages are: various lung resection procedures (e.g., blebectomies, lobectomoies, bullectomies, wedge resections, and lung reduction procedures, such as those used to treat symptoms of emphysema); treatment of soft tissue injuries and defects (e.g., abdominal or thoracic wall procedures, gastro-intestinal procedures), and as a tool in a variety of other surgical procedures (e.g., reproductive organ repair procedures, etc.). The device may be used with either anastomotic staplers or non-anastomotic staplers. Naturally, the device of the present invention may be used in conjunction with operations on both humans and animals.
It should be appreciated that while the device of the present invention may be used in pairs, as shown in Figure 5, it is believed that it may also be beneficial to use it to reinforce only one side of certain procedures. For example, the device may be installed on only one side of a surgical seam joining tissue or devices where a weak material is being attached to a relatively strong material (i.e., certain relatively weak tissue or prosthetic devices that may be prone to tear along staple lines may be attached to relatively strong tissue or devices that are not so inclined to tear). In these instances, a device of the present invention can be provided to cover only the material prone to staple damage. Without compromising seam integrity, this allows for a thinner overall seam and reduces the amount of material placed in the patient. It should be noted that various other materials may be added to the staple reinforcement device of the present invention to provide additional utility. For example, an antimicrobial or antibiotic agent may be coated on and/or filled within the porous structure of the sleeve to provide assistance in avoiding infection. This is considered to be particularly useful in various procedures (e.g., intestine resections, surgery on trauma injuries (e.g., chest or abdominal trauma), etc.) where microbial or bacterial infection is likely. Other useful additives may include adhesives, radio-visible compounds, clotting agents, agents promoting healing, cancer treating agents, etc.
While particular embodiments of the present invention have been illustrated and described herein, the present invention should not bc limited to such illustrations and descriptions. It should e that changes and modifications may be incorporated and embodied as part of the present invention within the scope of the following claims.

Claims

The invention claimed is:
1. A surgical staple line reinforcement device comprising a tubuiar sleeve having at least one face adapted to receive a line of surgical staples; means to securely attach the sleeve to a surgical stapler, the means comprising an opening on at least one end of the sleeve, allowing the sleeve to be slid over an arm of the surgical stapler, and at least one wall adapted to hold the sleeve on the arm once the sleeve is in place; the operative face and the wall of the sleeve consisting of the same bio-compatible implantable material.
2. The device of claim 1 wherein the sleeve includes means to allow ready separation of the face of the sleeve away from a remainder of the sleeve after installation.
3. The device of claim 2 wherein the means to allow ready separation of the face of the sleeve comprises tear lines along a length of the sleeve.
4. The device of claim 1 wherein the sleeve has an essentially rectangular cross sectional shape.
5. The device of claim 1 wherein the implantable material comprises polytetrafluoroethylene.
6. The device of claim 5 wherein the sleeve comprises a tube of polytetrafluoroethylene no more than 2.5 mm thick along its face; and the sleeve includes means to allow ready separation of the face of the sleeve away from a remainder of the sleeve after installation.
7. The device of claim 6 wherein the means to allow ready separation of the face comprises tear lines.
8. The device of claim 7 wherein the tear lines comprise lengths of polytetrafluoroethylene material having thickness less than the thickness of the face.
9. The device of claim 7 wherein the tear lines comprise scoring of the polytetrafluoroethylene material along its length, whereby the polytetrafluoroethylene material along the scoring is weaker in a transverse direction than the polytetrafluoroethylene material on the face of the device is in its transverse direction.
10. The device of claim 1 wherein the device includes an active agent selected from the group consisting of anti-biotic and anti¬ microbial agents.
11. A device for reinforcing surgical staples which comprises a sleeve including a face, through which staples are applied, and at least one back wall, the sleeves and the back wall being constructed from the same implantable material; means to allow ready separation of the face of the sleeve away from the back wall of the sleeve.
12. The device of claim 11 wherein the means to allow separation of the face from the back wall comprises tear lines along longitudinal length of the sleeve.
13. The device of claim 12 wherein the tear lines comprise scoring along the length of the sleeve, whereby the transverse strength of the tear line is less than the transverse strength of the face.
14. The device of claim 12 wherein the tear lines comprise a length of sleeve having a thickness less than the thickness of the face.
15. The device of claim 11 wherein the device includes an active agent selected from the group consisting of anti-biotic and anti¬ microbial agents.
16. The device of claim 11 wherein the implantable material comprises a tube of porous polytetrafluoroethylene.
17. The device of claim 16 wherein the tube of polytetrafluoroethylene has a generally rectangular cross sectional shape.
18. A method for applying surgical staples to a surgical site so as to reinforce the surgical site, which comprises providing a surgical stapler, having at least one stapler arm; providing at least one sleeve of reinforcement material, the sleeve being constructed from a tube of bio-compatible implantable material and having at least one face through which staples are applied, the sleeve being adapted to slide over the stapler arm; sliding the sleeve over the stapler arm so as to position the face to receive surgical staples; positioning the stapler over the surgical site; applying the surgical staples through the surgical site and the sleeve, the sleeve providing reinforcement to prevent tearing of the surgical site; and trimming the sleeve of excess implantable material.
19. The method of claim 18 that further comprises providing a sleeve of implantable material that includes tear lines allowing ready separation of the face of the sleeve from the excess implantable material; and trimming the sleeve of excess implantable material by separating the material along the tear lines.
20. The method of claim 19 that further comprises providing as the sleeve material porous polytetrafluoroethylene having a thickness of less than 2.5 mm on its face; and creating the tear lines by reducing the thickness of the polytetrafluoroethylene along at least a portion of the tear lines.
21. The method of claim 18 that further comprises providing as the sleeve a continuous tube of porous polytetrafluoroethylene, the continuous tube including side walls; retaining the sleeve on the stapler arm through friction of the side walls against the stapler arm.
22. The method of claim 18 that further comprises employing a stapler having at least two stapler arms; mounting sleeves on each of the stapler arms, so as to reinforce both sides of the staples upon application to the surgical site; and applying the stapler to excise and seal a surgical site comprising human tissue.
23. The method of claim 18 that further comprises providing a sleeve of implantable material that includes tear lines allowing ready separation of the face of the sleeve from the excess implantable material; mounting the sleeve on an endoscopic stapler device, which stapler device includes multiple arms that are separated from one another following application of staples; trimming the sleeve of excess implantable material by separating the material along the tear lines through separation of the arms of the stapler device.
24. The method of claim 23 that further comprises including means on the sleeve to attach a remainder portion of the sleeve to the stapler arm; attaching the remainder portion of the sleeve to the stapler arm; and extracting the remainder portion of the sleeve from the surgical site along with the stapler device via the means on the sleeve to attach the remainder portion of the sleeve to the stapler arm.
25. A surgical staple line reinforcement device that comprises bio-implantable material having at least one operative face proportioned to reinforce surgical staples at a surgical site, and walls extending from either side of the operative face, the face and the walls comprising the same material; means to separate the operative face from the walls, the means comprising tear lines positioned between the face and the walls.
26. The surgical staple line reinforcement device of claim 25 wherein the tear lines comprise lengths of the bio-implantable material that have been selectively weakened.
27. The surgical staple line reinforcement device of claim 26 wherein the tear lines are sufficiently weak so as to separate through an action of separating surgical stapler arms from one another.
28. A surgical staple line reinforcement device that comprises a tube of polytetrafluoroethylene, the tube being proportioned to slide over an arm of a surgical stapler and receive surgical staples through at least one operative face therein; tear lines in the tube of polytetrafluoroethylene to facilitate separation of the operative face of the tube from a remainder of the tube.
PCT/US1996/010937 1995-07-21 1996-06-26 Device and method for reinforcing surgical staples WO1997003614A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU63965/96A AU6396596A (en) 1995-07-21 1996-06-26 Device and method for reinforcing surgical staples
DE69635139T DE69635139T2 (en) 1995-07-21 1996-06-26 DEVICE AND METHOD FOR REINFORCING SURGICAL CLAMPS
EP96923462A EP0957779B1 (en) 1995-07-21 1996-06-26 Device and method for reinforcing surgical staples
CA002231593A CA2231593C (en) 1995-07-21 1996-06-26 Device and method for reinforcing surgical staples

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/505,728 US5702409A (en) 1995-07-21 1995-07-21 Device and method for reinforcing surgical staples
US08/505,728 1995-07-21

Publications (1)

Publication Number Publication Date
WO1997003614A1 true WO1997003614A1 (en) 1997-02-06

Family

ID=24011577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1996/010937 WO1997003614A1 (en) 1995-07-21 1996-06-26 Device and method for reinforcing surgical staples

Country Status (10)

Country Link
US (1) US5702409A (en)
EP (1) EP0957779B1 (en)
AU (1) AU6396596A (en)
CA (1) CA2231593C (en)
DE (1) DE69635139T2 (en)
ES (1) ES2244973T3 (en)
FR (1) FR2736817B1 (en)
IT (1) IT1283443B1 (en)
NL (1) NL1003657C2 (en)
WO (1) WO1997003614A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9421396B2 (en) 2012-09-05 2016-08-23 Mayo Foundation For Medical Education And Research Brachytherapy and buttress element co-delivery

Families Citing this family (858)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5542594A (en) * 1993-10-06 1996-08-06 United States Surgical Corporation Surgical stapling apparatus with biocompatible surgical fabric
US6704210B1 (en) 1994-05-20 2004-03-09 Medtronic, Inc. Bioprothesis film strip for surgical stapler and method of attaching the same
US5810855A (en) * 1995-07-21 1998-09-22 Gore Enterprise Holdings, Inc. Endoscopic device and method for reinforcing surgical staples
CA2256321C (en) * 1997-03-31 2007-03-27 Kabushikikaisha Igaki Iryo Sekkei Suture retaining member for use in medical treatment
US5865361A (en) 1997-09-23 1999-02-02 United States Surgical Corporation Surgical stapling apparatus
EP2305324B1 (en) 1999-03-25 2014-09-17 Metabolix, Inc. Medical devices and applications of polyhydroxyalkanoate polymers
US6325810B1 (en) 1999-06-30 2001-12-04 Ethicon, Inc. Foam buttress for stapling apparatus
US6273897B1 (en) 2000-02-29 2001-08-14 Ethicon, Inc. Surgical bettress and surgical stapling apparatus
US7334717B2 (en) 2001-10-05 2008-02-26 Tyco Healthcare Group Lp Surgical fastener applying apparatus
US6503257B2 (en) 2001-05-07 2003-01-07 Ethicon Endo-Surgery, Inc. Method for releasing buttress material attached to a surgical fastening device
US6592597B2 (en) 2001-05-07 2003-07-15 Ethicon Endo-Surgery, Inc. Adhesive for attaching buttress material to a surgical fastening device
US20030050648A1 (en) 2001-09-11 2003-03-13 Spiration, Inc. Removable lung reduction devices, systems, and methods
US6592594B2 (en) 2001-10-25 2003-07-15 Spiration, Inc. Bronchial obstruction device deployment system and method
US6939358B2 (en) * 2001-12-20 2005-09-06 Gore Enterprise Holdings, Inc. Apparatus and method for applying reinforcement material to a surgical stapler
US6929637B2 (en) 2002-02-21 2005-08-16 Spiration, Inc. Device and method for intra-bronchial provision of a therapeutic agent
US20030181922A1 (en) 2002-03-20 2003-09-25 Spiration, Inc. Removable anchored lung volume reduction devices and methods
US20030216769A1 (en) 2002-05-17 2003-11-20 Dillard David H. Removable anchored lung volume reduction devices and methods
CA2479765C (en) * 2002-04-15 2009-01-27 Cook Biotech Incorporated Apparatus and method for producing a reinforced surgical staple line
US20030195385A1 (en) * 2002-04-16 2003-10-16 Spiration, Inc. Removable anchored lung volume reduction devices and methods
US7238195B2 (en) 2002-05-10 2007-07-03 Tyco Healthcare Group Lp Wound closure material applicator and stapler
US7431730B2 (en) 2002-05-10 2008-10-07 Tyco Healthcare Group Lp Surgical stapling apparatus having a wound closure material applicator assembly
EP2228018B1 (en) 2002-06-17 2012-05-09 Tyco Healthcare Group LP Annular support structures
US20040059263A1 (en) * 2002-09-24 2004-03-25 Spiration, Inc. Device and method for measuring the diameter of an air passageway
US20040010209A1 (en) * 2002-07-15 2004-01-15 Spiration, Inc. Device and method for measuring the diameter of an air passageway
US7100616B2 (en) 2003-04-08 2006-09-05 Spiration, Inc. Bronchoscopic lung volume reduction method
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US7533671B2 (en) 2003-08-08 2009-05-19 Spiration, Inc. Bronchoscopic repair of air leaks in a lung
US20050070929A1 (en) * 2003-09-30 2005-03-31 Dalessandro David A. Apparatus and method for attaching a surgical buttress to a stapling apparatus
US7296722B2 (en) 2003-10-17 2007-11-20 Tyco Healthcare Group Lp Surgical fastener applying apparatus with controlled beam deflection
WO2005079675A2 (en) * 2004-02-17 2005-09-01 Cook Biotech Incorporated Medical devices and methods for applying bolster material
US7410086B2 (en) * 2004-07-28 2008-08-12 Ethicon Endo-Surgery, Inc. Electroactive polymer-based actuation mechanism for circular stapler
US7143925B2 (en) * 2004-07-28 2006-12-05 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating EAP blocking lockout mechanism
US7407077B2 (en) 2004-07-28 2008-08-05 Ethicon Endo-Surgery, Inc. Electroactive polymer-based actuation mechanism for linear surgical stapler
US8215531B2 (en) 2004-07-28 2012-07-10 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
US7879070B2 (en) * 2004-07-28 2011-02-01 Ethicon Endo-Surgery, Inc. Electroactive polymer-based actuation mechanism for grasper
US7857183B2 (en) 2004-07-28 2010-12-28 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating an electrically actuated articulation mechanism
US7147138B2 (en) * 2004-07-28 2006-12-12 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having an electroactive polymer actuated buttress deployment mechanism
US7506790B2 (en) 2004-07-28 2009-03-24 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating an electrically actuated articulation mechanism
US7487899B2 (en) 2004-07-28 2009-02-10 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating EAP complete firing system lockout mechanism
US8905977B2 (en) 2004-07-28 2014-12-09 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having an electroactive polymer actuated medical substance dispenser
US11890012B2 (en) 2004-07-28 2024-02-06 Cilag Gmbh International Staple cartridge comprising cartridge body and attached support
US7914551B2 (en) * 2004-07-28 2011-03-29 Ethicon Endo-Surgery, Inc. Electroactive polymer-based articulation mechanism for multi-fire surgical fastening instrument
US8057508B2 (en) 2004-07-28 2011-11-15 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating an electrically actuated articulation locking mechanism
US7513408B2 (en) 2004-07-28 2009-04-07 Ethicon Endo-Surgery, Inc. Multiple firing stroke surgical instrument incorporating electroactive polymer anti-backup mechanism
US20060025812A1 (en) * 2004-07-28 2006-02-02 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating an electrically actuated pivoting articulation mechanism
US8372094B2 (en) 2004-10-15 2013-02-12 Covidien Lp Seal element for anastomosis
US7845536B2 (en) 2004-10-18 2010-12-07 Tyco Healthcare Group Lp Annular adhesive structure
US7455682B2 (en) 2004-10-18 2008-11-25 Tyco Healthcare Group Lp Structure containing wound treatment material
WO2006044490A2 (en) 2004-10-18 2006-04-27 Tyco Healthcare Group, Lp Annular adhesive structure
US7938307B2 (en) 2004-10-18 2011-05-10 Tyco Healthcare Group Lp Support structures and methods of using the same
US7942890B2 (en) * 2005-03-15 2011-05-17 Tyco Healthcare Group Lp Anastomosis composite gasket
US9364229B2 (en) 2005-03-15 2016-06-14 Covidien Lp Circular anastomosis structures
US7784663B2 (en) 2005-03-17 2010-08-31 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having load sensing control circuitry
FR2884134B1 (en) * 2005-04-07 2008-03-28 Safradim Production Soc Par Ac SYSTEM FOR ESTABLISHING MEANS FORMING REINFORCEMENT OF A SUTURE
US20090193926A1 (en) * 2005-06-25 2009-08-06 Markel Corporation Motion Transmitting Cable Liner and Assemblies Containing Same
US20090229401A1 (en) * 2005-06-25 2009-09-17 Markel Corporation Motion Transmitting Cable Liner and Assemblies Containing Same
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US20070194079A1 (en) 2005-08-31 2007-08-23 Hueil Joseph C Surgical stapling device with staple drivers of different height
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US8800838B2 (en) 2005-08-31 2014-08-12 Ethicon Endo-Surgery, Inc. Robotically-controlled cable-based surgical end effectors
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
US20070128243A1 (en) 2005-12-02 2007-06-07 Xylos Corporation Implantable microbial cellulose materials for various medical applications
US8161977B2 (en) 2006-01-31 2012-04-24 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US20110290856A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument with force-feedback capabilities
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US9861359B2 (en) 2006-01-31 2018-01-09 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US20120292367A1 (en) 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US8763879B2 (en) 2006-01-31 2014-07-01 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of surgical instrument
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US20110024477A1 (en) 2009-02-06 2011-02-03 Hall Steven G Driven Surgical Stapler Improvements
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US20110006101A1 (en) 2009-02-06 2011-01-13 EthiconEndo-Surgery, Inc. Motor driven surgical fastener device with cutting member lockout arrangements
US7753904B2 (en) 2006-01-31 2010-07-13 Ethicon Endo-Surgery, Inc. Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US9629626B2 (en) 2006-02-02 2017-04-25 Covidien Lp Mechanically tuned buttress material to assist with proper formation of surgical element in diseased tissue
US7793813B2 (en) 2006-02-28 2010-09-14 Tyco Healthcare Group Lp Hub for positioning annular structure on a surgical device
US7709631B2 (en) 2006-03-13 2010-05-04 Xylos Corporation Oxidized microbial cellulose and use thereof
US20070225562A1 (en) 2006-03-23 2007-09-27 Ethicon Endo-Surgery, Inc. Articulating endoscopic accessory channel
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US7691151B2 (en) 2006-03-31 2010-04-06 Spiration, Inc. Articulable Anchor
US20070286884A1 (en) * 2006-06-13 2007-12-13 Xylos Corporation Implantable microbial cellulose materials for hard tissue repair and regeneration
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
US10130359B2 (en) 2006-09-29 2018-11-20 Ethicon Llc Method for forming a staple
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US7506791B2 (en) 2006-09-29 2009-03-24 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with mechanical mechanism for limiting maximum tissue compression
US7845535B2 (en) 2006-10-06 2010-12-07 Tyco Healthcare Group Lp Surgical instrument having a plastic surface
US7845533B2 (en) 2007-06-22 2010-12-07 Tyco Healthcare Group Lp Detachable buttress material retention systems for use with a surgical stapling device
WO2008057281A2 (en) 2006-10-26 2008-05-15 Tyco Healthcare Group Lp Methods of using shape memory alloys for buttress attachment
KR101428122B1 (en) 2006-12-15 2014-08-07 라이프본드 엘티디. Gelatin-transglutaminase hemostatic dressings and sealants
US8459520B2 (en) 2007-01-10 2013-06-11 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and remote sensor
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US8540128B2 (en) 2007-01-11 2013-09-24 Ethicon Endo-Surgery, Inc. Surgical stapling device with a curved end effector
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US8011555B2 (en) 2007-03-06 2011-09-06 Tyco Healthcare Group Lp Surgical stapling apparatus
US8011550B2 (en) 2009-03-31 2011-09-06 Tyco Healthcare Group Lp Surgical stapling apparatus
AU2008223389B2 (en) 2007-03-06 2013-07-11 Covidien Lp Surgical stapling apparatus
US8727197B2 (en) 2007-03-15 2014-05-20 Ethicon Endo-Surgery, Inc. Staple cartridge cavity configuration with cooperative surgical staple
US8893946B2 (en) 2007-03-28 2014-11-25 Ethicon Endo-Surgery, Inc. Laparoscopic tissue thickness and clamp load measuring devices
JP2008258530A (en) * 2007-04-09 2008-10-23 Rohm Co Ltd Semiconductor light-emitting device
US8485411B2 (en) 2007-05-16 2013-07-16 The Invention Science Fund I, Llc Gentle touch surgical stapler
US7823761B2 (en) 2007-05-16 2010-11-02 The Invention Science Fund I, Llc Maneuverable surgical stapler
US7832611B2 (en) 2007-05-16 2010-11-16 The Invention Science Fund I, Llc Steerable surgical stapler
US7798385B2 (en) * 2007-05-16 2010-09-21 The Invention Science Fund I, Llc Surgical stapling instrument with chemical sealant
US7810691B2 (en) 2007-05-16 2010-10-12 The Invention Science Fund I, Llc Gentle touch surgical stapler
US7922064B2 (en) 2007-05-16 2011-04-12 The Invention Science Fund, I, LLC Surgical fastening device with cutter
US8038045B2 (en) 2007-05-25 2011-10-18 Tyco Healthcare Group Lp Staple buttress retention system
US11857181B2 (en) 2007-06-04 2024-01-02 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
US7905380B2 (en) 2007-06-04 2011-03-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a multiple rate directional switching mechanism
US7832408B2 (en) 2007-06-04 2010-11-16 Ethicon Endo-Surgery, Inc. Surgical instrument having a directional switching mechanism
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US8534528B2 (en) 2007-06-04 2013-09-17 Ethicon Endo-Surgery, Inc. Surgical instrument having a multiple rate directional switching mechanism
US7950561B2 (en) 2007-06-18 2011-05-31 Tyco Healthcare Group Lp Structure for attachment of buttress material to anvils and cartridges of surgical staplers
US7665646B2 (en) 2007-06-18 2010-02-23 Tyco Healthcare Group Lp Interlocking buttress material retention system
US7753245B2 (en) 2007-06-22 2010-07-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US8308040B2 (en) 2007-06-22 2012-11-13 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulatable end effector
US8062330B2 (en) 2007-06-27 2011-11-22 Tyco Healthcare Group Lp Buttress and surgical stapling apparatus
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US8061576B2 (en) 2007-08-31 2011-11-22 Tyco Healthcare Group Lp Surgical instrument
US8317790B2 (en) * 2007-09-14 2012-11-27 W. L. Gore & Associates, Inc. Surgical staple line reinforcements
US7866524B2 (en) * 2007-09-24 2011-01-11 Tyco Healthcare Group Lp Stapler powered auxiliary device for injecting material between stapler jaws
ES2426767T3 (en) * 2007-10-08 2013-10-25 Gore Enterprise Holdings, Inc. Apparatus for supplying a reinforcement of surgical staple lines
US8043301B2 (en) 2007-10-12 2011-10-25 Spiration, Inc. Valve loader method, system, and apparatus
EP2194933B1 (en) 2007-10-12 2016-05-04 Spiration, Inc. Valve loader method, system, and apparatus
US8561870B2 (en) 2008-02-13 2013-10-22 Ethicon Endo-Surgery, Inc. Surgical stapling instrument
US8584919B2 (en) 2008-02-14 2013-11-19 Ethicon Endo-Sugery, Inc. Surgical stapling apparatus with load-sensitive firing mechanism
US7793812B2 (en) 2008-02-14 2010-09-14 Ethicon Endo-Surgery, Inc. Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
US8622274B2 (en) 2008-02-14 2014-01-07 Ethicon Endo-Surgery, Inc. Motorized cutting and fastening instrument having control circuit for optimizing battery usage
US8752749B2 (en) 2008-02-14 2014-06-17 Ethicon Endo-Surgery, Inc. Robotically-controlled disposable motor-driven loading unit
US8657174B2 (en) 2008-02-14 2014-02-25 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument having handle based power source
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US8758391B2 (en) 2008-02-14 2014-06-24 Ethicon Endo-Surgery, Inc. Interchangeable tools for surgical instruments
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US8459525B2 (en) 2008-02-14 2013-06-11 Ethicon Endo-Sugery, Inc. Motorized surgical cutting and fastening instrument having a magnetic drive train torque limiting device
BRPI0901282A2 (en) 2008-02-14 2009-11-17 Ethicon Endo Surgery Inc surgical cutting and fixation instrument with rf electrodes
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US9770245B2 (en) 2008-02-15 2017-09-26 Ethicon Llc Layer arrangements for surgical staple cartridges
US20090206141A1 (en) 2008-02-15 2009-08-20 Ethicon Endo-Surgery, Inc. Buttress material having an activatable adhesive
US8701959B2 (en) 2008-06-06 2014-04-22 Covidien Lp Mechanically pivoting cartridge channel for surgical instrument
US7789283B2 (en) 2008-06-06 2010-09-07 Tyco Healthcare Group Lp Knife/firing rod connection for surgical instrument
US7942303B2 (en) 2008-06-06 2011-05-17 Tyco Healthcare Group Lp Knife lockout mechanisms for surgical instrument
CA2728186A1 (en) * 2008-06-18 2009-12-23 Lifebond Ltd Methods and devices for use with sealants
EP2303341A2 (en) * 2008-06-18 2011-04-06 Lifebond Ltd A method for enzymatic cross-linking of a protein
JP5450612B2 (en) 2008-06-18 2014-03-26 ライフボンド リミテッド Improved cross-linking composition
PL3476312T3 (en) 2008-09-19 2024-03-11 Ethicon Llc Surgical stapler with apparatus for adjusting staple height
US7857186B2 (en) 2008-09-19 2010-12-28 Ethicon Endo-Surgery, Inc. Surgical stapler having an intermediate closing position
US7896214B2 (en) 2008-09-23 2011-03-01 Tyco Healthcare Group Lp Tissue stop for surgical instrument
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US8628544B2 (en) 2008-09-23 2014-01-14 Covidien Lp Knife bar for surgical instrument
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US8215532B2 (en) 2008-09-23 2012-07-10 Tyco Healthcare Group Lp Tissue stop for surgical instrument
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US7988028B2 (en) 2008-09-23 2011-08-02 Tyco Healthcare Group Lp Surgical instrument having an asymmetric dynamic clamping member
US9050083B2 (en) 2008-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US20100147921A1 (en) 2008-12-16 2010-06-17 Lee Olson Surgical Apparatus Including Surgical Buttress
US8397971B2 (en) 2009-02-05 2013-03-19 Ethicon Endo-Surgery, Inc. Sterilizable surgical instrument
US8414577B2 (en) 2009-02-05 2013-04-09 Ethicon Endo-Surgery, Inc. Surgical instruments and components for use in sterile environments
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
CN102341048A (en) 2009-02-06 2012-02-01 伊西康内外科公司 Driven surgical stapler improvements
US20100249802A1 (en) * 2009-03-27 2010-09-30 May Thomas C Soft Tissue Graft Preparation Devices and Methods
US9486215B2 (en) 2009-03-31 2016-11-08 Covidien Lp Surgical stapling apparatus
US7967179B2 (en) 2009-03-31 2011-06-28 Tyco Healthcare Group Lp Center cinch and release of buttress material
US8016178B2 (en) 2009-03-31 2011-09-13 Tyco Healthcare Group Lp Surgical stapling apparatus
US8365972B2 (en) 2009-03-31 2013-02-05 Covidien Lp Surgical stapling apparatus
US8113409B2 (en) * 2009-03-31 2012-02-14 Tyco Healthcare Group Lp Surgical stapling apparatus with clamping assembly
US8348126B2 (en) 2009-03-31 2013-01-08 Covidien Lp Crimp and release of suture holding buttress material
US7988027B2 (en) 2009-03-31 2011-08-02 Tyco Healthcare Group Lp Crimp and release of suture holding buttress material
US8292154B2 (en) 2009-04-16 2012-10-23 Tyco Healthcare Group Lp Surgical apparatus for applying tissue fasteners
US8127976B2 (en) 2009-05-08 2012-03-06 Tyco Healthcare Group Lp Stapler cartridge and channel interlock
US8132706B2 (en) 2009-06-05 2012-03-13 Tyco Healthcare Group Lp Surgical stapling apparatus having articulation mechanism
US8342378B2 (en) 2009-08-17 2013-01-01 Covidien Lp One handed stapler
US10293553B2 (en) 2009-10-15 2019-05-21 Covidien Lp Buttress brachytherapy and integrated staple line markers for margin identification
US9693772B2 (en) 2009-10-15 2017-07-04 Covidien Lp Staple line reinforcement for anvil and cartridge
US8157151B2 (en) 2009-10-15 2012-04-17 Tyco Healthcare Group Lp Staple line reinforcement for anvil and cartridge
US20150231409A1 (en) 2009-10-15 2015-08-20 Covidien Lp Buttress brachytherapy and integrated staple line markers for margin identification
US10842485B2 (en) 2009-10-15 2020-11-24 Covidien Lp Brachytherapy buttress
US9610080B2 (en) 2009-10-15 2017-04-04 Covidien Lp Staple line reinforcement for anvil and cartridge
US8418907B2 (en) 2009-11-05 2013-04-16 Covidien Lp Surgical stapler having cartridge with adjustable cam mechanism
US8899466B2 (en) 2009-11-19 2014-12-02 Ethicon Endo-Surgery, Inc. Devices and methods for introducing a surgical circular stapling instrument into a patient
BR112012015029A2 (en) 2009-12-22 2017-06-27 Lifebond Ltd cross-linked matrix, method for controlling the formation of a matrix, method or matrix, method for sealing a tissue against leakage of a body fluid, hemostatic agent or surgical seal, composition for sealing a wound, use of the composition, composition for a delivery vehicle drug composition, tissue engineering composition, and method for modifying a composition
US8220688B2 (en) 2009-12-24 2012-07-17 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
US8348127B2 (en) 2010-04-07 2013-01-08 Covidien Lp Surgical fastener applying apparatus
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US8672207B2 (en) 2010-07-30 2014-03-18 Ethicon Endo-Surgery, Inc. Transwall visualization arrangements and methods for surgical circular staplers
US8961544B2 (en) 2010-08-05 2015-02-24 Lifebond Ltd. Dry composition wound dressings and adhesives comprising gelatin and transglutaminase in a cross-linked matrix
US8360296B2 (en) 2010-09-09 2013-01-29 Ethicon Endo-Surgery, Inc. Surgical stapling head assembly with firing lockout for a surgical stapler
US9877720B2 (en) 2010-09-24 2018-01-30 Ethicon Llc Control features for articulating surgical device
US8733613B2 (en) 2010-09-29 2014-05-27 Ethicon Endo-Surgery, Inc. Staple cartridge
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US9517063B2 (en) 2012-03-28 2016-12-13 Ethicon Endo-Surgery, Llc Movable member for use with a tissue thickness compensator
US9433419B2 (en) 2010-09-30 2016-09-06 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a plurality of layers
US9332974B2 (en) 2010-09-30 2016-05-10 Ethicon Endo-Surgery, Llc Layered tissue thickness compensator
US9220501B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensators
US9282962B2 (en) 2010-09-30 2016-03-15 Ethicon Endo-Surgery, Llc Adhesive film laminate
US9016542B2 (en) 2010-09-30 2015-04-28 Ethicon Endo-Surgery, Inc. Staple cartridge comprising compressible distortion resistant components
US9204880B2 (en) 2012-03-28 2015-12-08 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising capsules defining a low pressure environment
US8893949B2 (en) 2010-09-30 2014-11-25 Ethicon Endo-Surgery, Inc. Surgical stapler with floating anvil
US9307989B2 (en) 2012-03-28 2016-04-12 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorportating a hydrophobic agent
US9211120B2 (en) 2011-04-29 2015-12-15 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a plurality of medicaments
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
EP2621356B1 (en) 2010-09-30 2018-03-07 Ethicon LLC Fastener system comprising a retention matrix and an alignment matrix
US11849952B2 (en) 2010-09-30 2023-12-26 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US9055941B2 (en) 2011-09-23 2015-06-16 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US9314246B2 (en) 2010-09-30 2016-04-19 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating an anti-inflammatory agent
US9386988B2 (en) 2010-09-30 2016-07-12 Ethicon End-Surgery, LLC Retainer assembly including a tissue thickness compensator
US20120080478A1 (en) 2010-09-30 2012-04-05 Ethicon Endo-Surgery, Inc. Surgical staple cartridges with detachable support structures and surgical stapling instruments with systems for preventing actuation motions when a cartridge is not present
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US9414838B2 (en) 2012-03-28 2016-08-16 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprised of a plurality of materials
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
US8899461B2 (en) 2010-10-01 2014-12-02 Covidien Lp Tissue stop for surgical instrument
US8900616B2 (en) 2010-10-22 2014-12-02 Covidien Lp System and method for satellite drug delivery
US8308041B2 (en) 2010-11-10 2012-11-13 Tyco Healthcare Group Lp Staple formed over the wire wound closure procedure
US8348130B2 (en) 2010-12-10 2013-01-08 Covidien Lp Surgical apparatus including surgical buttress
US9084602B2 (en) 2011-01-26 2015-07-21 Covidien Lp Buttress film with hemostatic action for surgical stapling apparatus
US8479968B2 (en) 2011-03-10 2013-07-09 Covidien Lp Surgical instrument buttress attachment
US8632462B2 (en) 2011-03-14 2014-01-21 Ethicon Endo-Surgery, Inc. Trans-rectum universal ports
US9044229B2 (en) 2011-03-15 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical fastener instruments
US8540131B2 (en) * 2011-03-15 2013-09-24 Ethicon Endo-Surgery, Inc. Surgical staple cartridges with tissue tethers for manipulating divided tissue and methods of using same
US8789737B2 (en) 2011-04-27 2014-07-29 Covidien Lp Circular stapler and staple line reinforcement material
CA2834649C (en) 2011-04-29 2021-02-16 Ethicon Endo-Surgery, Inc. Staple cartridge comprising staples positioned within a compressible portion thereof
US8795241B2 (en) 2011-05-13 2014-08-05 Spiration, Inc. Deployment catheter
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US9289209B2 (en) 2011-06-09 2016-03-22 Covidien Lp Surgical fastener applying apparatus
US9271728B2 (en) 2011-06-09 2016-03-01 Covidien Lp Surgical fastener applying apparatus
US9451959B2 (en) 2011-06-09 2016-09-27 Covidien Lp Surgical fastener applying apparatus
US8763876B2 (en) 2011-06-30 2014-07-01 Covidien Lp Surgical instrument and cartridge for use therewith
US20130012958A1 (en) 2011-07-08 2013-01-10 Stanislaw Marczyk Surgical Device with Articulation and Wrist Rotation
US9539007B2 (en) 2011-08-08 2017-01-10 Covidien Lp Surgical fastener applying aparatus
US9155537B2 (en) 2011-08-08 2015-10-13 Covidien Lp Surgical fastener applying apparatus
US9724095B2 (en) 2011-08-08 2017-08-08 Covidien Lp Surgical fastener applying apparatus
US9050084B2 (en) 2011-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck arrangement
US9016539B2 (en) 2011-10-25 2015-04-28 Covidien Lp Multi-use loading unit
US9675351B2 (en) 2011-10-26 2017-06-13 Covidien Lp Buttress release from surgical stapler by knife pushing
US8584920B2 (en) 2011-11-04 2013-11-19 Covidien Lp Surgical stapling apparatus including releasable buttress
US8740036B2 (en) 2011-12-01 2014-06-03 Covidien Lp Surgical instrument with actuator spring arm
US9351731B2 (en) 2011-12-14 2016-05-31 Covidien Lp Surgical stapling apparatus including releasable surgical buttress
US9351732B2 (en) 2011-12-14 2016-05-31 Covidien Lp Buttress attachment to degradable polymer zones
US9237892B2 (en) 2011-12-14 2016-01-19 Covidien Lp Buttress attachment to the cartridge surface
US9113885B2 (en) 2011-12-14 2015-08-25 Covidien Lp Buttress assembly for use with surgical stapling device
US8967448B2 (en) 2011-12-14 2015-03-03 Covidien Lp Surgical stapling apparatus including buttress attachment via tabs
US9010608B2 (en) 2011-12-14 2015-04-21 Covidien Lp Releasable buttress retention on a surgical stapler
US10299815B2 (en) 2012-01-19 2019-05-28 Covidien Lp Surgical instrument with clam releases mechanism
US8864010B2 (en) 2012-01-20 2014-10-21 Covidien Lp Curved guide member for articulating instruments
US9010612B2 (en) 2012-01-26 2015-04-21 Covidien Lp Buttress support design for EEA anvil
US9326773B2 (en) 2012-01-26 2016-05-03 Covidien Lp Surgical device including buttress material
US9010609B2 (en) 2012-01-26 2015-04-21 Covidien Lp Circular stapler including buttress
US9931116B2 (en) 2012-02-10 2018-04-03 Covidien Lp Buttress composition
CN104159530A (en) 2012-02-10 2014-11-19 W.L.戈尔及同仁股份有限公司 Apparatus for supplying surgical staple line reinforcement
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US8820606B2 (en) 2012-02-24 2014-09-02 Covidien Lp Buttress retention system for linear endostaplers
US8979827B2 (en) 2012-03-14 2015-03-17 Covidien Lp Surgical instrument with articulation mechanism
RU2635007C2 (en) * 2012-03-28 2017-11-08 Этикон Эндо-Серджери, Инк. Tissue thickness compensator containing structure for elastic load application
US9198662B2 (en) 2012-03-28 2015-12-01 Ethicon Endo-Surgery, Inc. Tissue thickness compensator having improved visibility
CN104379068B (en) 2012-03-28 2017-09-22 伊西康内外科公司 Holding device assembly including tissue thickness compensation part
BR112014024197B1 (en) * 2012-03-28 2022-05-10 Ethicon Endo-Surgery, Inc ES Fastener Cartridge Assembly for a Surgical Instrument and End Actuator Assembly for a Surgical Instrument
BR112014024102B1 (en) 2012-03-28 2022-03-03 Ethicon Endo-Surgery, Inc CLAMP CARTRIDGE ASSEMBLY FOR A SURGICAL INSTRUMENT AND END ACTUATOR ASSEMBLY FOR A SURGICAL INSTRUMENT
BR112014024098B1 (en) 2012-03-28 2021-05-25 Ethicon Endo-Surgery, Inc. staple cartridge
US9526497B2 (en) 2012-05-07 2016-12-27 Covidien Lp Surgical instrument with articulation mechanism
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US9119657B2 (en) 2012-06-28 2015-09-01 Ethicon Endo-Surgery, Inc. Rotary actuatable closure arrangement for surgical end effector
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
US8747238B2 (en) 2012-06-28 2014-06-10 Ethicon Endo-Surgery, Inc. Rotary drive shaft assemblies for surgical instruments with articulatable end effectors
US9125662B2 (en) 2012-06-28 2015-09-08 Ethicon Endo-Surgery, Inc. Multi-axis articulating and rotating surgical tools
US9226751B2 (en) 2012-06-28 2016-01-05 Ethicon Endo-Surgery, Inc. Surgical instrument system including replaceable end effectors
US9561038B2 (en) 2012-06-28 2017-02-07 Ethicon Endo-Surgery, Llc Interchangeable clip applier
JP6290201B2 (en) 2012-06-28 2018-03-07 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Lockout for empty clip cartridge
US11278284B2 (en) 2012-06-28 2022-03-22 Cilag Gmbh International Rotary drive arrangements for surgical instruments
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US9028494B2 (en) 2012-06-28 2015-05-12 Ethicon Endo-Surgery, Inc. Interchangeable end effector coupling arrangement
US9204879B2 (en) 2012-06-28 2015-12-08 Ethicon Endo-Surgery, Inc. Flexible drive member
US9072536B2 (en) 2012-06-28 2015-07-07 Ethicon Endo-Surgery, Inc. Differential locking arrangements for rotary powered surgical instruments
BR112014032776B1 (en) 2012-06-28 2021-09-08 Ethicon Endo-Surgery, Inc SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
US9101385B2 (en) 2012-06-28 2015-08-11 Ethicon Endo-Surgery, Inc. Electrode connections for rotary driven surgical tools
US9232944B2 (en) 2012-06-29 2016-01-12 Covidien Lp Surgical instrument and bushing
US9572576B2 (en) 2012-07-18 2017-02-21 Covidien Lp Surgical apparatus including surgical buttress
US20140048580A1 (en) 2012-08-20 2014-02-20 Covidien Lp Buttress attachment features for surgical stapling apparatus
WO2014039995A1 (en) 2012-09-07 2014-03-13 Fibrocell Technologies, Inc. Fibroblast compositions for treating cardial damage after an infarct
US9161753B2 (en) 2012-10-10 2015-10-20 Covidien Lp Buttress fixation for a circular stapler
US9364217B2 (en) 2012-10-16 2016-06-14 Covidien Lp In-situ loaded stapler
US20140131418A1 (en) 2012-11-09 2014-05-15 Covidien Lp Surgical Stapling Apparatus Including Buttress Attachment
US9192384B2 (en) 2012-11-09 2015-11-24 Covidien Lp Recessed groove for better suture retention
US9681936B2 (en) 2012-11-30 2017-06-20 Covidien Lp Multi-layer porous film material
US9295466B2 (en) 2012-11-30 2016-03-29 Covidien Lp Surgical apparatus including surgical buttress
US9522002B2 (en) 2012-12-13 2016-12-20 Covidien Lp Surgical instrument with pressure distribution device
US9402627B2 (en) 2012-12-13 2016-08-02 Covidien Lp Folded buttress for use with a surgical apparatus
US9204881B2 (en) 2013-01-11 2015-12-08 Covidien Lp Buttress retainer for EEA anvil
US9345480B2 (en) 2013-01-18 2016-05-24 Covidien Lp Surgical instrument and cartridge members for use therewith
US9433420B2 (en) 2013-01-23 2016-09-06 Covidien Lp Surgical apparatus including surgical buttress
US9192383B2 (en) 2013-02-04 2015-11-24 Covidien Lp Circular stapling device including buttress material
US9414839B2 (en) 2013-02-04 2016-08-16 Covidien Lp Buttress attachment for circular stapling device
US9386984B2 (en) * 2013-02-08 2016-07-12 Ethicon Endo-Surgery, Llc Staple cartridge comprising a releasable cover
US9504470B2 (en) 2013-02-25 2016-11-29 Covidien Lp Circular stapling device with buttress
US20140239047A1 (en) 2013-02-28 2014-08-28 Covidien Lp Adherence concepts for non-woven absorbable felt buttresses
US10092292B2 (en) 2013-02-28 2018-10-09 Ethicon Llc Staple forming features for surgical stapling instrument
US20140246475A1 (en) 2013-03-01 2014-09-04 Ethicon Endo-Surgery, Inc. Control methods for surgical instruments with removable implement portions
JP6345707B2 (en) 2013-03-01 2018-06-20 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Surgical instrument with soft stop
JP6382235B2 (en) 2013-03-01 2018-08-29 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Articulatable surgical instrument with a conductive path for signal communication
US10561432B2 (en) 2013-03-05 2020-02-18 Covidien Lp Pivoting screw for use with a pair of jaw members of a surgical instrument
US9782173B2 (en) 2013-03-07 2017-10-10 Covidien Lp Circular stapling device including buttress release mechanism
US9629628B2 (en) 2013-03-13 2017-04-25 Covidien Lp Surgical stapling apparatus
US9814463B2 (en) 2013-03-13 2017-11-14 Covidien Lp Surgical stapling apparatus
US9717498B2 (en) 2013-03-13 2017-08-01 Covidien Lp Surgical stapling apparatus
US20140263552A1 (en) 2013-03-13 2014-09-18 Ethicon Endo-Surgery, Inc. Staple cartridge tissue thickness sensor system
US9888921B2 (en) 2013-03-13 2018-02-13 Covidien Lp Surgical stapling apparatus
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US9332987B2 (en) 2013-03-14 2016-05-10 Ethicon Endo-Surgery, Llc Control arrangements for a drive member of a surgical instrument
US9510827B2 (en) 2013-03-25 2016-12-06 Covidien Lp Micro surgical instrument and loading unit for use therewith
US9332984B2 (en) 2013-03-27 2016-05-10 Ethicon Endo-Surgery, Llc Fastener cartridge assemblies
US9795384B2 (en) 2013-03-27 2017-10-24 Ethicon Llc Fastener cartridge comprising a tissue thickness compensator and a gap setting element
US9572577B2 (en) 2013-03-27 2017-02-21 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a tissue thickness compensator including openings therein
BR112015026109B1 (en) 2013-04-16 2022-02-22 Ethicon Endo-Surgery, Inc surgical instrument
US9844368B2 (en) 2013-04-16 2017-12-19 Ethicon Llc Surgical system comprising first and second drive systems
US9574644B2 (en) 2013-05-30 2017-02-21 Ethicon Endo-Surgery, Llc Power module for use with a surgical instrument
US9445810B2 (en) 2013-06-12 2016-09-20 Covidien Lp Stapling device with grasping jaw mechanism
US20150053746A1 (en) 2013-08-23 2015-02-26 Ethicon Endo-Surgery, Inc. Torque optimization for surgical instruments
JP6416260B2 (en) 2013-08-23 2018-10-31 エシコン エルエルシー Firing member retractor for a powered surgical instrument
US9662108B2 (en) 2013-08-30 2017-05-30 Covidien Lp Surgical stapling apparatus
US20140171986A1 (en) 2013-09-13 2014-06-19 Ethicon Endo-Surgery, Inc. Surgical Clip Having Comliant Portion
US9655620B2 (en) 2013-10-28 2017-05-23 Covidien Lp Circular surgical stapling device including buttress material
AU2013403916A1 (en) 2013-11-04 2016-04-28 Covidien Lp Surgical fastener applying apparatus
CA2926750A1 (en) 2013-11-04 2015-05-07 Covidien Lp Surgical fastener applying apparatus
CN105682568B (en) 2013-11-04 2018-10-23 柯惠Lp公司 Surgical fasteners bringing device
EP4344684A2 (en) 2013-12-17 2024-04-03 Standard Bariatrics Inc. Resection line guide for a medical procedure
US9867613B2 (en) 2013-12-19 2018-01-16 Covidien Lp Surgical staples and end effectors for deploying the same
US9839428B2 (en) 2013-12-23 2017-12-12 Ethicon Llc Surgical cutting and stapling instruments with independent jaw control features
US9724092B2 (en) 2013-12-23 2017-08-08 Ethicon Llc Modular surgical instruments
US9968354B2 (en) 2013-12-23 2018-05-15 Ethicon Llc Surgical staples and methods for making the same
US20150173756A1 (en) 2013-12-23 2015-06-25 Ethicon Endo-Surgery, Inc. Surgical cutting and stapling methods
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
US9848874B2 (en) 2014-02-14 2017-12-26 Covidien Lp Small diameter endoscopic stapler
CN106232029B (en) 2014-02-24 2019-04-12 伊西康内外科有限责任公司 Fastening system including firing member locking piece
US9839422B2 (en) 2014-02-24 2017-12-12 Ethicon Llc Implantable layers and methods for altering implantable layers for use with surgical fastening instruments
US10004497B2 (en) 2014-03-26 2018-06-26 Ethicon Llc Interface systems for use with surgical instruments
US10201364B2 (en) 2014-03-26 2019-02-12 Ethicon Llc Surgical instrument comprising a rotatable shaft
US9913642B2 (en) 2014-03-26 2018-03-13 Ethicon Llc Surgical instrument comprising a sensor system
US9733663B2 (en) 2014-03-26 2017-08-15 Ethicon Llc Power management through segmented circuit and variable voltage protection
BR112016021943B1 (en) 2014-03-26 2022-06-14 Ethicon Endo-Surgery, Llc SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE
EP3125796B1 (en) 2014-03-29 2024-03-06 Standard Bariatrics Inc. Surgical stapling devices
US9724096B2 (en) 2014-03-29 2017-08-08 Standard Bariatrics, Inc. End effectors, surgical stapling devices, and methods of using same
US9757126B2 (en) 2014-03-31 2017-09-12 Covidien Lp Surgical stapling apparatus with firing lockout mechanism
JP6532889B2 (en) 2014-04-16 2019-06-19 エシコン エルエルシーEthicon LLC Fastener cartridge assembly and staple holder cover arrangement
US10561422B2 (en) 2014-04-16 2020-02-18 Ethicon Llc Fastener cartridge comprising deployable tissue engaging members
US10327764B2 (en) 2014-09-26 2019-06-25 Ethicon Llc Method for creating a flexible staple line
BR112016023825B1 (en) 2014-04-16 2022-08-02 Ethicon Endo-Surgery, Llc STAPLE CARTRIDGE FOR USE WITH A SURGICAL STAPLER AND STAPLE CARTRIDGE FOR USE WITH A SURGICAL INSTRUMENT
JP6636452B2 (en) 2014-04-16 2020-01-29 エシコン エルエルシーEthicon LLC Fastener cartridge including extension having different configurations
US20150297223A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. Fastener cartridges including extensions having different configurations
US9668733B2 (en) 2014-04-21 2017-06-06 Covidien Lp Stapling device with features to prevent inadvertent firing of staples
US9844378B2 (en) 2014-04-29 2017-12-19 Covidien Lp Surgical stapling apparatus and methods of adhering a surgical buttress thereto
US9861366B2 (en) 2014-05-06 2018-01-09 Covidien Lp Ejecting assembly for a surgical stapler
EP3142569B1 (en) 2014-05-15 2023-12-27 Covidien LP Surgical fastener applying apparatus
US10045781B2 (en) 2014-06-13 2018-08-14 Ethicon Llc Closure lockout systems for surgical instruments
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
US10111679B2 (en) 2014-09-05 2018-10-30 Ethicon Llc Circuitry and sensors for powered medical device
BR112017004361B1 (en) 2014-09-05 2023-04-11 Ethicon Llc ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT
US10105142B2 (en) 2014-09-18 2018-10-23 Ethicon Llc Surgical stapler with plurality of cutting elements
JP6648119B2 (en) 2014-09-26 2020-02-14 エシコン エルエルシーEthicon LLC Surgical stapling buttress and accessory materials
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
MX2017008108A (en) 2014-12-18 2018-03-06 Ethicon Llc Surgical instrument with an anvil that is selectively movable about a discrete non-movable axis relative to a staple cartridge.
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US10117649B2 (en) 2014-12-18 2018-11-06 Ethicon Llc Surgical instrument assembly comprising a lockable articulation system
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
US10004501B2 (en) 2014-12-18 2018-06-26 Ethicon Llc Surgical instruments with improved closure arrangements
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US10835216B2 (en) 2014-12-24 2020-11-17 Covidien Lp Spinneret for manufacture of melt blown nonwoven fabric
US10470767B2 (en) 2015-02-10 2019-11-12 Covidien Lp Surgical stapling instrument having ultrasonic energy delivery
US10039545B2 (en) 2015-02-23 2018-08-07 Covidien Lp Double fire stapling
US10085749B2 (en) 2015-02-26 2018-10-02 Covidien Lp Surgical apparatus with conductor strain relief
US10130367B2 (en) 2015-02-26 2018-11-20 Covidien Lp Surgical apparatus
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US9993258B2 (en) 2015-02-27 2018-06-12 Ethicon Llc Adaptable surgical instrument handle
US10321907B2 (en) 2015-02-27 2019-06-18 Ethicon Llc System for monitoring whether a surgical instrument needs to be serviced
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US9895148B2 (en) 2015-03-06 2018-02-20 Ethicon Endo-Surgery, Llc Monitoring speed control and precision incrementing of motor for powered surgical instruments
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US10548504B2 (en) 2015-03-06 2020-02-04 Ethicon Llc Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
US10045776B2 (en) 2015-03-06 2018-08-14 Ethicon Llc Control techniques and sub-processor contained within modular shaft with select control processing from handle
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
JP2020121162A (en) 2015-03-06 2020-08-13 エシコン エルエルシーEthicon LLC Time dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement
US9918717B2 (en) 2015-03-18 2018-03-20 Covidien Lp Pivot mechanism for surgical device
US10213201B2 (en) 2015-03-31 2019-02-26 Ethicon Llc Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw
US11020578B2 (en) 2015-04-10 2021-06-01 Covidien Lp Surgical stapler with integrated bladder
US10463368B2 (en) 2015-04-10 2019-11-05 Covidien Lp Endoscopic stapler
US10299789B2 (en) 2015-05-05 2019-05-28 Covidie LP Adapter assembly for surgical stapling devices
US10117650B2 (en) 2015-05-05 2018-11-06 Covidien Lp Adapter assembly and loading units for surgical stapling devices
US10039532B2 (en) 2015-05-06 2018-08-07 Covidien Lp Surgical instrument with articulation assembly
US10143474B2 (en) 2015-05-08 2018-12-04 Just Right Surgical, Llc Surgical stapler
US10349941B2 (en) 2015-05-27 2019-07-16 Covidien Lp Multi-fire lead screw stapling device
US10172615B2 (en) 2015-05-27 2019-01-08 Covidien Lp Multi-fire push rod stapling device
US10368861B2 (en) 2015-06-18 2019-08-06 Ethicon Llc Dual articulation drive system arrangements for articulatable surgical instruments
US10548599B2 (en) 2015-07-20 2020-02-04 Covidien Lp Endoscopic stapler and staple
US9987012B2 (en) 2015-07-21 2018-06-05 Covidien Lp Small diameter cartridge design for a surgical stapling instrument
US10064622B2 (en) 2015-07-29 2018-09-04 Covidien Lp Surgical stapling loading unit with stroke counter and lockout
US10045782B2 (en) 2015-07-30 2018-08-14 Covidien Lp Surgical stapling loading unit with stroke counter and lockout
US11058425B2 (en) 2015-08-17 2021-07-13 Ethicon Llc Implantable layers for a surgical instrument
US10357251B2 (en) 2015-08-26 2019-07-23 Ethicon Llc Surgical staples comprising hardness variations for improved fastening of tissue
JP6828018B2 (en) 2015-08-26 2021-02-10 エシコン エルエルシーEthicon LLC Surgical staple strips that allow you to change the characteristics of staples and facilitate filling into cartridges
US10238390B2 (en) 2015-09-02 2019-03-26 Ethicon Llc Surgical staple cartridges with driver arrangements for establishing herringbone staple patterns
MX2022006192A (en) 2015-09-02 2022-06-16 Ethicon Llc Surgical staple configurations with camming surfaces located between portions supporting surgical staples.
US10285837B1 (en) 2015-09-16 2019-05-14 Standard Bariatrics, Inc. Systems and methods for measuring volume of potential sleeve in a sleeve gastrectomy
US10076326B2 (en) 2015-09-23 2018-09-18 Ethicon Llc Surgical stapler having current mirror-based motor control
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10085751B2 (en) 2015-09-23 2018-10-02 Ethicon Llc Surgical stapler having temperature-based motor control
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10499909B2 (en) * 2015-09-24 2019-12-10 Ethicon Llc Apparatus and method for pleating a bodily lumen
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US10327777B2 (en) 2015-09-30 2019-06-25 Ethicon Llc Implantable layer comprising plastically deformed fibers
US10285699B2 (en) 2015-09-30 2019-05-14 Ethicon Llc Compressible adjunct
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10213204B2 (en) 2015-10-02 2019-02-26 Covidien Lp Micro surgical instrument and loading unit for use therewith
US10772632B2 (en) 2015-10-28 2020-09-15 Covidien Lp Surgical stapling device with triple leg staples
US10085745B2 (en) * 2015-10-29 2018-10-02 Ethicon Llc Extensible buttress assembly for surgical stapler
US10595864B2 (en) 2015-11-24 2020-03-24 Covidien Lp Adapter assembly for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof
US10111660B2 (en) 2015-12-03 2018-10-30 Covidien Lp Surgical stapler flexible distal tip
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US10966717B2 (en) 2016-01-07 2021-04-06 Covidien Lp Surgical fastener apparatus
US10660623B2 (en) 2016-01-15 2020-05-26 Covidien Lp Centering mechanism for articulation joint
US20170224332A1 (en) 2016-02-09 2017-08-10 Ethicon Endo-Surgery, Llc Surgical instruments with non-symmetrical articulation arrangements
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
BR112018016098B1 (en) 2016-02-09 2023-02-23 Ethicon Llc SURGICAL INSTRUMENT
US10349937B2 (en) 2016-02-10 2019-07-16 Covidien Lp Surgical stapler with articulation locking mechanism
US10420559B2 (en) 2016-02-11 2019-09-24 Covidien Lp Surgical stapler with small diameter endoscopic portion
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US11064997B2 (en) 2016-04-01 2021-07-20 Cilag Gmbh International Surgical stapling instrument
US10307159B2 (en) 2016-04-01 2019-06-04 Ethicon Llc Surgical instrument handle assembly with reconfigurable grip portion
US10271851B2 (en) 2016-04-01 2019-04-30 Ethicon Llc Modular surgical stapling system comprising a display
US11284890B2 (en) 2016-04-01 2022-03-29 Cilag Gmbh International Circular stapling system comprising an incisable tissue support
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US10368867B2 (en) 2016-04-18 2019-08-06 Ethicon Llc Surgical instrument comprising a lockout
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US20170296173A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Method for operating a surgical instrument
US10561419B2 (en) 2016-05-04 2020-02-18 Covidien Lp Powered end effector assembly with pivotable channel
US11065022B2 (en) 2016-05-17 2021-07-20 Covidien Lp Cutting member for a surgical instrument
US10959731B2 (en) 2016-06-14 2021-03-30 Covidien Lp Buttress attachment for surgical stapling instrument
USD850617S1 (en) 2016-06-24 2019-06-04 Ethicon Llc Surgical fastener cartridge
USD847989S1 (en) 2016-06-24 2019-05-07 Ethicon Llc Surgical fastener cartridge
US10702270B2 (en) 2016-06-24 2020-07-07 Ethicon Llc Stapling system for use with wire staples and stamped staples
JP6957532B2 (en) 2016-06-24 2021-11-02 エシコン エルエルシーEthicon LLC Staple cartridges including wire staples and punched staples
USD826405S1 (en) 2016-06-24 2018-08-21 Ethicon Llc Surgical fastener
US10631857B2 (en) 2016-11-04 2020-04-28 Covidien Lp Loading unit for surgical instruments with low profile pushers
US11642126B2 (en) 2016-11-04 2023-05-09 Covidien Lp Surgical stapling apparatus with tissue pockets
US11026686B2 (en) 2016-11-08 2021-06-08 Covidien Lp Structure for attaching buttress to anvil and/or cartridge of surgical stapling instrument
US10492784B2 (en) 2016-11-08 2019-12-03 Covidien Lp Surgical tool assembly with compact firing assembly
US10463371B2 (en) 2016-11-29 2019-11-05 Covidien Lp Reload assembly with spent reload indicator
US10568624B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Surgical instruments with jaws that are pivotable about a fixed axis and include separate and distinct closure and firing systems
JP7010956B2 (en) 2016-12-21 2022-01-26 エシコン エルエルシー How to staple tissue
US10959727B2 (en) 2016-12-21 2021-03-30 Ethicon Llc Articulatable surgical end effector with asymmetric shaft arrangement
US10695055B2 (en) 2016-12-21 2020-06-30 Ethicon Llc Firing assembly comprising a lockout
US10856868B2 (en) 2016-12-21 2020-12-08 Ethicon Llc Firing member pin configurations
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US20180168615A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US20180168625A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments with smart staple cartridges
US11684367B2 (en) 2016-12-21 2023-06-27 Cilag Gmbh International Stepped assembly having and end-of-life indicator
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US10588631B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical instruments with positive jaw opening features
US20180168633A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments and staple-forming anvils
US10973516B2 (en) 2016-12-21 2021-04-13 Ethicon Llc Surgical end effectors and adaptable firing members therefor
US20180168648A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Durability features for end effectors and firing assemblies of surgical stapling instruments
US11090048B2 (en) 2016-12-21 2021-08-17 Cilag Gmbh International Method for resetting a fuse of a surgical instrument shaft
US10682138B2 (en) 2016-12-21 2020-06-16 Ethicon Llc Bilaterally asymmetric staple forming pocket pairs
MX2019007311A (en) 2016-12-21 2019-11-18 Ethicon Llc Surgical stapling systems.
US10687810B2 (en) 2016-12-21 2020-06-23 Ethicon Llc Stepped staple cartridge with tissue retention and gap setting features
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US10993715B2 (en) 2016-12-21 2021-05-04 Ethicon Llc Staple cartridge comprising staples with different clamping breadths
US10918385B2 (en) 2016-12-21 2021-02-16 Ethicon Llc Surgical system comprising a firing member rotatable into an articulation state to articulate an end effector of the surgical system
CN110099619B (en) 2016-12-21 2022-07-15 爱惜康有限责任公司 Lockout device for surgical end effector and replaceable tool assembly
US10888322B2 (en) 2016-12-21 2021-01-12 Ethicon Llc Surgical instrument comprising a cutting member
US10945727B2 (en) 2016-12-21 2021-03-16 Ethicon Llc Staple cartridge with deformable driver retention features
US10709901B2 (en) 2017-01-05 2020-07-14 Covidien Lp Implantable fasteners, applicators, and methods for brachytherapy
US10874768B2 (en) 2017-01-20 2020-12-29 Covidien Lp Drug eluting medical device
US10952767B2 (en) 2017-02-06 2021-03-23 Covidien Lp Connector clip for securing an introducer to a surgical fastener applying apparatus
US10881402B2 (en) * 2017-02-17 2021-01-05 Ethicon Llc Surgical end effector adjunct attachment
US20180235618A1 (en) 2017-02-22 2018-08-23 Covidien Lp Loading unit for surgical instruments with low profile pushers
US11350915B2 (en) 2017-02-23 2022-06-07 Covidien Lp Surgical stapler with small diameter endoscopic portion
US10849621B2 (en) 2017-02-23 2020-12-01 Covidien Lp Surgical stapler with small diameter endoscopic portion
US10925607B2 (en) 2017-02-28 2021-02-23 Covidien Lp Surgical stapling apparatus with staple sheath
US10299790B2 (en) 2017-03-03 2019-05-28 Covidien Lp Adapter with centering mechanism for articulation joint
US10368868B2 (en) 2017-03-09 2019-08-06 Covidien Lp Structure for attaching buttress material to anvil and cartridge of surgical stapling instrument
US10660641B2 (en) 2017-03-16 2020-05-26 Covidien Lp Adapter with centering mechanism for articulation joint
US11096610B2 (en) 2017-03-28 2021-08-24 Covidien Lp Surgical implants including sensing fibers
US11324502B2 (en) 2017-05-02 2022-05-10 Covidien Lp Surgical loading unit including an articulating end effector
US10603035B2 (en) 2017-05-02 2020-03-31 Covidien Lp Surgical loading unit including an articulating end effector
US10524784B2 (en) 2017-05-05 2020-01-07 Covidien Lp Surgical staples with expandable backspan
US10390826B2 (en) 2017-05-08 2019-08-27 Covidien Lp Surgical stapling device with elongated tool assembly and methods of use
US10420551B2 (en) 2017-05-30 2019-09-24 Covidien Lp Authentication and information system for reusable surgical instruments
US10478185B2 (en) 2017-06-02 2019-11-19 Covidien Lp Tool assembly with minimal dead space
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US20180368844A1 (en) 2017-06-27 2018-12-27 Ethicon Llc Staple forming pocket arrangements
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
EP3420947B1 (en) 2017-06-28 2022-05-25 Cilag GmbH International Surgical instrument comprising selectively actuatable rotatable couplers
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
US11478242B2 (en) 2017-06-28 2022-10-25 Cilag Gmbh International Jaw retainer arrangement for retaining a pivotable surgical instrument jaw in pivotable retaining engagement with a second surgical instrument jaw
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
US11484310B2 (en) 2017-06-28 2022-11-01 Cilag Gmbh International Surgical instrument comprising a shaft including a closure tube profile
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US11944300B2 (en) 2017-08-03 2024-04-02 Cilag Gmbh International Method for operating a surgical system bailout
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US10849625B2 (en) 2017-08-07 2020-12-01 Covidien Lp Surgical buttress retention systems for surgical stapling apparatus
US10912562B2 (en) 2017-08-14 2021-02-09 Standard Bariatrics, Inc. End effectors, surgical stapling devices, and methods of using same
US10945733B2 (en) 2017-08-23 2021-03-16 Covidien Lp Surgical buttress reload and tip attachment assemblies for surgical stapling apparatus
US10624636B2 (en) 2017-08-23 2020-04-21 Covidien Lp Surgical stapling device with floating staple cartridge
US10806452B2 (en) 2017-08-24 2020-10-20 Covidien Lp Loading unit for a surgical stapling instrument
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US10925603B2 (en) 2017-11-14 2021-02-23 Covidien Lp Reload with articulation stabilization system
US10863987B2 (en) 2017-11-16 2020-12-15 Covidien Lp Surgical instrument with imaging device
US11141151B2 (en) 2017-12-08 2021-10-12 Covidien Lp Surgical buttress for circular stapling
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US11179152B2 (en) 2017-12-21 2021-11-23 Cilag Gmbh International Surgical instrument comprising a tissue grasping system
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US10945732B2 (en) 2018-01-17 2021-03-16 Covidien Lp Surgical stapler with self-returning assembly
US11065000B2 (en) * 2018-02-22 2021-07-20 Covidien Lp Surgical buttresses for surgical stapling apparatus
CN111801055A (en) 2018-03-02 2020-10-20 柯惠有限合伙公司 Surgical stapling instrument
US10758237B2 (en) 2018-04-30 2020-09-01 Covidien Lp Circular stapling apparatus with pinned buttress
US11426163B2 (en) 2018-05-09 2022-08-30 Covidien Lp Universal linear surgical stapling buttress
US11432818B2 (en) 2018-05-09 2022-09-06 Covidien Lp Surgical buttress assemblies
US11284896B2 (en) 2018-05-09 2022-03-29 Covidien Lp Surgical buttress loading and attaching/detaching assemblies
US10849622B2 (en) 2018-06-21 2020-12-01 Covidien Lp Articulated stapling with fire lock
US11219460B2 (en) 2018-07-02 2022-01-11 Covidien Lp Surgical stapling apparatus with anvil buttress
US10736631B2 (en) 2018-08-07 2020-08-11 Covidien Lp End effector with staple cartridge ejector
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US10849620B2 (en) 2018-09-14 2020-12-01 Covidien Lp Connector mechanisms for surgical stapling instruments
US10806459B2 (en) 2018-09-14 2020-10-20 Covidien Lp Drug patterned reinforcement material for circular anastomosis
US11510669B2 (en) 2020-09-29 2022-11-29 Covidien Lp Hand-held surgical instruments
US10952729B2 (en) 2018-10-03 2021-03-23 Covidien Lp Universal linear buttress retention/release assemblies and methods
US11090051B2 (en) 2018-10-23 2021-08-17 Covidien Lp Surgical stapling device with floating staple cartridge
US11197673B2 (en) 2018-10-30 2021-12-14 Covidien Lp Surgical stapling instruments and end effector assemblies thereof
US10912563B2 (en) 2019-01-02 2021-02-09 Covidien Lp Stapling device including tool assembly stabilizing member
US11547411B2 (en) * 2019-02-22 2023-01-10 Covidien Lp Anastomosis wound protector
US11344297B2 (en) 2019-02-28 2022-05-31 Covidien Lp Surgical stapling device with independently movable jaws
US11259808B2 (en) 2019-03-13 2022-03-01 Covidien Lp Tool assemblies with a gap locking member
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11284892B2 (en) 2019-04-01 2022-03-29 Covidien Lp Loading unit and adapter with modified coupling assembly
US11284893B2 (en) 2019-04-02 2022-03-29 Covidien Lp Stapling device with articulating tool assembly
US11241228B2 (en) 2019-04-05 2022-02-08 Covidien Lp Surgical instrument including an adapter assembly and an articulating surgical loading unit
US11730472B2 (en) 2019-04-25 2023-08-22 Covidien Lp Surgical system and surgical loading units thereof
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US11596403B2 (en) 2019-05-08 2023-03-07 Covidien Lp Surgical stapling device
US11478245B2 (en) 2019-05-08 2022-10-25 Covidien Lp Surgical stapling device
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11350938B2 (en) 2019-06-28 2022-06-07 Cilag Gmbh International Surgical instrument comprising an aligned rfid sensor
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11224424B2 (en) 2019-08-02 2022-01-18 Covidien Lp Linear stapling device with vertically movable knife
US11406385B2 (en) 2019-10-11 2022-08-09 Covidien Lp Stapling device with a gap locking member
US11571208B2 (en) 2019-10-11 2023-02-07 Covidien Lp Surgical buttress loading units
CN114641265A (en) 2019-11-04 2022-06-17 标准肥胖病研究公司 Systems and methods for performing surgery using Laplace's Laplacian tension retraction during surgery
US11123068B2 (en) 2019-11-08 2021-09-21 Covidien Lp Surgical staple cartridge
US11534163B2 (en) 2019-11-21 2022-12-27 Covidien Lp Surgical stapling instruments
US11707274B2 (en) 2019-12-06 2023-07-25 Covidien Lp Articulating mechanism for surgical instrument
US11109862B2 (en) 2019-12-12 2021-09-07 Covidien Lp Surgical stapling device with flexible shaft
US11523824B2 (en) * 2019-12-12 2022-12-13 Covidien Lp Anvil buttress loading for a surgical stapling apparatus
US11737747B2 (en) 2019-12-17 2023-08-29 Covidien Lp Hand-held surgical instruments
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11931033B2 (en) 2019-12-19 2024-03-19 Cilag Gmbh International Staple cartridge comprising a latch lockout
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11278282B2 (en) 2020-01-31 2022-03-22 Covidien Lp Stapling device with selective cutting
US11452524B2 (en) 2020-01-31 2022-09-27 Covidien Lp Surgical stapling device with lockout
JP2023523507A (en) 2020-02-14 2023-06-06 コヴィディエン リミテッド パートナーシップ A cartridge holder for surgical staples and having ridges on the peripheral wall for gripping tissue
US11344301B2 (en) 2020-03-02 2022-05-31 Covidien Lp Surgical stapling device with replaceable reload assembly
US11344302B2 (en) 2020-03-05 2022-05-31 Covidien Lp Articulation mechanism for surgical stapling device
US11246593B2 (en) 2020-03-06 2022-02-15 Covidien Lp Staple cartridge
US11707278B2 (en) 2020-03-06 2023-07-25 Covidien Lp Surgical stapler tool assembly to minimize bleeding
US11357505B2 (en) 2020-03-10 2022-06-14 Covidien Lp Surgical stapling apparatus with firing lockout mechanism
US11317911B2 (en) 2020-03-10 2022-05-03 Covidien Lp Tool assembly with replaceable cartridge assembly
US11406383B2 (en) 2020-03-17 2022-08-09 Covidien Lp Fire assisted powered EGIA handle
US11547407B2 (en) 2020-03-19 2023-01-10 Covidien Lp Staple line reinforcement for surgical stapling apparatus
US11331098B2 (en) 2020-04-01 2022-05-17 Covidien Lp Sled detection device
US11426159B2 (en) 2020-04-01 2022-08-30 Covidien Lp Sled detection device
US11504117B2 (en) 2020-04-02 2022-11-22 Covidien Lp Hand-held surgical instruments
US11337699B2 (en) 2020-04-28 2022-05-24 Covidien Lp Magnesium infused surgical buttress for surgical stapler
US11937794B2 (en) 2020-05-11 2024-03-26 Covidien Lp Powered handle assembly for surgical devices
US11191537B1 (en) 2020-05-12 2021-12-07 Covidien Lp Stapling device with continuously parallel jaws
US11406387B2 (en) 2020-05-12 2022-08-09 Covidien Lp Surgical stapling device with replaceable staple cartridge
US11534167B2 (en) 2020-05-28 2022-12-27 Covidien Lp Electrotaxis-conducive stapling
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
US11191538B1 (en) 2020-06-08 2021-12-07 Covidien Lp Surgical stapling device with parallel jaw closure
US11844517B2 (en) 2020-06-25 2023-12-19 Covidien Lp Linear stapling device with continuously parallel jaws
US11324500B2 (en) 2020-06-30 2022-05-10 Covidien Lp Surgical stapling device
US11517305B2 (en) 2020-07-09 2022-12-06 Covidien Lp Contoured staple pusher
US11446028B2 (en) 2020-07-09 2022-09-20 Covidien Lp Tool assembly with pivotable clamping beam
US20220031320A1 (en) 2020-07-28 2022-02-03 Cilag Gmbh International Surgical instruments with flexible firing member actuator constraint arrangements
US11266402B2 (en) 2020-07-30 2022-03-08 Covidien Lp Sensing curved tip for surgical stapling instruments
US11439392B2 (en) 2020-08-03 2022-09-13 Covidien Lp Surgical stapling device and fastener for pathological exam
US11395654B2 (en) 2020-08-07 2022-07-26 Covidien Lp Surgical stapling device with articulation braking assembly
US11602342B2 (en) 2020-08-27 2023-03-14 Covidien Lp Surgical stapling device with laser probe
US11707276B2 (en) 2020-09-08 2023-07-25 Covidien Lp Surgical buttress assemblies and techniques for surgical stapling
US11678878B2 (en) 2020-09-16 2023-06-20 Covidien Lp Articulation mechanism for surgical stapling device
US11660092B2 (en) 2020-09-29 2023-05-30 Covidien Lp Adapter for securing loading units to handle assemblies of surgical stapling instruments
US11406384B2 (en) 2020-10-05 2022-08-09 Covidien Lp Stapling device with drive assembly stop member
US11576674B2 (en) 2020-10-06 2023-02-14 Covidien Lp Surgical stapling device with articulation lock assembly
US11399833B2 (en) 2020-10-19 2022-08-02 Covidien Lp Anvil buttress attachment for surgical stapling apparatus
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11931025B2 (en) 2020-10-29 2024-03-19 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
US11890007B2 (en) 2020-11-18 2024-02-06 Covidien Lp Stapling device with flex cable and tensioning mechanism
US11653919B2 (en) * 2020-11-24 2023-05-23 Covidien Lp Stapler line reinforcement continuity
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11737774B2 (en) 2020-12-04 2023-08-29 Covidien Lp Surgical instrument with articulation assembly
US11819200B2 (en) 2020-12-15 2023-11-21 Covidien Lp Surgical instrument with articulation assembly
US11553914B2 (en) 2020-12-22 2023-01-17 Covidien Lp Surgical stapling device with parallel jaw closure
US11534170B2 (en) 2021-01-04 2022-12-27 Covidien Lp Anvil buttress attachment for surgical stapling apparatus
US11744582B2 (en) 2021-01-05 2023-09-05 Covidien Lp Surgical stapling device with firing lockout mechanism
US11759206B2 (en) 2021-01-05 2023-09-19 Covidien Lp Surgical stapling device with firing lockout mechanism
US11759207B2 (en) 2021-01-27 2023-09-19 Covidien Lp Surgical stapling apparatus with adjustable height clamping member
US11517313B2 (en) 2021-01-27 2022-12-06 Covidien Lp Surgical stapling device with laminated drive member
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11950777B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Staple cartridge comprising an information access control system
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11950779B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Method of powering and communicating with a staple cartridge
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11717300B2 (en) 2021-03-11 2023-08-08 Covidien Lp Surgical stapling apparatus with integrated visualization
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
BR112023019261A2 (en) 2021-03-23 2023-10-24 Standard Bariatrics Inc SYSTEMS AND METHODS FOR PREVENTING TISSUE MIGRATION IN SURGICAL STAPLES
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11944336B2 (en) 2021-03-24 2024-04-02 Cilag Gmbh International Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments
US11497495B2 (en) 2021-03-31 2022-11-15 Covidien Lp Continuous stapler strip for use with a surgical stapling device
US11666330B2 (en) 2021-04-05 2023-06-06 Covidien Lp Surgical stapling device with lockout mechanism
US11576670B2 (en) 2021-05-06 2023-02-14 Covidien Lp Surgical stapling device with optimized drive assembly
US11812956B2 (en) 2021-05-18 2023-11-14 Covidien Lp Dual firing radial stapling device
US11696755B2 (en) 2021-05-19 2023-07-11 Covidien Lp Surgical stapling device with reload assembly removal lockout
US11771423B2 (en) 2021-05-25 2023-10-03 Covidien Lp Powered stapling device with manual retraction
US11510673B1 (en) 2021-05-25 2022-11-29 Covidien Lp Powered stapling device with manual retraction
US11701119B2 (en) 2021-05-26 2023-07-18 Covidien Lp Powered stapling device with rack release
US11826047B2 (en) 2021-05-28 2023-11-28 Cilag Gmbh International Stapling instrument comprising jaw mounts
US11576675B2 (en) 2021-06-07 2023-02-14 Covidien Lp Staple cartridge with knife
US11596399B2 (en) 2021-06-23 2023-03-07 Covidien Lp Anvil buttress attachment for surgical stapling apparatus
US11510670B1 (en) 2021-06-23 2022-11-29 Covidien Lp Buttress attachment for surgical stapling apparatus
US11672538B2 (en) 2021-06-24 2023-06-13 Covidien Lp Surgical stapling device including a buttress retention assembly
US11617579B2 (en) 2021-06-29 2023-04-04 Covidien Lp Ultra low profile surgical stapling instrument for tissue resections
US11707275B2 (en) 2021-06-29 2023-07-25 Covidien Lp Asymmetrical surgical stapling device
US11602344B2 (en) 2021-06-30 2023-03-14 Covidien Lp Surgical stapling apparatus with firing lockout assembly
US11678879B2 (en) 2021-07-01 2023-06-20 Covidien Lp Buttress attachment for surgical stapling apparatus
US11684368B2 (en) 2021-07-14 2023-06-27 Covidien Lp Surgical stapling device including a buttress retention assembly
US20230036899A1 (en) * 2021-08-02 2023-02-02 Covidien Lp Surgical stapling device with extrusion resistant tool assembly
US11540831B1 (en) 2021-08-12 2023-01-03 Covidien Lp Staple cartridge with actuation sled detection
US11779334B2 (en) 2021-08-19 2023-10-10 Covidien Lp Surgical stapling device including a manual retraction assembly
US11707277B2 (en) 2021-08-20 2023-07-25 Covidien Lp Articulating surgical stapling apparatus with pivotable knife bar guide assembly
US11576671B1 (en) 2021-08-20 2023-02-14 Covidien Lp Small diameter linear surgical stapling apparatus
US11801052B2 (en) 2021-08-30 2023-10-31 Covidien Lp Assemblies for surgical stapling instruments
US11864761B2 (en) 2021-09-14 2024-01-09 Covidien Lp Surgical instrument with illumination mechanism
US11660094B2 (en) 2021-09-29 2023-05-30 Covidien Lp Surgical fastening instrument with two-part surgical fasteners
US11653922B2 (en) 2021-09-29 2023-05-23 Covidien Lp Surgical stapling device with firing lockout mechanism
US11849949B2 (en) 2021-09-30 2023-12-26 Covidien Lp Surgical stapling device with firing lockout member
US11751875B2 (en) 2021-10-13 2023-09-12 Coviden Lp Surgical buttress attachment assemblies for surgical stapling apparatus
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
US11937816B2 (en) 2021-10-28 2024-03-26 Cilag Gmbh International Electrical lead arrangements for surgical instruments
US11806017B2 (en) 2021-11-23 2023-11-07 Covidien Lp Anvil buttress loading system for surgical stapling apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2065536A (en) * 1979-12-20 1981-07-01 Vnii Ispytatel Med Tech Surgical instrument for staple suturing of hollow organs
US5397324A (en) * 1993-03-10 1995-03-14 Carroll; Brendan J. Surgical stapler instrument and method for vascular hemostasis
EP0667119A1 (en) * 1994-02-10 1995-08-16 Bio-Vascular, Inc. Soft tissue stapling buttress
US5542594A (en) * 1993-10-06 1996-08-06 United States Surgical Corporation Surgical stapling apparatus with biocompatible surgical fabric

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3079606A (en) * 1960-01-04 1963-03-05 Bobrov Boris Sergeevich Instrument for placing lateral gastrointestinal anastomoses
US3490675A (en) * 1966-10-10 1970-01-20 United States Surgical Corp Instrument for placing lateral gastrointestinal anastomoses
SE392582B (en) * 1970-05-21 1977-04-04 Gore & Ass PROCEDURE FOR THE PREPARATION OF A POROST MATERIAL, BY EXPANDING AND STRETCHING A TETRAFLUORETENE POLYMER PREPARED IN AN PASTE-FORMING EXTENSION PROCEDURE
US3962153A (en) * 1970-05-21 1976-06-08 W. L. Gore & Associates, Inc. Very highly stretched polytetrafluoroethylene and process therefor
US4096227A (en) * 1973-07-03 1978-06-20 W. L. Gore & Associates, Inc. Process for producing filled porous PTFE products
AU534210B2 (en) * 1980-02-05 1984-01-12 United States Surgical Corporation Surgical staples
US4354628A (en) * 1980-09-29 1982-10-19 United States Surgical Corporation Surgical stapler apparatus having pivotally related staple holder and anvil
US4548202A (en) * 1983-06-20 1985-10-22 Ethicon, Inc. Mesh tissue fasteners
US4633861A (en) * 1984-10-19 1987-01-06 Senmed, Inc. Surgical stapling instrument with jaw clamping mechanism
US4633874A (en) * 1984-10-19 1987-01-06 Senmed, Inc. Surgical stapling instrument with jaw latching mechanism and disposable staple cartridge
FR2622429A1 (en) * 1987-11-16 1989-05-05 Blagoveschensky G SURGICAL SUTURE APPARATUS
US4892244A (en) * 1988-11-07 1990-01-09 Ethicon, Inc. Surgical stapler cartridge lockout device
US4930674A (en) * 1989-02-24 1990-06-05 Abiomed, Inc. Surgical stapler
US4955959A (en) * 1989-05-26 1990-09-11 United States Surgical Corporation Locking mechanism for a surgical fastening apparatus
US5040715B1 (en) * 1989-05-26 1994-04-05 United States Surgical Corp Apparatus and method for placing staples in laparoscopic or endoscopic procedures
US5014899A (en) * 1990-03-30 1991-05-14 United States Surgical Corporation Surgical stapling apparatus
US5042707A (en) * 1990-10-16 1991-08-27 Taheri Syde A Intravascular stapler, and method of operating same
EP0533897B1 (en) * 1991-03-29 1996-03-13 Laboratoire Perouse Implant Surgical stapler
US5203864A (en) * 1991-04-05 1993-04-20 Phillips Edward H Surgical fastener system
US5263629A (en) * 1992-06-29 1993-11-23 Ethicon, Inc. Method and apparatus for achieving hemostasis along a staple line
US5441193A (en) * 1993-09-23 1995-08-15 United States Surgical Corporation Surgical fastener applying apparatus with resilient film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2065536A (en) * 1979-12-20 1981-07-01 Vnii Ispytatel Med Tech Surgical instrument for staple suturing of hollow organs
US5397324A (en) * 1993-03-10 1995-03-14 Carroll; Brendan J. Surgical stapler instrument and method for vascular hemostasis
US5542594A (en) * 1993-10-06 1996-08-06 United States Surgical Corporation Surgical stapling apparatus with biocompatible surgical fabric
EP0667119A1 (en) * 1994-02-10 1995-08-16 Bio-Vascular, Inc. Soft tissue stapling buttress

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9421396B2 (en) 2012-09-05 2016-08-23 Mayo Foundation For Medical Education And Research Brachytherapy and buttress element co-delivery

Also Published As

Publication number Publication date
EP0957779B1 (en) 2005-08-31
DE69635139T2 (en) 2006-05-11
FR2736817A1 (en) 1997-01-24
CA2231593A1 (en) 1997-02-06
CA2231593C (en) 2001-12-18
ITMI961487A1 (en) 1998-01-18
EP0957779A1 (en) 1999-11-24
AU6396596A (en) 1997-02-18
FR2736817B1 (en) 1998-07-10
ES2244973T3 (en) 2005-12-16
ITMI961487A0 (en) 1996-07-18
NL1003657C2 (en) 1997-12-10
DE69635139D1 (en) 2005-10-06
NL1003657A1 (en) 1997-01-22
IT1283443B1 (en) 1998-04-21
US5702409A (en) 1997-12-30

Similar Documents

Publication Publication Date Title
US5702409A (en) Device and method for reinforcing surgical staples
EP0993274B1 (en) Device for reinforcing endoscopic staple line
US8317790B2 (en) Surgical staple line reinforcements
JP2022123019A (en) Sealing materials for use in surgical stapling
US5549628A (en) Soft tissue stapling buttress
EP1494594B1 (en) Apparatus and method for producing a reinforced surgical staple line
RU2641069C2 (en) Thickness thickener compensator containing plurality of medicinal drugs
US6704210B1 (en) Bioprothesis film strip for surgical stapler and method of attaching the same
JP4402668B2 (en) Device for generating an enhanced surgical fastener suture
US4392495A (en) Apparatus for and method of suturing tissue
US20070021760A1 (en) Methods and apparatus for securing an anchor to soft tissue
JP2001514539A (en) Bioprosthesis film strip for surgical stapler and method of attaching the same
WO2015069485A1 (en) Hybrid adjunct materials for use in surgical stapling
JP2019531805A (en) Circular surgical stapler with isolation and drug release sleeve
EP2419028B1 (en) Surgical device
CA2218894C (en) Soft tissue stapling buttress

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2231593

Country of ref document: CA

Ref country code: CA

Ref document number: 2231593

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1996923462

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1996923462

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1996923462

Country of ref document: EP