WO1995028278A1 - Article composite et procede de fabrication de celui-ci - Google Patents

Article composite et procede de fabrication de celui-ci Download PDF

Info

Publication number
WO1995028278A1
WO1995028278A1 PCT/FR1995/000505 FR9500505W WO9528278A1 WO 1995028278 A1 WO1995028278 A1 WO 1995028278A1 FR 9500505 W FR9500505 W FR 9500505W WO 9528278 A1 WO9528278 A1 WO 9528278A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
heat
flocked
article according
layer
Prior art date
Application number
PCT/FR1995/000505
Other languages
English (en)
Inventor
Robert Cassat
Jean-Paul Faure
Original Assignee
Kermel Snc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kermel Snc. filed Critical Kermel Snc.
Priority to JP7526778A priority Critical patent/JP2975115B2/ja
Priority to BR9507842A priority patent/BR9507842A/pt
Priority to DE69510786T priority patent/DE69510786T2/de
Priority to EP95918023A priority patent/EP0756540B1/fr
Priority to RU96122470A priority patent/RU2124987C1/ru
Priority to AU24118/95A priority patent/AU2411895A/en
Priority to US08/722,093 priority patent/US5904954A/en
Publication of WO1995028278A1 publication Critical patent/WO1995028278A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/42Layered products comprising a layer of synthetic resin comprising condensation resins of aldehydes, e.g. with phenols, ureas or melamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/036Multilayers with layers of different types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/08Reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2323/00Polyalkenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2361/00Phenoplast, aminoplast
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2367/00Polyesters, e.g. PET, i.e. polyethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2369/00Polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2377/00Polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2379/00Other polymers having nitrogen, with or without oxygen or carbon only, in the main chain
    • B32B2379/08Polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0393Flexible materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0141Liquid crystal polymer [LCP]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0145Polyester, e.g. polyethylene terephthalate [PET], polyethylene naphthalate [PEN]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0158Polyalkene or polyolefin, e.g. polyethylene [PE], polypropylene [PP]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0236Plating catalyst as filler in insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0275Fibers and reinforcement materials
    • H05K2201/0278Polymeric fibers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/23907Pile or nap type surface or component
    • Y10T428/23943Flock surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/23907Pile or nap type surface or component
    • Y10T428/23986With coating, impregnation, or bond

Definitions

  • the present invention relates to a composite article and a method of manufacturing the same. It relates more particularly to a composite article comprising an electrically and / or thermally insulating substrate and protective layers of this substrate arranged on each face of the latter.
  • electrically insulating substrates in particular flexible electrically insulating films, are also used for the manufacture of flexible printed electrical circuits.
  • These articles are obtained by metallization of one face, preferably of the two faces, of the film, then by making electrical circuits by, for example, the methods of chemical attack on the metallized layer.
  • Electronic components such as transistors, diodes, capacitors, are soldered to these circuits, for example by tinning.
  • the support films must have good dimensional stability, in particular at the welding temperature. For this reason polyester films are increasingly being replaced by plastic films having improved thermal resistance and dimensional stability, such as polyimide or polyaramide resins. However, these plastics are of a much higher cost price.
  • One of the aims of the present invention is to remedy these drawbacks by proposing a thermally and electrically insulating composite material comprising protective layers which are waterproof in particular against humidity and which can be obtained by a simple application process.
  • This material can be used as an electrically insulating substrate for the production of flexible printed electrical circuits after depositing a metal layer on at least one of the faces of the composite material by the methods of applying a copper film or metallization.
  • the invention provides a composite article comprising a continuous support layer and protective layers arranged on at least one face of the support layer or substrate.
  • the protective layers is formed by a heat-resistant resin comprising reinforcing fibers of heat-resistant material flocked on the surface of the support or substrate.
  • the support layer or substrate is an electrically and / or thermally insulating continuous layer.
  • films of electrically and / or thermally insulating synthetic material such as polyester, polyolefins, polycarbonates, phenylene polysulfide, polyimides. thermotropic polyesters, and the like.
  • Fibers of heat-resistant material suitable for the invention are, for example, fibers of polyimide, polyaramide, polyamide-imide.
  • thermoplastic resin suitable for the invention, mention may be made of polyimide, polyamide-imide, polyaramide, bismaleimide, epoxy, triazine resins or a mixture of these.
  • the resins suitable for the invention are the resins which can be deposited on the layer of flocked fibers in the form of a solution, the resin being precipitated either by exchange of the solvent by a third solvent, according to a coagulation process, or by precipitation, for example, in the form of a gel, or by evaporation of the solvent.
  • a diisocyanate such as toluene diisocyanate, diphenylmethane -4.4 'diisocyanate, diphenylether -4.4' diisocyanate, meta phenylene di
  • the flocked fibers are arranged on the support layer or substrate according to conventional flocking techniques, that is to say by coating the surface to be flocked with an adhesive and depositing a sheet fibers kept substantially parallel to each other and perpendicular to the surface to be flocked by, for example, an electric field.
  • heat-resistant adhesives for example two-component adhesives of the polyester / polyurethane type sold by the company HENKEL.
  • the fibers can have different or identical lengths.
  • the length of the fibers and the density of the flocked layer are determined according to the properties and the use of the composite structure, for example according to the desired thickness and surface appearance of the protective layers.
  • the protective layer thus formed is continuous and has good mechanical properties, in particular by the presence of flocked fibers which, under the effect of the coagulation or precipitation of the coating resin, can be folded down towards the support layer and form a protective layer. reinforced.
  • the composite material thus formed can be subjected to a finishing treatment which consists, in particular, in applying pressure on the surface of the protective layer to configure the latter according to the desired uses .
  • This treatment can also be a form of calendering which will make it possible to standardize the surface of the protective layer or layers and the thickness of the composite material.
  • the material of the invention has good cohesion due in particular to the attachment of the coating resin to the face of the support layer, this connection being improved and reinforced by the presence of flocked fibers.
  • the cohesion of the protective layers makes it possible to improve the aging resistance of the composite material, by limiting the exposure of the support layer, such as the polyester film, to the surrounding atmosphere such as humidity, radiation, etc.
  • the insulation properties of the support layer are maintained at an acceptable level for a longer period of time.
  • the use of a coating resin makes it possible to add into the flocked protective surface (s) numerous additives such as, hydrophobic compounds, lubricants, dyes or the like. These additives make it possible to improve the properties and the configuration of the composite material for the desired use.
  • the coating resin may comprise a filler, such as an oxide metallic like cuprous oxide for example, allowing the metallization of the surface of the protective layer.
  • One of the objects of the present invention is in particular a composite material of structure described above and comprising at least on one of these faces a layer of metal.
  • This metal layer can be deposited by any known technique for depositing metal on the faces of a plastic film.
  • the composite structure of the invention allows, by the possibility of introducing a metallization precursor additive into the coating resin, easy implementation of a metallization process, such as that described in French patent N ° 2518126.
  • the metallization process described in this French patent consists in introducing into the substrate to be metallized a filler capable of giving rise on the surface to metallic initiation sites for metallization.
  • Suitable fillers are in particular non-conductive metal oxides such as copper oxide.
  • the surface of the substrate is then subjected to the action of a reducing agent, such as a borohydride, which can reduce the aforementioned metal oxide into a conductive metal.
  • the reduced metal forms metallic initiation sites compatible with direct metallization by electrolytic and / or electrochemical means.
  • the metallized composite material of the invention is perfectly suitable for making a flexible printed electrical circuit because the assembly has good dimensional stability even at the welding temperatures whatever the nature of the support film. Indeed, as the protective layers are made with heat-resistant materials, the shrinkage of the support film is prevented. This advantage makes it possible to use a support film which does not necessarily have good dimensional stability with respect to temperature, like polyester films. Furthermore, the structure of the invention has better resistance to aging allowing prolonged or hostile use of printed circuits. Finally, the electrical insulation between the two faces of the substrate is improved.
  • the subject of the invention is also a method of manufacturing a composite material as described above, which consists of:
  • the coating of the flocked layer is carried out with a resin solution, the resin being precipitated on and / or in the layer of flocked fibers so as to obtain a layer of resin reinforced by the fibers.
  • the composite structure is then subjected to drying to remove the solvent or the non-solvent.
  • the coating of flocked fibers by coagulation of a resin allows during coagulation, to replace the solvent of the resin which generally has a high boiling point, by another compound, non-solvent of the resin, such as l water with a significantly lower boiling point.
  • another compound, non-solvent of the resin such as l water with a significantly lower boiling point.
  • the coating solution has a resin content by weight of between 5% and 50%.
  • Solvents suitable for the invention are, for example, N-methylpyrrolidone, dialkylureas such as dimethylethylene urea (DMEU), dimethylpropylene urea, dimethyl acetamide, dimethyl formamide, ketones, dimethyl sulfoxide , or a mixture of these with other inert solvents such as xylene, dimethyl ether, di or triethylene glycol.
  • dialkylureas such as dimethylethylene urea (DMEU), dimethylpropylene urea, dimethyl acetamide, dimethyl formamide, ketones, dimethyl sulfoxide , or a mixture of these with other inert solvents such as xylene, dimethyl ether, di or triethylene glycol.
  • Coagulation of the resin is generally carried out by bringing the flocked layer coated with the resin solution into contact with water.
  • the resin solution may contain additives to improve its wetting power compared to flocked fibers. However, to improve the wetting of the fibers in the resin, these can be treated with a finishing agent modifying the surface tension.
  • the composite structures of the invention after drying, have good cohesion.
  • a two-component polyester / polyurethane adhesive marketed by the company HENKEL is deposited by a thousand-point cylinder at the rate of 50 g / m 2 .
  • This glued polyester film circulates in abutment on an apron, under a hopper for supplying flock fibers of polyamide-imide marketed under the brand KERMEL (title 2.2 dtex - length 0.3 mm).
  • a device makes it possible to establish an electric field in which the fibers delivered by the hopper are accelerated and oriented, which leads them to stick in the glue (the electric field is established between a grid in hopper outlet and film support apron).
  • threshing cylinders and then a vacuum cleaner remove the fibers not fixed by the adhesive.
  • the film thus flocked undergoes a heat treatment to carry out the drying and the crosslinking of the adhesive.
  • the material thus obtained perfectly symmetrical, has a grammage of 330 g / m 2 (including 175 g of polyester film and 155 g of glue + flocked fibers).
  • a polyamide-imide resulting from the polycondensation of trimellic anhydride and 2,4 toluenediisocyanate is prepared in dimethylethylene urea (dry extract: 27% - viscosity 280 poises at 25 ° C), according to the process described in European patent N ° 0360707.
  • Two solutions in dimethylethylene urea of the above resin are prepared:
  • Solution A1 viscosity 85 Poises at 30 ° C
  • Solution A2 viscosity 3.2 poises at 30 ° C.
  • the flocked layers of the composite material obtained above are coated with solutions A1 and A2.
  • the coating is carried out by immersion of the flocked film in a tank containing the solution and then wringing of the coated material between 2 rollers pressed against each other by adjustable springs. At the end of spinning, the coated material is immersed in water, causing the polyamide-imide solution to coagulate, then washed under a light stream of water to extract the solvent residue retained by the resin.
  • the material treated by coating-coagulation has a dry and solid feel but actually contains traces of solvent and a certain percentage of water. These elements (solvent and water) ensure a certain plasticization of the polyamide-imide.
  • the folded film of 330 g / m 2 used previously is treated by coagulation coating as described above with the solutions C1 and C2 above.
  • the material after coagulation coating is dark red.
  • the substrate is treated by wet sandblasting under VAPOR BLAST equipment (trade name) with an abrasive AVB 90 (trade mark) and a sandblasting pressure of 4 bars at a distance of 15 - 20 cm.
  • VAPOR BLAST equipment trade name
  • AVB 90 trade mark
  • sandblasting pressure 4 bars at a distance of 15 - 20 cm.
  • the substrate is then thoroughly rinsed and dried under a stream of hot air.
  • the roughness of the surface shows coefficients Ra> 3 and Rt> 28.
  • the surfaces of the flocked layers are then subjected to a metallization process.
  • the Cu2 ⁇ reduction bath is an aqueous solution comprising: - 0.7 g of Rhodopol® (heteropolysaccharide)
  • the material to be metallized is immersed in the bath and removed immediately, at a speed of approximately 1 cm / s so that the formation of the reagent film on the surface of the substrate is homogeneous , the substrate removed from the reduction bath is left in the open air then washed and rinsed with water.
  • the rinsed substrate not dried, is immersed in a chemical copper bath type EC 580 (commercial reference) from the company KEMIFAR, at 40 ° C, for 15 min.
  • Chemical copper is 1.5 to 1.8 ⁇ m.
  • This metallized composite material can be treated by known methods for producing a flexible printed electrical circuit.

Abstract

L'invention concerne un matériau composite et un procédé de fabrication de celui-ci. Elle concerne plus particulièrement un article composite comprenant un substrat électriquement et/ou thermiquement isolant et des couches protectrices de ce substrat disposées sur chaque face de celui-ci. Ce matériau comprend des couches protectrices formées par des fibres en matériau thermiquement stable floquées sur le substrat isolant et une résine d'enduction thermiquement stable. La couche protectrice ainsi formée présente des caractéristiques de protection, notamment d'étanchéité à l'humidité, améliorées. Ce matériau composite peut être également utilisé comme support de couche métallique pour former des circuits électriques imprimés souples.

Description

ARTICLE COMPOSITE ET PROCEDE DE FABRICATION DE CELUI-CI La présente invention concerne un article composite et un procédé de fabrication de celui-ci. Elle concerne plus particulièrement un article composite comprenant un substrat électriquement et/ou thermiquement isolant et des couches protectrices de ce substrat disposées sur chaque face de celui-ci.
Dans le domaine de l'électrotechnique, les moteurs électriques sont généralement isolés par des matériaux souples tels que des films en matière plastique comme des films en polyester. Toutefois, ces films peuvent être sensibles à l'environnement, notamment à l'humidité, ou présenter des propriétés mécaniques et de résistance thermique insuffisantes. Pour remédier à ces inconvénients, il a été proposé de former un matériau composite comprenant un film électriquement isolant pris en sandwich entre deux couches protectrices réalisées en papier thermiquement résistant. Ce matériau composite requiert d'une part la fabrication de papiers constitués par exemple de fibres aramides coupées et de fibrides également en aramide, et d'autre part une application du papier sur le support électriquement isolant de manière continue pour avoir une bonne adhérence entre les couches. Ce procédé de fabrication du matériau composite est relativement complexe. En outre, l'étanchéité des couches protectrices en papier, notamment par rapport à l'humidité, n'est pas parfaite.
Par ailleurs, les substrats électriquement isolant, notamment les films souples électriquement isolants, sont également utilisés pour la fabrication de circuits électriques imprimés souples. Ces articles sont obtenus par métallisation d'une face, de préférence des deux faces, du film, puis par réalisation des circuits électriques par, par exemple, les procédés d'attaque chimique de la couche métallisée. Des composants électroniques, tels que transistors, diodes, condensateurs, sont soudés sur ces circuits, par exemple par étamage. Les films support doivent présenter une bonne stabilité dimensionnelle, notamment à la température de soudure. Pour cette raison les films polyesters sont de plus en plus remplacés par des films en matière plastique présentant une résistance thermique et une stabilité dimensionnelle améliorées, telles que les résines polyimides ou polyaramides. Toutefois, ces matières plastiques sont d'un prix de revient beaucoup plus élevé. Un des buts de la présente invention est de remédier à ces inconvénients en proposant un matériau composite thermiquement et électriquement isolant comprenant des couches protectrices étanches notamment à l'humidité et pouvant être obtenues par un procédé simple d'application. Ce matériau peut être utilisé comme substrat électriquement isolant pour la réalisation de circuits électriques imprimés souples après dépose d'une couche métallique sur au moins une des faces du matériau composite par les procédés d'application d'un film de cuivre ou de métallisation.
A cet effet, l'invention propose un article composite comprenant une couche support continue et des couches protectrices disposées sur au moins une face de la couche support ou substrat.
Selon l'invention, au moins une des couches protectrices est formée par une résine thermorésistante comprenant des fibres de renfort en matière thermorésistante floquées sur la surface du support ou substrat. Selon un mode de réalisation préféré de l'invention, la couche support ou sbustrat est une couche continue électriquement et/ou thermiquement isolante. Comme couche support ou substrat convenable pour l'invention, on peut citer, à titre d'exemple, les films en matière synthétique électriquement et/ou thermiquement isolants comme le polyester, les polyoléfines, polycarbonates.le polysulfure de phénylène, les polyimides.les polyesters thermotropes, et analogues.
Des fibres en matière thermorésistante convenables pour l'invention sont, par exemple, des fibres en polyimide, polyaramide, polyamide-imide.
A titre d'exemple de résine thermorésistante convenable pour l'invention, on peut citer les résines polyimides, polyamide-imides, polyaramides, bismaléimides, époxy, triazines ou un mélange de celles-ci.
Plus avantageusement, les résines convenables pour l'invention sont les résines qui peuvent être déposées sur la couche de fibres floquées sous forme de solution, la résine étant précipitée soit par échange du solvant par un tiers solvant, selon un procédé de coagulation, soit par précipitation par exemple, sous forme de gel, soit par évaporation du solvant.
On peut notamment citer comme résines préférées les polyamides-imides, et notamment celles obtenues par action d'un diisocyanate tel que le toluène diisocyanate, le diphénylméthane -4,4' diisocyanate, le diphényléther -4,4' diisocyanate, le meta phénylène diisocyanate, l'hexaméthylène -1 ,6 diisocyanate, le bis-cyclohéxyl diisocyanate, ou analogues sur un anhydride d'acide tel que l'anhydride trimellique ou un dianhydride en présence ou non de diacides aromatiques tels que l'acide isophtalique ou l'acide téréphtalique, le dicarboxy 1- 3 benzène sulfonate.
Selon une autre caractéristique de l'invention, les fibres floquées sont disposées sur la couche support ou substrat selon les techniques classiques de flocage, c'est-à-dire par enduction de la surface à floquer avec une colle et dépose d'une nappe de fibres maintenues sensiblement parallèles entre elles et perpendiculaires à la surface à floquer par, par exemple, un champ électrique.
Comme colles convenables pour l'invention, on peut citer les colles thermorésistantes par exemple les colles bicomposants de type polyester/polyuréthanne commercialisées par la société HENKEL.
Dans un mode de réalisation de l'invention, les fibres peuvent avoir des longueurs différentes ou identiques. Ainsi, la longueur des fibres et la densité de la couche floquée sont déterminées en fonction des propriétés et de l'utilisation de la structure composite, par exemple en fonction de l'épaisseur et de l'aspect de surface désirés des couches protectrices.
La couche protectrice ainsi formée est continue et présente de bonnes propriétés mécaniques notamment par la présence des fibres floquées qui, sous l'effet de la coagulation ou précipitation de la résine d'enduction, peuvent être rabattues vers la couche support et former une couche protectrice renforcée. Dans un autre mode de réalisation de l'invention, le matériau composite ainsi formé peut être soumis à un traitement de finition qui consiste, notamment, à appliquer une pression sur la surface de la couche protectrice pour configurer celle-ci en fonction des utilisations souhaitées. Ce traitement peut être également une forme de calandrage qui permettra d'uniformiser la surface de la ou des couches protectrices et l'épaisseur du matériau composite.
Le matériau de l'invention présente une bonne cohésion due notamment à l'accrochage de la résine d'enduction sur la face de la couche support , cette liaison étant améliorée et renforcée par la présence des fibres floquées. En outre, la cohésion des couches protectrices permet d'améliorer la résistance au vieillissement du matériau composite, en limitant l'exposition de la couche support, tel que le film polyester, à l'atmosphère environnante telle que l'humidité, les rayonnements, etc. Ainsi, les propriétés d'isolation de la couche support sont maintenues à un niveau acceptable pendant une durée plus longue. Par ailleurs, l'utilisation d'une résine d'enduction permet d'ajouter dans la ou les surfaces protectrices floquées de nombreux additifs tels que, des composés hydrophobes , des lubrifiants, des colorants ou analogues. Ces additifs permettent d'améliorer les propriétés et la configuration du matériau composite pour l'utilisation souhaitée. Ainsi, dans le cas où le matériau composite de l'invention est destiné à être utilisé comme support d'une couche métallique notamment pour la fabrication de circuits électriques imprimés souples, la résine d'enduction peut comprendre une charge, telle qu'un oxyde métallique comme l'oxyde cuivreux par exemple, permettant la métallisation de la surface de la couche protectrice.
Un des objets de la présente invention est notamment un matériau composite de structure décrite ci-dessus et comprenant au moins sur une de ces faces une couche de métal. Cette couche de métal peut être déposée par toutes les techniques connues de dépôt de métal sur les faces d'un film en matière plastique. A titre d'exemple non limitatif, on peut citer la technique d'application par collage d'une feuille de métal, par exemple de cuivre, sur la face du matériau composite, ou de manière préférée, la formation d'une couche métallique par les procédés électr.olytiques et/ou électrochimiques de métallisation. En effet, la structure composite de l'invention permet par la possibilité d'introduire un additif précurseur de métallisation dans la résine d'enduction, une mise en oeuvre aisée d'un procédé de métallisation, comme celui décrit dans le brevet français N° 2518126.
En résumé, le procédé de métallisation décrit dans ce brevet français consiste à introduire dans le substrat à métalliser une charge capable de donner naissance en surface à des sites métalliques d'amorçage pour la métallisation. Les charges convenables sont notamment des oxydes métalliques non- conducteurs tels que l'oxyde de cuivre. La surface du substrat est ensuite soumise à l'action d'un agent réducteur, tel qu'un borohydrure, pouvant réduire l'oxyde métallique précité en métal conducteur. Le métal réduit forme des sites métalliques d'amorçage compatibles avec une métallisation directe par voie électrolytique et/ou électrochimique.
Le matériau composite métallisé de l'invention convient parfaitement pour la réalisation de circuit électrique imprimé souple car l'ensemble présente une bonne stabilité dimensionnelle même aux températures de soudage quelle que soit la nature du film support. En effet, comme les couches protectrices sont réalisées avec des matières thermorésistantes, la rétraction du film support est empêchée. Cet avantage permet d'utiliser un film support ne présentant pas obligatoirement une bonne stabilité dimensionnelle par rapport à la température, comme les films polyesters. Par ailleurs, la structure de l'invention présente une meilleure résistance au vieillissement permettant une utilisation prolongée ou en milieu hostile des circuits imprimés. Enfin, l'isolation électrique entre les deux faces du substrat est améliorée. L'invention a également pour objet un procédé de fabrication d'un matériau composite tel que décrit ci-dessus, qui consiste :
- à déposer une couche de fibres floquées sur au moins une face d'une couche support électriquement et/ou thermiquement isolante, constituée par des fibres thermorésistantes, et
- à enduire le flock avec une résine thermorésistante pour former une couche protectrice de la couche support isolante.
Selon une caractéristique de l'invention, l'enduction de la couche floquée est réalisée avec une solution de résine, la résine étant précipitée sur et/ou dans la couche de fibres floquées pour ainsi obtenir une couche de résine armée par les fibres.
Par précipitation de la résine, il faut comprendre notamment la technique qui permet de déposer une solution de résine sur la couche floquée et à mettre en contact cette couche avec un liquide qui est un non-solvant de la résine, par exemple par immersion de la structure dans le liquide non-solvant, cette technique est connue sous l'appellation coagulation.
Toutefois, d'autres techniques provoquant la précipitation ou gélification de la résine peuvent être utilisées sans pour cela sortir du cadre de l'invention. La structure composite est ensuite soumise à un séchage pour éliminer le solvant ou le non-solvant.
L'enduction des fibres floquées par coagulation d'une résine permet lors de la coagulation, de remplacer le solvant de la résine qui a généralement un point d'ébullition élevé, par un autre composé, non-solvant de la résine, tel que l'eau présentant un point d'ébullition nettement plus bas. Ainsi, le séchage de la structure composite peut être réalisé à une température plus basse, diminuant les risques de dégradation du film support.
Selon un mode de réalisation de l'invention, la solution d'enduction a une teneur pondérale en résine comprise entre 5% et 50 %.
Les solvants convenables pour l'invention sont, à titre d'exemple, la N- méthylpyrrolidone, les dialkylurees telles que la dimethylethylene urée (DMEU), la diméthylpropylène urée, le diméthyl acétamide, le diméthyl formamide, les cétones, le diméthyl-sulfoxyde, ou un mélange de ceux-ci avec d'autres solvants inertes tels que le xylène, le diméthyl éther le di ou triéthylène glycol.
La coagulation de la résine est généralement mise en oeuvre par mise en contact de la couche floquée enduite par la solution de résine avec de l'eau. La solution de résine peut contenir des additifs permettant d'améliorer son pouvoir mouillant par rapport aux fibres floquées. Toutefois pour améliorer le mouillage des fibres dans la résine celles-ci peuvent être traitées par un agent de finition modificateur de la tension de surface Les structures composites de l'invention, après séchage, présentent une bonne cohésion.
D'autres avantages et détails de l'invention apparaîtront plus clairement au vu des exemples donnés ci-après uniquement à titre d'illustration.
Exemples
Préparation d'un matériau composite avec couches floαuées non enduites.
Sur un film polyester 2GT de 125 μm d'épaisseur, une colle bicomposante de type polyester/polyuréthanne commercialisée par la société HENKEL, est déposée par un cylindre mille-points à raison de 50 g/m2.
Ce film polyester encollé, circule en appui sur un tablier, sous une trémie d'alimentation de fibres flock en polyamide-imide commercialisées sous la marque KERMEL (titre 2,2 dtex - longueur 0,3 mm).
Entre la trémie d'alimentation et le film un dispositif permet d'établir un champ électrique dans lequel les fibres délivrées par la trémie sont accélérées et orientées ce qui les conduit à se planter dans la colle (le champ électrique est établi entre une grille en sortie de trémie et le tablier support de film).
A la sortie du dépôt des fibres floquées, des cylindres de battage puis un aspirateur éliminent les fibres non fixées par la colle. Le film ainsi floqué subit un traitement thermique pour effectuer le séchage et la réticulation de la colle.
Dans le cas d'un flocage double face, le même traitement est ensuite effectué sur l'autre face.
Le matériau ainsi obtenu, parfaitement symétrique, présente un grammage de 330 g/m2 (dont 175 g de film polyester et 155 g de colle + fibres floquées).
Enduction des couches floquées
Un polyamide-imide résultant de la polycondensation d'anhydride trimellique et de 2,4 toluenediisocyanate est préparé dans la dimethylethylene urée (Extrait sec : 27 % - viscosité 280 poises à 25°C), selon le procédé décrit dans le brevet européen N° 0360707. Deux solutions dans la dimethylethylene urée de la résine ci-dessus sont préparées :
Solution A1 : viscosité 85 Poises à 30°C Solution A2 : viscosité 3,2 poises à 30°C. Les couches floquées du matériau composite obtenu précédemment sont enduites par les solutions A1 et A2.
L'enduction est réalisée par immersion du film floquée dans un bac contenant la solution puis essorage du matériau enduit entre 2 rouleaux pressés l'un contre l'autre par des ressorts réglables. En sortie d'essorage, le matériau enduit est immergé dans l'eau, provoquant la coagulation de la solution de polyamide-imide, puis lavé sous un léger courant d'eau pour extraire le résidu de solvant retenu par la résine.
A ce stade le matériau traité par enduction-coagulation a un touché sec et solide mais contient en fait des traces de solvant et un certain pourcentage d'eau . Ces éléments (solvant et eau) assurent une certaine plastification du polyamide- imide.
Sur cet état plastifié, il est possible de procéder à une densification du produit par pressage ou calandrage.
Il est possible également d'obtenir cette densification par simple séchage du matériau à une température voisine de 100°C pour éliminer l'eau piégée. Cette élimination de l'eau provoque un retrait de la résine d'enduction dans le sens de l'épaisseur.
Les caractéristiques des matériaux composites ainsi obtenus sont données dans le tableau I ci-dessous : Tableau I
Figure imgf000009_0001
Les quantités de résine retenues sont - 230 g/m2 avec la solution A1 - 185 g/m2 avec la solution A2 Une enduction coagulation a été réalisée avec la résine de l'essai précédent mais après une dilution pour obtenir une solution présentant une viscosité de 34 poises à 30°C (solution CD.
A partir d'une résine polyimide-amide résultant de la condensation de 100 moles de 2-4 toluenediisocyanate, de 20 moles d'anhydride trimellique, de 76 moles d'acide téréphtalique et 4 moles de dicarboxy 1 ,3 benzène sulfonate de sodium, dans la DMEU, on prépare une solution par dilution dans la DMEU pour atteindre une viscosité de 25 poises à 30°C (solution C2).
Le film f loque de 330 g/m2 utilisé précédemment est traité par enduction coagulation comme décrit précédemment avec les solutions C1 et C2 ci-dessus.
Les caractéristiques des produits obtenus sont rassemblées dans le tableau Il ci-dessous:
Tableau II
N° essai Solution Pression de Epaisseur Grammage passage (bar) μm 0/m2
7 C1 70 610 860
8 C2 70 540 - 560 525
9 C1 250 530 560
10 C2 250 480 - 520 530
11 C1 250 460 525
12 C2 250 480 525
Dans ces exemples, chaque imprégnation a été faite séparément faisant apparaître des taux de résine différents en fonction des conditions opératoires.
Les exemples suivants illustrent un avantage de l'invention, à savoir la possibilité d'incorporer des additifs dans les solutions d'imprégnation.
A titre d'exemple, on décrira la fabrication d'un matériau composite dont les surfaces des couches protectrices sont métallisées pour ainsi obtenir un circuit électrique imprimé souple.
Dans les solutions C1 et C2, on introduit du Cu2θ (oxyde cuivreux) commercialisé par la société Norddeutsche Affinerie à raison de 30 % en poids par rapport à la résine sèche contenue dans les solutions. .
Ces solutions chargées sont utilisées selon un procédé identique à celui décrit dans les exemples précédents pour obtenir des structures composites dont les caractéristiques sont rassemblées dans le tableau III ci-dessous : Tableau
N° essai Solution Cu2θ/résine Pressage Epaisseur Grammage sèche μm g/m2
13 C1 30 % 250 bars 470 580
14 C2 30 % 250 bars 450 555
Le matériau après enduction coagulation est rouge sombre. Afin d'éliminer la pellicule de résine pure en surface et mettre au jour des grains de Cu2θ, le substrat est traité par sablage humide sous équipement VAPOR BLAST (nom commercial) avec un abrasif AVB 90 (marque commerciale) et une pression de sablage de 4 bars à une distance de 15 - 20 cm. Le substrat est ensuite soigneusement rincé et séché sous courant d'air chaud. La rugosité de la surface fait apparaître des coefficients Ra > 3 et Rt > 28.
Les surfaces des couches floquées sont ensuite soumises à un procédé de métallisation.
Le bain de réduction de Cu2θ est une solution aqueuse comprenant : - 0,7 g de Rhodopol® (hétéropolysaccharide)
- 5 g de potasse
- 20 g de tartrate double de Na et Kc
- 20 g d'iodure de sodium et - 50 g de NaBHφ Le matériau à métalliser est immergé dans le bain et retiré aussitôt, à la vitesse de 1cm/s environ pour que la formation du film de réactif à la surface du substrat soit homogène, le substrat retiré du bain de réduction est laissé à l'air libre puis lavé et rincé à l'eau.
Le substrat rincé, non séché, est immergé dans un bain de cuivre chimique type EC 580 (référence commerciale) de la société KEMIFAR, à 40°C, pendant 15 min.
Après rinçage le substrat cuivré est passive pour éviter l'oxydation par immersion dans une solution passivante à 3 % dans l'eau de KEM 1044 (nom commercial) de la société KEMIFAR. Quelle que soit la nature des solutions C1 ou C2, l'épaisseur du dépôt de
Cuivre chimique est de 1 ,5 à 1 ,8 μm.
Ce matériau composite métallisé peut être traité par les procédés connus pour réaliser un circuit électrique imprimé souple.

Claims

REVENDICATIONS
1.- Article composite comprenant un substrat électriquement ou thermiquement isolant et au moins une couche protectrice disposée sur une face du substrat, caractérisé en ce qu'au moins une couche protectrice est formée par une résine thermorésistante comprenant des fibres de renfort en matière thermorésistante floquées sur la surface du substrat.
2. Article selon la revendication 1 , caractérisé en ce que les fibres thermorésistantes sont obtenues à partir d'une matière thermorésistante choisie dans le groupe comprenant les résines polyimides, polyaramides, polyamide- imides.
3. Article selon les revendications 1 ou 2, caractérisé en ce que la résine thermorésistante est un polymère thermorésistant choisi dans le groupe comprenant les polyesters, les polyoléfines, polycarbonates.le polysulfure de phénylène, les polyimides, les polyesters thermotropes.
4. Article selon la revendication 3, caractérisé en ce que la résine thermorésistante est insoluble dans l'eau.
5. Article selon l'une des revendications précédentes, caractérisé en ce qu'il comprend au moins une couche protectrice comprenant une résine thermorésistante renforcée par des fibres thermorésistantes floquées sur chaque face du substrat.
6. Article selon l'une des revendications précédentes, caractérisé en ce que la ou les couches protectrices comprennent des additifs choisis dans le groupe comprenant pigment, précurseur de métallisation, colorants.
7. Article selon l'une des revendications précédentes caractérisé en ce que le substrat est un film continu électriquement isolant choisi dans le groupe comprenant les films en polyester, polyoléfine, polycarbonate, polysulfure de phénylène, polyimide, polyester thermotrope.
8. Article composite selon l'une des revendications 1 à 7 caractérisé en ce qu'au moins une des couches protectrices comprend une couche métallique déposée sur sa surface.
9. Article composite selon la revendication 8, caractérisé en ce que la couche métallique est constituée par une feuille de métal appliquée sur la surface de la couche protectrice.
10. Article composite selon la revendication 8, caractérisé en ce que la couche protectrice comprend un additif précurseur de site d'amorçage de métallisation, et en ce que la couche métallique est obtenue par métallisation de la surface de la couche protectrice.
11. Article composite selon l'une des revendications 8 à 10, caractérisé en ce qu'un circuit électrique est formé par attaque de la couche métallique, et en ce qu'il forme un circuit électrique imprimé souple.
12. Procédé de fabrication d'un article composite selon l'une des revendications 1 à 7, caractérisé en ce qu'il comprend les étapes suivantes: - réalisation d'une couche formée par des fibres thermorésistantes floquées sur une face d'un substrat électriquement et/ou thermiquement isolant
- enduire la couche floquée par une solution de résine thermorésistante
- faire précipiter la résine dans et/ou sur la couche floquée
- et sécher l'article.
13. Procédé selon la revendication 12, caractérisé en ce que la solution de résine présente une teneur pondérale en résine comprise entre 5 % et
50 %.
14. Procédé selon la revendication 12 ou 13, caractérisé en ce que le solvant de la solution de résine est choisi dans le groupe comprenant la N-méthylpyrrolidone, les dialkylurees telles que la dimethylethylene urée, la diméthylpropylène urée, le diméthyl acétamide, le diméthyl formamide, les cétones ou analogues
15. Procédé selon l'une des revendications 12 à 14, caractérisé en ce que la précipitation de la résine est obtenue par coagulation.
16. Procédé selon la revendication 15, caractérisé en ce que la coagulation de la résine est obtenue par mise en contact de la couche floquée enduite avec un non-solvant de la résine.
17. Procédé selon l'une des revendications 12 à 16, caractérisé en ce qu'une pression est exercée sur la couche protectrice floquée.
PCT/FR1995/000505 1994-04-19 1995-04-18 Article composite et procede de fabrication de celui-ci WO1995028278A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP7526778A JP2975115B2 (ja) 1994-04-19 1995-04-18 複合品及びその製造方法
BR9507842A BR9507842A (pt) 1994-04-19 1995-04-18 Artigo composto e processo de fabricação do mesmo
DE69510786T DE69510786T2 (de) 1994-04-19 1995-04-18 Verbundwerkstoff und verfahren zu seiner herstellung
EP95918023A EP0756540B1 (fr) 1994-04-19 1995-04-18 Article composite et procede de fabrication de celui-ci
RU96122470A RU2124987C1 (ru) 1994-04-19 1995-04-18 Композиционное изделие и способ его изготовления
AU24118/95A AU2411895A (en) 1994-04-19 1995-04-18 Composite article and method for making same
US08/722,093 US5904954A (en) 1994-04-19 1995-04-18 Composite article and method for making same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR94/04910 1994-04-19
FR9404910A FR2718673B1 (fr) 1994-04-19 1994-04-19 Article composite et procédé de fabrication de celui-ci.

Publications (1)

Publication Number Publication Date
WO1995028278A1 true WO1995028278A1 (fr) 1995-10-26

Family

ID=9462448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1995/000505 WO1995028278A1 (fr) 1994-04-19 1995-04-18 Article composite et procede de fabrication de celui-ci

Country Status (12)

Country Link
US (1) US5904954A (fr)
EP (1) EP0756540B1 (fr)
JP (1) JP2975115B2 (fr)
CN (1) CN1146748A (fr)
AU (1) AU2411895A (fr)
BR (1) BR9507842A (fr)
CA (1) CA2188184A1 (fr)
DE (1) DE69510786T2 (fr)
ES (1) ES2133768T3 (fr)
FR (1) FR2718673B1 (fr)
RU (1) RU2124987C1 (fr)
WO (1) WO1995028278A1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2783441B1 (fr) * 1998-09-22 2000-10-20 Enduction Et De Flockage Soc D Procede de traitement des flocks d'un support flocke et produit obtenu par ce procede
US6919122B2 (en) 1999-07-08 2005-07-19 Saint-Gobain Performance Plastics Corporation Flexible composites with integral flights for use in high-temperature food processing equipment and methods for producing the same
US20040071952A1 (en) * 2002-10-01 2004-04-15 Anderson David Wayne Aramid paper laminate
DE102005031377A1 (de) * 2005-07-05 2007-01-11 Siemens Ag Kunststoffbauteil mit einer oberflächlich aufgebrachten Metallschicht zum in einem thermischen Befestigungsverfahren, insbesondere einem Lötverfahren erfolgenden elektrischen Kontaktieren von elektrischen Bauelementen
CN101243615B (zh) * 2005-08-15 2012-12-12 丹佛大学 用于评价绝缘体中的扩散和泄漏电流的测试方法
GB2475041A (en) * 2009-11-02 2011-05-11 Hexcel Composites Ltd Electromagnetic hazard protector for composite materials
US8980053B2 (en) 2012-03-30 2015-03-17 Sabic Innovative Plastics Ip B.V. Transformer paper and other non-conductive transformer components
US20130260123A1 (en) * 2012-03-30 2013-10-03 Sabic Innovative Plastics Ip B.V. Electrical insulation paper, methods of manufacture, and articles manufactured therefrom
US20140178661A1 (en) * 2012-12-21 2014-06-26 Sabic Innovative Plastics Ip B.V. Electrical insulation paper, methods of manufacture, and articles manufactured therefrom
EP3548405A4 (fr) 2016-11-29 2020-07-29 Saint-Gobain Performance Plastics Corporation Profil de courroie composite

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2719502A1 (de) * 1977-05-02 1978-11-09 Weltin Optac Schalldaempfwerkstoff
FR2518126A1 (fr) * 1981-12-14 1983-06-17 Rhone Poulenc Spec Chim Procede de metallisation d'articles electriquement isolants en matiere plastique et les articles intermediaires et finis obtenus selon ce procede
EP0162645A1 (fr) * 1984-05-11 1985-11-27 Masami Harada Objet revêtu de fibres de carbone
WO1989000088A1 (fr) * 1987-07-07 1989-01-12 Zeki Incel Moulures, notamment elements decoratifs pour facades, installations en plein air ou espaces interieurs

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3328218A (en) * 1962-04-09 1967-06-27 Noyes Howard Process of making a structural element
DE2255454C3 (de) * 1972-11-11 1979-07-12 Bayer Ag, 5090 Leverkusen Hochbeanspruchbarer Sandwichkörper
US4034134A (en) * 1975-10-07 1977-07-05 United Merchants And Manufacturers, Inc. Laminates and coated substrates
JPS5941849B2 (ja) * 1977-08-09 1984-10-11 積水化学工業株式会社 厚肉強化プラスチツク体の成形方法
GR79403B (fr) * 1982-11-24 1984-10-22 Bluecher Hubert
US4828897A (en) * 1988-04-08 1989-05-09 Centrite Corporation Reinforced polymeric composites
US4925719A (en) * 1988-04-08 1990-05-15 Centrite Corp. Reinforced polymeric composites
JPH0534921Y2 (fr) * 1988-06-14 1993-09-03

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2719502A1 (de) * 1977-05-02 1978-11-09 Weltin Optac Schalldaempfwerkstoff
FR2518126A1 (fr) * 1981-12-14 1983-06-17 Rhone Poulenc Spec Chim Procede de metallisation d'articles electriquement isolants en matiere plastique et les articles intermediaires et finis obtenus selon ce procede
EP0162645A1 (fr) * 1984-05-11 1985-11-27 Masami Harada Objet revêtu de fibres de carbone
WO1989000088A1 (fr) * 1987-07-07 1989-01-12 Zeki Incel Moulures, notamment elements decoratifs pour facades, installations en plein air ou espaces interieurs

Also Published As

Publication number Publication date
US5904954A (en) 1999-05-18
JPH09506051A (ja) 1997-06-17
AU2411895A (en) 1995-11-10
ES2133768T3 (es) 1999-09-16
DE69510786D1 (de) 1999-08-19
CA2188184A1 (fr) 1995-10-26
RU2124987C1 (ru) 1999-01-20
JP2975115B2 (ja) 1999-11-10
FR2718673A1 (fr) 1995-10-20
BR9507842A (pt) 1997-09-02
FR2718673B1 (fr) 1996-05-24
EP0756540A1 (fr) 1997-02-05
DE69510786T2 (de) 1999-12-02
EP0756540B1 (fr) 1999-07-14
CN1146748A (zh) 1997-04-02

Similar Documents

Publication Publication Date Title
EP0428458B1 (fr) Matériau multicouche comprenant du graphite souple renforcé mécaniquement, électriquement et thermiquement par un métal et procédé de fabrication
EP0756540B1 (fr) Article composite et procede de fabrication de celui-ci
EP0201367B1 (fr) Matériau composite polymère thermoplastique renforcé de fibres
US5017420A (en) Process for preparing electrically conductive shaped articles from polybenzimidazoles
FR2661916A1 (fr) Matiere composite thermoplastique.
FR2554389A1 (fr) Stratifie revetu de metal et procede de fabrication
FR2546704A1 (fr) Substrats metallisables pour circuits imprimes et leur procede de preparation
CA1234069A (fr) Procede de metallisation de films souples electriquement isolants et articles obtenus
JPH0611800B2 (ja) 改良された耐熱性ポリイミドフイルム
EP0052061B1 (fr) Procédé de préparation de substrats métallisés pour circuits imprimés
CA1053866A (fr) Structures microcellulaires en polymere heterocyclique
FR2812515A1 (fr) Procede de realisation d'une circuiterie comportant pistes, pastilles et microtraversees conductrices et utilisation de ce procede pour la realisation de circuits imprimes et de modules multicouches a haute densite d'integration
CA2296043C (fr) Composition adhesive pour le collage a chaud et procede de collage permettant sa mise en oeuvre
EP1086470A1 (fr) Procede de realisation d'un produit micace se presentant de preference sous la forme d'un ruban de mica et produit obtenu
JP2004324007A (ja) ポリイミド繊維用処理剤、それで処理されたポリイミド繊維、不織布及び複合材料
FR2786193A1 (fr) Stratifies de polimide/resine fluoree, leur procede de fabrication, et ruban isolant pour enroulement autour de conducteurs, forme a partir de ces stratifies
EP0192523B1 (fr) Procédé de fabrication d'un matériau isolant électrique souple et matériau isolant électrique souple obtenu par ce procédé
JPH04174599A (ja) 高電磁波シールド性複合シートの製造方法
FR3118050A1 (fr) Solution de revêtement précurseur de films conducteurs, procédé de préparation d’une telle solution et procédé de préparation d’un support revêtu d’un film conducteur
FR2812569A1 (fr) Structures poreuses complexes revetues de plomb, et procede d'activation conductrice correspondant
FR3082142A1 (fr) Bache a vide bicouche pour un procede d'infusion de materiaux composite
JPH0124323B2 (fr)
FR2664261A1 (fr) Perfectionnement aux procedes de metallisation de surfaces non metalliques.
BE622401A (fr)
WO1997000356A1 (fr) Procede de fabrication d'un papier thermostable

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 95192689.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AM AU BB BG BR BY CA CN CZ EE FI GE HU JP KE KG KP KR KZ LK LR LT LV MD MG MN MW MX NO NZ PL RO RU SD SI SK TJ TT UA US UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE MW SD SZ UG AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1995918023

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2188184

Country of ref document: CA

Ref document number: 08722093

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1995918023

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1995918023

Country of ref document: EP