WO1995006889A1 - Surface light emitting device - Google Patents

Surface light emitting device Download PDF

Info

Publication number
WO1995006889A1
WO1995006889A1 PCT/JP1993/001238 JP9301238W WO9506889A1 WO 1995006889 A1 WO1995006889 A1 WO 1995006889A1 JP 9301238 W JP9301238 W JP 9301238W WO 9506889 A1 WO9506889 A1 WO 9506889A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light emitting
light source
emitting device
emitting surface
Prior art date
Application number
PCT/JP1993/001238
Other languages
French (fr)
Japanese (ja)
Inventor
Yukio Yoshikawa
Shigekazu Nakamura
Original Assignee
Copal Company Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Copal Company Limited filed Critical Copal Company Limited
Priority to PCT/JP1993/001238 priority Critical patent/WO1995006889A1/en
Priority to US08/338,580 priority patent/US5775791A/en
Publication of WO1995006889A1 publication Critical patent/WO1995006889A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/00362-D arrangement of prisms, protrusions, indentations or roughened surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0058Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide
    • G02B6/0061Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide to provide homogeneous light output intensity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0065Manufacturing aspects; Material aspects
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side

Definitions

  • the present invention relates to a surface emitting device used to illuminate a liquid crystal display panel or the like, which is an illuminated body in a liquid crystal television, a portable personal computer or a word processor, from the back.
  • a surface emitting device used to illuminate a liquid crystal display panel or the like, which is an illuminated body in a liquid crystal television, a portable personal computer or a word processor, from the back.
  • a surface light emitting device in order to guide light emitted from a light source to a light emitting surface, light from the light source is incident on a light guide plate and then emitted toward the light emitting surface.
  • this light guide plate:-A surface facing the light-emitting surface is subjected to hairline processing to diffuse the light impinging on the surface, thereby efficiently guiding the light from the light source to the light-emitting surface.
  • Japanese Patent Publication No. 58-17995 Techniques such as No. 7 Public Bulletin (Japan) are known.
  • liquid crystal display panels and the like have been increased in size, and the area of the light-emitting surface of the surface-emitting device serving as the backlight has also increased.
  • the demand for smaller and lighter devices incorporating liquid crystal panels and the like has led to a demand for thinner surface emitting devices.
  • the surface light emitting device is enlarged and thinned, in the conventional surface light emitting device using the light guide plate, a portion near the light source is bright, and a portion far from the light source is dark because light is hard to reach.
  • the brightness of the light emitting surface was uneven, and it was difficult to emit light with uniform brightness as a whole.
  • a light source is provided on a surface facing a light emitting surface of a light guide plate.
  • a technique is known in which the dot pattern of an ink is printed so that the density gradually increases as the distance from the light source increases, so that the brightness of the light emitting surface is made uniform.
  • the present invention has been made in view of the above conventional example, and has as its object to provide a surface light emitting device capable of uniformly emitting light from a light source to the entire light emitting surface to emit light without unevenness.
  • FIG. 1 is a sectional view of a surface light emitting device according to an embodiment of the present invention.
  • FIG. 2 is a top view of the surface light emitting device.
  • FIG. 3 is an enlarged view of the bottom surface of the light guide plate.
  • FIG. 4 is a cross-sectional view showing a projection formed on the bottom surface of the light guide plate shown in FIG.
  • FIG. 5 is a sectional view showing a light guide plate according to another embodiment of the present invention.
  • FIGS. 6 (A) and (B) are cross-sectional views showing another embodiment of the convex portion formed on the bottom surface of the light guide plate. Disclosure of the invention
  • a surface light emitting device is a surface light emitting device that emits light from a light source disposed on a side of a light emitting surface from the light emitting surface, and a bottom surface portion facing the light emitting surface.
  • a transparent light guide plate in which a reflection-shaped portion formed by minute projections is arranged so that its density gradually increases in accordance with the distance from the light source. Light incident from the light source is reflected by the reflection shape part and emitted from the light emitting surface. With this configuration, the light from the light source is reflected toward the light emitting surface in accordance with the density of the reflective shape portion, so that light can be uniformly emitted on the entire light emitting surface.
  • the reflection-shaped portions are arranged in a staggered pattern in a direction away from the light source.
  • light emitted from the light source is likely to directly enter many convex portions.
  • the reflection-shaped portion is a minute projection formed by forming a continuous portion from the top portion to the bottom portion with a curved surface.
  • the reflecting shape portion is a minute convex portion formed by forming a continuous portion from the top portion to the bottom portion in a conical shape, preferably, the apex angle satisfies a range of 90 degrees to 140 degrees. It has a conical shape. Regardless of the shape, the convex part of the reflective shape part can be integrally formed during processing, and post processing is required And not.
  • FIG. 1 is a sectional view of a surface light emitting device according to an embodiment of the present invention.
  • the light source
  • Reference numeral 4 is attached to a substrate 5, and a light guide plate 1 made of a transparent material such as acryl is provided near the light source 5 so that light from the light source enters from an end face 1f.
  • the light guide plate 1 is covered with a reflective frame 3 on a surface other than the upper surface 1a on the light emitting surface side, and has a smooth surface finish except for a bottom surface 1b opposite to the upper surface 1a.
  • minute projections 31 having a circular cross section parallel to the bottom surface are formed integrally with the light guide plate 1, and the top surface is finished flat. ing.
  • the convex portion 31 has a rising portion and a falling portion continuous from the top to the bottom portion and has a curved surface with a diameter R, and is arranged as shown in FIG. I have.
  • the diffusion plate 2 is mounted on the upper surface 1 a of the light guide plate 1.
  • the diffusion plate 2 is made of frosted glass or the like, and diffuses light emitted from the upper surface 1a of the light guide plate 1 to illuminate an illuminated body (not shown) by the light emission surface 2a.
  • FIG. 3 is a perspective view in which the bottom surface 1b of the light guide plate 1 is enlarged and partially cut out.
  • Each of the minute projections 31 is a reflection-shaped portion for reflecting light from the light source, has a circular cross-section, and has a funnel shape having a curved surface with a radius R with an outer periphery of a continuous portion with respect to the light guide ⁇ 1. It is formed (hereinafter, this round part is called an edge).
  • FIG. 4 shows an enlarged cross-sectional view of the projection 31.
  • the size of the projections 31 is such that the thickness H of the light guide plate 1 is about 1 mm, while the height h of each projection is about 0.03 to 0.07 mm, d is about 0.05 to 0.2 mm, and all have the same shape.
  • FIG. 2 is a view of the surface light emitting device of the present example as viewed from above, in a state where the diffusion plate 2 is removed.
  • Each of the small circles in the figure is a minute protrusion 31, and is arranged in a staggered lattice shape in a direction away from the light source 4. Further, the density at which the protrusions 31 are formed on the light guide plate 1 also gradually increases as the distance from the light source increases.
  • Light emitted from the light source enters the light guide ⁇ 1 from the end face 1 f of the light source 4.
  • the light that has entered the light guide plate 1 directly or repeatedly undergoes total reflection as described above, and strikes the edge of the convex portion 31 of the bottom surface lb.
  • the ⁇ portion is formed with a curved surface, and the light hitting it is reflected and emitted from the upper surface 1a, diffused by the diffusion plate 2 and emitted by the light emitting surface 2a.
  • the amount of light emitted from the light guide plate 1 is reflected by the edge of the projection 31, if the density of the projection 31 is high, the amount of light emitted from the upper surface 1 a in the vicinity increases. Become. Therefore, by gradually increasing the density of the projections 31 as the distance from the light source 4 increases, the amount of light emitted near the light source with a large amount of incident light decreases, and the incident light decreases. The opposite is true in the portion where the amount of light is small, and the amount of light emitted from the upper surface 1a of the light guide plate 1 is made uniform.
  • the reflectance can be controlled by their density, and the light amount of the surface light source can be made uniform.
  • the light emitted from the light source can easily enter the many protrusions directly, and uniformity of light can be obtained without brightening specific parts.
  • a light guide plate can be manufactured at low cost without the need for a post-process such as hairline processing by integrally forming the projections during processing.
  • FIG. 5 shows another embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing a light guide plate of a surface emitting device according to another embodiment, in which the shape of the projection is different from that of the above-described embodiment. Since the other structure is the same as that of the above-described embodiment, detailed description thereof will be omitted using the same reference numerals.
  • the protrusion 33 has a conical shape whose cross section parallel to the bottom surface is circular.
  • the shape of the rising portion and the falling portion continuous from the top to the bottom portion of the convex portion 32, that is, the shape of the edge portion is a linear cross section having a fixed angle of 0 at the vertex angle.
  • the critical angle is 42.16 degrees.c
  • the vertex angle 0 of the convex portion 33 is set so that the light reflected at the edge of the convex portion 33 is perpendicularly reflected in the direction of the light emitting surface 1 a of the light guide plate 1,
  • the angle b of the light that passes through the end face 1 f from the light source 4, is reflected once by another surface of the light guide plate 1 (for example, the inner surface of the light emitting surface 1 a), and reaches the ⁇ portion of the convex portion 33 is Since the critical angle of is 42.16 degrees, it becomes 42.16 degrees to 90 degrees. Therefore, if the vertex angle 0 of the convex portion 33 is set so that the light reflected at the edge of the convex portion 33 is perpendicularly reflected to the light emitting surface 1a of the light guide plate 1, the vertex angle 0 of the convex portion 33 becomes The range is 90 degrees to 137.85 degrees ( (90-42.16 / 2) no 2).
  • the vertex angle 0 of the convex portion 33 be set in a range of 90 degrees to 140 degrees.
  • the apex angle ⁇ becomes 11.08 degrees. Therefore, the apex angle of the projection 33 is preferably about 110 degrees.
  • the convex portion 34 may have a flat top portion of the conical shape
  • the convex portion 35 The top of the conical shape may be curved.
  • a small funnel-shaped convex portion having a conical rising portion and a falling portion forming a straight line in cross-section such that the density decreases as the distance from the light source increases, the lower the light-guiding plate 1 is, the lower the density becomes.
  • the same effects (1) to (5) as in the first embodiment described above can be obtained, and the rate of directing the light reflected from the convex portion toward the light emitting surface in the vertical direction can be increased, and the brightness in front of the light emitting surface can be improved. Can be increased.
  • the light guide plate 1 of the light source 4 is arranged so that light is incident on one end face of the light guide plate 1.
  • light sources can be arranged at both ends.
  • the convex portions on the bottom surface of the light guide plate 1 are arranged so as to have a high density near the center farthest from the two light sources, and are arranged with a gradient of density so as to have a low density near the light sources. In this way, a uniform surface emitting device can be realized.
  • the convex portion is formed as a convex portion whose top is directed to the light emitting surface 1a side by forming a depression in the light guide ⁇ 1, but is opposite to the light emitting surface 1a.
  • the crest may be made to protrude, and in this case, substantially the same effect as in the above-described embodiment can be obtained.
  • the surface light-emitting device has an effect that light from a light source can be uniformly emitted to the entire light-emitting surface to emit light uniformly without having a complicated structure. is there.

Abstract

A surface light emitting device emits light from a light emitting surface, the light being from a light source arranged on one side of the light emitting surface. On the bottom which faces the light emitting surface, a transparent light-guiding board is arranged. The board has small reflecting projections thereon. The density of the reflecting projections increases gradually from the light source. The light from the light source is reflected by the reflecting projections and emitted from the light emitting surface. Since the light from the light source is reflected toward the light emitting surface side in accordance with the density of the reflecting projections, the light is uniformly emitted from over the entire emitting surface. The reflecting projections are staggered in the direction where light is emitted from the light source, making it easy for the light to strike the staggered reflecting projections. The surface of each projection, extending from the top to the board, is preferably a curved one, or the shape of each one is preferably a cone.

Description

明 細 書  Specification
面発光装置 技術分野  Surface emitting device Technical field
本発明は、 例えば液晶テレビ, 携帯用パーソナルコンピュータあるいはワード プロセッサにおける被照明体である液晶表示パネル等を背部から照明するために 甩いられる面発光装置に関する。 背景技術  The present invention relates to a surface emitting device used to illuminate a liquid crystal display panel or the like, which is an illuminated body in a liquid crystal television, a portable personal computer or a word processor, from the back. Background art
従来、 面発光装置にあっては、 光源から発した光を発光面に導くために、 光源 の光を導光板に入射したのち発光面へ向けて出射していた。 この導光板として、 - 発光面に対向する面をヘアーライン加工してその面に当たる光を乱反射させ、 光 源の光を効率的に発光面に導く ものとして、 例えば特公昭 5 8— 1 7 9 5 7号公 報 (日本) 等の技術が知られている。  Conventionally, in a surface light emitting device, in order to guide light emitted from a light source to a light emitting surface, light from the light source is incident on a light guide plate and then emitted toward the light emitting surface. As this light guide plate:-A surface facing the light-emitting surface is subjected to hairline processing to diffuse the light impinging on the surface, thereby efficiently guiding the light from the light source to the light-emitting surface. For example, Japanese Patent Publication No. 58-17995 Techniques such as No. 7 Public Bulletin (Japan) are known.
しかしながら、 近年、 液晶表示パネル等は大型化しており、 そのバックライ ト となる面発光装置の発光面の面積も大型化している。 一方、 液晶パネル等が組み 込まれる装置の小型 ·軽量化の要望から、 面発光装置の薄型化が要求されている。 このように面発光装置が大型化および薄型化すると、 前記従来の導光板を用いた 面発光装置では、 光源に近い部分は明るく、 光源から遠い部分は光が到達しにく い為に暗いというように発光面の明るさにムラができてしまい、 全体を均一な明 るさで発光させることが難しかった。  However, in recent years, liquid crystal display panels and the like have been increased in size, and the area of the light-emitting surface of the surface-emitting device serving as the backlight has also increased. On the other hand, the demand for smaller and lighter devices incorporating liquid crystal panels and the like has led to a demand for thinner surface emitting devices. As described above, when the surface light emitting device is enlarged and thinned, in the conventional surface light emitting device using the light guide plate, a portion near the light source is bright, and a portion far from the light source is dark because light is hard to reach. As described above, the brightness of the light emitting surface was uneven, and it was difficult to emit light with uniform brightness as a whole.
このような面発光装置の欠点を改良するものとして、 例えば特開平 2— 1 2 6 5 0 1号公報 (日本) に記載されているように、 導光板の発光面に対向する面に、 光源から遠ざかるに従って密度が漸増するようにィンクのドッ 卜パターンを印刷 することにより発光面の明るさを均一にしょうとする技術が知られている。  As an improvement over such a surface light emitting device, for example, as described in Japanese Patent Application Laid-Open No. 2-125601 (Japan), a light source is provided on a surface facing a light emitting surface of a light guide plate. A technique is known in which the dot pattern of an ink is printed so that the density gradually increases as the distance from the light source increases, so that the brightness of the light emitting surface is made uniform.
しかしながら、 このようにインク等を印刷した場合には、 このインク自体によ る光の吸収作用を完全に無くすことは困難であり、 出射効率が低下するという欠 点があった。 また、 インクを印刷する工程が必要な為に、 製造工程が複雑になり コストアツプにつながるという欠点があった。 本発明は上記従来例に鑑みてなされたもので、 光源の光を発光面全体に均一に 出射してムラなく発光させることができる面発光装置を提供することを目的とす る。 図面の簡単な説明 However, when the ink or the like is printed in this manner, it is difficult to completely eliminate the light absorbing effect of the ink itself, and there is a disadvantage that the emission efficiency is reduced. In addition, there is a disadvantage that the process of printing ink is required, which complicates the manufacturing process and leads to cost up. The present invention has been made in view of the above conventional example, and has as its object to provide a surface light emitting device capable of uniformly emitting light from a light source to the entire light emitting surface to emit light without unevenness. BRIEF DESCRIPTION OF THE FIGURES
第 1図は本発明の実施例である面発光装置の断面図である。  FIG. 1 is a sectional view of a surface light emitting device according to an embodiment of the present invention.
第 2図は面発光装置の上面図である。  FIG. 2 is a top view of the surface light emitting device.
第 3図は導光板の底面の拡大図である。  FIG. 3 is an enlarged view of the bottom surface of the light guide plate.
第 4図は第 3図に示す導光板の底面に形成された凸部を示す断面図である。 第 5図は本発明の他の実施例における導光板を示す断面図である。  FIG. 4 is a cross-sectional view showing a projection formed on the bottom surface of the light guide plate shown in FIG. FIG. 5 is a sectional view showing a light guide plate according to another embodiment of the present invention.
第 6図 (A ) , ( B ) は導光板の底面に形成された凸部の他の実施例を示す断 面図である。 発明の開示  FIGS. 6 (A) and (B) are cross-sectional views showing another embodiment of the convex portion formed on the bottom surface of the light guide plate. Disclosure of the invention
上記目的を達成する為に本発明の面発光装置は、 発光面の側方に配置された光 源からの光を前記発光面から出射する面発光装置であって、 発光面と対向する底 面部に、 微小な凸部で形成した反射形状部を、 その密度が前記光源からの距離に 応じて漸増するように配置した透明な導光板を備えている。 前記光源から入射さ れた光は前記反射形状部により反射して前記発光面から出射する。 かかる構成に よって、 光源からの光は反射形状部の密度に応じて発光面側へと反射されるので 発光面全体に均一に発光することができる。  In order to achieve the above object, a surface light emitting device according to the present invention is a surface light emitting device that emits light from a light source disposed on a side of a light emitting surface from the light emitting surface, and a bottom surface portion facing the light emitting surface. In addition, there is provided a transparent light guide plate in which a reflection-shaped portion formed by minute projections is arranged so that its density gradually increases in accordance with the distance from the light source. Light incident from the light source is reflected by the reflection shape part and emitted from the light emitting surface. With this configuration, the light from the light source is reflected toward the light emitting surface in accordance with the density of the reflective shape portion, so that light can be uniformly emitted on the entire light emitting surface.
好ましくは、 前記反射形状部は、 前記光源から遠ざかる向きについて千鳥格子 状に配設される。 かかる構成により、 光源から出た光が多くの凸部に直接入射し 易くなる。  Preferably, the reflection-shaped portions are arranged in a staggered pattern in a direction away from the light source. With such a configuration, light emitted from the light source is likely to directly enter many convex portions.
また好ましくは、 前記反射形状部は、 その頂部から底面部に連なる連設部を曲 面で形成した微小な凸部である。 または、 前記反射形状部は、 その頂部から底面 部に連なる連設部を円錐形状に形成した微小な凸部であり、 好ましくは、 その頂 角を 9 0度〜 1 4 0度の範囲を満たす円錐形状である。 いずれの形状の場合であ つても、 反射形状部の凸部を加工の際に一体成形することができ、 後加工を必要 としない。 発明を実施するための最良の形態 Also preferably, the reflection-shaped portion is a minute projection formed by forming a continuous portion from the top portion to the bottom portion with a curved surface. Alternatively, the reflecting shape portion is a minute convex portion formed by forming a continuous portion from the top portion to the bottom portion in a conical shape, preferably, the apex angle satisfies a range of 90 degrees to 140 degrees. It has a conical shape. Regardless of the shape, the convex part of the reflective shape part can be integrally formed during processing, and post processing is required And not. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 添付図面を参照して本発明の好適な実施例を詳細に説明する。  Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
第 1図は本発明の実施例である面発光装置の断面図である。 図において、 光源 FIG. 1 is a sectional view of a surface light emitting device according to an embodiment of the present invention. In the figure, the light source
4は基板 5に取りつけられており、 光源 5に近接して、 端面 1 f から光源の光が 入射するようにァクリル等の透明部材からなる導光板 1が配設されている。 導光 板 1はその発光面側の上面 1 a以外の面を反射枠 3に覆われており、 上面 1 aの 反対側の底面 1 bを除いて、 平滑面仕上げがされている。 また、 導光板 1の底面 1 bには、 底面に平行な断面形状が円形であるような微小な凸部 3 1が導光板 1 と一体に形成されており、 その頂面は平坦に仕上げられている。 この凸部 3 1は 第 3図に示す様にその頂から底面部に連なる立ち上がり部及び立ち下がり部の形 状が径 Rの曲面となっており、 第 2図に示すように配設されている。 Reference numeral 4 is attached to a substrate 5, and a light guide plate 1 made of a transparent material such as acryl is provided near the light source 5 so that light from the light source enters from an end face 1f. The light guide plate 1 is covered with a reflective frame 3 on a surface other than the upper surface 1a on the light emitting surface side, and has a smooth surface finish except for a bottom surface 1b opposite to the upper surface 1a. On the bottom surface 1 b of the light guide plate 1, minute projections 31 having a circular cross section parallel to the bottom surface are formed integrally with the light guide plate 1, and the top surface is finished flat. ing. As shown in FIG. 3, the convex portion 31 has a rising portion and a falling portion continuous from the top to the bottom portion and has a curved surface with a diameter R, and is arranged as shown in FIG. I have.
導光板 1の上面 1 a上部には拡散板 2が取りつけられている。 拡散板 2は磨り ガラス等からなるもので、 導光板 1の上面 1 aから出射する光を拡散し、 発光面 2 aにより不図示の被照明体を照らしだす。  The diffusion plate 2 is mounted on the upper surface 1 a of the light guide plate 1. The diffusion plate 2 is made of frosted glass or the like, and diffuses light emitted from the upper surface 1a of the light guide plate 1 to illuminate an illuminated body (not shown) by the light emission surface 2a.
第 3図は導光板 1の底面 1 bを拡大して一部切り出した斜視図である。 各微小 な凸部 3 1は光源からの光を反射する反射形状部であり、 その横断面は円形であ つて、 導光扳 1に対する連設部の外周は半径 Rの曲面を持つ漏斗状に形成されて いる (以下、 このアールの部分を縁部と呼ぶ) 。  FIG. 3 is a perspective view in which the bottom surface 1b of the light guide plate 1 is enlarged and partially cut out. Each of the minute projections 31 is a reflection-shaped portion for reflecting light from the light source, has a circular cross-section, and has a funnel shape having a curved surface with a radius R with an outer periphery of a continuous portion with respect to the light guide 扳 1. It is formed (hereinafter, this round part is called an edge).
第 4図に凸部 3 1を拡大した断面図を示す。 凸部 3 1の大きさは、 導光板 1の 厚さ Hが 1 m m程度であるのに対し、 各凸部の高さ hは 0 . 0 3ないし 0 . 0 7 m m程度であり、 その径 dは 0 . 0 5ないし 0 . 2 m m程度であって、 すべて同 一形状である。  FIG. 4 shows an enlarged cross-sectional view of the projection 31. The size of the projections 31 is such that the thickness H of the light guide plate 1 is about 1 mm, while the height h of each projection is about 0.03 to 0.07 mm, d is about 0.05 to 0.2 mm, and all have the same shape.
第 2図は本実施例の面発光装置を上面から見た図であり、 拡散板 2を取り除い た状態である。 図における小円は一つ一つが微小な凸部 3 1であり、 光源 4から 遠ざかる方向にむけて千鳥格子状に配列されている。 また、 凸部 3 1が導光板 1 に形成される密度も、 光源から遠ざかるにつれて徐々に密になっている。  FIG. 2 is a view of the surface light emitting device of the present example as viewed from above, in a state where the diffusion plate 2 is removed. Each of the small circles in the figure is a minute protrusion 31, and is arranged in a staggered lattice shape in a direction away from the light source 4. Further, the density at which the protrusions 31 are formed on the light guide plate 1 also gradually increases as the distance from the light source increases.
光源から発した光は、 光源 4の端面 1 f から導光扳 1 に入射する。 導光板がァ クリルである場合、 ァクリルの屈折率は n = 1 . 4 9であり、 入射した光が導光 板界面で全反射する臨界角は 4 2 . 1 6度である。 端面 1 f から入射 ·屈折した 光は、 導光板 1の表面 1 a , l d, 1 e及び底面 1 bの平坦な部分に臨界角以上 の角度で当たった場合には全反射され、 外部に漏れることはない。 また、 端面 1 cに当たった場合には反射枠 3により反射される。 Light emitted from the light source enters the light guide 扳 1 from the end face 1 f of the light source 4. Light guide plate In the case of krill, the refractive index of acryl is n = 1.49, and the critical angle at which incident light is totally reflected at the light guide plate interface is 42.16 degrees. The light incident and refracted from the end face 1 f is totally reflected and leaks to the outside when it hits the flat surface 1 a, ld, 1 e and the bottom 1 b of the light guide plate 1 at an angle greater than the critical angle. Never. When the light strikes the end face 1 c, the light is reflected by the reflection frame 3.
こうして、 導光板 1に入射した光は直接あるいは上述のような全反射を繰り返 して底面 l bの凸部 3 1の縁部に当たる。 前述のように緣部は曲面で形成されて おり、 そこに当たった光は反射されて上面 1 aから出射され、 拡散板 2によって 拡散されて発光面 2 aにより発せられる。  Thus, the light that has entered the light guide plate 1 directly or repeatedly undergoes total reflection as described above, and strikes the edge of the convex portion 31 of the bottom surface lb. As described above, the 緣 portion is formed with a curved surface, and the light hitting it is reflected and emitted from the upper surface 1a, diffused by the diffusion plate 2 and emitted by the light emitting surface 2a.
以上のように、 導光板 1から出射する光は凸部 3 1の縁部による反射を経るた め、 凸部 3 1の密度が高ければその付近における上面 1 aからの出光量も増える ことになる。 したがって、 光源 4付近から遠ざかるにつれて減少する光量を捕正 するように、 光源 4から遠ざかるにつれて凸部 3 1の密度を徐々に上げれば、 入 射光量の多い光源付近では出射する光量が減り、 入射光量の少ない部分ではその 逆となって、 導光板 1の上面 1 aから出射する光量は均一化される。  As described above, since the light emitted from the light guide plate 1 is reflected by the edge of the projection 31, if the density of the projection 31 is high, the amount of light emitted from the upper surface 1 a in the vicinity increases. Become. Therefore, by gradually increasing the density of the projections 31 as the distance from the light source 4 increases, the amount of light emitted near the light source with a large amount of incident light decreases, and the incident light decreases. The opposite is true in the portion where the amount of light is small, and the amount of light emitted from the upper surface 1a of the light guide plate 1 is made uniform.
このように導光扳 1底面に、 光源から遠ざかるにつれてその密度が減少するよ うに、 立ち上がり部及び立ち下がり部が曲面を成す漏斗形状の微小な凸部を配置 することにより、 次のような効果が得られる。  By arranging a small funnel-shaped convex part with rising and falling parts forming a curved surface on the bottom surface of the light guide 1 so that its density decreases as the distance from the light source increases, the following effects can be obtained. Is obtained.
①円形の凸部を配置することにより、 光がどの方向から当たっても同じ反射率で 反射させることができ、 凸部の形状による方向性を持たず、 光の均一性が得られ る。  (1) By arranging circular projections, light can be reflected at the same reflectance no matter from which direction the light hits, and the uniformity of light can be obtained without the directionality due to the shape of the projections.
②凸部を同形状にすることにより、 その密度で反射率をコントロールすることが でき、 面光源の光量を均一化することができる。  (2) By making the projections the same shape, the reflectance can be controlled by their density, and the light amount of the surface light source can be made uniform.
③凸部を千鳥格子状に配置することにより、 光源から出た光が多ぐの凸部に直接 入射し易くなり、 特定の部分が明るくなることなく、 光の均一性が得られる。 (3) By arranging the protrusions in a staggered lattice pattern, the light emitted from the light source can easily enter the many protrusions directly, and uniformity of light can be obtained without brightening specific parts.
④このような導光板は、 加工の際にも凸部を一体成形することでヘアライン加工 のような後工程を必要とせず、 安価に製造 ることができる。 ④Such a light guide plate can be manufactured at low cost without the need for a post-process such as hairline processing by integrally forming the projections during processing.
第 5図に本発明の他の実施例を示す。 第 5図は、 他の実施例における面発光装 置の導光板を示す断面図であり、 凸部の形状が前述した実施例と異なるものであ り、 他の構造は前述した実施例と同じであるので同一図番を用いその詳細な説明 は省略する。 FIG. 5 shows another embodiment of the present invention. FIG. 5 is a cross-sectional view showing a light guide plate of a surface emitting device according to another embodiment, in which the shape of the projection is different from that of the above-described embodiment. Since the other structure is the same as that of the above-described embodiment, detailed description thereof will be omitted using the same reference numerals.
第 5図に示すように、 凸部 3 3は底面に平行な断面形状が円形であるような円 錐形状をなしている。 図から明らかなように、 凸部 3 2の頂から底面部に連なる 立ち上がり部及び立ち下がり部、 すなわち縁部の形状は、 一定の角度の頂角 0を 有する断面直線状となっている。  As shown in FIG. 5, the protrusion 33 has a conical shape whose cross section parallel to the bottom surface is circular. As is clear from the figure, the shape of the rising portion and the falling portion continuous from the top to the bottom portion of the convex portion 32, that is, the shape of the edge portion is a linear cross section having a fixed angle of 0 at the vertex angle.
このように凸部 3 3が円錐形状の場合における光源 4から導光板 1内に入射し た光の光路について説明する。  The optical path of the light that has entered the light guide plate 1 from the light source 4 when the projections 33 have a conical shape will be described.
前述したように導光板 1がァクリルである場合、 臨界角は 4 2 . 1 6度である c 光源 4から端面 1 f を通って導光板 1内に入射する光の導光板内での入射角 aは 0度〜4 2 . 1 6度の範囲となる。 したがって、 光源から端面 1 f を通って導光 板の他の面に反射することなく直接に凸部 3 3へと至る光の角度 bは 4 7 . 8 4 度 (= 9 0— 4 2 . 1 6 ) ~ 9 0度の範囲となる。  As described above, when the light guide plate 1 is acryl, the critical angle is 42.16 degrees.c The incident angle in the light guide plate of light that enters the light guide plate 1 from the light source 4 through the end face 1 f a is in the range of 0 degrees to 42.16 degrees. Therefore, the angle b of the light from the light source to the projection 33 directly through the end face 1 f without being reflected on the other surface of the light guide plate is 47.84 degrees (= 90−42. 1 6) ~ 90 degrees.
ここで、 凸部 3 3の縁部で反射する光を導光板 1の発光面 1 a方向へ垂直に反 射させるように凸部 3 3の頂角 0を設定すると、 凸部 3 3の頂角 Sは 9 0度〜 1 3 2 . 1 6度 (= ( 9 0— 4 7 . 8 4 Z 2 ) Z 2 ) の範囲なる。  Here, if the vertex angle 0 of the convex portion 33 is set so that the light reflected at the edge of the convex portion 33 is perpendicularly reflected in the direction of the light emitting surface 1 a of the light guide plate 1, The angle S ranges from 90 degrees to 132.16 degrees (= (90—47.84Z2) Z2).
また、 光源 4から端面 1 f を通った後に導光板 1の他の面 (例えば発光面 1 a 内面) で一旦反射した後に凸部 3 3の緣部に至る光の角度 bは、 導光板 1の臨界 角が 4 2 . 1 6度であるので、 4 2 . 1 6度〜 9 0度となる。 したがって、 凸部 3 3の縁部で反射する光を導光板 1の発光面 1 aへ垂直に反射させるように凸部 3 3の頂角 0を設定すると、 凸部 3 3の頂角 0は 9 0度〜 1 3 7 . 8 5度 (= ( 9 0 - 4 2 . 1 6 / 2 ) ノ 2 ) の範囲となる。  Further, the angle b of the light that passes through the end face 1 f from the light source 4, is reflected once by another surface of the light guide plate 1 (for example, the inner surface of the light emitting surface 1 a), and reaches the 緣 portion of the convex portion 33 is Since the critical angle of is 42.16 degrees, it becomes 42.16 degrees to 90 degrees. Therefore, if the vertex angle 0 of the convex portion 33 is set so that the light reflected at the edge of the convex portion 33 is perpendicularly reflected to the light emitting surface 1a of the light guide plate 1, the vertex angle 0 of the convex portion 33 becomes The range is 90 degrees to 137.85 degrees (= (90-42.16 / 2) no 2).
以上のことから、 凸部 3 3の頂角 0は 9 0度〜 1 4 0度の範囲内で設定するこ とが良い。 好ましくは、 凸部 3 3へ至る光の平均角度を 6 8 . 9 2度 (= ( 9 0 + 4 8 . 7 4 ) Z 2 ) として計算すると頂角 Θは 1 1 1 . 0 8度となり、 したが つて凸部 3 3の頂角は 1 1 0度程度が好ましい。  From the above, it is preferable that the vertex angle 0 of the convex portion 33 be set in a range of 90 degrees to 140 degrees. Preferably, when the average angle of light reaching the convex portion 33 is calculated as 68.92 degrees (= (90 + 48.7.4) Z2), the apex angle Θ becomes 11.08 degrees. Therefore, the apex angle of the projection 33 is preferably about 110 degrees.
尚、 第 6図 ( A ) に示すように、 凸部 3 4は円錐形状の頂の部分が平坦であつ てもよく、 また、 第 6図 (B ) に示すように、 凸部 3 5は円錐形状の頂の部分が 曲面形伏であってもよい。 このように導光板 1底面に、 光源から遠ざかるにつれてその密度が減少するよ うに、 円錐形状の立ち上がり部及び立ち下がり部が断面直線を成す漏斗形状の微 小な凸部を配置することにより、 前述した第 1の実施例と同様な効果①〜④が得 られるとともに、 凸部から反射する光を垂直に発光面方向へと指向させる率を高 くすることができ、 発光面前面での明るさを増すことができる。 In addition, as shown in FIG. 6 (A), the convex portion 34 may have a flat top portion of the conical shape, and as shown in FIG. 6 (B), the convex portion 35 The top of the conical shape may be curved. As described above, by arranging a small funnel-shaped convex portion having a conical rising portion and a falling portion forming a straight line in cross-section such that the density decreases as the distance from the light source increases, the lower the light-guiding plate 1 is, the lower the density becomes. The same effects (1) to (5) as in the first embodiment described above can be obtained, and the rate of directing the light reflected from the convex portion toward the light emitting surface in the vertical direction can be increased, and the brightness in front of the light emitting surface can be improved. Can be increased.
以上の第の 1実施例および他の実施例においては、 光源 4の導光板 1の一方の 端面に向けて光を入射する様に配置されていたが、 大型の導光板 1を用いる際に は、 その両端に光源を配置することもできる。 その場合、 導光板 1底面の凸部は、 2つの光源からもっとも遠い中央付近を高密度になるよう配置し、 光源付近では 低密度になる様に密度の傾斜を設けて配置する。 このようにして均一の面発光装 置を実現できる。  In the first embodiment and the other embodiments described above, the light guide plate 1 of the light source 4 is arranged so that light is incident on one end face of the light guide plate 1.However, when a large light guide plate 1 is used, However, light sources can be arranged at both ends. In this case, the convex portions on the bottom surface of the light guide plate 1 are arranged so as to have a high density near the center farthest from the two light sources, and are arranged with a gradient of density so as to have a low density near the light sources. In this way, a uniform surface emitting device can be realized.
さらに、 いずれの実施例においても凸部は導光扳 1に窪みを形成することによ り発光面 1 a側へと頂が指向する凸部としたが、 発光面と反対の反射枠 3側へと その頂が突出するようにしてもよく、 この場合でも前述した実施例とほぼ同様の 効果を得ることができる。 産業上の利用可能性  Further, in each of the embodiments, the convex portion is formed as a convex portion whose top is directed to the light emitting surface 1a side by forming a depression in the light guide 扳 1, but is opposite to the light emitting surface 1a. The crest may be made to protrude, and in this case, substantially the same effect as in the above-described embodiment can be obtained. Industrial applicability
以上説明した様に、 本発明にかかる面発光装置は、 安価で、 且つ複雑な構造と することなく、 光源の光を発光面全体に均一に出射してムラなく発光させること ができるという効果がある。  As described above, the surface light-emitting device according to the present invention has an effect that light from a light source can be uniformly emitted to the entire light-emitting surface to emit light uniformly without having a complicated structure. is there.

Claims

請 求 の 範 囲 The scope of the claims
1 . 発光面の側方に配置された光源からの光を前記発光面から出射する面発光装 置であって、 1. A surface light emitting device that emits light from a light source disposed on a side of a light emitting surface from the light emitting surface,
発光面と対向する底面部に、 微小な凸部で形成した反射形状部を、 その密度が 前記光源からの距離に応じて漸増するように配置した透明な導光板を備え、 前記 光源から入射された光を前記反射形状部により反射して前記発光面から出射する ことを特徴とする面発光装置。  A transparent light guide plate is provided on a bottom surface portion facing the light emitting surface, wherein a reflection shape portion formed by minute projections is arranged so that its density gradually increases according to the distance from the light source. The light emitted from the light emitting surface is reflected by the reflecting shape part and emitted from the light emitting surface.
2 . 前記反射形状部は、 前記光源から遠ざかる向きについて千鳥格子状に配設す ることを特徴とする請求項 1項記載の面発光装置。  2. The surface emitting device according to claim 1, wherein the reflection-shaped portions are arranged in a zigzag pattern in a direction away from the light source.
3 . 前記反射形状部は、 その頂部から底面部に連なる連設部を曲面で形成した微 小な凸部であることを特徴とする請求項 1項記載の面発光装置。  3. The surface light emitting device according to claim 1, wherein the reflection-shaped portion is a minute convex portion formed by forming a continuous portion from a top portion to a bottom portion with a curved surface.
4 . 前記反射形状部は、 その頂部から底面部に連なる連設部を円錐形状に形成し た微小な凸部であることを特徴とする請求項 1項記載の面発光装置。  4. The surface-emitting device according to claim 1, wherein the reflection-shaped portion is a minute projection having a conical portion formed from a top portion to a bottom portion.
5 . 前記反射形状部の連設部は、 頂角を 9 0度〜 1 4 0度の範囲を満たす円錐形 状であることを特徴とする請求項 4項記載の面発光装置。  5. The surface emitting device according to claim 4, wherein the continuous portion of the reflection shape portion has a conical shape satisfying an apex angle of 90 degrees to 140 degrees.
PCT/JP1993/001238 1992-08-31 1993-09-01 Surface light emitting device WO1995006889A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP1993/001238 WO1995006889A1 (en) 1993-09-01 1993-09-01 Surface light emitting device
US08/338,580 US5775791A (en) 1992-08-31 1993-09-01 Surface emission apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1993/001238 WO1995006889A1 (en) 1993-09-01 1993-09-01 Surface light emitting device

Publications (1)

Publication Number Publication Date
WO1995006889A1 true WO1995006889A1 (en) 1995-03-09

Family

ID=14070499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/001238 WO1995006889A1 (en) 1992-08-31 1993-09-01 Surface light emitting device

Country Status (1)

Country Link
WO (1) WO1995006889A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6415531B1 (en) 1995-05-23 2002-07-09 Sharp Kabushiki Kaisha Plane-shaped lighting device and a display using such a device
WO2007137102A2 (en) * 2006-05-18 2007-11-29 3M Innovative Properties Company Process for making light guides with extraction structures and light guides produced thereby
US7583444B1 (en) 2005-12-21 2009-09-01 3M Innovative Properties Company Process for making microlens arrays and masterforms
CN103901522A (en) * 2012-12-27 2014-07-02 鸿富锦精密工业(深圳)有限公司 Light guide plate and backlight module
CN105301692A (en) * 2015-12-04 2016-02-03 苏州茂立光电科技有限公司 Light guide plate with high light utilization rate, and design method thereof
WO2022078174A1 (en) * 2020-10-16 2022-04-21 Ningbo Geely Automobile Research & Development Co., Ltd. An optical lens system for vehicle lighting applications

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6075907U (en) * 1983-10-29 1985-05-28 株式会社小糸製作所 lighting equipment
JPS61145902U (en) * 1985-02-28 1986-09-09

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6075907U (en) * 1983-10-29 1985-05-28 株式会社小糸製作所 lighting equipment
JPS61145902U (en) * 1985-02-28 1986-09-09

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6415531B1 (en) 1995-05-23 2002-07-09 Sharp Kabushiki Kaisha Plane-shaped lighting device and a display using such a device
US8004767B2 (en) 2005-12-21 2011-08-23 3M Innovative Properties Company Process for making microlens arrays and masterforms
US7583444B1 (en) 2005-12-21 2009-09-01 3M Innovative Properties Company Process for making microlens arrays and masterforms
WO2007137102A3 (en) * 2006-05-18 2008-08-14 3M Innovative Properties Co Process for making light guides with extraction structures and light guides produced thereby
US7936956B2 (en) 2006-05-18 2011-05-03 3M Innovative Properties Company Process for making light guides with extraction structures and light guides produced thereby
US7941013B2 (en) 2006-05-18 2011-05-10 3M Innovative Properties Company Process for making light guides with extraction structures and light guides produced thereby
WO2007137102A2 (en) * 2006-05-18 2007-11-29 3M Innovative Properties Company Process for making light guides with extraction structures and light guides produced thereby
EP2468487A1 (en) * 2006-05-18 2012-06-27 3M Innovative Properties Company of 3M Center Light extraction structures and light guides incorporating same
JP2014006547A (en) * 2006-05-18 2014-01-16 3M Innovative Properties Co Method for making light guides having extraction structures, and light guides produced by said method
CN103901522A (en) * 2012-12-27 2014-07-02 鸿富锦精密工业(深圳)有限公司 Light guide plate and backlight module
CN105301692A (en) * 2015-12-04 2016-02-03 苏州茂立光电科技有限公司 Light guide plate with high light utilization rate, and design method thereof
WO2022078174A1 (en) * 2020-10-16 2022-04-21 Ningbo Geely Automobile Research & Development Co., Ltd. An optical lens system for vehicle lighting applications
US11879613B2 (en) 2020-10-16 2024-01-23 Ningbo Geely Automobile Research & Dev. Co., Ltd. Optical lens system for vehicle lighting applications

Similar Documents

Publication Publication Date Title
JP2601766Y2 (en) Surface emitting device
KR100863865B1 (en) Area light source and lightguide used therefor
JP5719104B2 (en) Light flux controlling member, light emitting device, surface light source device, and display device
US7011442B2 (en) Planar light source
TW200419257A (en) Surface light source device
KR101058298B1 (en) Light guide plate and backlight
JPH08152625A (en) Lighting device
JPH0736035A (en) Surface light emitter
JP2009164101A (en) Backlight
KR101107828B1 (en) Optical deflector element and light source device
JP4172008B2 (en) Surface light source device
JPH08327807A (en) Surface light source device
JP4119633B2 (en) Surface light source device and light guide used therefor
JP2008218418A (en) Surface light source and light guide used for same
JP4485026B2 (en) Light guiding unit
WO1995006889A1 (en) Surface light emitting device
JP2000067624A (en) Surface light source device
TWI407162B (en) Light guide plate and backlight module
EP2116892B1 (en) Display device having high brightness uniformity at positions close to light source
JP2005135815A (en) Planar light source device and display device using the same
JP2005285389A (en) Lighting device and display device using the same
JP4761422B2 (en) Surface light source device and light guide used therefor
JP2004127745A (en) Surface light source device
JP2009164100A (en) Backlight
KR20100009827A (en) Light guide panel using polygon prism diffusing structures for lcd back light unit and lcd backlight unit thereby

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US