Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberWO1992001433 A1
Publication typeApplication
Application numberPCT/US1991/005271
Publication date6 Feb 1992
Filing date24 Jul 1991
Priority date24 Jul 1990
Also published asCA2088070A1, CA2088070C, DE69130567D1, DE69130567T2, EP0540682A1, EP0540682A4, EP0540682B1, US5374261, US5392787, US5407423, US5439457, US5484426, US5514085, US5599292, US5700239, US5733252, US6277089, US6602218, US20010025155
Publication numberPCT/1991/5271, PCT/US/1991/005271, PCT/US/1991/05271, PCT/US/91/005271, PCT/US/91/05271, PCT/US1991/005271, PCT/US1991/05271, PCT/US1991005271, PCT/US199105271, PCT/US91/005271, PCT/US91/05271, PCT/US91005271, PCT/US9105271, WO 1992/001433 A1, WO 1992001433 A1, WO 1992001433A1, WO 9201433 A1, WO 9201433A1, WO-A1-1992001433, WO-A1-9201433, WO1992/001433A1, WO1992001433 A1, WO1992001433A1, WO9201433 A1, WO9201433A1
InventorsInbae Yoon
ApplicantInbae Yoon
Export CitationBiBTeX, EndNote, RefMan
External Links: Patentscope, Espacenet
Multifunctional devices for endoscopic surgical procedures
WO 1992001433 A1
Abstract
A multifunctional device (16) for use in an endoscopically performed operative procedure of the type where a narrow portal is established through the skin to provide access to an operative site and the multifunctional device (16) is introduced to the operative site through the narrow portal. The multifunctional device is formed of an absorbent material (18), preferably expandable, having a substantially rigid dry state prior to introduction to the operative site and a soft, flexible wet state after absorbing fluids. The absorbent material can be formed with a spine (20) therein of either a continuous or a discontinuous, segmented construction, and the spine can be branched and tubular or solid. The absorbent material can have portions or segments thereof expandable to different sizes to produce rounded protuberances to facilitate manipulation at the operative site and can have predetermined, non-straight configurations in the wet state.
Claims  (OCR text may contain errors)
What Is Claimed Is: 1. A device for use in an endoscopically performed operative procedure of the type where a narrow portal is established through the skin to provide access to an operative site and the device is introduced to the operative site through the narrow portal, said device comprising a length of absorbent material having portions thereof expandable to different sizes when body fluids are absorbed thereby.
2. A device as recited in claim 1 wherein said absorbent material has a dry state prior to introduction to the operative site and a wet state after absorbing body fluids, said absorbent material having a substantially straight configuration and being relatively rigid in said dry state and said absorbent material being soft in said wet state.
3. A device as recited in claim 2 wherein said portions of said absorbent material include a plurality of first segments expandable to a first size and a plurality of second segments expandable to a second size greater than said first size, said first and second segments being arranged in alternating sequence.
4. A device as recited in claim 3 wherein said first segments have spine segments therein having shapes to control the configuration of said device in said wet state.
5. A device as recited in claim 3 wherein said absorbent material includes spine means extending therethrough.
6. A device as recited in claim 5 wherein said spine means is tubular.
7. A device as recited in claim 5 wherein said spine means controls the configuration of said device in said wet state.
8. A device as recited in claim 3 wherein said second segments have rod-like configurations in said dry state, and spherical configurations in said wet state.
9. A device as recited in claim 2 wherein said portions of said absorbent material include first segments forming connecting means and second segments connected by said first segments and forming protuberances in said wet state extending beyond said first segments.
10. A device for use in an endoscopically performed operative procedure of the type where a narrow portal is established through the skin to provide access to the operative site and the device is introduced to the operative site through the narrow portal, said device comprising a length of absorbent material and an elongate spine extending along said absorbent material at least some portions of which have a normal non- straight configuration, said spine having a substantially straight configuration when said absorbent material is in a dry state and having a non-straight configuration when said absorbent material is in a wet state after absorbing body fluids.
11. A device as recited in claim 10 wherein said spine is tubular and includes holes therein for passage of fluids.
12. A device as recited in claim 11 and further comprising tubular connector means having a distal end communicating with said tubular spine and a proximal end for positioning externally of the body, and valve means disposed at said proximal end for controlling fluid flow through said spine and said connector means.
13. A device as recited in claim 10 wherein said spine includes a trunk and branches extending from said trunk.
14. A device as recited in claim 10 wherein said spine includes a continuous member having a normal non-straight configuration, said continuous member having a substantially straight configuration in said dry state and said continuous member returning to said normal, non-straight configuration in said wet state.
15. A device as recited in claim 10 wherein said spine is formed of spaced segments to be discontinuous.
16. A device for packing an internal operative site comprising a length of absorbent material having a relatively uniform profile when in a dry state and at least one rounded protuberance when in a wet state after absorbing body fluids.
17. A device as recited in claim 16 including a plurality of rounded protuberances in said wet state.
18. A device as recited in claim 17 wherein said absorbent material is relatively rigid in a dry state and expands in said wet state.
19. A device as recited in claim 18 wherein said absorbent material has a substantially straight configuration in said dry state and a predetermined non-straight configuration in said wet state.
20. A device for use in an endoscopically performed operative procedure of the type where a narrow portal is established through the skin to provide access to an operative site and the device is introduced to the operative site through the narrow portal, said device comprising sponge means having a relatively rigid, substantially straight configuration in a dry state to facilitate introduction through the portal and having a soft, curved configuration in a wet state after absorbing body fluids, said curved configuration defining recess means for supporting tissue in a cupping manner.
21. A device as recited in claim 20 and further comprising tubular spine means extending longitudinally through said sponge means for passing fluids therethrough.
22. A device as recited in claim 21 wherein said sponge means includes first and second wings disposed on opposite sides of said spine means, said first and second wings being rolled up in said dry state and being unrolled to extend in curved opposite directions from said spine means in said wet state.
23. A device as recited in claim 22 wherein said first and second wings are rolled up to be positioned in longitudinal abutting relation in said dry state.
24. A device as recited in claim 22 wherein said first wing is rolled up in a first direction and said second wing is rolled up in a second direction around said rolled up first wing.
25. A device for use in an endoscopically performed operative procedure of the type where a narrow portal is established through the skin to provide access to an operative site and the device is introduced to the operative site through the narrow portal, said device comprising sponge means having a substantially straight configuration in a compressed dry state, said sponge means assuming a predetermined non-straight configuration in a wet state after absorbing fluids and expanding.
26. A device as recited in claim 25 wherein said sponge means has a coiled configuration in said wet state.
27. A device as recited in claim 25 wherein said sponge means has a serpentine configuration in said wet state.
28. A device as recited in claim 25 wherein said sponge means has a spiral configuration in said wet state.
29. A device as recited in claim 25 wherein said sponge means has a configuration defining a lumen therethrough in said wet state.
30. A device as recited in claim 25 wherein said sponge means has a configuration defining a pair of adjacent lumens therethrough in said wet state.
31. A device as recited in claim 25 and further comprising tubular spine means disposed in said sponge means for flow of liquids therethrough and tubular connector means communicating with said spine means for extending through the portal to terminate at a proximal end external of the body.
32. A device for use in an endoscopically performed operative procedure of the type where a narrow portal is established through the skin to provide access to an operative site and the device is introduced to the operative site through the narrow portal, said device including sponge means for encircling tissue as said sponge means absorbs fluids at the operative site.
33. A multifunctional device for use in an endoscopically performed operative procedure of the type where a narrow portal is established through the skin to provide access to an operative site and the device is introduced to the operate site through the narrow portal, said multifunctional device including sponge means for absorbing body fluids at the operative site and passage means extending therethrough for receiving a probe for treating tissue.
34. A multifunctional device as recited in claim 33 wherein said passage means includes a tubular member made of electrically conductive material and further comprising a plurality of electrically conductive branches extending from said tubular member and terminating at tips on the peripheral surface of said sponge means whereby said passage means is adapted to receive an electrosurgical probe to provide coagulation at said tips.
35. A multifunctional device as recited in claim 34 wherein said sponge means has a configuration in a wet state mating with the configuration of a body cavity to be treated.
36. A multifunctional device as recited in claim 33 and further comprising energy transmitting probe means for positioning in said passage means.
37. A multifunctional device as recited in claim 35 wherein said probe means includes a laser instrument.
38. A multifunctional device as recited in claim 35 wherein said probe means includes an electrosurgical instrument.
39. A multifunctional device as recited in claim 33 and further comprising a biopsy instrument for positioning in said passage means.
40. A device for use in an endoscopically performed operative procedure of the type where a narrow portal is established through the skin to provide access to an operative site and the device is introduced to the operative site through the narrow portal, said device comprising elongate sponge means having a configuration in a compressed dry state to pass through the portal and an expanded configuration in a wet state after absorbing body fluids, and spine means disposed in said sponge means including a trunk extending longitudinally through said sponge means and a plurality of branches extending from said trunk, said branches being positioned in substantial alignment with said trunk when said sponge means is in said dry state and said branches moving outwardly from said trunk when said sponge means is in said wet state.
41. A device as recited in claim 40 wherein said branches are connected with said trunk along the length of said trunk.
42. A device as recited in claim 40 wherein said branches are connected with a distal end of said trunk.
43. A multifunctional device for use in an endoscopically performed operative procedure of the type where a narrow portal is established through the skin to provide access to an operative site and the device is introduced to the operative site through the narrow portal, said device comprising sponge means having a configuration in a dry state to pass through the portal and a configuration in a wet state for engaging tissue at the operative site, and manipulator means having a distal end fixed to said sponge means and extending through the portal to a proximal end external of the body, said manipulator means moving said sponge means in the body and cooperating with equipment external of the body to fix the position of said sponge means in the body.
44. A multifunctional device as recited in claim 43 wherein said manipulator means includes a rigid member fixed to said sponge means.
45. A multifunctional device as recited in claim 43 wherein said manipulator means includes a flexible member fixed to said sponge means.
46. A multifunctional device as recited in claim 45 wherein said manipulator means includes a member attached to said proximal end to fix the position of said sponge means.
47. A multifunctional device as recited in claim 43 wherein said manipulator means is bendable to fix the position of said sponge means.
48. A multifunctional device as recited in claim 43 wherein said manipulator means is tubular and further comprising tubular spine means disposed in said sponge means and a tubular connector communicating with said spine means and passing through said manipulator means.
49. A device for use in an endoscopically performed operative procedure of the type where a narrow portal is established through the skin to provide access to an operative site and the device is introduced to the operative site through the narrow portal, said device comprising expandable sponge means, an elastic membrane surrounding said sponge means, and tubular means communicating with said sponge means for supplying fluid to said sponge means to expand said sponge means and said elastic membrane when said device has been positioned at the operative site.
50. A device for packing an internal operative site for an endoscopically performed operative procedure of the type where a narrow portal is established through the skin to provide access to the operative site, said packing device comprising an elongate strip of absorbent material having a rigid dry state prior to use and a soft, flexible wet state when body fluids are absorbed by said strip of material, said strip of material having a lateral cross sectional size in said dry state to permit passage of said strip of material through the narrow portal and having a length to permit positioning of said strip of material at the operative site.
51. A packing device as recited in claim 50 wherein said strip of material has a rod-like configuration in said dry state.
52. A packing device as recited in claim 50 wherein said strip of material expands when body fluids are absorbed thereby.
53. A packing device as recited in claim 52 and further comprising a string attached at one end to said strip of material and carrying at an opposite end indicia means for identifying said packing device.
54. A packing device as recited in claim 52 in combination with a trocar sleeve, said strip of material being disposed in said sleeve and having a length greater than the length of said sleeve.
55. A packing device as recited in claim 50 further comprising a string attached to a proximal end of said strip of material.
56. A packing device as recited in claim 50 and further comprising a string passing centrally through said strip of material and extending from a proximal end thereof.
57. A packing device as recited in claim 56 wherein said string is hollow and the portion of said string passing through said strip of material forms a core-like support having perforations therein to collect and drain body fluids.
58. A packing device as recited in claim 50 and further comprising drainage means coupled with said strip of material fo collecting body fluids and draining the collected fluids from th body.
59. A packing device as recited in claim 50 and further comprising a support attached to said strip of material having a normal, non-straight configuration, said support having a relatively straight configuration when said strip of material is in said dry state and returning to said non-straight configuration when said strip of material is in said wet state.
60. A packing device as recited in claim 59 wherein said support has spring-like properties.
61. A packing device as recited in claim 59 wherein said support has shape memory.
62. A packing device as recited in claim 50 and further comprising means for constraining said strip of material to assume a predetermined configuration in said wet state.
Description  (OCR text may contain errors)

PATENT APPLICATION

Title : MULTIFUNCTIONAL DEVICES FOR ENDOSCOPIC SURGICAL PROCEDURES

The present application is a continuation-in-part of pending application SN 07/556,081 filed July 24, 1990 and the disclosure thereof is incorporated herein by reference.

BACKGROUND OF THE INVENTION

Field of the Invention: The present invention pertains to multifunctional devices for use at an operative site for increased visualization of the operative field, manipulation of tissue, exposure and isolation of tissue, absorbtion of body fluids and/or treatment of tissue, and, more particularly, to such devices for use in endoscopically performed operative procedures and methods therefor.

Discussion of the Prior Art: Endoscopically performed operative procedures are preferred for surgery on the human body due to their least invasive nature and reduced trauma and tissue damage as compared with open surgery. There are many common endoscopically performed operative procedures including, for example, laparoscopy (pelviscopy) , gastroentroscopy, laryngobronchoscopy thoracoscopy, arthroscopy and the like. While endoscopically performed operative procedures are preferred, there are obstacles to expanding endoscopy to include the various procedures currently performed with open surgery. One of the obstacles is that packing of the internal operative site has not been able to be accomplished in the past due to the fact that access to the operative site is available only through a narrow portal normally including a cylindrical sleeve positioned by means of a puncturing instrument. Without packing, endoscopic procedures are much more difficult and dangerous to perform, even with the use of insufflation and instruments particularly useful in endoscopy, such as laser and electrosurgical instruments, since the tissue or organ structure cannot be adequately exposed and manipulated, the surrounding tissue and organ structure is not protected during the procedure and body fluids cannot be removed from the operative site without the use of expensive and cumbersome suction equipment. Effective exposure of diagnostic and surgical sites is vitally important in order to carry out successful procedures. Many presently performed endoscopic procedures are implemented with the use of electrosurgical or laser instruments for coagulation and cutting which presents the opportunity for accidental contact or scarring of tissue not intended to be treated if the operative site is not adequately packed to expose and isolate the tissue to be treated and if vision is impaired by blood or other body fluids. Accordingly, while laser and electrosurgical probes can be introduced through narrow portals to permit various types of procedures to be performed endoscopically, great care is required to assure that adjacent tissue is not inadvertently damaged thus resulting in increased time to complete the surgery. In most endoscopic procedures, there is very little space in which to maneuver instruments; and, in many cases, tissue surrounding the operative site must be retracted or repositioned to facilitate the procedure. During open surgery, sponges or other absorbent materials are used to isolate and expose the operative site, and clear vision can be achieved by absorbing or aspirating body fluids, such as blood or the like, due to the large access area to the operative site. For closed or endoscopic surgery, however, access to the operative site is limited, and facilitating procedures cannot be achieved, such as, for example, cleaning and wiping of the tissue during coagulation and cutting, manipulation of the tissue during coagulation and cutting, lysis of adhesion, and irrigation and/or aspiration for cases where cystic fluid has been released. Preferably, electric or laser coagulation and cutting is performed with simultaneous manipulation of tissue, cleaning and wiping of tissue, irrigation and/or aspiration, and biopsy and culture procedures; however, these functions could not be provided during endoscopic procedures in the past. Where coagulation of large surfaces is required, such as cystic cavity coagulation or endometrial ablation, endoscopic procedures have the disadvantages of requiring substantial time and increasing the chance for accidental scarring or contact. There is a great need to expand the types of procedures that can be endoscopically performed in order to decrease trauma and recovery time for patients while simultaneously reducing medical costs. Accordingly, much effort has been expended in the development of endoscopic instruments for specific procedures; however, to date, no adequate system has been devised to permit adequate exposure during endoscopically performed operative 1 procedures. The use of gas and liquid insufflation is presently

2 the only option available to expose diagnostic and surgical sites

3 but is not adequate for many procedures and has disadvantages due . 4 to the high pressure in the body which can cause pulmonary

5 problems, such as asymptomatic diaphragmatic hernias.

_

6 SUMMARY OF THE INVENTION

7 Accordingly, it is a primary object of the present invention

8 to provide multifunctional devices for use in endoscopically

9 performed operative procedures to expand the types of procedures

10 that can be performed endoscopically while increasing patient

11 safety and exposure of operative sites in endoscopic procedures

12 presently being performed.

13 Another object of the present invention is to overcome the

14 above mentioned disadvantages in endoscopic procedures utilizing

15 electric or laser coagulation and cutting by providing the

16 availability of simultaneous tissue manipulation, cleaning and

17 wiping of tissue, irrigation and/or aspiration and vision

18 enhancement.

19 A further object of the present invention is to increase

20 visualization of operative fields or sites and to expose and

21 isolate operative sites with the use of packing devices having

22 shapes and configurations facilitating positioning of the devices

23 in the body and use with specific organ structures and procedures.

24 Another object of the present invention is to provide a

25 sponge-like, fluid absorbing device having a substantially rigid

26 dry state allowing passage through a narrow endoscopic portal, such as a trocar sleeve, a cannula, an endoscope operating channel or the like, and permitting tissue manipulation and precise positioning at an internal operative site to expose tissue and organ structures to be treated, absorb body fluids and protect adjacent tissue and organ structures. A further object of the present invention is to pack an internal operative site through a narrow endoscopic portal, that is a narrow portal for performing procedures with visualization through an endoscope, using a length of absorbent material having a rigid, dry state prior to use and a soft flexible, wet state when exposed to body fluids. Yet an additional object of the present invention is to endoscopically pack an internal operative site using a length of absorbent material having a relatively straight configuration in a dry state and assuming a non-straight configuration in a wet state to allow the material to have a predetermined configuration when positioned at the operative site to absorb body fluids. The present invention is generally characterized in a multifunctional device for use in an endoscopically performed operative procedure of the type where a narrow portal is established through the skin to provide access to an operative site and the multifunctional device is introduced to the operative site through the narrow portal. The multifunctional device is formed of an absorbent material, preferably expandable, having a substantially rigid dry state prior to introduction to the operative site and a soft, flexible wet state after absorbing fluids. The absorbent material can be formed with a spine therein of either a continuous or a discontinuous, segmented construction, and the spine can be branched and tubular or solid. The absorbent material can have portions or segments thereof expandable to different sizes to produce rounded protuberances to facilitate manipulation at the operative site and can have predetermined, non- straight configurations in the wet state, the predetermined configurations being controlled by the spine in the absorbent material or the method of forming the absorbent material. The multifunctional device can have a passage therethrough to accommodate laser, electrosurgical, biopsy or culturing instruments. Some of the advantages of the present invention over the prior art are that precise packing at an internal operative site is accomplished via a narrow portal thereby expanding the types of procedures that can be performed endoscopically and, further, increasing safety and efficacy in endoscopic procedures in general, that use of the devices provides improved exposure of the operative site, protects surrounding organ structure, allows cultures to be taken, allows irrigation and/or aspiration or drainage with a cleansing effect to minimize the opportunity for inadvertent or catastrophic complications, that the devices are sufficiently rigid or stiff in a dry state to allow precise placement thereof as well as manipulation of tissue, that the devices facilitate removal of infected fluids, such as pus, and abnormal fluids, such as cystic fluids, that the packing devices serve as a culturing medium to identify specific infected organisms or specific malignant cells, that the devices can be used to apply medicaments to tissue and can contain specific medications for specific purposes, such as antiseptics, antibiotics, chemotherapeutic agents or anti-adhesive agents or radiopaque materials for identification or location purposes, and that, when a plurality of packing devices are used in an endoscopic procedure, each packing device is individually identified externally to confirm the number of packing devices and the location of each packing device. Other objects and advantages of the present invention will become apparent from the following description of the preferred embodiments taken in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a top plan view of a multifunctional device in combination with a trocar sleeve in accordance with the present invention. Fig. 2 is a broken top plan view of the multifunctional device of Fig. 1 in a dry state. Fig. 3 is a broken top plan view of the multifunctional device of Fig. 2 in an expanded, wet state. Fig. 4 is a broken view of a multifunctional device according to the present invention having a hook-shape in an expanded state. Figs. 5 and 7 are perspective and sectional views, respectively, illustrating the forming of the multifunctional 1 device shown in Fig. 4 to have a compressed rigid dry state as

2 illustrated in Fig. 6.

3 Fig. 8 is a perspective view of a multifunctional device . 4 according to the present invention having a trough-like

5 configuration.

6 Fig. 9 and 10 are end views of the multifunctional device of

7 Fig. 8 illustrating the formation of the configuration in the dry

8 state.

9 Fig. 11 is a broken view of a multifunctional device according

10 to the present invention in a dry state.

11 Fig. 12 is a perspective view of the multifunctional device of

12 Fig. 11 in a wet state.

13 Fig. 13 is a plan view of a branched tubular spine for use in

14 a multifunctional device according to the present invention.

15 Fig. 14 is a broken sectional view of a multifunctional device

16 according to the present invention having a tubular spine with

17 branches and adapted to receive an electrosurgical or laser probe.

18 Fig. 15 is a plan view of a spine having branches extending

19 therefrom in a particular configuration to conform to an anatomical 20 cavity or surface.

21 Fig. 16 is a top plan view of a multifunctional device

22 according to the present invention having a serpentine

23 configuration in the wet state.

24 Fig. 17 is a perspective view of a multifunctional device ,25 according to the present invention having a coiled configuration. Fig. 18 is a perspective view of a multifunctional device according to the present invention having a helical configuration. Fig. 19 is a top plan view of a multifunctional device according to the present invention having a circular configuration to produce a lumen therein. Fig. 20 is a top plan view of a multifunctional device according to the present invention having a figure "8" configuration to form a pair of lumens therein. Fig. 21 is a top plan view of a multifunctional device according to the present invention having a spiral configuration. Fig. 22 is a perspective view of a multifunctional device according to the present invention having a square configuration in cross-section. Fig. 23 is a perspective view of a multifunctional device according to the present invention having a spoon-like configuration. Fig. 24 is a top plan view of a spine for a multifunctional device according to the present invention having a plurality of branches extending from the distal end thereof. Figs. 25, 26 and 27 are perspective views of the spine configuration of Fig. 24 for producing linear, curved and circular configurations, respectively. Fig. 28 is a perspective view of a tag for use with the multifunctional device according to the present invention. Fig. 29 is a broken top plan view of a multifunctional device according to the present invention having a spine with closed loop segments. Fig. 30 is a broken top plan view of the multifunctional device of Fig. 29 in a wet state. Fig. 31 is a sectional view of a multifunctional device according to the present invention covered by an elastic membrane. Fig. 32 is a sectional view of the multifunctional device of Fig. 31 in a wet state. Fig. 33 is a top plan view of a multifunctional device according to the present invention in a trocar sleeve with a bendable manipulator. Figs. 34 and 35 are broken views, partly in section, illustrating use of the multifunctional devices of the present invention. Fig. 36 is a broken view, partly in section, of a multifunctional device according to the present invention utilized with a biopsy instrument.

DESCRIPTION OF THE PREFERRED EMBODIMENTS A multifunctional device in combination with a trocar sleeve in accordance with the present invention is shown in Fig. 1. The trocar sleeve 10 terminates at its proximal end at a hub 12 having a valve 14 therein forming a passage that can be opened to permit instruments to pass through sleeve 10. The trocar sleeve, hub and valve form a conventional trocar assembly commonly used in laparoscopy wherein a trocar, not shown, passes through sleeve 10 and is used to puncture a pneumoperitoneum and is thereafter withdrawn leaving the sleeve in place to form a portal to gain access to an internal operative site. The term "operative site" as used herein refers to any diagnostic, surgical or treatment site or field in the body. The multifunctional device 16 of the present invention can be used with any type of narrow portal providing access to an internal operative site, with or without a sleeve, a cannula or the operating channel of an endoscope; and, the trocar sleeve 10 is exemplary only. The terms "endoscopic portal" and "narrow portal" as used herein mean any small opening providing access to internal operative sites regardless of whether the opening is formed as a structural channel, such as a sleeve, a cannula or the operating channel of an endoscope, or a narrow incisional or natural entry opening. The multifunctional device 16 is formed of an elongate length of absorbent, preferably expandable, material 18 having a rod-like, substantially straight configuration in a dry state, as shown in Fig. 2, and a tubular spine 20 is disposed in the material. The material 18 can be any type of medical grade absorbent material that can absorb body fluids and, preferably, expand substantially from its size in a dry state, the expansion being dependent upon the procedure being performed and the size of the endoscopic portal. The material is relatively rigid or stiff in the dry state to allow introduction to the operative site through the portal and its use to manipulate tissue prior to absorption of body fluids; however, some flexibility may be desired dependent upon the configuration of the endoscopic portal and the procedure to be performed. While an expandable material is preferred to facilitate packing and tissue exposure, if desired, the absorbent material can be non-expandable as long as the material becomes soft and pliant in the wet state after absorption of body fluids. That is, the material should have the characteristics, when wet, of being soft enough to bend freely and repeatedly without breaking and of being malleable and flexible. Sponge materials have been found to be the most effective for the device. Examples of materials 18 include compressed cellulose sponge, natural sponge, synthetic sponge made of a reaction product of polyvinyl alcohol and formaldehyde, hydrophilic cross-linked polyurethane foam as disclosed in U.S. Patents No. 3,369,544 to Crockford, No. 3,903,232 to Wood et al, No. 4,098,728 to Rosenblatt and No. 4,553,966 to Korteweg, and compacted gauze or cotton. In the dry state, the multifunctional device must be sufficiently rigid to allow the device to be manipulated in a fashion to be positioned adjacent an operative site to expose and isolate tissue or organ structure to be visualized and/or treated, the rigid nature of the device 16 also allowing the device to be used to contact and move or position tissue and organ structures to facilitate the procedure to be endoscopically performed. In the dry state, the device is essentially a sponge stick. The length and width or lateral size of the device will depend upon the procedure to be endoscopically performed; and, as shown in Fig. 1, the device has a length longer than the length of the trocar sleeve and hub. The construction of the device 16 is dependent upon the type of absorbent material employed and the procedure to be performed including the force required to remove the device after the procedure is completed. To this end, the spine 20 can pass centrally through the material 18, as shown, to form a core-like support attached to the material along the length thereof or can extend through or along material 18 at any position, or the material can have no spine. A connector 22 is fixed to the proximal end of material 18 and has sufficient tensile strength to prevent breakage when the device is pulled from the body by grasping the connector or a tag 24 fixed to the end of the connector. The connector can be flexible, rigid and/or bendable, as will be explained hereinafter, and the spine and connector can be integrally made of one-piece and be hollow or solid. When the spine passes through the material, it can be radiopaque to enhance visualization thereof, and the material 18 can also be radiopaque and can have medicaments therein. The tag 24 can also be radiopaque and, preferably, carries indicia for identifying each device, the indicia taking the form of different colors and/or alpha-numeric labeling. As shown in Fig. 28, the tag 24 can have an adhesive coating 23 covered by removable release paper 25 to permit the tag to be secured to equipment external of the body. The device 16 is shown in Fig. 3 after contact with body fluids which are absorbed by material 18 to cause the material to expand and become soft and flexible to facilitate use of the swollen device to pack the operative site. The spine 20 and connector 22, as shown, are made integrally as one piece and are tubular, and spine 20 has lateral holes 26 therein and an open distal end 27. Adjacent tag 24 is a valve or stop cock 28 communicating with connector 22 and having a coupling 30 adapted to communicate with a source of suction or with a source of irrigating fluid for supply to the operative site. The holes or perforations 26 allow selective or continuous drainage of body fluids through spine 20 and connector 22 when the device is wet. Additionally, medicaments or other therapeutic substances can be introduced to the operative site via connector 22, spine 20 and material 18. The spine 20, whether tubular or solid, can be formed of any suitable material such as string, plastic or metal. In accordance with a particularly advantageous embodiment of the present invention, spine 20 has resilient, spring-like properties and has a normal, non-straight configuration designed for a particular operative procedure. For example, spine 20 can have various simple or complex curved or partially straight shapes in the normal state. To this end, the spine can be made of spring metal to have a predetermined non-straight, normal configuration; and, when the device is manufactured, the spine is straightened and the absorbent material 18 is attached to the spine, for example with adhesive, such that the dry, stiff condition of material 18 maintains the spine in a substantially straight configuration. Accordingly, the device 16 can be inserted in a straight or linear path through the portal; and, once the device is in the body, material 18 will absorb body fluids to become soft and allow the spine to return to its normal configuration producing a predetermined configuration for use in specific procedures. The shape memory of packing device can be accomplished in other suitable manners, some of which are described hereinafter, and spine 20 can be disposed within material 18 or externally along an outer edge of material 18. Another manner in which device 16 can be manufactured to have shape memory to assume a predetermined configuration when in a wet state is shown in Figs. 4, 5, 6 and 7. The sponge is initially molded or cut from a cured sheet of sponge material to have a hook- like, distal end configuration 32 as shown in Fig. 4 with a relatively stable shape, and the soft cured sponge is placed in-a substantially straight recess 34 in a two-part fixture 36. The sponge 18 is dried by heating and via fluid withdrawn through manifold 38; and, as the sponge shrinks, a bladder 40 is forced against the sponge 18 to maintain a substantially straight configuration. The dried sponge will, thus, have the shape shown in Fig. 6 and will retain this rod or stick-like shape in the dry state. In use, when the device is introduced into the body via a portal, the sponge 18 will absorb body fluids and, when wet, will return to the expanded hook-like shape shown in Fig. 4. A multifunctional device 41 having a trough-like configuration is illustrated in Fig. 8, the device having a tapered proximal end 42 and a tubular spine 44 running centrally therethrough with lateral and end holes therein as described above with respect to spine 20. The configuration illustrated in Fig. 8 is assumed once the device 41 has been introduced into the body at the operative site, and the configuration of device 41 makes it particularly useful in supporting tubular organ structures in the trough-like recess. In order for the device 41 to have a configuration in a dry state to be introduced through a narrow portal, the portions or wings 46 and 48 on opposite sides of spine 44 can be rolled up to produce longitudinally abutting spiral configurations as illustrated in Fig. 9 where the wings 46 and 48 are shown in their wet or expanded state in phantom. Another manner in which the device 41 can be configured in its dry state is to roll up wing 46 initially as illustrated at (1) in Fig. 10, and thereafter, wind wing 48 around rolled up wing 46 as illustrated at (2) . In use, the multifunctional device 41 in the dry state configuration of either Figs. 9 or 10 is introduced through the portal to the operative site; and, once the sponge material of the device absorbs body fluids, the wings 46 and 48 will unroll or unwind to produce the configuration illustrated in Fig. 8 thereby allowing the device 41 to be rigid and manipulate organ structure while the device is being properly positioned and thereafter to unfurl to provide an enveloping packing for the organ structure. By predetermining the size and curvature of the multifunctional device 41, the configuration of the device can be particularly designed to cup a tubular organ structure in the body, such as a bowel, an appendix or a fallopian tube. The device 41 is shown in Fig. 8 using a non- expanding material 18; however, an expanding material can be used if desired. Another multifunctional device 50 according to the present invention is illustrated in Fig. 11 in its dry state and is formed of a sponge material 52 with a solid spine 54 extending therethrough and continuing from the proximal end to form a connector 56 terminating at a spherical end member 58. The spine and connector can be flexible or semi-flexible or bendable such that positioning of connector 56 either with a bend or by securing end member 58 to equipment external of the body allows positioning of the multifunctional device 50 to be fixed. The sponge material 52 is formed of alternating segments 60 and 62 with segments 60 having a cell or pore density substantially greater than the cell or pore density of segments 62. In this manner, when the device 50 is in the wet state after introduction into the body as illustrated in Fig. 12, the device 50 will have a plurality of protuberant segments to facilitate handling within the body and proper positioning of the device 50 at the operative site. By gradually varying the density of the cells or pores within segments 60, spherical protuberances 60' can be formed in the wet state with the protuberances 60' interconnected by smaller rod-like segments 62' corresponding to segment 62 shown in Fig. 11, segments 62 not expanding to the same size as segments 60 due to the reduced cell or pore density thereof. If it is desired for the multifunctional device 50 to have a general overall configuration, such as circular or hook-shaped, the spine 54 can be a continuous member provided with such configuration in its normal state or, curved spine segments can be disposed at spaced positions in the sponge material only at particular areas, such as in the lower density segments 62, to provide a discontinuous spine. In this manner, the protuberances 60' formed in the wet state will have no spine therein while the connecting segments 62 ' will have a spine segment therein controlling the overall configuration of the device 50 in the wet state. A circular shape for the overall configuration of the multifunctional device is particularly advantageous for use in surrounding tissue to be treated, such as, for example, the ovary, the fallopian tube or the appendix. A modification of a spine for use in the multifunctional devices according to the present invention is illustrated in Fig. 13 wherein the spine 64 is formed of a tubular trunk 66 with tubular branches 68 extending therefrom at an acute angle to the distal direction with the branches being flexibly or movably mounted to allow the branches to be compressed to be in substantial alignmentwith the trunk, as indicated in phantom, when the multifunctional device is in a dry state and the sponge material, not shown, is compressed around the spine and to allow the branches to move outwardly when the device is in the wet state. The branched spine 64 can be either tubular or solid or the branches 68 can be solid with only the trunk 66 tubular. Additionally, the spine can have a normal, non-straight configuration, as discussed above, such that when the device is in a wet state the device will assume a predetermined, non-straight configuration. Additionally, the predetermined configuration can be determined by forming the sponge material in the manner described above with respect to Figs. 4 through 7. A branched spine 70 is illustrated in a multifunctional device 72 according to the present invention in Fig. 14 and includes a tubular electrically conductive trunk 74 with electrically conductive solid branches 76 extending angularly therefrom and terminating at tips at the peripheral surface of sponge material 78 when in the wet state. With the embodiment of Fig. 14, an electrosurgical probe 80 can be passed through the portal and through the tubular trunk 74 such that a unipolar electrosurgical device is produced with multiple electrodes defined at the peripheral surface of the sponge. The multifunctional device 72 can, therefore, be efficiently utilized to coagulate large surface areas such as cystic cavities or the endometrium of the uterus. The sponge material 78 will be formed with a specific configuration to conform to the cavity wall to be cauterized thereby substantially decreasing the time required for endometrial ablation, for example, while also assuring complete tissue contact and ablation. A spine 65 is shown in Fig. 15 having branches 67 extending from a trunk 69 in a particular arrangement for use with a sponge material configured to mate with an anatomical cavity. Figs. 16 through 21 show various multifunctional configurations particularly advantageous for use with specific procedures at the operative site. The multifunctional device 81 1 illustrated in Fig. 16 has a serpentine configuration to produce a

2 zig-zag shape changing gradually from the distal end to the

3 proximal end and is particularly useful for abscess drainage. The - 4 coiled configuration shown in multifunctional device 82 in Fig. 17

5 is self-coiling which allows the device 82 to coil around tissue

6 and lift or otherwise manipulate the tissue to position the tissue

7 in the most advantageous position for treatment. The coiled device

8 82 is particularly useful in procedures requiring packing or

9 manipulation of the ovary, the gall bladder or the appendix, and

10 the soft nature of the sponge material in the wet state produces

11 gentle positioning of the tissue requiring no contact of the tissue

12 with rigid positioning instruments. The increasing diameter coiled

13 spiral configuration of the multifunctional device 84 illustrated

14 in Fig. 18 is particularly advantageous for insertion within an

15 organ, such as the ovary or the fimbrial end, to absorb and/or

16 aspirate body fluid therefrom without leakage into the body cavity.

17 The circular shape of the multifunctional device 86 illustrated in

18 Fig. 19 is particularly advantageous due to the lumen therein for

19 encircling or surrounding tissue such as the ovary, the fallopian

20 tube or the appendix. The double-lumen configuration of the

21 multifunctional device 88 illustrated in Fig. 20 is particularly

22 useful for positioning organ structures adjacent one another to

23 facilitate a procedure. As illustrated, the device 88 has a figure

24 "8" shape in the wet state to define lumens 90 and 92 therethrough ,25 for surrounding the organ structures. For example, lumen 90 can be 26 utilized to surround an ovarian follicle while lumen 92 can surround the fimbrial end to position the fimbrial end and the ovarian follicle side-by-side. The spiral, single plane configuration of multifunctional device 94 illustrated in Fig. 21 produces a pad or mat-like large surface area which can be flat or slightly concave and is particularly useful to hold the ovary and collect body fluid during ovarian fluid aspiration with the bowl- shaped embodiment collecting the fluid to assure complete aspiration. All of the configurations discussed above will have a substantially straight, rod-like configuration in the dry state and the predetermined configurations in the wet state can be produced in any desirable manner for example by utilizing spines having such configurations in their normal shape or by forming the devices in the manner discussed above with respect to Figs. 4 through 7. A multifunctional device 96 is illustrated in Fig. 22 as having a substantially square or rectangular shape in cross-section and is exemplary of various cross-sectional configurations that can be utilized with multifunctional devices according to the present invention when the devices are in the wet state. It is preferred that, in the dry state, the devices have smoothly curved surfaces such as that provided by a cylindrical or rod-like configuration. A multifunctional device 98 is illustrated in Fig. 23 having a spoon-like configuration in that the device 98 has a recessed shape in the wet state with a wide curved mouth 100 tapering to a more narrow proximal portion. A branched spine 104 is disposed within the sponge material 106 and is preferably tubular to facilitate aspiration and/or irrigation due to the primary use of device 98 for cupping and lifting organ structures in a soft manner. When the multifunctional devices are used primarily for tissue manipulation rather than packing, the devices can advantageously include a spine 108 as illustrated in Fig. 24 having a trunk 110 terminating at its distal end at a plurality of angularly extending branches 112. The spine 108 is shown as being entirely tubular; however, it will be appreciated that the spine can have any completely tubular, solid or partly tubular configuration. The arrangement of the branches 112 when the sponge material, not shown, surrounding the spine is in a wet state can have any desired configuration. For example, the branches 112 can be aligned in a straight line as shown in Fig. 25, can be arranged to form a curved or concave alignment as shown in Fig. 26 or can have a circular arrangement as shown in Fig. 27. The fan-shaped arrangement of branches 112 allows the multifunctional devices to be configured as particularly desired to gently engage tissue and organ structure to properly manipulate and position the tissue and organ structure for a particular procedure. In a multifunctional device 114 shown in Fig. 29, the spine is formed of segments of closed loops 116 with the loop compressed when the sponge material is in the dry state. When the device 114 is in the wet state, as illustrated in Fig. 30, the segments 116 return to their normal configuration to define the shape of the protuberances 118 on the device. The loops 116 are shown as being circular in Fig. 30; however, the loops can have any desired closed configuration, such as triangular, rectangular or polygonal. In the multifunctional device 120 illustrated in Figs. 31 and 32 in the dry and wet states, respectively, the sponge material 122 is surrounded by an elastic, stretchable membrane 124, such as silicone rubber, and the spine 126 has a branched configuration with a tubular trunk and tubular branches as previously described with respect to Fig. 13. With the use of the membrane 124, the device 120 can utilize a non-medically accepted sponge material 122, and the expansion of the sponge once introduced into the body through the portal can be achieved by forcing a high viscosity, medical grade, non-toxic fluid, such as 32% dextrose, from a source through the tubular connector and spine to cause the sponge material to expand. Fig. 33 illustrates a multifunctional device 128 according to the present invention particularly designed for manipulating and positioning tissue and organ structures within the body, the device 128 passing through a trocar sleeve 130. The multifunctional device 128 has a hook or half-circle configuration at its distal end formed of a sponge material 132 with a tubular spine therein, not shown. A tubular, substantially rigid manipulator 134 has a distal end fixed to the proximal end of the sponge material 132 and terminates at its proximal end adjacent a stop cock 136. If a spine is utilized in the sponge material 132, it can extend concentrically within manipulator 134 to communicate with the valve cock 136 and a coupling 138. Since the multi-functional device 128 is particularly designed for manipulating tissue, the manipulator 134 is preferably bendable such that, after introduction into the body via a portal, the sponge material 132 can be utilized to engage tissue or organ structure after assuming its wet curved configuration. Once the tissue or organ structure is engaged with the hook-shaped end of the device 128, the manipulator 134 can be retracted through the sleeve 130 to position or retract the engaged tissue or organ structure. Once the tissue or organ structure is precisely positioned, the manipulator 134 is bent as illustrated at 140 in phantom to engage equipment external of the body and prevent the device 128 from moving internally. Accordingly, manipulator 134 provides the functions of moving the distal end of the device as required to engage and position tissue and also holding the distal end of the device and the engaged tissue in a selected position. Use of a multifunctional device 142 in accordance with the present invention is illustrated in Fig. 34 wherein the device has been passed through a sleeve 146 that extends through the skin and muscle of the abdomen 148, and the device 142 is positioned between the gall bladder 150 and the bowel 152. The device 142 will preferably have an elongated, spoon-like configuration in the wet state to cup and support the gall bladder for use in performing a cholecystectomy. Use of multifunctional devices 154 and 156 according to the present invention is illustrated in Fig. 35 to isolate and expose the fallopian tube 158. Device 154 has protuberances 160 and is structured to form a circle to surround and support the fallopian tube 158 which extends through the lumen formed thereby. The device 156 has a spoon-like configuration similar to device 98 shown in Fig. 23 and is utilized to manipulate and position the fallopian tube. The devices 154 and 156 are illustrated passing through separate trocar sleeves 162 and 164, respectively. By forming the multifunctional devices according to the present invention with a tubular spine, the devices are particularly useful for introducing tissue treating probes such as electrosurgical, laser, biopsy and culturing instruments, in that the sponge material protects the probes from inadvertent contact with tissue other than that intended to be treated as well as providing cleaning, wiping and fluid absorbtion functions. The tubular spine is shown with passage of a biopsy needle therethrough in Fig. 36. The biopsy needle has a sharp distal end 166 adjacent a lateral opening 168; and, due to the use of sponge material 170, the device can be positioned immediately adjacent tissue to be sampled. Movement of an inner member 172 against the bias of a spring 174 allows an opening 176 in the inner member to be aligned with lateral opening 168 to permit communication with a squeeze bulb 178 to collect a biopsy specimen. A laser or electrosurgical probe can similarly be passed through the tubular spine 180 to allow protected use thereof. From the above, it should be appreciated that endoscopic procedures performed in accordance with the present invention are substantially improved with the multifunctional devices described above. By combining the various features of the multifunctional 1 devices described above, devices can be designed for specific

2 operative procedures to be performed and to provide specific

3 functions for use with instruments used in the procedure. For ι 4 example, the configurations of the devices in the wet state can be

5 controlled or predetermined, or the devices can remain flexible

6 along the full length thereof. The flexibility or rigidity of the

7 devices in the wet state can be controlled by varying cell or pore

8 density when the sponge material is compressed with rigidity

9 increasing with increasing cell or pore density. In this manner,

10 the rigidity or flexibility of a device can be constant or can vary

11 at portions along the device to facilitate positioning of the

12 device between, around or under tissue. The spine can be rigid or

13 flexible, solid, such as a rod or string, or tubular, continuous

14 or discontinuous (i.e., interrupted or segmented) dependent upon

15 intended use of a device. The use of a tubular spine defines a

16 longitudinal passage through the device to receive various

17 instruments such as electrosurgical and laser probes, endoscopes

18 and aspirating and biopsy needles. The sponge material surrounding

19 the distal portion of the instrument allows simultaneous

20 manipulation of tissue, cleaning and wiping of tissue, and

21 aspiration and/or irrigation at the operative site to increase

22 visualization and facilitate precise positioning and use of the

23 instrument. By providing a conductive path from the tubular trunk

24 to the distal tips of conductive branches extending from the trunk ,25 and positioning the distal tips at the peripheral surface of the 26 sponge, electrosurgical coagulation of large sources, such as in cystic cavities, ovarian cystic cavities, endometrium of uterine cavity or other pathological or non-pathological surfaces, can be accomplished simultaneously with a single device in a safe protected environment. To this end, the sponge and branches are configured to mate with the surface or cavity, and portions of the trunk are insulated to control the flow of electricity. The connector extending from the sponge and through the portal can be tubular or solid and flexible, rigid or bendable dependent upon use for the sponge. When the device is primarily used to manipulate tissue, the connector will normally be rigid and, preferably, bendable to fix the device in a retracted position; and, by using geometrical shapes for the proximal end member, the end member can be secured to equipment to fix the device in a retracted position. The tags on the proximal end can be used for identification and can be adhesively secured to equipment or surgical drapes. The devices can have recesses or cavities in the distal ends or the sides of the sponges, and a conical shape for the sponge can be achieved by gradually varying the cell or pore density of the sponge. Use of the multifunctional devices of the present invention in endoscopic operative procedures, and in many cases in open procedures, allows increased visualization of the operative site, exposure and isolation of the operative site to protect surrounding tissue, manipulation and retraction or positioning of tissue, separation of adhering tissue (lysis of adhesion) , obtaining cultures with a soft material so as not to damage tissue, absorbtion and aspiration of body fluids, and introduction of medicaments such as antiseptics, anticoagulants, antiadhesive agents, antichemotherapeutic agents and culture media for aerobic and anaerobic organisms by impregnating the medicaments in the sponge to leak out during the procedure or delivering the medicaments to the sponge via the tubular spine and connector. Inasmuch as the present invention is subject to many modifications, variations and changes in detail, it is intended that all subject matter discussed above or shown in the illustrative drawings be interpreted as illustrative only and not to be taken in a limiting sense.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US654564 *24 May 189824 Jul 1900Mccleary AsSurgical-dressing packer.
US682090 *13 Dec 19003 Sep 1901John Ellwood LeeSurgical-dressing packer.
US702997 *3 Dec 190024 Jun 1902Wm H Armstrong & CoSurgical dressing-packer.
US1523943 *23 Mar 192320 Jan 1925Fowle Irving HSurgical instrument
US4328804 *15 Nov 197911 May 1982Kazuo ShimataniHygienic tampon and tampon applicator
US4421504 *21 Jul 198220 Dec 1983Kline Larry HLubricating object injector utilizing a single plunger
US4573964 *17 Oct 19834 Mar 1986Kimberly-Clark CorporationOuter tampon tube with recessed finger grip
US5007895 *5 Apr 198916 Apr 1991Burnett George SWound packing instrument
Non-Patent Citations
Reference
1 *See also references of EP0540682A4
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
WO1994013210A1 *17 Nov 199323 Jun 1994Howmedica Inc.Hemostatic plug
WO1994016630A1 *19 Jan 19944 Aug 1994Loma Linda University Medical CenterInflatable endoscopic retractor
WO1996020749A129 Dec 199511 Jul 1996Inbae YoonExpandable multifunctional instruments for creating spaces and obstructed sites endoscopically and methods therefor
WO2001010306A1 *8 Aug 200015 Feb 2001Salviac LimitedAn occluder with anchor
WO2013153343A112 Apr 201317 Oct 2013Laboratoire Tetra MedicalElongated pledget for medical use
WO2016189107A1 *26 May 20161 Dec 2016National University Of Ireland, GalwayA fistula treatment device
EP0713402A1 *12 Aug 199429 May 1996Boston Scientific CorporationTreating wounds caused by medical procedures
EP0713402A4 *12 Aug 199421 May 1997Boston Scient CorpTreating wounds caused by medical procedures
EP0751750A1 *18 Mar 19948 Jan 1997Shu-Tung LiSoft tissue closure systems
EP0751750A4 *18 Mar 199416 Sep 1998Li Shu TungSoft tissue closure systems
EP0805699A1 *29 Dec 199512 Nov 1997YOON, InBaeExpandable multifunctional instruments for creating spaces and obstructed sites endoscopically and methods therefor
EP0805699A4 *29 Dec 199520 Dec 2000Inbae YoonExpandable multifunctional instruments for creating spaces and obstructed sites endoscopically and methods therefor
EP1745752A3 *17 Sep 200118 Apr 2007Cordis Neurovascular, Inc.Foam matrix embolization device
US5362294 *25 Sep 19928 Nov 1994Seitzinger Michael RSling for positioning internal organ during laparoscopic surgery and method of use
US5399161 *17 Dec 199321 Mar 1995Linvatec CorporationEndoscopic kitner
US5449375 *26 Apr 199412 Sep 1995Howmedica Inc.Method of making a hemostatic plug
US5588951 *27 Jan 199531 Dec 1996Loma Linda University Medical CenterInflatable endoscopic retractor with multiple rib-reinforced projections
US63502745 Nov 199626 Feb 2002Regen Biologics, Inc.Soft tissue closure systems
US831350418 Nov 200520 Nov 2012Cordis CorporationFoam matrix embolization device
Classifications
International ClassificationA61B18/14, A61B17/32, A61M29/02, A61B17/22, A61B17/42, A61M29/00, A61F2/958, A61B17/02, A61B17/28, A61B17/34, A61B19/00, A61B17/00, A61B10/00, A61F13/20, A61F2/00, A61F13/38, A61F13/00, A61B1/00, A61B17/12
Cooperative ClassificationA61B90/39, A61B2090/0815, A61B90/00, A61B2090/0816, A61B2090/306, A61B17/3421, A61B17/12099, A61B17/3439, Y10S604/904, A61B17/1214, A61B17/3478, A61M2025/1093, A61M25/1002, A61B17/00234, A61B2017/22062, A61B17/0281, A61B17/0218, A61B17/3498, A61B2017/3492, A61B2017/3486, A61B18/14, A61B2017/00557, A61B17/12022, A61B17/3462, A61B17/42, A61B17/0057, A61M29/02, A61B2017/2927, A61F2002/30092, A61B17/1219, A61B17/4241, A61B2017/320012, A61M25/10, A61F2210/0014, A61B10/0045, A61B2017/3484, A61M25/1011, A61B17/12163, A61B2017/2837
European ClassificationA61B17/12P7C, A61B17/12P7Z3, A61B17/12P7S, A61B17/12P5, A61M25/10D, A61B17/34G4, A61M29/02, A61M25/10, A61B17/02L, A61B17/42M, A61B17/34G4H, A61B17/34H, A61B17/34V, A61B17/00P, A61B17/12P, A61B17/00E, A61B17/02E, A61B19/00
Legal Events
DateCodeEventDescription
6 Feb 1992ALDesignated countries for regional patents
Kind code of ref document: A1
Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE
6 Feb 1992AKDesignated states
Kind code of ref document: A1
Designated state(s): AU CA JP KR
25 Jan 1993ENPEntry into the national phase in:
Ref country code: CA
Ref document number: 2088070
Kind code of ref document: A
Format of ref document f/p: F
25 Jan 1993WWEWipo information: entry into national phase
Ref document number: 2088070
Country of ref document: CA
26 Jan 1993WWEWipo information: entry into national phase
Ref document number: 1991915400
Country of ref document: EP
12 May 1993WWPWipo information: published in national office
Ref document number: 1991915400
Country of ref document: EP
2 Dec 1998WWGWipo information: grant in national office
Ref document number: 1991915400
Country of ref document: EP