Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUSRE46329 E1
Publication typeGrant
Application numberUS 14/667,315
Publication date28 Feb 2017
Filing date24 Mar 2015
Priority date3 Nov 2009
Fee statusPaid
Also published asUS8549552, US20110103595, USRE45786
Publication number14667315, 667315, US RE46329 E1, US RE46329E1, US-E1-RE46329, USRE46329 E1, USRE46329E1
InventorsArun Ramaswamy, Fred Martensen, Robert A. Luff, Kendall Shirilla
Original AssigneeThe Nielsen Company (Us), Llc
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Methods and apparatus to monitor media exposure in vehicles
US RE46329 E1
Abstract
Methods and apparatus to monitor media exposure in vehicles are disclosed. An example implementation includes collecting audience measurement data with a media monitoring device fixed in a vehicle and transmitting the audience measurement data from the media monitoring device to a shuttle located within the vehicle, the shuttle being incapable of collecting audience measurement data independent of the media monitoring device.
Images(13)
Previous page
Next page
Claims(31)
What is claimed is:
1. A method of monitoring media exposure in an automobile, the method comprising:
collecting audience measurement data with a media monitoring device fixed in an automobile, the audience measurement data based on audio received within the automobile by the media monitoring device;
storing the audience measurement data in a memory of the media monitoring device;
detecting the presence of a shuttle located within the automobile, the shuttle being incapable of collecting audience measurement data independent of the media monitoring device;
transmitting the audience measurement data from the media monitoring device to the shuttle;
moving the shuttle from the automobile and into proximity of an audience measurement data aggregator;
transmitting the audience measurement data from the shuttle to the audience measurement data aggregator; and
transmitting the audience measurement data from the audience measurement data aggregator to an audience measurement data collection server.
2. The method as described in claim 1, wherein the media monitoring device collects audio via at least one of a microphone or a line input connection.
3. The method as described in claim 2, wherein the media monitoring device provides audio to an audio system of the automobile.
4. The method as described in claim 1, wherein the media monitoring device is communicatively coupled with a computer system of the automobile.
5. The method as described in claim 4, wherein the audience measurement data includes local computer data from the computer system of the automobile.
6. The method as described in claim 1, wherein the shuttle includes a wireless transmitter and a memory.
7. The method as described in claim 1, further comprising deleting the audience measurement data from the memory of the media monitoring device after the audience measurement data is transmitted to the shuttle.
8. The method as described in claim 1, further comprising determining if a communication link is available to the shuttle.
9. A system to monitor media exposure in an automobile, the system comprising:
a media monitoring device fixed in an automobile to:
collect audience measurement data based on audio presented within the automobile;
store the audience measurement data in a memory of the media monitoring device;
transmit the audience measurement data;
an audience measurement data shuttle to receive the audience measurement data, the shuttle being incapable of collecting audience measurement data independent of the media monitoring device; and
an audience measurement data aggregator to receive the audience measurement data when transmitted by the shuttle, to store the audience measurement data in a tangible memory, and to transmit the audience measurement data to a media monitoring collection server.
10. The system as described in claim 9, wherein the media monitoring device is to receive power from a power system of the automobile.
11. The system as described in claim 9, wherein the media monitoring device is to receive the audio via at least one of a microphone or a line input connector.
12. The system as described in claim 11, wherein the media monitoring device is to transmit audio to an audio system of the automobile.
13. The system as described in claim 9, wherein the media monitoring device is to add first data to the audience measurement data, the first data being derived from a computer system of the automobile.
14. The system as described in claim 9, wherein the shuttle is a key fob.
15. The system as described in claim 9, wherein the transmission between the media monitor and the shuttle is implemented according to the Institute of Electrical and Electronics Engineers 802.15.4 standard.
16. The system as described in claim 9, wherein the transmission between the shuttle and the aggregator is implemented according to the Institute of Electrical and Electronics Engineers 802.15.4 standard.
17. The system as described in claim 9, wherein the aggregator is to receive the audience measurement data from multiple shuttles.
18. The system as described in claim 9, wherein the media monitoring device is communicatively coupled with a computer system of the automobile via an On Board Diagnostics (OBD-II) connector.
19. The system as described in claim 9, wherein the media monitoring device adds first data to the audience measurement data, the first data being derived from a physical selector switch located on the media monitoring device.
20. An apparatus for monitoring media exposure in a vehicle, the apparatus comprising:
a housing with a male 12 volt power connector at a first end of the housing to engage within a 12 volt power outlet of the vehicle;
at least one of a microphone or a line input within the housing;
a printed circuit (PC) board mounted within the housing;
a processor mounted on the PC board, the processor to collect audience measurement data;
a memory within the housing; and
a wireless communicator within the housing structured to detect the presence of a shuttle located within the automobile, the shuttle being incapable of collecting audience measurement data independent of the media monitoring device;
the wireless communicator structured to, when the shuttle is detected, transmit the audience measurement data from the media monitoring device to the shuttle.
21. The apparatus as described in claim 20, further including a physical selector switch within the housing.
22. The apparatus as described in claim 20, further including a power indicator within the housing.
23. The apparatus as described in claim 20, wherein the wireless communicator is a radio transmitter.
24. The apparatus as described in claim 20, further including a button within the housing.
25. An apparatus for monitoring media exposure in a vehicle, the apparatus comprising:
a housing having a male power connector at a first end of the housing to engage within a power outlet of the vehicle;
at least one of a microphone or a line input within the housing;
a processor within the housing;
a memory within the housing; and
a wireless communicator within the housing structured to detect the presence of a shuttle located within the automobile, the shuttle being incapable of collecting audience measurement data independent of the media monitoring device;
the wireless communicator structured to, when the shuttle is detected, transmit the audience measurement data from the media monitoring device to the shuttle.
26. The apparatus as described in claim 25, wherein the power outlet is for one of the following voltages: 5 volts, 12 volts, 20 volts and 120 volts.
27. The apparatus as described in claim 25, further including a physical selector switch within the housing.
28. The apparatus as described in claim 25, further including a power indicator within the housing.
29. The apparatus as described in claim 25, wherein the wireless communicator is a radio transmitter.
30. The apparatus as described in claim 25, further including a printed circuit board within the housing.
31. The apparatus as described in claim 25, further including a button within the housing.
Description

Notice: More than one reissue application has been filed for the reissue of U.S. Pat. No. 8,549,552. The reissue applications are U.S. patent application Ser. Nos. 14/667,315 and 14/260,890. This application is a reissue divisional application of application Ser. No. 14/260,890 filed on Apr. 24, 2014 which is an application for reissue of U.S. Pat. No. 8,549,552 filed on Nov. 3. 2009.

TECHNICAL FIELD

The present disclosure pertains to media monitoring and, more specifically to, methods and apparatus to monitor media exposure in vehicles.

BACKGROUND

Determining size, demographics, and media exposure and/or consumption patterns of a media audience helps media providers to understand their audience and better tailor their media content. Further, accurate media exposure demographics allow advertisers to target media content to audiences of a desired size and/or audiences comprising members having a set of common desired characteristics (e.g., income level, lifestyles, interests, etc.) associated with typical buyers of the advertised product or service.

In order to collect demographics of audiences, an audience measurement company may enlist a number of media utilizing households and/or consumers (e.g., panelists) to cooperate in an audience measurement study for a period of time. The media usage habits of these panelists, as well as demographic data about these panelists, are collected using automated and/or manual collection methods. The collected data is subsequently used to generate informational statistics related to media exposure, including, for example, audience sizes, audience demographics, audience preferences, the total number of hours of media exposed per audience member and/or per region, program ratings, etc.

Traditional audience measurement systems have employed a client/server architecture wherein the client (e.g., a metering device) and server (e.g., a data collection unit to collect data from the metering device) are in different physical locations. For example, in a typical system, the client is located near an audience member being monitored (e.g., attached to or otherwise in proximity to a television, included in a portable device carried by the audience member, etc.). The server is typically located at an off-site location that is away from the client (e.g., a central office of an audience measurement company such as the Nielsen Company, etc.) The client typically collects audience measurement data and transmits the same to the server. The server then analyzes audience measurement data from a number of panelists to identify ratings, trends, etc.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of an example system to monitor media exposure in vehicles.

FIG. 2 is a block diagram of the example media monitoring device of FIG. 1.

FIG. 3 is a block diagram of the example audience measurement data shuttle of FIG. 1.

FIG. 4 is a block diagram of the example audience measurement data aggregator of FIG. 1.

FIG. 5 is a flowchart representative of example machine readable instructions that may be executed to implement the example media monitoring device of FIGS. 1 and 2.

FIG. 6 is a flowchart representative of example machine readable instructions that may be executed to implement the audience measurement data transmission process of the example media monitoring device of FIGS. 1 and 2.

FIG. 7 is a flowchart representative of example machine readable instructions that may be executed to implement a second example audience measurement data transmission process of the example media monitoring device of FIGS. 1 and 2.

FIG. 8 is a flowchart representative of example machine readable instructions that may be executed to implement the audience measurement data reception process of the example audience measurement data shuttle of FIGS. 1 and 3.

FIG. 9 is a flowchart representative of example machine readable instructions that may be executed to implement the audience measurement data transmission process of the example audience measurement data shuttle of FIGS. 1 and 3.

FIG. 10 is a flowchart representative of example machine readable instructions that may be executed to implement the audience measurement data reception process of the example audience measurement data aggregator of FIGS. 1 and 4.

FIG. 11 is a flowchart representative of example machine readable instructions that may be executed to implement the audience measurement data transmission process of the example audience measurement data aggregator of FIGS. 1 and 4.

FIG. 12 is a side, cross-sectional view of the example media monitoring device of FIGS. 1 and 2.

FIG. 13 is a top, cross-sectional view of the example media monitoring device of FIG. 12.

FIG. 14 is a rear, cross-sectional view of the example media monitoring device of FIGS. 12 and 13.

FIG. 15 is a block diagram of an example processor system that may execute, for example, the machine readable instructions of FIGS. 5 through 11 to implement the example media monitoring device of FIGS. 1, 2, and 12 through 14; the example audience measurement data shuttle of FIGS. 1 and 3; and/or the example audience measurement data aggregator of FIGS. 1 and 4.

DETAILED DESCRIPTION

Media monitoring systems may be implemented in different configurations based on their intended use. For example, vehicles typically include a media receiver capable of tuning a plurality of inputs (e.g., AM Radio, FM Radio, satellite radio, CD player, MP3 player, DVD player, etc.) via wired and/or wireless connections. As described herein, an example media monitoring device communicates with the media receiver to extract or generate information about media content presented by the media receiver. The media monitoring device may be implemented by any combination of hardware, firmware, and/or software. Such hardware, firmware, and/or software may be adapted to perform a number of monitoring tasks including, by way of example, not limitation, detecting a channel tuning status of a tuner disposed in the media receiver, extracting program identification codes embedded in or otherwise associated with signals tuned by the media receiver, generating signatures characteristic of signals tuned by the media receiver, etc. Alternatively, the media monitoring device may not communicate with the media receiver of the vehicle. In such an implementation, the media monitoring device wirelessly monitors media presented to the audience by the media receiver (e.g., by collecting free field audio). In the illustrated example, collected media exposure data is transported out of the vehicle via an audience measurement data shuttle and is then transmitted to a data collection facility for processing. If an audience measurement data shuttle is assigned to each individual panelist, the audience measurement data shuttle may add a unique identifier to the data to thereby associate demographic data with the collected audience measurement data.

In the field of media monitoring, media companies seek high accuracy media exposure data. To achieve such accuracy, it is desirable to reduce the level of involvement of the panelists. The more panelists are asked to do, the more likely the panelists will forget or intentionally fail to perform a requested task. The degree to which the panelists perform requested tasks (e.g., carrying a meter, logging into a meter, etc.) is referred to as the degree of compliance of the panelist.

Media monitoring systems are designed to result in high levels of audience member compliance, resulting in data that more accurately reflects the actual exposure of panelists to media content. Media monitoring in vehicles presents challenges that are different in degree or type from the challenges faced by in home media monitoring. If panelists are required to take more extensive action to enable in-vehicle data collection than to enable in-home data collection, the in vehicle collection system may exhibit lower levels of audience member compliance than are experienced in home media monitoring systems due to the constraints of the in vehicle environment, the amount of time audience members spend in vehicles, and/or the occurrence of frequently entering/exiting of the vehicle (e.g., short trips). Additionally, the physical aspects of vehicles present constraints on the in-vehicle monitoring. Such constraints include limited physical space, limited selection of power sources, and limited methods of transmitting collected monitoring data.

In examples disclosed herein, an example media monitoring device is placed in a vehicle to monitor media exposure and an audience measurement data shuttle is used to transport and/or transmit stored audience measurement data to a central location. To increase the probability of audience member compliance, example implementations of the media monitoring device use automated methods to collect and wirelessly transmit audience measurement data. In some implementations, audience measurement data is transmitted to an intermediate collection site or audience measurement data aggregator in, for example, the audience member's residence to aggregate audience measurement data before being sent to a processing location (e.g., an audience measurement data collection server, a central facility, etc.) A direct communication link between the in-vehicle media monitoring device and a collection site is typically not available. Accordingly, example media monitoring systems as disclosed herein include an intermediary audience measurement data shuttle to wirelessly receive audience measurement data from the in-vehicle media monitoring device and to wirelessly transmit that data to the audience measurement data aggregator when the audience measurement data shuttle is removed from the vehicle and brought into communication range of the audience measurement data aggregator. For example, the intermediate audience measurement data shuttle may be implemented as a key chain or other small device to be carried by the panelist. In this way, the panelist will naturally carry the audience measurement data shuttle into proximity of the audience measurement data aggregator when the panelist returns home. Because the audience measurement data shuttle is implemented as a device that the panelist will naturally carry in and out of the house (e.g., a car key chain), the panelist is not required to take any extraordinary measures to facilitate in-vehicle data collection and panelist compliance is improved.

FIG. 1 is a block diagram of an example system 100 for in-vehicle audience measurement. The example audience measurement system 100 of FIG. 1 is adapted to monitor media exposure in a vehicle. The example system 100 includes a media monitoring device 104 fixed in the vehicle; an audience measurement data shuttle 112; an audience measurement data aggregator 120; and an audience measurement data collection server 124. The audience measurement data aggregator 120 of the illustrated example is located in the home of the panelist. The audience measurement data collection server 124 communicates with the audience measurement data aggregator 120 via a communication link 126 such as, for example, the interne, the plain old telephone system (POTS), etc. The media monitoring device 104, the audience measurement data shuttle 112, and the audience measurement data aggregator 120 of the illustrated example communicate via the communication links 106, 108, and 114.

The example media monitoring device 104 of the illustrated example is fixed in the vehicle. The media monitoring device 104 may have any structure and/or form factor that enables the device to be permanently or semi-permanently installed in the vehicle. In the illustrated example, the media monitoring device 104 is configured to be engaged within a power socket of the vehicle (e.g., a 12 volt power socket such as a cigarette lighter socket or other multi-purpose electrical socket.) However, the media monitoring device 104 may be fixed in a vehicle by any other means. For example, the media monitoring device 104 may be mounted on a windshield, secured to a dashboard, placed in a glove box or vehicle console, attached to a visor, mounted inside a vehicle, mounted outside a vehicle, etc. Further, where the media monitoring device is engaged within a vehicle power socket, the socket may be of any voltage, current, or configuration. For example, the power socket may be a 115-120 volt outlet. In alternative examples, the in-vehicle media monitoring device 104 may be integrated into a GPS receiver, an MP3 player, a portable (e.g., cellular) telephone and/or a garage door opener.

The example media monitoring device 104 of FIG. 1 monitors media exposure within the vehicle, and captures audience measurement data reflecting that exposure. The captured audience measurement data is stored within a memory of the media monitoring device 104 until it is wirelessly transferred to one or more audience measurement data shuttles 112 and/or directly to the audience measurement data aggregator 120.

In operation, the media monitoring device 104 may enter a wireless transmission range of the audience measurement data aggregator 120 (e.g., when the vehicle is parked in a garage associated with the house) and transmit the collected audience measurement data to the audience measurement data aggregator 120, via wireless transmission 106. In some cases, the media monitoring device 104 may not come within the wireless transmission range of the audience measurement data aggregator 120. In other cases, the media monitoring device 104 may enter the wireless transmission range of the audience measurement data aggregator 120 on a limited basis or infrequently. For example, an audience member may park their vehicle at a distance which exceeds the wireless transmission range of the audience measurement data aggregator 120 and/or the in-vehicle media monitoring device 104. If the wireless transmission 106 is only performed on a limited basis (e.g. once a week, once a month, etc.), the memory of the media monitoring device 104 may become full, resulting in loss of audience measurement data, and/or data may not be received for analysis in a timely manner.

To address this issue, in the illustrated example, one or more audience measurement data shuttle(s) 112 are used to transport audience measurement data from the media monitoring device 104 into a wireless transmission range of the audience measurement data aggregator 120. In the illustrated example, the audience measurement data shuttle 112 is a key fob, which may be carried by an audience member along with their keys (e.g., on an audience member's keychain). When the audience measurement data shuttle 112 is within wireless transmission range of the media monitoring device 104, the media monitoring device 104 wirelessly transmits the audience measurement data to the audience measurement data shuttle 112 via wireless transmission 108.

The audience measurement data shuttle 112 may be provided to each panelist in a given household (e.g., father, mother, son, daughter, etc.) As a result, each audience measurement data shuttle 112 within the vehicle may collect wirelessly transmitted audience measurement data from the same media monitoring device 104. Each audience measurement data shuttle is preferably provided with a unique identifier that is appended or otherwise associated with the audience measurement data that the audience measurement data shuttle receives (e.g., the audience measurement data shuttle includes functionality to add the identifier to the data it receives and/or transmits). The unique identifiers are associated with the individuals that carry the audience measurement data shuttles 112 in, for example, a database at the audience measurement data collection server 124. As a result, when received at the audience measurement data collection server 124, the audience measurement company may associate demographic data (e.g., white male, age 43, income $50,000 per annum, etc) with the received audience measurement data. To ensure correct data is stored in each audience measurement data shuttle 112, the fixed, in-vehicle media monitoring device 104 transmits the collected data substantially continuously (e.g., when the vehicle is powered on), at predetermined intervals, or whenever an event associated with a passenger change occurs (e.g., when the car is placed in park, when the tuned channel of the radio or the source of the media is changed, when the car is turned off, when the car is turned on, etc.)

The audience measurement data shuttle(s) 112 are likely to enter the wireless transmission range of the audience measurement data aggregator 120 at a greater frequency than the media monitoring device 104 (e.g., once a day, twice a day, etc.) because the audience member(s) will carry their respective audience measurement data shuttles 112 with them as they enter buildings (e.g., the panelist's home or other locations) that may be equipped with an audience measurement data aggregator 120. Advantageously, little or no out of the ordinary panelist involvement is required to collect and return the audience measurement data to the audience measurement data collection server 124. Audience member compliance is thereby improved, allowing more accurate data to be collected.

To achieve enhanced granularity of demographic data, even when the media monitoring device 104 is within the wireless transmission range of the audience measurement data aggregator 120, the media monitoring device 104 may still be configured to transmit audience measurement data only to the audience measurement data shuttle(s) 112, rather than directly to the audience measurement data aggregator. In other implementations, the media monitoring device 104 may be configured to transmit data to the audience measurement data shuttle(s) 112 when the audience measurement data shuttle(s) 112 are present and to transmit data to the audience measurement data aggregator 120 only when no audience measurement data shuttle 112 is present. This latter approach (i.e., always transmitting data via the shuttle(s)) may prevent data loss due to transmission being interrupted when the vehicle is moved out of the wireless transmission range of audience measurement data aggregator 120. For example, when the audience measurement data shuttle 112 is carried on an audience member's keychain, the audience measurement data shuttle 112 will remain in the wireless transmission range of the audience measurement data aggregator 120 even when the vehicle is driven away from the audience measurement data aggregator 120 in the panelist's home as long as the panelist with the audience measurement data shuttle 112 remains at home.

When an audience measurement data shuttle 112 is within the wireless transmission range of the audience measurement data aggregator 120, the audience measurement data shuttle 112 wirelessly transmits the audience measurement data stored therein to the audience measurement data aggregator 120 via wireless transmission 114. As discussed above, there may be multiple audience measurement data shuttles 112 which may communicate with the media monitoring device 104 and the audience measurement data aggregator 120. For example, a group of audience members may travel in the same vehicle and each audience member may have their own audience measurement data shuttle 112, which collects audience measurement data for media presented near the audience member via the media monitoring device 104. Advantageously, each of the audience measurement data shuttles 112 can transmit audience measurement data to the data collection server 124 so that media consumption specific to each audience member can be collected. For example, each audience measurement data shuttle 112 may be associated with the demographics of an audience member that is carrying the shuttle and the media content exposure can be credited based on those demographics.

Additionally or alternatively, panelists may travel in different vehicles (e.g., a household with two or more vehicles). In such examples, an in-vehicle media monitoring device 104 is installed in each vehicle. Preferably, the data collected by each in-vehicle media monitoring device 104 is stamped or otherwise associated with a unique identifier associated with the in-vehicle media monitoring device 104 that collected the audience measurement data. In this way (i.e., by addressing a database associating the unique identifier of the in-vehicle media monitoring device 104 with the vehicle in which it is installed), the audience measurement data can be associated with the vehicle in which the audience measurement data was collected. As a result, the shuttles of panelists can be used to collect data in any vehicle associated with the monitored household as well as in any vehicle associated with another monitored household that carries an in-vehicle media monitoring device 104.

The audience measurement data aggregator 120 of the illustrated example is located in a building such as the panelist's home. The location of the audience measurement data aggregator 120 may be advantageously selected so as to increase the availability of a wireless transmission area of the audience measurement data aggregator 120 and to increase the likelihood that the audience measurement data shuttle 112 will enter the wireless transmission area. Alternatively, the building may be any type of building. For example, the building may be a public building such as a grocery store, a library, a parking garage, a department store, a convenience store, etc. Alternatively, the audience measurement data aggregator 120 may not be located inside the building, and may be placed on the exterior of the building or away from the building. For example, the audience measurement data aggregator 120 may be placed in a parking lot, a park, along a street, along a highway, etc.

Periodically and/or a-periodically (e.g., upon expiration of a timer, when a threshold of collected audience measurement data is reached, etc.) the aggregator 120 transmits the audience measurement data to the audience measurement data collection server 124 via the communication medium 126. Any method of determining when to transmit audience measurement data may be used. For example, the audience measurement data aggregator 120 may store audience measurement data up to a specified amount (e.g., 1 kB, 64 kB, 1 MB) before transmitting the audience measurement data, the audience measurement data aggregator 120 may transmit audience measurement data at a fixed interval (e.g., 30 minutes, 3 hours, 1 day, 1 week, etc.), and/or the audience measurement data aggregator 120 may transmit audience measurement data in response to an external event (e.g., user pushes a synchronize button, audience measurement data collection server 124 requests updated audience measurement data, audience measurement data shuttle 112 comes within the wireless transmission range of the audience measurement data aggregator 120, etc.). The transmission medium 126 could be implemented by any transmission medium such as, for example, a Digital Subscriber Line (DSL), Satellite, T1, Cellular radio, Ethernet, Wi-Fi, or any collection of transmission media.

As described above, the example system 100 facilitates transmission of audience measurement data from the in-vehicle media monitoring device 104 to the audience measurement data collection server 124 via the audience measurement data shuttle(s) 112 and the audience measurement data aggregator 120. The system 100 may also facilitate bidirectional data transmission from, for example, the audience measurement data collection server 124 to the in-vehicle media monitoring device 104 via the audience measurement data aggregator 120 and/or the audience measurement data shuttle(s) 112. The data transmitted by the audience measurement data collection server 124 may be software and/or firmware for devices such as, for example, the media monitoring device 104, the audience measurement data shuttle 112, or the audience measurement data aggregator 120. Additionally or alternatively, the data may be reference signatures, reference watermarks, reference codes, or any other data to facilitate the identification of media and/or, more generally, collection of audience measurement data. Further, the media monitoring device 104 may have the facility to transmit audience measurement data directly to the audience measurement data collection server 124. For example, the media monitoring device 104 may contain a cellular modem which would allow audience measurement data to be transmitted via a cellular network.

FIG. 2 is a block diagram of the example in-vehicle media monitoring device 104 of FIG. 1. The example media monitoring device 104 includes an audio receiver 202, an audio presenter 203, an audience measurement data collector 204, a data store 205, an audience measurement data storer 206, a wireless communicator 208, and an antenna 210.

In the illustrated example, the audio receiver 202 of the in-vehicle media monitoring device 104 is a microphone that may be implemented internal or external to the media monitoring device 104. The microphone receives ambient sound including audible media content presented in the vicinity of the media monitoring device 104. Alternatively, the audio receiver 202 may be implemented by a line input connection. The line input connection may allow a media presentation device such as a radio, CD player, MP3 player, DVD player, and/or television (not shown) to be communicatively coupled to the media monitoring device 104. The line input connector of the audio receiver may be implemented by, for example, a connector within the media monitoring device 104, a cable extended from the media monitoring device 104, a cradle associated with the media monitoring device 104, etc. Any other connection to receive information about media content presented within the vehicle may alternatively or additionally be used.

The audio presenter 203 of the illustrated example is implemented by a processor executing machine readable instructions, but it could alternatively be implemented by an application specific integrated circuit (ASIC), digital signal processor (DSP), field programmable gate array (FPGA), and/or other circuitry. In the illustrated example, when audio is received, the audio presenter 203 determines the source of the audio and, if applicable, presents the audio to the audio system of the vehicle. The audio presenter 203 of the illustrated example presents audio only when audio is received via a line input connector (e.g., from a panelist's MP3 player.) However, other configurations may also be acceptable (e.g., presenting audio only when received via a microphone, presenting audio regardless of the source, presenting audio only when a panelist enables the presentation.) Further, there may exist different presentation settings based on the determined audio source. For example, if audio is received via a Bluetooth connection (e.g., from a panelist's cellular phone, from a panelist's MP3 player, etc.), the audio presenter 203 may be configured to always present audio to the audio system of the vehicle.

In the illustrated example, audio is presented to the audio system of the vehicle by means of a radio frequency transmitter transmitting a frequency modulated (FM) signal. In such an implementation, the panelist tunes the audio system of the vehicle to the frequency that the audio presenter 203 transmits on. Any alternative method of audio presentation may additionally or alternatively be used such as, for example, an analog line-input, a digital interface, a Bluetooth communicator, etc.

The audience measurement data collector 204 of the illustrated example is implemented by a processor executing machine readable instructions, but it could alternatively be implemented by an application specific integrated circuit (ASIC), digital signal processor (DSP), field programmable gate array (FPGA), and/or other circuitry. In the illustrated example, the audience measurement data collector 204 determines content identifiers from audio received via the audio receiver 202. As used herein, a “content identifier” is any type of data and/or information associated with, inherent to, embedded with, inferable from and/or injected into a piece of content, and which may be used to identify that piece of content. Audience measurement codes (e.g., watermarks), public or private identifiers in bit streams (e.g., program identification (PID) headers), closed captioning information, signatures, metadata or any other type(s) of data can serve as content identifiers. A content identifier is generally not noticeable to the audience during playback, but this is not necessarily so. Signatures may be any unique or semi-unique aspect of content (e.g., luminance characteristics, audio spectrum characteristics, etc.) that may be used to identify the content based on comparison to reference signatures. A code may be any type of data that may be inserted in, embedded in, encoded in, or otherwise associated with content that may be extracted or determined from the content for comparison to reference codes. However, any data that may be useful in monitoring, identifying, crediting, or otherwise analyzing media content may be used.

The example audience measurement data storer 206 of FIG. 2 is implemented by a processor executing instructions, but it could alternatively be implemented by an ASIC, DSP, FPGA, or other circuitry. The data storer 206 receives audience measurement data from the audience measurement data collector 204 and stores the received audience measurement data in the data store 205. The data store 205 may also be capable of storing data which is not audience measurement data. For example, updated software and/or updated firmware may be stored in the data store 205. Further, updated software and/or updated firmware may be applied to the media monitoring device 104 to update the functionality of the media monitoring device 104. The data store 205 may be any device for storing data such as, for example, flash memory, magnetic media, etc. Furthermore, the data stored in the data store 205, may be in any data format such as, for example, binary data, comma delimited data, tab delimited data, structured query language (SQL) structures, etc.

The example wireless communicator 208 of FIG. 2 is implemented according to the Institute of Electrical and Electronics Engineers 802.15.4 communication protocol. However, any method of wired or wireless communication may alternatively be used (e.g., Bluetooth, Wi-Fi, Ethernet, Universal Serial Bus, Zigbee, etc.). The wireless communicator 208 may be configured to communicate with an external device via the antenna 210. Many different antenna configurations may be used. Example implementations may include the antenna 210 being an internal component of the media monitoring device 104, the antenna 210 being an external component of the media monitoring device 104, or the antenna 210 being integrated into the wireless communicator 208.

FIG. 3 is a block diagram of the example audience measurement data shuttle 112 of FIG. 1. The example audience measurement data shuttle 112 includes a wireless communicator 302, an antenna 304, a data store 305, and an audience measurement storer 306. The example wireless communicator 302 is implemented according to the Institute of Electrical and Electronics Engineers 802.15.4 communication protocol. However, any method of wired or wireless communication may alternatively be used (e.g., Bluetooth, Wi-Fi, Ethernet, Universal Serial Bus, ZigBee, etc.). The wireless communicator 302 may be configured to communicate with an external device via the antenna 304. Many different antenna configurations may be used. Example implementations may include the antenna 304 being an internal component of the audience measurement data shuttle 112, the antenna 304 being an external component of the audience measurement data shuttle 112, or the antenna 304 being integrated into the wireless communicator 302.

The example audience measurement data storer 306 of FIG. 3 is implemented by a processor executing instructions but it could alternatively be implemented by an ASIC, DSP, FPGA, or other circuitry. The audience measurement data storer 306 receives audience measurement data from the wireless communicator 302 and stores the received-audience measurement data in the data store 305. The data store 305 may also be capable of storing data which is not audience measurement data. For example, updated software and/or updated firmware may be stored in the data store 305. Further, updated software and/or updated firmware may be applied to the audience measurement data shuttle 112 so as to update the functionality of the audience measurement data shuttle 112. The data store 305 may be any device for storing data such as, for example, flash memory, magnetic media, etc. Furthermore, the data stored in the data store 305, may be in any data format such as, for example, binary data, comma delimited data, tab delimited data, structured query language (SQL) structures, etc.

FIG. 4 is a block diagram of the example audience measurement data aggregator 120 of FIG. 1. The example audience measurement data aggregator 120 includes a wireless communicator 402, an antenna 404, a data store 405, an audience measurement data storer 406, and a wired communicator 408. The example wireless communicator 402 is implemented according to the Institute of Electrical and Electronics Engineers 802.15.4 communication protocol. However, any method of wired or wireless communication may alternatively be used (e.g., Bluetooth, Wi-Fi, Ethernet, Universal Serial Bus, ZigBee, etc.). The wireless communicator 402 may be configured to communicate with an external device via the antenna 404. Many different antenna configurations may be used. Example implementations may include the antenna 404 being an internal component of the audience measurement data aggregator 120, the antenna 404 being an external component of the audience measurement data aggregator 120, or the antenna 404 being integrated into the wireless communicator 402.

The example audience measurement data storer 406 of FIG. 4 is implemented by a processor executing instructions but it could alternatively be implemented by an ASIC, DSP, FPGA, or other circuitry. The audience measurement data storer 406 receives audience measurement data from the wireless communicator 402 and stores the received audience measurement data in the data store 405. The data store 405 may also be capable of storing data which is not audience measurement data. For example, updated software and/or updated firmware may be stored in the data store 405. Further, updated software and/or updated firmware may be applied to the audience measurement data aggregator 120 so as to update the functionality of the audience measurement data aggregator 120. The data store 405 may be any device for storing data such as, for example, flash memory, magnetic media, etc. Furthermore, the data stored in the data store 405, may be in any data format such as, for example, binary data, comma delimited data, tab delimited data, structured query language (SQL) structures, etc.

The wired communicator 408 sends stored audience measurement data to the audience measurement data collection server 124 via the communication medium 126. The communication medium of the illustrated example is implemented by an Ethernet connection. However, any type of communication medium may be used such as, for example, a cellular module, a satellite module, a Digital Subscriber Line (DSL), etc. Advantageously, the communication medium is capable of communicating with the audience measurement data collection server 124 via the internet (e.g., an Internet Protocol connection). However, other communication methods and systems may be used such as, for example, a point to point connection, a private line, etc.

While an example manner of implementing the example audience measurement system 100 has been illustrated in FIGS. 1 through 4, one or more of the elements, processes and/or devices illustrated in FIGS. 1 through 4 may be combined, divided, re-arranged, omitted, eliminated and/or implemented in any other way. Further, the example media monitoring device 104, the audio receiver 202, the audio presenter 203, the audience measurement data collector 204, the data store 205, the audience measurement data storer 206, the wireless communicator 208, the audience measurement data shuttle 112, the wireless communicator 302, the data store 305, the audience measurement storer 306, the audience measurement data aggregator 120, the wireless communicator 402, the data store 405, the audience measurement data storer 406, the wired communicator 408, and/or more generally, the example audience measurement system 100 of FIGS. 1 through 4 may be implemented by hardware, software, firmware and/or any combination of hardware, software and/or firmware. Thus, for example, any of the example media monitoring device 104, the audio receiver 202, the audio presenter 203, the audience measurement data collector 204, the data store 205, the audience measurement data storer 206, the wireless communicator 208, the audience measurement data shuttle 112, the wireless communicator 302, the data store 305, the audience measurement storer 306, the audience measurement data aggregator 120, the wireless communicator 402, the data store 405, the audience measurement data storer 406, the wired communicator 408, and/or more generally, the example audience measurement system 100 could be implemented by one or more circuit(s), programmable processor(s), application specific integrated circuit(s) (ASIC(s)), programmable logic device(s) (PLD(s)) and/or field programmable logic device(s) (FPLD(s)), etc. When any of the appended apparatus claims are read to cover a purely software and/or firmware implementation, at least one of the example media monitoring device 104, the audio receiver 202, the audio presenter 203, the audience measurement data collector 204, the data store 205, the audience measurement data storer 206, the wireless communicator 208, the audience measurement data shuttle 112, the wireless communicator 302, the data store 305, the audience measurement storer 306, the audience measurement data aggregator 120, the wireless communicator 402, the data store 405, the audience measurement data storer 406, and/or the wired communicator 408 are hereby expressly defined to include a tangible medium such as a memory, DVD, CD, etc. storing the software and/or firmware. Further still, the example media monitoring device 104, the audio receiver 202, the audio presenter 203, the audience measurement data collector 204, the data store 205, the audience measurement data storer 206, the wireless communicator 208, the audience measurement data shuttle 112, the wireless communicator 302, the data store 305, the audience measurement storer 306, and/or the audience measurement data aggregator 120, the wireless communicator 402, the data store 405, the audience measurement data storer 406, and/or the wired communicator 408 of FIGS. 1 through 4 may include one or more elements, processes and/or devices in addition to, or instead of, those illustrated in FIGS. 1 through 4, and/or may include more than one of any or all of the illustrated elements, processes and devices.

FIGS. 5 through 11 are flowcharts representative of example machine readable instructions that may be executed to implement the system 100 and/or components of the system 100 including the media monitoring device 104 and the audience measurement data shuttle 112. In these examples, the machine readable instructions represented by each flowchart may comprise one or more programs for execution by: (a) a processor, such as the processor 1512 shown in the example computer 1500 discussed below in connection with FIG. 15, (b) a controller, and/or (c) any other suitable device. The one or more programs may be embodied in software stored on a non-transitory tangible medium such as, for example, a flash memory, a CD-ROM, a floppy disk, a hard drive, a DVD, or a memory associated with the processor 1512, but the entire program or programs and/or portions thereof could alternatively be executed by a device other than the processor 1512 and/or embodied in firmware or dedicated hardware (e.g., implemented by an application specific integrated circuit (ASIC), a programmable logic device (PLD), a field programmable logic device (FPLD), discreet logic, etc.). For example, any or all of the machine readable instructions represented by the flowcharts of FIGS. 5 through 11 could be implemented by any combination of software, hardware, and/or firmware. Also, some or all of the machine readable instructions represented by the flowchart of FIGS. 5 through 11 may be implemented manually. Further, although the example machine readable instructions are described with reference to the flowcharts illustrated in FIGS. 5 through 9, many other techniques for implementing the example methods and apparatus described herein may alternatively be used. For example, with reference to the flowcharts illustrated in FIGS. 5 through 11, the order of execution of the blocks may be changed, and/or some of the blocks described may be changed, eliminated, combined, and/or subdivided into multiple blocks.

FIG. 5 is a flowchart representative of example machine readable instructions 500 which may be executed by the processor 1512 to implement the audience measurement data collection process of the media monitoring device 104.

The example process 500 begins when the media monitoring device 104 is engaged within a power outlet of the vehicle (block 502). In the illustrated example, engaging the media monitoring device 104 supplies power to the media monitoring device 104 and causes the media monitoring device 104 to be enabled. The media monitoring device 104 may have an alternate power supply such as, for example, a battery or a solar panel. Such alternate power supplies may enable the media monitoring device 104 to be active even when power is not supplied by the power outlet of the vehicle. Additionally or alternatively, the media monitoring device 104 may include a switch or other control that enables the panelist to selectively enable or disable the media monitoring device 104.

The media monitoring device 104 detects audio via the audio receiver 202 (block 504). The audio presenter 203 of the media monitoring device 104 then determines the source of the audio (block 506). If the audio presenter 203 determines that the audio is being received via a line input connector (e.g., the line input receptacle 1236), the audio presenter 203 presents the audio to the audio system of the vehicle (block 508). If the audio presenter 203 determines that the audio is being received via a microphone (e.g., the microphone 1228), control proceeds to block 510.

The audience measurement data collector 204 of the media monitoring device 104 processes the received audio to develop audience measurement data (block 510). The audience measurement data may be developed in any manner. In the illustrated example, audience measurement data is developed by detecting a code or watermark within the received audio. Alternatively or additionally, audience measurement data development may involve recording segments of the received audio, developing signatures from the audio, etc. The audience measurement data storer 208 then stores the audience measurement data in the data store 205 of the media monitoring device 104 (block 512).

In the illustrated example, additional data is added to the data store 205 by the audience measurement data storer 206. This additional data may be derived from any input. In the illustrated example, there exists a selector switch 1232 attached to the media monitoring device 104. The selector switch 1232 may be user actionable, allowing an audience member to identify the number of occupants of the vehicle by adjusting the position of the switch. The audience measurement data storer 206 of the media monitoring device 104 detects and stores the status of the selector switch 1232 in the data store 205 (block 514).

In addition to storing a setting of the selector switch, the audience measurement data storer 206 detects and stores identifiers of local audience measurement data shuttles (block 516). The gathered identifiers are stored in the data store 205. In the illustrated example, each member in a family of panelists (e.g., a father, a mother, a son, a daughter) is provided with a audience measurement data shuttle 112 and each shuttle has a unique identifier. By collecting the identifiers of local audience measurement data shuttles, media exposure can be more closely tied to individual panelists. For example, a panelist may tune to different media when alone in a vehicle, compared to when there are other panelists or persons present in the vehicle. To facilitate associating tuned audio with the actual panelist(s) located in a vehicle, the shuttle(s) 112 may broadcast their identifier(s) and the media monitoring device 104 may wirelessly collect such identifier(s) and store them with timestamps in the data store 205. In addition to storing an identifier of the audience measurement data shuttles, the audience measurement data storer 206 may additionally store an identifier associated with the media monitoring device 104. As explained in conjunction with FIGS. 6 and 7, there may be different audience measurement data transmission processes which may alleviate the need for block 516.

Further, in the example of FIG. 5, the audience measurement data storer 206 gathers local computer data from the computer system of the vehicle (blocks 518, 520, and 522). The local computer data may include many different types of data such as, for example, global positioning data, radio tuning data, vehicle data, audio system data, etc.

The audience measurement data storer 206 gathers and stores global positioning data (block 518). The global positioning data is stored in the data store 205. Global positioning data may be gathered via a Bluetooth connection to a Global Positioning System (GPS) receiver mounted within the vehicle. Alternatively, the GPS receiver may be integrated into the vehicle's computer system. In such a case, a communication link may be formed between the audience measurement data storer 206 and a computer system of the vehicle. The communication link may be implemented by an On Board Diagnostics (OBD-II) connector. Further, the media monitoring device 104 may also include an integrated GPS receiver. An integrated GPS receiver allows the audience measurement data storer 206 to collect global positioning data without being required to interface with an external device.

In addition to gathering global positioning data, the audience measurement data storer 206 gathers and stores radio tuning data (block 520). The radio tuning data is stored in the data store 205. Radio tuning data, when coupled with global positioning data, provides a method for audience measurement companies to more accurately determine the originator of the media. For instance, a media broadcaster may transmit media on a first frequency at one location, and on a second frequency at another location. A vehicle may move between different geographic regions such that the broadcaster to frequency relationship may be different. The GPS data thereby enables more accurate mapping of radio data to broadcasters. Radio tuning data may be gathered via a communication link between the audience measurement data storer 206 and the audio system of the vehicle. In the illustrated example, the communication link is implemented by a Bluetooth connection. However, many alternative types of communication links may alternatively be used such as, for example, and RS-232 connection, an Institute of Electrical and Electronics Engineers 802.15.4 connection, etc. Radio tuning data gathered by the audience measurement data storer 206 is stored in the data store 205.

Additionally, the audience measurement data storer 206 of the media monitoring device 104 of the example of FIG. 5 gathers vehicle data from a computer system of the vehicle (block 522). The vehicle data may include, for example, vehicle speed, vehicle make/model, door lock status, window status, vehicle temperature, external temperature, audience presence data (e.g., is a specific seat occupied as indicated by, for example, a pressure sensor used to turn an airbag off or on) etc. In the illustrated example, the audience measurement data storer 206 is communicatively coupled with the computer system of the vehicle via an OBD-II connector. The audience measurement data storer 206 collects the data via the OBD-II connector and then stores the vehicle data in the data store 205. After data has been stored, control returns to block 504.

FIG. 6 is a flowchart representative of example machine readable instructions 600 to implement a first example audience measurement data transmission process of the media monitoring device 104. In the illustrated example, the instructions of process 600 are implemented in parallel with the instructions of process 500.

The example process 600 begins when the media monitoring device 104 is engaged within a power outlet of the vehicle (block 602). Block 602 is substantially the same as block 502, as the media monitoring device 104 is enabled by receiving power from the power outlet of the vehicle.

The wireless communicator 208 of the media monitoring device 104 waits for a trigger event (block 604). A trigger event may be'any sort of trigger event such as, for example, the expiration of a timer, the detection of an audio signal via the audio receiver 202 of the media monitoring device 104, the detection of stored audience measurement data reaching a threshold, the detection of an external audience measurement data receiving device (e.g. the audience measurement data shuttle 112, etc.) Once the trigger event has been detected, the wireless communicator 208 queries the data store 205 to determine the availability of audience measurement data for transmission (block 606). If audience measurement data is available for transmission, the media monitoring device determines the availability of an external audience measurement data receiving device (e.g., an audience measurement data shuttle 112, the audience measurement data aggregator 120). Since identifiers of audience measurement data shuttle(s) 112 are gathered in block 516, the audience measurement data stored in the data store 205 is already associated with the panelist(s) to which the media was presented. Therefore, the audience measurement data does not need to have audience measurement data shuttle identifiers added at a later point.

Returning to FIG. 6, the wireless communicator 208 determines if a communication link is available to the audience measurement data aggregator 120 (block 608). If a communication link between the wireless communicator 208 and the audience measurement data aggregator 120 is available, the stored audience measurement data is transmitted to the audience measurement data gateway 120 (block 610). After the wireless communicator 208 completes transmission of the stored audience measurement data to the audience measurement data aggregator 120, the wireless communicator 208 clears the transmitted audience measurement data from the data store 205 (block 616). Control then returns to block 604.

If the wireless communicator 208 determines that a communication link is not available to the audience measurement data aggregator 120, the wireless communicator 208 determines if a communication link is available to an audience measurement data shuttle 112 (block 612). If a communication link between the wireless communicator 208 and one or more audience measurement data shuttle(s) 112 is available, stored audience measurement data is transmitted to the audience measurement data shuttle 112 (block 614). After the wireless communicator 208 of the media monitoring device 104 has successfully transmitted the stored audience measurement data to the audience measurement data shuttle 112, the wireless communicator 208 clears the transmitted audience measurement data from the data store 205 (block 614). Control then returns to block 604. If no communication link between the wireless communicator 208 and an audience measurement data shuttle 112 is available (block 612), control returns to block 604.

FIG. 7 is a flowchart representative of example machine readable instructions 700 to implement a second example audience measurement data transmission process of the media monitoring device 104. In the illustrated example, the instructions of process 700 are implemented in parallel with the instructions of process 500. Additionally, the illustrated process 700 may be implemented as an alternative to process 600.

The example process 700 begins when the media monitoring device 104 is engaged within a power outlet of the vehicle (block 702). Block 702 is substantially the same as blocks 502 and 602, as the media monitoring device 104 is enabled by receiving power from the power outlet of the vehicle.

After the media monitoring device 104 is powered on, the wireless communicator 208 of the media monitoring device 104 begins searching for available communication links to audience measurement data shuttle(s) 112 (block 704). If no communication link is available (block 704), the wireless communicator 208 continues to search for available communication links (block 704). If a communication link is available, the wireless communicator 208 transmits stored audience measurement data to the available audience measurement data shuttle(s) 112 (block 706). In the illustrated example, audience measurement data is transmitted to all local audience measurement data shuttles. Therefore, each audience measurement data shuttle 112 receives audience measurement data only when in the presence of the media monitoring device 104. In the illustrated example, block 516 may not be implemented (i.e., the media monitoring device 104 may not collect and store shuttle identifiers), therefore an identifier of the audience measurement data shuttle should be added by each of the audience measurement data shuttle(s) 112 that receive the data, or by the audience measurement data aggregator 120 when it receives the data from the audience measurement data shuttles 112. After the wireless communicator 208 has transmitted the audience measurement data, it clears the transmitted data from the data store 205 (block 708.) Control then returns to block 704.

FIGS. 8 and 9 are flowcharts representative of example machine readable instructions 800 and 900 which may be executed to implement the audience measurement data shuttle 112. In the illustrated example, the instructions of process 800 are implemented in parallel with the instructions of process 900.

The example process 800 begins when the audience measurement data shuttle 112 is enabled (block 802). In the illustrated example, the audience measurement data shuttle 112 is enabled when it is constructed (e.g., a battery is inserted, thereby powering the shuttle). Many other means of enabling the audience measurement data shuttle 112 may be used such as, for example, a solar panel, an inductive power transmission, etc. Additionally or alternatively, the audience measurement data shuttle 112 may include a switch or other control that permits the panelist to selectively enable the audience measurement data shuttle 112. This method, however, is not preferred, as it requires additional panelist interaction.

After being enabled, the wireless communicator 302 of the audience measurement data shuttle 112 determines if a communication link 108 is available to a media monitoring device 104 (block 804). If a communication link 108 is available, control proceeds to block 806. If no communication link 108 is available, control returns to block 804 where the wireless communicator 302 waits for a communication link 108 to become available. When a communication link is available (block 804), the wireless communicator 302 receives audience measurement data from the media monitoring device 104 (block 806). Received audience measurement data is then stored by the audience measurement data storer 306 of the audience measurement data shuttle 112 (block 808). The received audience measurement data is stored in the data store 305 of the audience measurement data shuttle 112. After the audience measurement data has been received and stored, the audience measurement data storer 306 inserts a unique identifier of the audience measurement data shuttle 112 into the data store 305 (block 810). The unique identifier may be added to unique identifiers already present in the audience measurement data. For example, the audience measurement data storer 206 of the media monitoring device 104 may have inserted unique identifiers for local audience measurement data shuttles 112 (block 516). The audience measurement data storer 306 adds the unique identifier to the audience measurement data stored in the data store 305 regardless of whether unique identifiers are present. Additionally or alternatively, the audience measurement data storer 306 may determine if unique identifiers are present and add a unique identifier of the audience measurement data shuttle 112 if necessary. After data has been stored, control then returns to block 804 to await another communication of audience measurement data from the media monitoring device 104.

The example process 900 of FIG. 9 begins when the audience measurement data shuttle 112 is enabled (block 902). Block 902 is substantially the same as block 802, as the audience measurement data shuttle 112 is enabled in both blocks. After being enabled, the wireless communicator 302 of the audience measurement data shuttle 112 determines if audience measurement data is present in the data store 305 (block 903). If audience measurement data is not present, control returns to block 903, wherein the wireless communicator 302 waits for audience measurement data to be populated in the data store 305. If audience measurement data is present in the data store 305, control proceeds to block 904.

Once the wireless communicator 302 has determined that audience measurement data is present in the data store 305, the wireless communicator 302 proceeds to determine if a communication link 114 is available to an audience measurement data aggregator 120 (block 904). If a communication link 114 is available, control proceeds to block 906. If no communication link 114 is available, control returns to block 904 where the wireless communicator 302 waits for the communication link 114 to become available. The wireless communicator 302 then transmits audience measurement data from the data store 305 to the audience measurement data aggregator (block 906). After successfully transmitting audience measurement data via the wireless communicator 302, the audience measurement data storer 306 clears stored audience measurement data from the data store 305 (block 908). In the illustrated example, the wireless communicator 302 then transmits the unique identifier of the audience measurement data shuttle 112 to the audience measurement data aggregator 120. This provides an additional means of linking specific panelists to media data. For example, if neither block 516 nor block 810 were implemented, by implementing block 910 the audience measurement data aggregator 120 is able to link the panelist to audience measurement data from a specific audience measurement data shuttle 112. If block 516 and/or block 810 is implemented, block 910 may be omitted. Control then returns to block 903 to await additional audience measurement data.

FIGS. 10 and 11 are flowcharts representative of example machine readable instructions 1000 and 1100 which may be executed to implement the audience measurement data aggregator 120. In the illustrated example, the instructions of process 1000 are implemented in parallel with the instructions of process 1100.

The example process 1000 begins when the audience measurement data aggregator 120 is enabled (block 1002). In the illustrated example, the audience measurement data aggregator 120 is enabled when it is powered (e.g., plugged into a power outlet). Many other means of enabling the audience measurement data aggregator 120 may be used. For example, a battery may be used to power the audience measurement data aggregator. Additionally or alternatively, the audience measurement data aggregator 120 may include a switch or other control that enables the panelist to enable the audience measurement data aggregator 120.

After being enabled, the audience measurement data storer 406 gathers and stores local audience measurement data (block 1003). This local audience measurement data may be from any source other than the audience measurement data shuttle 112. In the illustrated example, the audience measurement data storer 406 gathers and stores audience measurement from a local meter that collects codes and/or signatures from free field audio to measure media exposure in the household. The audience measurement data storer 406 may also collect data from a people meter that identifies members of the audience. The local meter may monitor any sort of information presenting devices such as a set top box, a television set, a personal computer, a radio, etc. The audience measurement data gathered by the audience measurement data storer 406 is stored in the data store 405. In the illustrated example, audience measurement data is gathered serially, however other methods of audience measurement data aggregation may be used. For example, audience measurement data aggregation from multiple audience measurement devices may be performed in parallel.

The wireless communicator 402 of the audience measurement data aggregator 120 determines if a communication link 114 is available to the audience measurement data shuttle 112 (block 1004). If a communication link 114 is not available, control returns to block 1004 where the audience measurement data storer 406 gathers and stores local audience measurement data. If a communication link 114 is available, the wireless communicator receives audience measurement data from the audience measurement data shuttle 112 (block 1006). The audience measurement data storer 406 then stores the received audience measurement data in the data store 405 (block 1008). In the illustrated example, the wireless communicator 402 of the audience measurement data aggregator 120 also receives and stores the unique identifier of the audience measurement data shuttle 112 to log the source of the data (block 1010). After receiving and storing audience measurement data from the audience measurement data shuttle 112, control returns to block 1003 where data from a second audience measurement data shuttle 112 may be received.

The example process 1100 begins when the audience measurement data aggregator 120 is enabled (block 1102). Block 1102 is substantially the same as block 1002, as the audience measurement data aggregator 120 is enabled in both blocks.

After being enabled, the communicator 408 determines whether audience measurement data should be sent (block 1103). In the illustrated example, audience measurement data is sent on a regular interval (e.g., every day, every hour, etc.). Additionally or alternatively, audience measurement data may be sent a-periodically in response to non-time based triggers, such as, for example, a threshold of audience measurement data being reached in the data store 405, a request received from an external source, etc. Irrespective of the triggering mechanism, once the communicator 408 has determined that audience measurement data should be transmitted, the communicator 408 determines if a communication link 126 is available to the audience measurement data collection server 124. If a communication link 126 is not available, control returns to block 1104 where the communicator 408 waits for a communication link 126 to become available. If the communication link 126 is available, control proceeds to block 1106. The communicator 408 transmits audience measurement data that was stored in the data store 405 to the audience measurement data collection server 124 via the communication link 126 (block 1106). After the audience measurement data has been successfully transmitted, the wireless communicator 408 clears the stored audience measurement data from the data store 405 (block 1108). Control then returns to block 1103.

FIGS. 12, 13, and 14 are views of the example in-vehicle media monitoring device 104 of FIGS. 1 and 2. The example media monitoring device 104 comprises a housing 1202. The example housing 1202 is made of plastic. However, any other material may alternatively be used to create the housing 1202. Internal to the housing 1202 is a Printed Circuit Board (PCB) 1204, to which additional components are affixed. To support the PCB 1204 within the housing 1202, a set of standoffs 1206, 1208, 1210, and 1212 may be used. The standoffs 1206, 1208, 1210, and 1212 may be of any form factor and may be made of any material. Additionally or alternatively, the stand-offs 1206, 1208, 1210, and 1212 may be integral to the construction of the housing 1202.

The example housing 1202 is dimensioned to engage within a 12 volt power outlet of the vehicle. In order to draw power from the 12 volt power outlet of the vehicle, a positive power connector 1214 connects to a 12 volt connector of the 12 volt power outlet, while a ground power connector 1220 connects to a ground connector of the 12 volt power outlet. A wire 1216 is used to connect the positive power connector 1214 to the PCB 1204, via a connection point 1218 (see FIG. 13). Likewise, a wire 1222 connects the ground power connector 1220 to the PCB 1204, via a connection point 1224. Additionally or alternatively, a fuse may be inserted between the positive power connector 1214 and the positive connection point 1218 of the PCB 1204 along the wire 1216.

The PCB 1204 supports different components to provide the functionality of the in-vehicle media monitoring device 104. In the illustrated example, such components include a power indicator 1226, a microphone 1228, a processor 1230, a selector switch 1232, a wireless communicator 1234, and a line-input receptacle 1236.

The power indicator 1226 may be any type of power indication component. In the illustrated example, the power indicator 1226 is a light emitting diode. Alternative forms of display may be used. For example, a display screen may be used to convey additional information about the operation of the media monitoring device 104.

The microphone 1228 receives audio for use by the media monitoring device 104. The microphone 1228 may be any type of microphone (e.g., passive, active). Additionally, the housing 1202 may be created with openings near the microphone 1228 to allow sound to enter the housing 1202 and reach the microphone 1228.

The processor 1230 may be configured to interface with the other components of the media monitoring device 104. In the illustrated example, the processor 1230 is a microcontroller. However, any type of processing device may be used (e.g., a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a field-programmable gate array (FPGA), or a microcontroller) to implement the processor 1230. The processor 1230 may additionally include a memory for storing audience measurement data.

The selector switch 1232 is used to provide additional input parameters to the media monitoring device 104. The physical selector switch may be implemented by any switch design (e.g., button, knob, slider, touch screen, etc.). In the illustrated example, a rotator is used to allow an audience member to select the number of occupants of the vehicle. The housing 1202 may be configured to allow exposure of the rotator switch 1232, so that the audience member can physically adjust the setting. Any physical or virtual switche(s) of any style or type may alternatively or additionally be used to input selections to the media monitoring device 104. For instance, an audio recognition system might be used to allow an audience member to provide an input to the media monitoring device 104 without having to physically manipulate the device.

The wireless communicator 1234 interfaces wirelessly with external audience measurement data receiving devices (e.g., the audience measurement data shuttle 112, the audience measurement data aggregator 120). In the illustrated example, the wireless communicator 1234 is an Institute of Electrical and Electronics Engineers 802.15.4 wireless module. However, any type of wireless communication device may alternatively be used (e.g., Bluetooth, Wi-Fi, etc.). Furthermore, the wireless antenna 210 may be integral to the design of the wireless communicator component 1234, the wireless antenna 210 may be integral to the PCB 1204, the wireless antenna 210 may be external to the PCB 1204, or the wireless antenna 210 may be in some other configuration.

The line input receptacle 1236 may be provided in addition to or as an alternative to the microphone 1228 to input audio to the media monitoring device 104. The line-input receptacle 1236 may be of any configuration that would allow an external connector to be affixed. In the illustrated example, a 3.5 mm receptacle is used to allow for an external audio device to be connected to the media monitoring device 104. However, any type or style of receptacle could alternatively be used. For example, a 2.5 mm receptacle could be used to reduce the physical size of the receptacle. Alternatively, the line-input receptacle 1236 may be a cable extending from the media monitoring device 104 which would allow for a direct connection to an external audio device. Furthermore, the housing 1202 may include an opening 1238 which would allow for external input cables to be affixed to the line-input receptacle 1236.

FIG. 13 is a top, cross-sectional view of the example media monitoring device of FIG. 12.

FIG. 14 is a rear, cross-sectional view of the example media monitoring device of FIGS. 12 and 13.

FIG. 15 is a block diagram of an example processor platform 1500 capable of implementing the apparatus and methods disclosed herein. The processor platform 1500 can be, for example, a server, a personal computer, a personal digital assistant (PDA), an Internet appliance, a DVD player, a CD player, a digital video recorder, a personal video recorder, a set top box, a dedicated device, or any other type of computing device.

The system 1500 of the instant example includes a processor 1512 such as a general purpose programmable processor. The processor 1512 includes a local memory 1514, and executes coded instructions 1516 present in the local memory 1514 and/or in another memory device. The processor 1512 may execute, among other things, the machine readable instructions represented in FIGS. 5-9. The processor 1512 may be any type of processing unit, such as one or more microprocessors from the Intel® Centrino® family of microprocessors, the Intel®Pentium family of microprocessors, the Intel® Itanium® family of microprocessors, and/or the Intel XScale® family of processors. Of course, other processors from other families are also appropriate.

The processor 1512 is in communication with a main memory including a volatile memory 1518 and a non-volatile memory 1520 via a bus 1522. The volatile memory 1518 may be implemented by Static Random Access Memory (SRAM), Synchronous Dynamic Random Access Memory (SDRAM), Dynamic Random Access Memory (DRAM), RAMBUS Dynamic Random Access Memory (RDRAM) and/or any other type of random access memory device. The non-volatile memory 1520 may be implemented by flash memory and/or any other desired type of memory device. Access to the main memory 1518, 1520 is typically controlled by a memory controller (not shown).

The processor platform 1500 also includes an interface circuit 1524. The interface circuit 1524 may be implemented by any type of interface standard, such as an Ethernet interface, a universal serial bus (USB), and/or a third generation input/output (3GIO) interface.

One or more input devices 1526 are connected to the interface circuit 1524. The input device(s) 1526 permit a user to enter data and commands into the processor 1512. The input device(s) can be implemented by, for example, a keyboard, a mouse, a touchscreen, a track-pad, a trackball, an isopoint and/or a voice recognition system.

One or more output devices 1528 are also connected to the interface circuit 1524. The output devices 1528 can be implemented, for example, by display devices (e.g., a liquid crystal display, a cathode ray tube display (CRT)), by a printer and/or by speakers. The interface circuit 1524, thus, typically includes a graphics driver card.

The interface circuit 1524 also includes a communication device such as a modem or network interface card to facilitate exchange of data with external computers via a network (e.g., an Ethernet connection, a digital subscriber line (DSL), a telephone line, coaxial cable, a cellular telephone system, etc.).

The processor platform 1500 also includes one or more mass storage devices 1530 for storing software and data. Examples of such mass storage devices 1530 include floppy disk drives, hard drive disks, compact disk drives and digital versatile disk (DVD) drives. The mass storage device 1530 may implement the example data stores 205, 305, and 405. Alternatively, the volatile memory 1518 may implement the example data stores 205, 305, and 405.

As an alternative to implementing the methods and/or apparatus described herein in a system such as the device of FIG. 15, the methods and or apparatus described herein may be embedded in a structure such as a processor and/or an ASIC (application specific integrated circuit). As discussed above, small form factor processors and devices are preferred for the in-vehicle media monitoring device 104 and the audience measurement data shuttle 112.

Although the above discloses example systems including, among other components, software executed on hardware, it should be noted that such systems are merely illustrative and should not be considered as limiting. For example, it is contemplated that any or all of the disclosed hardware and software components could be embodied exclusively in dedicated hardware, exclusively in software, exclusively in firmware or in some combination of hardware, firmware and/or software.

In addition, although certain methods, apparatus, and articles of manufacture have been described herein, the scope of coverage of this patent is not limited thereto. On the contrary, this patent covers all apparatus, methods and articles of manufacture fairly falling within the scope of the appended claims either literally or under the doctrine of equivalents.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US46987819 Apr 19866 Oct 1987Spymark, IncorporatedSystems for determining distances to and locations of features on a golf course
US47034443 Apr 198627 Oct 1987Spymark, IncorporatedSystems for determining distances to and locations of features on a golf course
US471810612 May 19865 Jan 1988Weinblatt Lee SSurvey of radio audience
US472205410 Jul 198526 Jan 1988Ncr CorporationInput system for POS terminal
US475151221 Jan 198614 Jun 1988Oceanonics, Inc.Differential navigation system for remote mobile users
US481298015 May 198614 Mar 1989Nippondenso Co., Ltd.Map display system
US485800014 Sep 198815 Aug 1989A. C. Nielsen CompanyImage recognition audience measurement system and method
US490508031 Jul 198727 Feb 1990Video Research Ltd.Apparatus for collecting television channel data and market research data
US49300112 Aug 198829 May 1990A. C. Nielsen CompanyMethod and apparatus for identifying individual members of a marketing and viewing audience
US496720929 Apr 198830 Oct 1990Canon Kabushiki KaishaRecovery device for an ink jet printer
US497750930 May 198911 Dec 1990Campsport, Inc.Personal multi-purpose navigational apparatus and method for operation thereof
US498915117 Feb 198929 Jan 1991Kabushiki Kaisha ToshibaNavigation apparatus and matching method for navigation
US499497414 Nov 198819 Feb 1991Cummings Elihu CTouch sensitive navigation system
US501982816 Nov 199028 May 1991Schoolman Scientific Corp.High resolution navigation and mapping system
US502392915 Sep 198811 Jun 1991Npd Research, Inc.Audio frequency based market survey method
US505997014 Mar 199022 Oct 1991Invention Factory (Proprietary) LimitedNavigational aid
US51330813 Nov 198921 Jul 1992Mayo Scott TRemotely controllable message broadcast system including central programming station, remote message transmitters and repeaters
US514227830 Nov 199025 Aug 1992Qualcomm IncorporatedCurrent carrier tractor-trailer data link
US515955624 Aug 198927 Oct 1992Thomson-CsfLand navigation system displaying the position of a vehicle in real time
US521475729 Sep 199225 May 1993Georesearch, Inc.Interactive automated mapping system
US5245694 *29 Apr 199114 Sep 1993Zwern Arthur LUser-programmable voice notification device for security alarm systems
US53091745 Mar 19913 May 1994Motorola, Inc.Electronic display system
US535952915 May 199225 Oct 1994Zexel CorporationRoute guidance on/off-route state filter
US537331514 Mar 199413 Dec 1994Le Groupe Videotron LteeTelevision audience data gathering
US53829838 Sep 199317 Jan 1995Kwoh; Daniel S.Apparatus and method for total parental control of television use
US538993421 Jun 199314 Feb 1995The Business Edge Group, Inc.Portable locating system
US539433320 Dec 199328 Feb 1995Zexel Usa Corp.Correcting GPS position in a hybrid naviation system
US54124167 Aug 19922 May 1995Nbl Communications, Inc.Video media distribution network apparatus and method
US541257320 May 19932 May 1995Motorola Inc.Multi-mode route guidance system and method therefor
US544476916 Aug 199422 Aug 1995David Wallace ZietsmanData communications system for establishing links between subscriber stations and broadcast stations
US545780721 Mar 199410 Oct 1995Weinblatt; Lee S.Technique for surveying a radio or a television audience
US546511510 Jan 19957 Nov 1995Rct Systems, Inc.Video traffic monitor for retail establishments and the like
US548129427 Oct 19932 Jan 1996A. C. Nielsen CompanyAudience measurement system utilizing ancillary codes and passive signatures
US54832762 Aug 19939 Jan 1996The Arbitron CompanyCompliance incentives for audience monitoring/recording devices
US55108281 Mar 199423 Apr 1996Lutterbach; R. StevenInteractive video display system
US552824819 Aug 199418 Jun 1996Trimble Navigation, Ltd.Personal digital location assistant including a memory cartridge, a GPS smart antenna and a personal computing device
US557912428 Feb 199526 Nov 1996The Arbitron CompanyMethod and apparatus for encoding/decoding broadcast or recorded segments and monitoring audience exposure thereto
US55818007 Jun 19953 Dec 1996The Arbitron CompanyMethod and apparatus for automatically identifying a program including a sound signal
US56297396 Mar 199513 May 1997A.C. Nielsen CompanyApparatus and method for injecting an ancillary signal into a low energy density portion of a color television frequency spectrum
US569924416 Jun 199516 Dec 1997Monsanto CompanyHand-held GUI PDA with GPS/DGPS receiver for collecting agronomic and GPS position data
US580249211 Jun 19961 Sep 1998Delorme Publishing Company, Inc.Computer aided routing and positioning system
US58120698 Jul 199622 Sep 1998Mannesmann AktiengesellschaftMethod and system for forecasting traffic flows
US582616426 Oct 199520 Oct 1998Weinblatt; Lee S.Technique for surveying a radio or a television audience
US58481295 Nov 19968 Dec 1998Baker; EarlElectronic billboard with telephone call-in control
US585024912 Oct 199515 Dec 1998Nielsen Media Research, Inc.Receiver monitoring system with local encoding
US58725886 Dec 199516 Feb 1999International Business Machines CorporationMethod and apparatus for monitoring audio-visual materials presented to a subscriber
US588136011 Oct 19959 Mar 1999Adcom Information Services, Inc.Non-video path data collection device
US5896554 *2 Apr 199720 Apr 1999K.K. Video ResearchStatus monitoring apparatus for car radio
US591822321 Jul 199729 Jun 1999Muscle FishMethod and article of manufacture for content-based analysis, storage, retrieval, and segmentation of audio information
US59232529 Apr 199613 Jul 1999Marvel Corporation Pty LimitedAudio/visual marketing device and marketing system
US59530554 Mar 199714 Sep 1999Ncr CorporationSystem and method for detecting and analyzing a queue
US597373219 Feb 199726 Oct 1999Guthrie; Thomas C.Object tracking system for monitoring a controlled space
US598306922 Mar 19969 Nov 1999Stv Asia Ltd.Point of purchase video distribution system
US600549011 Jul 199721 Dec 1999Kabushiki Kaisha ToshibaBidirectional remote control apparatus
US609804812 Aug 19981 Aug 2000Vnu Marketing Information Services, Inc.Automated data collection for consumer driving-activity survey
US615741913 Dec 19965 Dec 2000Canon Kabushiki KaishaProjector
US625252225 May 199926 Jun 2001Solana Technology Development CorporationBillboard consumption measurement system
US629509230 Jul 199825 Sep 2001Cbs CorporationSystem for analyzing television programs
US63817482 May 199730 Apr 2002Gte Main Street IncorporatedApparatus and methods for network access using a set top box and television
US64053709 Oct 199811 Jun 2002Adcom Information Services, Inc.Television audience monitoring system and method employing tuner interface of set-top converter box
US64669717 May 199915 Oct 2002Samsung Electronics Co., Ltd.Method and system for device to device command and control in a network
US646708923 Dec 199715 Oct 2002Nielsen Media Research, Inc.Audience measurement system incorporating a mobile handset
US648078317 Mar 200012 Nov 2002Makor Issues And Rights Ltd.Real time vehicle guidance and forecasting system under traffic jam conditions
US653008230 Apr 19984 Mar 2003Wink Communications, Inc.Configurable monitoring of program viewership and usage of interactive applications
US65464197 May 19998 Apr 2003Richard HumplemanMethod and apparatus for user and device command and control in a network
US662902928 Mar 200130 Sep 2003Jacqueline A GilesMulti-purpose plug-in monitor for vehicles
US663020315 Jun 20017 Oct 2003Nanopierce Technologies, Inc.Electroless process for the preparation of particle enhanced electric contact surfaces
US66475486 Sep 199611 Nov 2003Nielsen Media Research, Inc.Coded/non-coded program audience measurement system
US669710413 Jan 200024 Feb 2004Countwise, LlcVideo based system and method for detecting and counting persons traversing an area being monitored
US67721294 Sep 20023 Aug 2004Planning Power Service, Inc.System and method for determining the effectiveness and efficiency of advertising media
US685390419 Feb 20038 Feb 2005Hitachi, Ltd.Navigation system
US690446119 Oct 20007 Jun 2005Unitel Technologies, Inc.Method for making time-sensitive determinations of traffic intensity for a visitable site
US693450830 Nov 200123 Aug 2005Navigaug Inc.System and method for obtaining comprehensive vehicle radio listener statistics
US697013116 Oct 200329 Nov 2005Rdp Associates, IncorporatedSatellite positioning system enabled media measurement system and method
US703861911 Dec 20022 May 2006Rdp Associates, IncorporatedSatellite positioning system enabled media measurement system and method
US715533624 Mar 200426 Dec 2006A9.Com, Inc.System and method for automatically collecting images of objects at geographic locations and displaying same in online directories
US71768342 Mar 200613 Feb 2007Rdp Asociates, IncorporatedSatellite positioning system enabled media measurement system and method
US720983129 Dec 200324 Apr 2007United States Of America As Represented By The Secretary Of The NavyGPS collision avoidance apparatus
US721528018 Jul 20068 May 2007Rdpa, LlcSatellite positioning system enabled media exposure
US722207127 Sep 200222 May 2007Arbitron Inc.Audio data receipt/exposure measurement with code monitoring and signature extraction
US735968716 May 200515 Apr 2008Navigauge, Inc.System and method for obtaining comprehensive vehicle radio listener statistics
US7962315 *18 Mar 200514 Jun 2011Arbitron Inc.Gathering data concerning publication usage
US8245249 *9 Oct 200914 Aug 2012The Nielson Company (Us), LlcMethods and apparatus to adjust signature matching results for audience measurement
US85495523 Nov 20091 Oct 2013The Nielsen Company (Us), LlcMethods and apparatus to monitor media exposure in vehicles
US200100071497 Dec 20005 Jul 2001Gerard SmithAudience research system
US2001004962028 Feb 20016 Dec 2001Blasko John P.Privacy-protected targeting system
US20020010919 *12 Sep 200124 Jan 2002Nielsen Media Research, Inc.Audience measurement system for digital television
US2002001557411 Jul 20017 Feb 2002Taro SuitoBroadcast signal recording and playback apparatus and method as well as recording medium
US2002005608921 Dec 20019 May 2002Houston John S.Cooperative system for measuring electronic media
US2002009719323 Jan 200125 Jul 2002Freecar MediaSystem and method to increase the efficiency of outdoor advertising
US20020102908 *3 Jan 20021 Aug 2002Chan Albert Wai TaiInteractive toy vehicle adapted to hold doll or character
US2002012936026 Dec 200112 Sep 2002Lg Electronics Inc.Apparatus and method for calculating audience rating using interactive television
US200201334126 Mar 199819 Sep 2002David M. OliverSystem for management of transactions on networks
US2002019876218 Jun 200126 Dec 2002Paul DonatoPrompting of audience member identification
US200300054337 Mar 20022 Jan 2003Janik Craig M.System and method for determining information related to broadcast content
US2003001897725 Sep 200123 Jan 2003Mckenna Thomas P.System and method for sharing television program information between entertainment devices
US200300411413 Oct 200227 Feb 2003Abdelaziz Mohamed M.Peer-to-peer presence detection
US20030045955 *1 Sep 20016 Mar 2003Janik Craig M.Audio converter device and method for using the same
US2003012270811 Dec 20023 Jul 2003Rdp AssociatesSatellite positioning system enabled media measurement system and method
US200301313508 Jan 200210 Jul 2003Peiffer John C.Method and apparatus for identifying a digital audio signal
US2003013341210 Jan 200217 Jul 2003Iyer Arvind B.VLAN to MPLS mapping: method to establish end-to-end traffic path spanning enterprise local area networks and a global network
US2003017748812 Mar 200218 Sep 2003Smith Geoff S.Systems and methods for media audience measurement
US2004001227218 Jul 200222 Jan 2004Martin HouleLiquid cooling arrangement for electric machines
US20040027271 *15 Jul 200312 Feb 2004Schuster Paul R.Radio frequency proximity detection and identification system and method
US2004008045216 Oct 200329 Apr 2004Rdp Associates, IncorporatedSatellite positioning system enabled media measurement system and method
US2004011051520 Aug 200310 Jun 2004Blumberg Brad W.System and method for providing information based on geographic position
US2004013348026 Sep 20038 Jul 2004Domes Ronald J.Targeted promotional method & system
US2005003585713 Aug 200317 Feb 2005Zhang Jack K.Universal display exposure monitor using personal locator service
US2005014463221 Oct 200430 Jun 2005Nielsen Media Research, Inc.Methods and apparatus to collect audience information associated with a media presentation
US2005014939813 Dec 20047 Jul 2005Mckay Brent T.Media targeting system and method
US2005024378429 Mar 20053 Nov 2005Joan FitzgeraldMethods and systems for gathering market research data inside and outside commercial establishments
US200600531102 Sep 20059 Mar 2006Arbitron Inc.Out-of-home advertising inventory ratings methods and systems
US2006020894629 Sep 200321 Sep 2006Bailey Jenny ASystem and method for global positioning system repeater
US2007001104017 Apr 200611 Jan 2007Wright David HPortable multi-purpose audience measurement system
US20070242839 *13 Apr 200618 Oct 2007Stanley KimRemote wireless microphone system for a video camera
US20070249216 *8 Jan 200725 Oct 2007Tang Yang Dies Co., Ltd.Multi-accessory adaptor for a vehicle
US200702578166 Apr 20068 Nov 2007International Business Machines CorporationDetermining billboard refresh rate based on traffic flow
US20080012406 *30 Aug 200717 Jan 2008Mattel, Inc.Entertainment Device with Mode Indicator
US2008014047923 Oct 200712 Jun 2008Brian Scott MelloMethods and apparatus to monitor consumer behavior associated with location-based web services
US20090076637 *31 Jul 200819 Mar 2009Denso CorporationVehicular music replay system
US2009007757811 Sep 200819 Mar 2009Anonymous Media, LlcMedia usage monitoring and measurement system and method
US20090082890 *24 Sep 200826 Mar 2009Griffin Jr Paul PWireless audio adapter
US20090089065 *30 Sep 20082 Apr 2009Markus BuckAdjusting or setting vehicle elements through speech control
US20090132072 *8 Jun 200621 May 2009Angus ClarkMedia Player
US20090180638 *11 Jan 200816 Jul 2009David HsuMethod and system for wireless headset instant on capability during battery charging
US20100074239 *23 Sep 200925 Mar 2010Joseph BornWireless Detector and Adapter
US20100312369 *9 Jun 20099 Dec 2010Microsoft CorporationAdaptive playlist onboard a vehicle
US201101035953 Nov 20095 May 2011Arun RamaswamyMethods and apparatus to monitor media exposure in vehicles
USRE4578624 Apr 201427 Oct 2015The Nielsen Company (Us), LlcMethods and apparatus to monitor media exposure in vehicles
AU699910B2 Title not available
AU2852197A Title not available
EP0275328B131 Jul 198713 Sep 1995Video Research LtdApparatus for collecting tv channel data and market research data
EP0425347B118 Oct 199022 Mar 1995AdventurePortable electronic device for making a public loyal to a media or similar
EP0697773B126 Jun 199511 Sep 2002Fleetwood Group, Inc.Audience response system and data transfer protocol
EP0713335A26 Nov 199522 May 1996AT&T Corp.System and method for wireless capture of encoded data transmitted with a television, video or audio signal and subsequent initiation of a transaction using such data
EP0813716B14 Mar 199614 May 2003March Networks CorporationAutomatic broadcast monitoring system
EP1213860B117 Oct 199423 Apr 2008Nielsen Media Research, Inc.Audience measurement system
WO1998010539A315 Aug 19974 Jun 1998Nielsen Media Res IncCoded/non-coded program audience measurement system
WO2003095945A221 Apr 200320 Nov 2003Nielsen Media Research, Inc.Methods and apparatus to collect audience information associated with a media presentation
WO2005019853A328 Jul 20045 Jan 2006Arbitron IncUniversal display exposure monitor using personal locator service
WO2006015188A329 Jul 200524 Jan 2008James W BakerMethods and apparatus for improving the accuracy and reach of electronic media exposure measurement systems
WO2006015339A329 Jul 200518 May 2006James W BakerMethods and apparatus for improving the accuracy and reach of electronic media exposure measurement systems
WO2006058274A229 Nov 20051 Jun 2006Arbitron Inc.Systems and processes for use in media and/or market research
Non-Patent Citations
Reference
1Clark, "Shopping with detectives: customer tracking takes the mystery out of store design (The Digital Store)," Display & Design Ideas, May 2002 (v 14, n 5, p. 48(1)), 2 pages.
2Li et al., "The Research of Applying Wireless Sensor Networks to Intelligent Transportation System (ITS) Based on IEEE 802.15.4," 2006 6th International Conference on ITS Telecommunications Proceedings, 4 pages.
3Robinson, Phillip, Global positioning helps keeps travelers on course, Knight Ridder/Tribune News Service, Jun. 1997, 3 pages.
4Roy Want, Kenneth P. Fishkin, Anuj Gujar, Beverly L. Harrison, "Bridging Physical and Virtual Worlds with Electronic Tags," ACM CHI '99, Pittsburgh, PA, May 15-20, 1999. ACM Press. Retrieved from http://citeseer.ist.psu.edu/352441.html.
5United States Patent and Trademark Office, "Advisory Action," issued in connection with U.S. Appl. No. 14/260,890, Jun. 12, 2015, 5 pages.
6United States Patent and Trademark Office, "Final Office Action," issued in connection with U.S. Appl. No. 12/611,757, Sep. 26, 2012, 17 pages.
7United States Patent and Trademark Office, "Final Office Action," issued in connection with U.S. Appl. No. 14/260,890, Mar. 30, 2015, 12 pages.
8United States Patent and Trademark Office, "Non-Final Office Action," issued in connection with U.S. Appl. No. 12/611,757, Feb. 10, 2012, 25 pages.
9United States Patent and Trademark Office, "Non-Final Office Action," issued in connection with U.S. Appl. No. 14/260,890, Oct. 28, 2014, 14 pages.
10United States Patent and Trademark Office, "Notice of Allowability," issued in connection with U.S. Appl. No. 12/611,757, Aug. 15, 2013, 4 pages.
11United States Patent and Trademark Office, "Notice of Allowance," issued in connection with U.S. Appl. No. 12/611,757, May 30, 2013, 10 pages.
12United States Patent and Trademark Office, "Notice of Allowance," issued in connection with U.S. Appl. No. 14/260,890, Jul. 8, 2015, 14 pages.
13Want et al., "Bridging Physical and Virtual Worlds with Electronic Tags," ACM CHI '99, Pittsburgh, PA, Apr. 1999, 8 pages.
Classifications
International ClassificationH04R29/00, H04N7/16
Cooperative ClassificationH04R2499/13, H04R29/00
Legal Events
DateCodeEventDescription
15 Jan 2016ASAssignment
Owner name: THE NIELSEN COMPANY (US), LLC, ILLINOIS
Free format text: MERGER;ASSIGNOR:NIELSEN MEDIA RESEARCH, LLC;REEL/FRAME:037498/0509
Effective date: 20081001
Owner name: NIELSEN MEDIA RESEARCH, LLC, NEW YORK
Free format text: CHANGE OF NAME;ASSIGNOR:NIELSEN MEDIA RESEARCH, INC.;REEL/FRAME:037542/0616
Effective date: 20081001
Owner name: NIELSEN MEDIA RESEARCH, INC., NEW YORK
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LUFF, ROBERT A.;REEL/FRAME:037542/0606
Effective date: 20020321
Owner name: THE NIELSEN COMPANY (US), LLC, ILLINOIS
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RAMASWAMY, ARUN;MARTENSEN, FRED;SHIRILLA, KENDALL;REEL/FRAME:037542/0602
Effective date: 20091027
3 Apr 2017FPAYFee payment
Year of fee payment: 4