Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUSRE46007 E1
Publication typeGrant
Application numberUS 14/628,972
Publication date24 May 2016
Filing date23 Feb 2015
Priority date30 Sep 2004
Fee statusPaid
Also published asCA2579707A1, DE602005019444D1, EP1804642A1, EP1804642B1, US7479106, US8435172, US20060069306, US20090306476, WO2006039248A1
Publication number14628972, 628972, US RE46007 E1, US RE46007E1, US-E1-RE46007, USRE46007 E1, USRE46007E1
InventorsMichael S. Banik, Lucien Alfred Couvillon, Anh Nguyen, William H. Stahley
Original AssigneeBoston Scientific Scimed, Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Automated control of irrigation and aspiration in a single-use endoscope
US RE46007 E1
Abstract
The present invention is an integrated and automated irrigation and aspiration system for use in an endoscopic imaging system. The system provides for the automated cleaning of poorly prepared patients during a colonoscopy procedure as well as automated cleaning of an imaging system of an endoscope. The invention analyzes images obtained from an image sensor to detect the presence of an obstructed field of view, whereupon a wash routine is initiated to remove the obstruction. The wash routine may be adjusted in accordance with environmental conditions within the patient that are sensed by one or more sensors within the endoscope. In another embodiment, insufflation is automatically controlled to inflate a patient's colon as a function of one or more sensor readings obtained from one or more environmental sensor(s) on the endoscope.
Images(5)
Previous page
Next page
Claims(23)
The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. A system for automatically controlling the delivery of insufflation gas gas or liquid to a patient, the system comprising:
a control cabinet including a processor and one or more valves configured to control the delivery of insufflation gas or liquid to a the patient; and
an endoscope removably connected to the control cabinet and elongate member including a pressure sensor and an image sensor at or adjacent a distal end of the endoscope elongate member;
wherein the processor is configured to obtain an image signals signal from the image sensor and a pressure readings reading from the pressure sensor and automatically control insufflation gas or liquid delivered to the patient as a function of the image signals signal and the pressure readings reading.
2. The system of claim 1, wherein the delivery of insufflation gas is controlled to maintain a predefined field of view in the image signals signal produced by the image sensor.
3. The system of claim 1, further comprising a sensor configured to determine a size of an inflated body cavity, and wherein the processor is configured to control the delivery of insufflation gas to maintain a predetermined inflated cavity size.
4. The system of claim 1, wherein the processor is configured to control the delivery of insufflation gas to maintain a predetermined pressure in a body cavity.
5. The system of claim 1, further comprising a sensor configured to detect a thickness of a tissue wall surrounding the endoscope elongate member, and wherein the processor is configured to control the delivery of insufflation gas as a function of the wall thickness detected.
6. The system of claim 1, wherein the endoscope is dispensable.
7. A system for automatically controlling the delivery of insufflation gas fluid, the system comprising:
a control cabinet unit including a processor and at least one valve configured to control the delivery of insufflation gas fluid; and
an endoscope removably connected to the control cabinet unit and including a pressure sensor and an image sensor at or adjacent a distal end of the endoscope;
wherein the processor is configured to receive an image signals signal from the image sensor and a pressure readings reading from the pressure sensor and automatically control the delivery of insufflation gas fluid as a function of the image signals signal and the pressure readings by controlling actuation of the at least one valve reading.
8. The system of claim 7, wherein the processor is configured to control the delivery of insufflation gas fluid to maintain a predefined view produced by the image sensor.
9. The system of claim 7, wherein the processor is configured to control the delivery of insufflation gas fluid to maintain a predetermined pressure in the body cavity and to maintain a predefined view produced by the image sensor.
10. The system of claim 7, wherein the control cabinet unit includes a manifold configured to supply insufflation at least one of gas, a liquid, and aspiration to the endoscope.
11. The system of claim 10, wherein the further including at least one valve that is configured to control the supply of insufflation at least one of gas, the liquid, and aspiration from the manifold.
12. The system of claim 11, wherein the endoscope is removably coupled to the manifold.
13. A system for automatically controlling the delivery of insufflation gas or liquid, the system comprising:
a control cabinet unit including a processor and at least one valve configured to control the delivery of insufflation gas or liquid; and
an endoscope removably connected to the control cabinet unit and including a pressure sensor configured to determine a pressure in a body cavity and an image sensor;
wherein the processor is configured to receive an image signals signal from the image sensor and a pressure readings reading from the pressure sensor and automatically control the delivery of insufflation gas or liquid as a function of the image signals signal and the pressure readings reading to maintain a predetermined pressure in the body cavity by controlling actuation of the at least one valve.
14. The system of claim 13, wherein the processor is configured to control the delivery of insufflation gas or liquid to maintain the predetermined pressure in the body cavity and to maintain a predefined view produced by the image sensor.
15. The system of claim 13, wherein the control cabinet unit includes a manifold configured to supply insufflation gas, a liquid, and aspiration to the endoscope.
16. The system of claim 15, wherein the at least one valve is configured to control the supply of insufflation gas, the liquid, and aspiration from the manifold, wherein the endoscope is removably coupled to the manifold.
17. The system of claim 16, wherein the endoscope is removably coupled to the manifold.
18. The system of claim 1, wherein the elongate member is an endoscope.
19. The system of claim 18, wherein a control cabinet includes the processor and one or more valves configured to control the delivery of gas or liquid to the patient, and wherein the endoscope is removably connected to the control cabinet.
20. The system of claim 19, wherein the processor is configured to obtain image signals from the image sensor and pressure readings from the pressure sensor and automatically control gas or liquid delivered to the patient as a function of the image signals and the pressure readings.
21. The system of claim 7, wherein the control unit is a control cabinet that further includes at least one valve, and the processor is configured to control the delivery of fluid by controlling actuation of the at least one valve.
22. The system of claim 21, wherein the processor is configured to receive image signals from the image sensor and pressure readings from the pressure sensor and automatically control fluid delivered to the patient as a function of the image signals and the pressure readings.
23. The system of claim 13, wherein the control unit is a control cabinet, and wherein the processor is configured to obtain image signals from the image sensor and pressure readings from the pressure sensor and automatically control gas or liquid delivered to the patient as a function of the image signals and the pressure readings.
Description
CROSS-REFERENCE TO RELATED APPLICATION

This application is a reissue application of U.S. Pat. No. 8,435,172, which issued from U.S. patent application Ser. No. 12/330,470, filed Dec. 8, 2008, which is a continuation of U.S. patent application Ser. No. 10/955,901, filed Sep. 30, 2004, now U.S. Pat. No. 7,479,106, the disclosure of which is expressly incorporated herein by reference.

FIELD OF THE INVENTION

The present invention relates to an endoscope system. In particular, it relates to an integrated and automated irrigation and aspiration system for use in an endoscope system.

BACKGROUND OF THE INVENTION

Endoscopes have been used for many years in the medical field to look within a selected region of a patient's body or to perform surgical, therapeutic, diagnostic, or other medical procedures under direct visualization. A conventional endoscope generally contains several components including illuminating means such as light-emitting diodes or fiber optic light guides connected to a proximal source of light, an imaging means such as a miniature video camera or a fiber optic image guide, and a working channel. These components are positioned within an endoscope sheathing tube. Flexible or steerable endoscopes also incorporate an elongated flexible shaft and an articulating distal tip to facilitate navigation through the internal curvature of a body cavity or channel.

Colonoscopy is a medical procedure in which a flexible endoscope, or colonoscope, is inserted into a patient's colon for diagnostic examination and/or surgical treatment of the colon. A standard colonoscope is typically 135-185 cm in length and 12-13 mm in diameter. Colonoscopes generally include a fiber optic imaging bundle, illumination fibers, one or two instrument channels that may also be used for insufflation or irrigation, and a suction channel that extends the length of the colonoscope to facilitate removal of occlusions such as mucus, plaque, fecal matter, or other material that can obstruct the physician's view or interfere with the endoscopic procedure. The colonoscope is inserted via the patient's anus and is advanced through the colon, allowing direct visual examination of the colon, the ileocecal valve, and portions of the terminal ileum. Approximately six million colonoscopies are performed each year.

In order to examine a patient's anatomy during a colonoscopy, it is essential to have a clear field of view. Currently, about 20% of colon polyps are undetected due to low visibility, which can arise from inadequate lens cleaning. Poor colon preparation is also a cause of reduced visibility in the colon. Presently, about 10% of all patients are non-compliant with preparatory procedures and approximately 4% of all patients are unable to complete the exam due to an excess of stool in the colon. The remaining 6% of all cases are considered marginal, and the colonoscopy may still be performed if the colon is evacuated as a part of the procedure. Conventionally, the colons of marginal cases are cleared by repeatedly administering several small (60 cc) fluid flushes through an endoscope's working channel by means of an ancillary apparatus that employs a low-volume wash and suction. The waste is then removed through the suction channel in the endoscope. However, this tedious and inefficient process is limited by the amount of stool that can be removed with each flush. The process also causes a loss of productivity due to the added time required to evacuate the colon. Therefore, there is a need for a system and method of efficiently cleaning poorly prepared colons.

One example of a colon irrigation method for colonoscopy is described in U.S. Pat. No. 5,279,542, entitled “Colon Irrigation Method.” The '542 patent describes an irrigation instrument for use in evacuating the colon prior to endoscopic surgery. The instrument consists of an elongate tube with a plurality of longitudinally and circumferentially spaced apertures along its entire length. A pressurized source of irrigation fluid is connected to the tube for feeding fluid through the channel and out through the apertures with an essentially uniform radial distribution. The tube is thin enough to fit down the biopsy channel of an endoscope. The invention essentially provides an improved method for providing irrigating fluid to a distal end of an endoscope or to a surgical site.

Although the apparatus and method of the colon irrigation method described in the '542 patent provides a means of irrigation for colonoscopy and other endoscopic procedures, the device is an accessory to standard endoscopes that uses the working channel of the endoscope. As such, the apparatus requires labor-intensive assembly on an as-needed basis. Furthermore, it is up to the physician to determine the amount of cleaning that is required and to control the apparatus such that the patient is sufficiently prepped for an examination. This reduces the time that the physician has to perform the actual examination.

Given these problems, there is a need for a system that can automatically prepare poorly prepped patients for an endoscopic examination with minimal physician supervision. In addition, the system should operate based on the patient's individual physical anatomy and detected level of cleanliness so that a desired field of view is created in which an examination is conducted.

SUMMARY OF THE INVENTION

To address the foregoing deficiencies in the prior art, the present invention is an endoscopic system that provides automated irrigation and aspiration of patients undergoing colonoscopy. The endoscopic examination system according to the present invention includes an endoscope with a source of illuminative light and an image sensor to produce images of a patient's colon. An image processor is coupled to receive image signals from the image sensor. The image processor or a computer automatically analyzes the images obtained from the image sensor to determine if irrigation and aspiration is required to provide a clear field of view. If so, the computer operates one or more control valves that supply the insufflation, irrigation, and aspiration to the patient.

In one embodiment, the endoscope may include one or more sensors that sense environmental conditions within the patient's colon such that the amount, rate, or composition of the cleaning solution delivered can be adjusted to the patient's individual anatomy and level of preparation. In one embodiment, the level of insufflation and aspiration are automatically adjusted to provide a desired field of view in the region of the distal tip of the endoscope.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated as the same become better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:

FIG. 1 illustrates a single-use endoscopic imaging system in accordance with one embodiment of the present invention;

FIG. 2 is a functional block diagram that shows the interrelationship of the major components of a single-use endoscopic imaging system shown in FIG. 1;

FIG. 3 illustrates a distal end of a single-use imaging endoscope in accordance with an embodiment of the present invention; and

FIGS. 4A and 4B illustrate an imaging sensor and heat exchanger positioned at the distal end of the endoscope in accordance with an embodiment of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

As indicated above, the present invention is an endoscopic examination system that provides integrated and automated irrigation and aspiration for prepping poorly prepared patients for examination. The system is integral to the overall endoscope architecture. Further, the physical hardware implementation of the endoscope improves upon previous means of irrigation by the use of an automated mechanism that administers one or more colon irrigation modalities depending on an analysis of the patient's anatomy or level of preparation. Although the present invention is described with respect to its use within the colon, it will be appreciated that the invention can be used in any body cavity that can be expanded and/or prepared for examination or surgery.

FIG. 1 illustrates the major components of an exemplary single-use endoscopic imaging system 10. The components of the system 10 include a display 12, a user input device 16, and a single-use imaging endoscope 18, all of which are functionally connected to a control cabinet 14 that executes application software (not shown) residing therein. Display 12 is any special-purpose or conventional computer display device, such as a computer monitor, that outputs graphical images and/or text to a user. Single-use imaging endoscope 18 is a single-use flexible tube that contains one or more lumens for the purpose of performing endoscopic procedures and facilitating the insertion and extraction of fluids, gases, and/or medical devices into and out of the body. Single-use endoscope 18 further contains a digital imaging system (not shown) comprised of, in one example, an image sensor such as a CMOS imager, optical lenses such as plastic optics, a light source such as a number of LEDs, and an articulating tip that enables steering of the endoscope in a desired direction.

Control cabinet 14 is a special-purpose electronic and electromechanical apparatus that processes and manages all system functions, and includes a network-enabled image-processing CPU, a physical connection to the single-use endoscope 18, an optional dock for the user interface 16, and valves that control the delivery of gas/water to the endoscope and a vacuum line that removes the air/gas and debris, etc., from the patient. User input device 16 is a hand-held device, either wired to the control cabinet 14 or wireless, that accepts inputs from a human operator via standard push buttons, joysticks, or other activation devices either singularly or in combination to control the operation of single-use endoscopic imaging system 10.

Operation of single-use endoscopic imaging system 10 is as follows: the system is initiated and operated upon command by means of user input device 16, causing the application software executed by a processor within the control cabinet 14 to activate the appropriate hardware to perform surgical, therapeutic, diagnostic, or other medical procedures and to deliver insufflation and/or suction to the lumen(s) of single-use endoscope 18. Display 12 provides live endoscopic video images and visual feedback of control parameters to the physician or operator so that an examination of the patient can be completed. Upon termination of the examination, the endoscope 18 is disconnected from the control cabinet and disposed of.

FIG. 2 is a functional block diagram of single-use endoscopic imaging system 10 that shows the operational interrelationship of the major hardware and software elements of the system. A complete description of the control cabinet 14 and other components is set forth in U.S. patent application Ser. No. 10/811,781, filed Mar. 29, 2004, and U.S. patent application Ser. No. 10/956.007, entitled VIDEO ENDOSCOPE, filed concurrently herewith) and herein incorporated by reference. The single-use endoscopic imaging system 10 includes the control cabinet 14 that operates to control the orientation and functions of a single-use imaging endoscope 18. The control cabinet 14 includes a controller interface 106 that receives commands from the user input device 16 such as a joystick, that is used by a physician or their assistant to control the operation of the single-use endoscope 18. Commands from the joystick are supplied to a programmable processor such as a digital signal processor that controls the overall operation of the imaging system and a servo control unit 108. The processor and servo control unit 108 control the operation of a pair of servo motors 110, 112 that in turn drive control cables within the single-use endoscope 18. The orientation of the distal tip is controlled in response to directional signals received from the user input device as well as feedback signals obtained from sensors that measure the position and torque of each of the servo motors 110, 112.

In one embodiment of the invention, the processor and servo control unit 108 implement a position-to-rate control that varies the speed at which the distal tip is moved as a function of the position of the directional switch on the user input device 16. However, other control algorithms such as position-to-position or position-to-force (i.e., acceleration) could also be implemented.

The control cabinet 14 also includes an imaging board 114 that produces images from the signals that are received from the image sensor at the distal end of the single-use endoscope 18. The imaging board 114 deserializes the digital video signals from the CMOS imager sensor and performs the necessary algorithms such as demosaicing, gain control and white balance to produce a quality color image. The gain control of the system is implemented by adjusting the intensity of the illumination (current supplied to a number of LEDs) and adjusting the RGB gains of the CMOS imager. The imaging board 114 also includes isolation circuitry to prevent a patient from becoming shocked in the event of an electrical failure on the imaging board 114 or within the control cabinet 14 as well as circuitry for transmitting control signals to the image sensor and for receiving image signals from the image sensor. In one embodiment of the invention, the imaging board 114 is provided on a standard PC circuit board to allow individual endoscopes to be tested with a personal computer and without the need for an additional control cabinet 14.

In the embodiment shown in FIG. 2, the single-use endoscope 18 has a distal shaft portion 120 that is connected to a breakout box 122 with a swivel connection 124. The breakout box 122 provides access to a working channel in the distal portion of the endoscope. In addition, the proximal portion 126 of the shaft is connected to the breakout box 122 with a second swivel connection 128. The swivel connections 124, 128 allow the distal and proximal ends of the endoscope to rotate with respect to the breakout box 122 and without twisting the breakout box 122 in the hands of the physician or their assistant.

In the embodiment shown, the single-use endoscope 18 is connected to the control cabinet 14 with a connector 130. Within the connector 130 are a pair of spools 132, 134 that are engageable with the driveshafts of the servo motors 110, 112. Each spool 132, 134 drives a pair of control cables that are wound in opposite directions. One pair of control cables drives the distal tip of the endoscope in the up and down direction, while the other pair of control cables drives the distal tip of the endoscope in the left and right direction. In an alternate embodiment, the endoscope may include a manual handle having control knobs that selectively tension or release the control cables to move the distal tip and one or more buttons that activate functions of the endoscope.

The connector 130 also includes a manifold 140 that controls the supply of irrigation fluid, air and vacuum to various tubes or lumens within the endoscope 18. In addition, the connector 130 includes an electrical connector 142 that mates with the corresponding electrical connector on the control cabinet 14. The connector 142 transfers signals to and from the image sensor as well as power to the illumination LEDs and allows connection to a thermal sensor at the distal end of the endoscope. In addition, the connector 142 carries signals from one or more remotely located environmental sensors as will be described below. Water or another irrigation liquid is supplied to the endoscope with a pump 145. The pump 145 is preferably a peristaltic pump that moves the water though a flexible tube that extends into the proximal connector 130. Peristaltic pumps are preferred because the pump components do not need to come into contact with the water or other fluids within the endoscope and it allows the wetted component to be single-use. A water or other irrigation liquid reservoir 150 is connected to the pump 145 and supplies water to cool the illumination LEDs as well as to irrigate the patient. The water supplied to cool the LEDs is returned to the reservoir 150 in a closed loop. Waste water or other debris are removed from the patient with a vacuum line that empties into a collection bottle 160. Control of the vacuum to the collection bottle 160 is provided at the manifold 140 within the proximal connector 130. A gas source provides insufflation by delivering an inert gas such as carbon dioxide, nitrogen, air, etc., to the lumen(s) of single-use endoscope 18 via the manifold 140.

The processor and control unit 108 executes application software, including a GUI software application, a system control software application, and a network software application that reside on a computer readable medium such as a hard disc drive, CD-ROM, DVD, etc., or in a solid state memory. GUI software application is well known to those skilled in the art, and provides the physician or operator with live endoscopic video or still images and, optionally, with visual, audible, or haptic control and feedback on display 12 using user input device 16. System control software application is the central control program of application software that receives input from sensors, such as from the one or more environmental sensors at the distal end of the endoscope as described below, as well as from the input device 16. System control software application provides system control for the functions necessary to operate single-use endoscope system 10. The network software application operates a network connection to allow the endoscopic imaging system 10 to be connected to a local area network and/or the Internet.

As set forth in the 10/811,781 application, the manifold 140 supplies insufflation gas, water and vacuum to one or more lumens of single-use endoscope 18. The manifold is preferably constructed as a series of passages that are formed between sheets of a thermoplastic material. Water, air, and vacuum are applied to inputs of the manifold and selectively delivered to outputs that are in turn connected to lumens within the endoscope 18 by pinch valves on the control cabinet 14 that open or close the passages in the manifold. The passages are preferably formed by rf welding the sheets of thermoplastic into the desired pattern of the passages.

In accordance with FIG. 2, the basic process of insufflation and exsufflation using single-use endoscopic imaging system 10 is as follows:

During operation, live endoscopic video images are provided on display 12 by the GUI software application, which processes information from the imaging board 114, and the single-use endoscope 18. Prior to operation, insufflation is initiated upon operator command by means of the user input device 16, or according to a pre-programmed routine. As a result, system control software application activates the manifold 140 by means of the pinch valves on the control cabinet 14. Upon advancing single-use endoscope 18, images are produced by the image sensor at the distal tip of the endoscope and analyzed by the image processor 114 and/or the processor and servo control unit 108 to determine if either irrigation or insufflation is required. If insufflation is required, an insufflation gas is channeled through a lumen of single-use endoscope 18 and into the patient. In one embodiment of the invention, the gas delivery lumen terminates at directional port 256, that directs the insufflation gas and/or irrigation liquid over a lens 270 of the imaging sensor, as shown in FIG. 3. As the distal tip of single-use endoscope 18 is advanced into the colon during the endoscopic procedure, further areas of the colon are insufflated, bringing new examination regions into view.

As shown in FIG. 3, the distal end of the single-use endoscope 18 includes a distal cap 250 having a number of openings on its front face. The openings include an opening to a working channel 252 and an opening 254 for a low pressure lavage lumen, whereby a stream of liquid can be delivered through the endoscope to remove debris or obstructions from the patient. A lens wash and insufflation port includes the integrated directional port or flush cap 256 that directs water across the lens of an image sensor and delivers the insufflation gas to expand the lumen in which the endoscope is inserted. Offset from the longitudinal axis of the endoscope is a lens port 258 that is surrounded by a pair of windows or lenses 260 and 262 that cover the illumination sources. One or more environmental sensors 245 are also disposed on or adjacent the front face of the distal cap 250 to detect environmental conditions within the body cavity of the patient. Signals from the one or more environmental sensors are transmitted back to the processor and servo control unit 108 through the electrical connector 142. Suitable environmental sensors 245 include, but are not limited to, pressure, temperature, pH sensors to measure conditions in the patient adjacent the distal tip. In addition, sensors such as laser distance sensor or ultrasonic probes can be used to measure the size of the area or thickness of the colon wall surrounding the endoscope.

As best shown in FIG. 4A, the imaging assembly at the distal end of the endoscope also includes a heat exchanger 280. The heat exchanger 280 comprises a semi-circular section having a concave recess 282 into which a cylindrical lens assembly 270 is fitted. The concave recess 282 holds the position of the lens assembly 270 in directions perpendicular to the longitudinal axis of endoscope, thereby only permitting the lens assembly 270 to move along the longitudinal axis of the endoscope. Once the lens assembly is positioned such that it is focused on an image sensor 290 that is secured to a rear surface of the heat exchanger 280, the lens assembly is fixed in the heat exchanger with an adhesive. A pair of LEDs 282, 284 are bonded to a circuit board that is affixed in the heat exchanger such that a channel is formed behind the circuit board for the passage of a fluid or gas to cool the LEDs. A circuit board or flex circuit 292 containing circuitry to transmit and receive signals to and from the control cabinet is secured behind the image sensor 290 and to the rear surface of the heat exchanger 280. With the lens assembly 270, the LEDs 280, 282, the image sensor 290, and associated circuitry 292 secured in the heat exchanger 280, the heat exchanger assembly can be fitted within the distal cap 250 to complete the imaging assembly.

As discussed, the images obtained from the image sensor are analyzed by an image analysis program to determine when cleaning of the imaging system or the colon itself is desired. In addition, measurements of the colon cavity obtained from the one or more environmental sensors may be combined with image information as analyzed by the image analysis program to control the supply of irrigation and aspiration when a cleaning cycle is required.

The basic process of irrigation and aspiration for the purpose of prepping a poorly prepared patient during a colonoscopy procedure using the endoscopic imaging system 100 is as follows.

The GUI software application displays the live video or still images produced by the imaging board 114 on the display 110. In addition, an image analysis program that is executed by a processor on the imaging board 114 or the processor and servo control unit 108 analyzes the image signals to determine if it is necessary to employ a wash routine in the patient or to clean the lens of the endoscope 18. If the image analysis program determines that a lens cleaning or wash routine should be initiated, the control software application activates one or more valves controlling the manifold to deliver an irrigation liquid and vacuum aspiration to the endoscope. The modality of the washing routine supplied can be determined based on an analysis of the images produced as well as volumetric, environmental or other measurements obtained by the one or more environmental sensors 245 at the distal end of the endoscope.

To determine if the field of view of the single-use endoscope 18 is clear or obstructed, the image analysis program analyzes images of the patient's body for the presence of obstructing matter within the area of view or on the surface of imaging optics. For example, the image analysis program determines if the position of an obstruction changes with a change in probe position. If an obstruction remains in the same place within an image despite moving the endoscope, then the system control software initiates a blast of cleaning solution over the surface of the imaging lens. However, if the image appears to indicate that the patient has not been properly prepped, then the system control software proceeds to initiate one or more cleaning or washing routines.

In one embodiment of the invention, the presence of obstructing material in the field of view is detected by the image analysis program on the basis of the color or spectral reflectance of the tissue being observed. Healthy colon tissue is typically characterized by white or pinkish tissue. Therefore, the image analysis program searches an image to determine the number of pixels in the image that display the desired tissue color. If the image contains too many dark or other colored pixels, the presence of obstructing material is presumed. Of course, it will be appreciated that the color of healthy, clean tissue can vary from patient to patient. Therefore, the physician may be prompted to direct the probe at a known portion of healthy, clean tissue to calibrate the image analysis program prior to beginning the colonoscopy.

In performing the washing routine, the system control software may take into consideration measurements obtained from the one or more environmental sensors 245 included in the single-use endoscope 18. For example, measurements of the size of the colon cavity, thickness of the colon wall, pressure within the colon, or other factors such as temperature, pH, etc. can be obtained from the one or more environmental sensors 245 and used to adjust the volume or rate of delivery and/or aspiration of liquid supplied or the composition of the washing liquid can be adjusted based on the measurements obtained. Similarly, the environmental sensor 245 positioned along the length of the endoscope can measure the depth of insertion of the distal tip of the endoscope.

With the endoscopic imaging system 10, any obstructions that interfere with the endoscopic procedure are automatically detected. Washing or lens cleaning routines are initiated upon command by the system control software or may be initiated by an operator command received via user interface 16. Wash routines may include, for example, a continuous spray, a pulsating jet, and a large bolus wash. Sequential mixtures of fluids or gases can be augmented with aeration and/or additives. Additives are added into the irrigant solution, either singularly or in combination, upon operator command using user interface 16 or as directed by preprogrammed wash routines or based on an analysis of signals produced from the image sensor and/or the one or more environmental sensors 245. New wash routines may be downloaded through network connection by means of network software application. Alternatively, a user may also manually define new irrigant mixes and/or wash routines by recording a series of operator commands on user interface 16.

After irrigation, the resulting maceration is aspirated under control of the system control software application, which activates the manifold 140. The manifold 140 applies vacuum through a working or aspiration channel of the single-use endoscope 18. At any time, the physician or their assistant may manually interrupt the wash routine or aspiration.

The endoscopic imaging system of the present invention also determines if the body cavity is properly inflated. Such a determination is made by measuring the pressure and/or analyzing images obtained from the image sensor. If the body cavity is not properly inflated, insufflation gas is delivered to the patient in a manner that is adjusted for environmental conditions in the patient. As with the washing mode, the insufflation gas can be delivered in accordance with the detected pressure in the body cavity, the size of the cavity, or until the image signals produced by the image sensor indicate that the colon is inflated to produce a desired field of view. Furthermore, the insufflation gas can be adjusted in accordance with the sensed thickness of the colon wall or other parameters that assure that insufflation gas is not delivered too quickly so as to cause discomfort or potential injury to the patient. By automatically controlling the insufflation of the colon at the region of the distal tip a desired field of view is provided and inadvertent collapse of the colon is prevented. Furthermore, the physician can concentrate on performing the procedure without having to manually control insufflation.

As will be appreciated, the automated irrigation and aspiration features of the present invention reduce the need for the physician to actively control the preparation of poorly prepared patients for examination. Because obstructions and poor fields of view are automatically detected and cleared, the physician can concentrate on performing the required procedure. Furthermore, the evacuation wash routines may be tailored to a patient's individual condition as detected by the image analysis program and one or more sensors 122.

While the preferred embodiment of the invention has been illustrated and described, it will be appreciated that various changes can be made therein without departing from the scope of the invention. For example, although the present invention is described with respect to single use, disposable endoscopes, it will be appreciated that the present invention is also applicable to non-disposable, reusable endoscopes as well. It is therefore intended that the scope of the invention be determined from the following claims and equivalents thereof.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US326605919 Jun 196316 Aug 1966North American Aviation IncPrestressed flexible joint for mechanical arms and the like
US347087628 Sep 19667 Oct 1969John BarchilonDirigible catheter
US357232525 Oct 196823 Mar 1971Us Health Education & WelfareFlexible endoscope having fluid conduits and control
US358173812 Nov 19681 Jun 1971Welch Allyn IncDisposable illuminating endoscope and method of manufacture
US410821121 Apr 197622 Aug 1978Fuji Photo Optical Co., Ltd.Articulated, four-way bendable tube structure
US42865857 Dec 19791 Sep 1981Olympus Optical Co., Ltd.Bend angle control for endoscope
US429416223 Jul 197913 Oct 1981United Technologies CorporationForce feel actuator fault detection with directional threshold
US431113416 May 197919 Jan 1982Olympus Optical Co., Ltd.Fluid feeding device for an endoscope
US431530925 Jun 19799 Feb 1982Coli Robert DIntegrated medical test data storage and retrieval system
US435132310 Oct 198028 Sep 1982Kabushiki Kaisha Medos KenkyushoCurvable pipe assembly in endoscope
US442511321 Jun 198210 Jan 1984Baxter Travenol Laboratories, Inc.Flow control mechanism for a plasmaspheresis assembly or the like
US44323495 Oct 198121 Feb 1984Fuji Photo Optical Co., Ltd.Articulated tube structure for use in an endoscope
US447176622 May 197918 Sep 1984Inbae YoonRing applicator with an endoscope
US447384127 Sep 198225 Sep 1984Fuji Photo Film Co., Ltd.Video signal transmission system for endoscope using solid state image sensor
US44880393 Sep 198211 Dec 1984Fuji Photo Film Co., Ltd.Imaging system having vari-focal lens for use in endoscope
US449186529 Sep 19821 Jan 1985Welch Allyn, Inc.Image sensor assembly
US44935374 Nov 198215 Jan 1985Olympus Optical Co., Ltd.Objective lens system for endoscopes
US449513416 Nov 198222 Jan 1985Kabushiki Kaisha Medos KenkyushoMethod for manufacturing a flexible tube for an endoscope
US449989514 Oct 198219 Feb 1985Olympus Optical Co., Ltd.Endoscope system with an electric bending mechanism
US45038422 Nov 198212 Mar 1985Olympus Optical Co., Ltd.Endoscope apparatus with electric deflection mechanism
US451323524 Jan 198323 Apr 1985British Aerospace Public Limited CompanyControl apparatus
US451544430 Jun 19837 May 1985Dyonics, Inc.Optical system
US451606324 Jan 19837 May 1985British Aerospace Public Limited CompanyControl apparatus
US451939128 Sep 198228 May 1985Fuji Photo Film Co., Ltd.Endoscope with signal transmission system and method of operating same
US455213024 Feb 198412 Nov 1985Olympus Optical Co., Ltd.Air and liquid supplying device for endoscopes
US455992815 Feb 198524 Dec 1985Olympus Optical Co., Ltd.Endoscope apparatus with motor-driven bending mechanism
US45664372 May 198428 Jan 1986Olympus Optical Co., Ltd.Endoscope
US45734502 Nov 19844 Mar 1986Fuji Photo Optical Co., Ltd.Endoscope
US458021017 Apr 19841 Apr 1986Saab-Scania AktiebolagControl system having variably biased manipulatable unit
US458692325 Jun 19846 May 1986Cordis CorporationCurving tip catheter
US461533029 Aug 19847 Oct 1986Olympus Optical Co., Ltd.Noise suppressor for electronic endoscope
US461663016 Aug 198514 Oct 1986Fuji Photo Optical Co., Ltd.Endoscope with an obtusely angled connecting section
US461791523 Apr 198521 Oct 1986Fuji Photo Optical Co., Ltd.Construction of manual control section of endoscope
US46188844 Sep 198421 Oct 1986Olympus Optical Co., Ltd.Image pickup and observation equipment for endoscope
US462161827 Feb 198511 Nov 1986Olympus Optical Company, Ltd.Dual viewing and control apparatus for endoscope
US46225845 Sep 198411 Nov 1986Olympus Optical Co., Ltd.Automatic dimmer for endoscope
US462571416 Aug 19852 Dec 1986Fuji Photo Optical Co., Ltd.Endoscope having a control for image stand still and photographing the image
US463158216 Aug 198523 Dec 1986Olympus Optical Co., Ltd.Endoscope using solid state image pick-up device
US463330330 Aug 198530 Dec 1986Olympus Optical Co., Ltd.Two-dimensional bandwidth compensating circuit for an endoscope using a solid state image pick-up device
US463330427 Aug 198430 Dec 1986Olympus Optical Co., Ltd.Endoscope assembly
US464317027 Nov 198517 Feb 1987Olympus Optical Co., Ltd.Endoscope apparatus
US464672319 Aug 19853 Mar 1987Fuji Photo Optical Co., Ltd.Construction of a forward end portion of an endoscope using a heat conductive material
US46499042 Jan 198617 Mar 1987Welch Allyn, Inc.Biopsy seal
US465120223 Apr 198517 Mar 1987Fuji Photo Optical Co., Ltd.Video endoscope system
US465209316 Nov 198324 Mar 1987Gwyndann Group LimitedOptical instruments
US465291612 Oct 198424 Mar 1987Omron Tateisi Electronics Co.Image pick-up device
US465470130 Aug 198531 Mar 1987Olympus Optical Co., Ltd.Biopsy information recording apparatus for endoscope
US466272512 Feb 19855 May 1987Olympous Optical Co., Ltd.Objective lens system for endoscopes
US466365729 Aug 19845 May 1987Olympus Optical Company, Ltd.Image pickup apparatus for endoscopes
US466765516 Jan 198626 May 1987Olympus Optical Co., Ltd.Endoscope apparatus
US467484424 Jul 198523 Jun 1987Olympus Optical Co., Ltd.Objective lens system for an endscope
US46869635 Mar 198618 Aug 1987Circon CorporationTorsion resistant vertebrated probe of simple construction
US469721016 Aug 198529 Sep 1987Fuji Photo Optical Co., Ltd.Endoscope for displaying a normal image
US47006939 Dec 198520 Oct 1987Welch Allyn, Inc.Endoscope steering section
US471407510 Feb 198622 Dec 1987Welch Allyn, Inc.Biopsy channel for endoscope
US471645724 Feb 198729 Dec 1987Kabushiki Kaisha ToshibaElectronic endoscopic system
US47195081 Oct 198612 Jan 1988Olympus Optical Co., Ltd.Endoscopic photographing apparatus
US472741711 May 198723 Feb 1988Olympus Optical Co., Ltd.Endoscope video apparatus
US472741820 Jun 198623 Feb 1988Olympus Optical Co., Ltd.Image processing apparatus
US47454703 Apr 198717 May 1988Olympus Optical Co., Ltd.Endoscope using a chip carrier type solid state imaging device
US474547112 May 198717 May 1988Olympus Optical Co., Ltd.Solid-state imaging apparatus and endoscope
US47469745 Feb 198724 May 1988Kabushiki Kaisha ToshibaEndoscopic apparatus
US474897014 May 19877 Jun 1988Olympus Optical Co., Ltd.Endoscope systems
US475502919 May 19875 Jul 1988Olympus Optical Co., Ltd.Objective for an endoscope
US476211928 Jul 19879 Aug 1988Welch Allyn, Inc.Self-adjusting steering mechanism for borescope or endoscope
US476531229 Jul 198723 Aug 1988Olympus Optical Co., Ltd.Endoscope
US476648930 Jul 198723 Aug 1988Olympus Optical Co., Ltd.Electronic endoscope with image edge enhancement
US478736914 Aug 198729 Nov 1988Welch Allyn, Inc.Force relieving, force limiting self-adjusting steering for borescope or endoscope
US479029428 Jul 198713 Dec 1988Welch Allyn, Inc.Ball-and-socket bead endoscope steering section
US47949132 Dec 19873 Jan 1989Olympus Optical Co., Ltd.Suction control unit for an endoscope
US479660728 Jul 198710 Jan 1989Welch Allyn, Inc.Endoscope steering section
US48008698 Feb 198831 Jan 1989Olympus Optical Co. Ltd.Endoscope
US480559628 Mar 198821 Feb 1989Olympus Optical Co., Ltd.Endoscope
US48060116 Jul 198721 Feb 1989Bettinger David SSpectacle-mounted ocular display apparatus
US481906523 Apr 19874 Apr 1989Olympus Optical Co., Ltd.Electronic endoscope apparatus
US481907715 Apr 19874 Apr 1989Kabushiki Kaisha ToshibaColor image processing system
US482111618 Mar 198711 Apr 1989Olympus Optical Co., Ltd.Endoscope equipment
US48242251 Jun 198825 Apr 1989Olympus Optical Co., Ltd.Illumination optical system for an endoscope
US483143719 Apr 198816 May 1989Olympus Optical Co., Ltd.Video endoscope system provided with color balance adjusting means
US4836187 *28 Dec 19876 Jun 1989Kabushiki Kaisha ToshibaConstant pressure apparatus of an endoscope
US484405211 Mar 19884 Jul 1989Kabushiki Kaisha ToshibaApparatus for transmitting liquid and gas in an endoscope
US484407131 Mar 19884 Jul 1989Baxter Travenol Laboratories, Inc.Endoscope coupler device
US484555319 May 19884 Jul 1989Olympus Optical Co., Ltd.Image data compressing device for endoscope
US48455558 Feb 19884 Jul 1989Olympus Optical Co., Ltd.Electronic endoscope apparatus
US48476941 Dec 198711 Jul 1989Kabushiki Kaisha ToshibaPicture archiving and communication system in which image data produced at various locations is stored in data bases at various locations in accordance with lists of image ID data in the data bases
US485377222 Feb 19881 Aug 1989Olympus Optical Co., Ltd.Electronic endoscope apparatus having isolated patient and secondary circuitry
US486073111 Oct 198829 Aug 1989Olympus Optical Co., Ltd.Endoscope
US486754614 Mar 198819 Sep 1989Olympus Optical Co., Ltd.Objective lens system for an endoscope
US486864722 Aug 198819 Sep 1989Olympus Optical Co., Ltd.Electronic endoscopic apparatus isolated by differential type drive means
US48692371 Mar 198826 Sep 1989Olympus Optical Co., Ltd.Electronic endoscope apparatus
US487396515 Jul 198817 Oct 1989Guido DanieliFlexible endoscope
US487546823 Dec 198824 Oct 1989Welch Allyn, Inc.Elastomer-ePTFE biopsy channel
US487731424 May 198831 Oct 1989Olympus Optical Co., Ltd.Objective lens system for endoscopes
US488262311 Aug 198821 Nov 1989Olympus Optical Co., Ltd.Signal processing apparatus for endoscope capable of changing outline enhancement frequency
US488413430 Aug 198828 Nov 1989Olympus Optical Co., Ltd.Video endoscope apparatus employing device shutter
US48856341 Aug 19885 Dec 1989Olympus Optical Co., Ltd.Endoscope apparatus capable of monochrome display with respect to specific wavelength regions in the visible region
US489015913 Dec 198826 Dec 1989Olympus Optical Co., Ltd.Endoscope system and method of unifying picture images in an endoscope system
US489471514 Sep 198816 Jan 1990Olympus Optical Co., Ltd.Electronic endoscope
US489543110 Nov 198723 Jan 1990Olympus Optical Co., Ltd.Method of processing endoscopic images
US489778927 Feb 198630 Jan 1990Mcneilab, Inc.Electronic device for authenticating and verifying disposable elements
US489973123 Dec 198813 Feb 1990Olympus Optical Co., Ltd.Endoscope
US48997322 Sep 198813 Feb 1990Baxter International, Inc.Miniscope
US489978716 Jun 198713 Feb 1990Kabushiki Kaisha Medos KenkyushoFlexible tube for endoscope
US490566613 Apr 19896 Mar 1990Olympus Optical Co., Ltd.Bending device for an endoscope
US491653330 Mar 198910 Apr 1990Olympus Optical Co., Ltd.Endoscope insertion direction detecting method
US491852114 Jan 198817 Apr 1990Olympus Optical Co., Ltd.Solid state imaging apparatus
US49191127 Apr 198924 Apr 1990Schott Fiber OpticsLow-cost semi-disposable endoscope
US49191149 Jan 198924 Apr 1990Olympus Optical Co., Ltd.Endoscope provided with flexible signal wires
US492098014 Sep 19871 May 1990Cordis CorporationCatheter with controllable tip
US492817215 Sep 198822 May 1990Olympus Optical Co., Ltd.Endoscope output signal control device and endoscope apparatus making use of the same
US493186728 Feb 19895 Jun 1990Olympus Optical Co., Ltd.Electronic endoscope apparatus having an isolation circuit for isolating a patient circuit from a secondary circuit
US49414545 Oct 198917 Jul 1990Welch Allyn, Inc.Servo actuated steering mechanism for borescope or endoscope
US49414565 Oct 198917 Jul 1990Welch Allyn, Inc.Portable color imager borescope
US495113412 May 198821 Aug 1990Asahi Kogaku Kogyo Kabushiki KaishaColor tone controller for endoscope
US495113528 Dec 198821 Aug 1990Olympus Optical Co., Ltd.Electronic-type endoscope system having capability of setting AGC variation region
US495204020 Mar 198928 Aug 1990Olympus Optical Co., Ltd.Illumination optical system for an endoscope
US496012723 Jan 19892 Oct 1990L.O.N. Research, Inc.Disposable transducer manifold
US49611107 Jul 19892 Oct 1990Olympus Optical Co., Ltd.Endoscope apparatus
US496726927 Apr 198930 Oct 1990Olympus Optical Co., Ltd.Endoscope automatic light control apparatus and endoscope apparatus making use of the same
US49710345 Jul 198920 Nov 1990Asahi Kogaku Kogyo Kabushiki KaishaBody cavity pressure adjusting device for endoscope and laser medical treatment apparatus including body cavity pressure adjusting device
US497331128 Dec 198727 Nov 1990Kabushiki Kaisha ToshibaAspirator for endoscopic system
US497949723 Mar 199025 Dec 1990Olympus Optical Co., Ltd.Endoscope
US49827258 Jun 19908 Jan 1991Olympus Optical Co., Ltd.Endoscope apparatus
US49848788 Aug 198915 Jan 1991Fuji Photo Optical Co., Ltd.Ojective lens for endoscope
US498664218 Nov 198822 Jan 1991Olympus Optical Co., Ltd.Objective lens system for endoscopes and image pickup system equipped with said objective lens system
US498788416 May 198929 Jan 1991Olympus Optical Co., Ltd.Electronic endoscope
US498907530 Apr 199029 Jan 1991Kabushiki Kaisha ToshibaSolid-state image sensor device
US49895811 Jun 19905 Feb 1991Welch Allyn, Inc.Torsional strain relief for borescope
US499697417 Apr 19895 Mar 1991Welch Allyn, Inc.Adjustable steering control for flexible probe
US49969751 Jun 19905 Mar 1991Kabushiki Kaisha ToshibaElectronic endoscope apparatus capable of warning lifetime of electronic scope
US500155622 Mar 199019 Mar 1991Olympus Optical Co., Ltd.Endoscope apparatus for processing a picture image of an object based on a selected wavelength range
US500555816 May 19899 Apr 1991Kabushiki Kaisha ToshibaEndoscope
US50059576 Sep 19899 Apr 1991Olympus Optical Co., Ltd.Objective lens system for endoscopes
US50074087 Nov 198916 Apr 1991Olympus Optical Co., Ltd.Endoscope light source apparatus
US501850921 Dec 198928 May 1991Olympus Optical Co., Ltd.Endoscope insertion controlling apparatus
US501905622 Sep 198828 May 1991Aegis Medical, Inc.Bowel care apparatus
US502238223 May 198911 Jun 1991Kabushiki Kaisha ToshibaEndoscope
US50290166 Sep 19892 Jul 1991Olympus Optical Co., Ltd.Medical image filing apparatus and filing method for registering images from a plurality of image output devices in a single examination
US503488811 Oct 199023 Jul 1991Olympus Optical Co., Ltd.Electronic endoscope apparatus having different image processing characteristics for a moving image and a still image
US504006925 May 199013 Aug 1991Fuji Photo Optical Co., Ltd.Electronic endoscope with a mask bump bonded to an image pick-up device
US50459359 Apr 19903 Sep 1991Kabushiki Kaisha ToshibaElectronic endoscope system including image processing unit with photographing unit
US50499894 Jan 199017 Sep 1991Olympus Optical Co., Ltd.Method and circuit for reducing the influence of a bright image area in an endoscope image signal
US505058424 Jul 199024 Sep 1991Olympus Optical Co., Ltd.Endoscope with a solid-state image pickup device
US505097411 Sep 198924 Sep 1991Olympus Optical Co., Ltd.Optical system for endoscopes
US505650328 Feb 199115 Oct 1991Olympus Optical Co., Ltd.Endoscope with high frequency accessory and reduced video interference
US50619947 Nov 198829 Oct 1991Olympus Optical Co., Ltd.Endoscope device using a display and recording system with means for monitoring the status of the recording medium
US50687191 Feb 199026 Nov 1991Olympus Optical Co., Ltd.Endoscope photometric apparatus
US507486115 Jun 199024 Dec 1991Schneider Richard TMedical laser device and method
US508152421 Feb 199014 Jan 1992Olympus Optical Co., Ltd.Image inputting device for endoscope
US508798918 Apr 199011 Feb 1992Olympus Optical Co., Ltd.Objective optical system for endoscopes
US51106452 Sep 19915 May 1992Olympus Optical Company Ltd.Sheath of articulated tube for endoscope
US51112813 Oct 19905 May 1992Kabushiki Kaisha ToshibaColor correction device for an endoscope
US511130616 Apr 19915 May 1992Olympus Optical Co., Ltd.Endoscope image filing system
US511180413 Feb 199012 May 1992Kabushiki Kaisha ToshibaElectronic endoscope
US511325431 Jan 199012 May 1992Olympus Optical Co., Ltd.Electronic endoscope apparatus outputting ternary drive signal
US511923812 Oct 19902 Jun 1992Olympus Optical Co., Ltd.Objective lens system for endoscopes
US513139321 Jun 199121 Jul 1992Fuji Photo Optical Co., Ltd.Ultrasound internal examination system
US513701326 Jun 199111 Aug 1992Olympus Optical Company LimitedJoint structure composed of flexible tubing and a handling apparatus comprising such a joint structures
US514026527 Jul 199018 Aug 1992Olympus Optical Co., LtdEddy current flaw detecting endoscope apparatus which produces signals which control other devices
US515944621 Jun 199127 Oct 1992Olympus Optical Co., Ltd.Electronic endoscope system provided with a separate camera controlling unit and motor controlling unit
US517077418 Mar 199115 Dec 1992Richard Wolf GmbhEndoscope with viewable and targetable irrigation and aspiration system
US517077514 May 199115 Dec 1992Olympus Optical Co., Ltd.Endoscope
US517222517 Jul 199115 Dec 1992Olympus Optical Co., Ltd.Endoscope system
US517429312 Jul 199129 Dec 1992Olympus Optical Co., Ltd.Medical apparatus including on isolating transformer apparatus for isolating medical apparatus from non-medical apparatus to prevent electrical shocks to patients
US517662920 Sep 19915 Jan 1993C. R. Bard, Inc.Irrigation system for use with endoscopic procedure
US518811118 Jan 199123 Feb 1993Catheter Research, Inc.Device for seeking an area of interest within a body
US51918789 Apr 19919 Mar 1993Olympus Optical Co., Ltd.Endoscope device
US519893114 Nov 199130 Mar 1993Olympus Optical Co., Ltd.Objective optical system for endoscopes
US520190810 Jun 199113 Apr 1993Endomedical Technologies, Inc.Sheath for protecting endoscope from contamination
US520870210 Apr 19914 May 1993Olympus Optical Co., Ltd.Objective lens system for endoscopes
US520922028 Aug 199011 May 1993Olympus Optical Co., Ltd.Endoscope image data compressing apparatus
US52259589 Oct 19916 Jul 1993Kabushiki Kaisha ToshibaElectronic endoscope apparatus capable of protecting overvoltage for solid-state image sensor
US522835625 Nov 199120 Jul 1993Chuang Keh Shih KVariable effort joystick
US52434169 Apr 19917 Sep 1993Kabushiki Kaisha ToshibaMethod and apparatus for recording plurality of non-synchronous image data
US524396712 Feb 199214 Sep 1993Olympus Optical Co., Ltd.Endoscope system providing mutual operative communication between the drive control means and the video signal control means
US52576288 Jul 19922 Nov 1993Fuji Photo Optical Co., Ltd.Ultrasound internal examination system
US527138118 Nov 199121 Dec 1993Vision Sciences, Inc.Vertebrae for a bending section of an endoscope
US527954223 Jul 199218 Jan 1994Wilk Peter JColon irrigation method
US52910103 Oct 19911 Mar 1994Olympus Optical Co., Ltd.Solid state imaging device having a chambered imaging chip corner
US529955913 Mar 19925 Apr 1994Acuson CorporationEndoscope with overload protective device
US531185815 Jun 199217 May 1994Adair Edwin LloydImaging tissue or stone removal basket
US53258458 Jun 19925 Jul 1994Adair Edwin LloydSteerable sheath for use with selected removable optical catheter
US533155127 Jul 199019 Jul 1994Olympus Optical Co., Ltd.Endoscope image recording system for compressing and recording endoscope image data
US53422996 Jul 199230 Aug 1994Catheter Imaging SystemsSteerable catheter
US53479874 May 199220 Sep 1994Feldstein David ASelf-centering endoscope system
US534798911 Sep 199220 Sep 1994Welch Allyn, Inc.Control mechanism for steerable elongated probe having a sealed joystick
US537495325 Jun 199320 Dec 1994Olympus Optical Co., Ltd.Electronic endoscope apparatus with signal validity monitor
US537975730 Nov 199210 Jan 1995Olympus Optical Co. Ltd.Method of compressing endoscope image data based on image characteristics
US538178223 Feb 199317 Jan 1995Spectrum Medsystems CorporationBi-directional and multi-directional miniscopes
US539066222 Feb 199321 Feb 1995Fuji Photo Optical Co., Ltd.Electronic endoscope apparatus using circuit board having cavity
US540076910 Dec 199228 Mar 1995Olympus Optical Co., Ltd.Electrically bendable endoscope apparatus having controlled fixed bending speed
US540276822 Jun 19934 Apr 1995Adair; Edwin L.Endoscope with reusable core and disposable sheath with passageways
US540276911 Mar 19934 Apr 1995Olympus Optical Co., Ltd.Endoscope apparatus which time-sequentially transmits sensor signals with image signals during a blanking period
US54094854 Jun 199325 Apr 1995Kabushiki Kaisha ToshibaPower supply apparatus for electrosurgical unit including electrosurgical-current waveform data storage
US541247823 Sep 19932 May 1995Olympus Optical Co., Ltd.Endoscope system which changes over switches in interlocking relation to each other within video processor and image display apparatus to perform display of endoscope image
US541864927 Apr 199323 May 1995Olympus Optical Co., Ltd.Objective lens system for endoscopes
US542064414 Nov 199430 May 1995Olympus Optical Co., Ltd.Color smear correcting apparatus
US542959623 May 19944 Jul 1995Symbiosis CorporationEndoscopic electrosurgical suction-irrigation instrument
US543164517 May 199311 Jul 1995Symbiosis CorporationRemotely activated endoscopic tools such as endoscopic biopsy forceps
US543461513 Sep 199318 Jul 1995Fuji Photo Optical Co., Ltd.Signal processing circuit adaptable to electronic endoscopes having different lengths
US543664030 Nov 199425 Jul 1995Thrustmaster, Inc.Video game and simulator joystick controller with geared potentiometer actuation
US54367672 May 199425 Jul 1995Olympus Optica Co., Ltd.Objective lens system for endoscopes
US544034118 May 19948 Aug 1995Fuji Photo Optical Co., Ltd.Signal processing circuit for a simultaneous electronic endoscope apparatus
US546400723 Feb 19947 Nov 1995Welch Allyn, Inc.Fluid insensitive braking for an endoscope
US546984010 May 199428 Nov 1995Olympus Optical, Ltd.Electromotive warping type endoscope with velocity control
US547323521 Dec 19935 Dec 1995Honeywell Inc.Moment cell counterbalance for active hand controller
US548202924 Jun 19939 Jan 1996Kabushiki Kaisha ToshibaVariable flexibility endoscope system
US548440719 May 199416 Jan 1996Osypka; PeterCatheter with steerable distal end
US548531623 Oct 199216 Jan 1996Olympus Optical Co., Ltd.Illumination optical system for endoscopes
US54921316 Sep 199420 Feb 1996Guided Medical Systems, Inc.Servo-catheter
US549626016 May 19945 Mar 1996Welch Allyn, Inc.Torque override knob for endoscopes, borescopes, or guide tubes
US55154492 Mar 19927 May 1996Olympus Optical Co., Ltd.Endoscope image processing apparatus
US551850120 Dec 199421 May 1996Vision-Sciences, Inc.Endoscopic contamination protection system to facilitate cleaning of endoscopes
US55185028 Jun 199421 May 1996The United States Surgical CorporationCompositions, methods and apparatus for inhibiting fogging of endoscope lenses
US55438312 Mar 19936 Aug 1996Olympus Optical Co., Ltd.Endoscope system having reduced noise emission/permeation
US5549546 *24 Jan 199527 Aug 1996Richard Wolf GmbhInsufflation device
US556915827 Sep 199429 Oct 1996Fuji Photo Optical Co. Ltd.Shielding structure of electronic endoscope apparatus
US556915916 Dec 199429 Oct 1996Anderson; Keven C.Endoscopic sleeve
US558626223 Jan 199517 Dec 1996Kabushiki Kaisha ToshibaImage data management system particularly for use in a hospital
US558985422 Jun 199531 Dec 1996Tsai; Ming-ChangTouching feedback device
US559120228 Apr 19947 Jan 1997Symbiosis CorporationEndoscopic instruments having low friction sheath
US560845127 Feb 19954 Mar 1997Olympus Optical Co., Ltd.Endoscope apparatus
US560956320 Sep 199411 Mar 1997Olympus Optical Co., Ltd.Endoscope apparatus provided with curvature and fluid flow control
US561938028 Apr 19958 Apr 1997Olympus Optical Co. Ltd.Objective optical system for endoscopes
US562252823 Nov 199422 Apr 1997Olympus Optical Co., Ltd.Endoscope examination system for processing endoscope picture image
US563169526 Jul 199420 May 1997Olympus Optical Co., Ltd.Endoscope with smear extraction and correction
US56332035 May 199527 May 1997Adair; Edwin L.Method of making a miniaturized electronic imaging chip from a standard imaging chip
US56432037 Jun 19951 Jul 1997Smith & Nephew Dyonics Inc.Fluid management system
US56433027 Jun 19951 Jul 1997Smith & Nephew Dyonics Inc.Fluid management system
US564507512 May 19958 Jul 1997Symbiosis CorporationJaw assembly for an endoscopic instrument
US564784014 Sep 199415 Jul 1997Circon CorporationEndoscope having a distally heated distal lens
US56582386 Mar 199519 Aug 1997Olympus Optical Co., Ltd.Endoscope apparatus capable of being switched to a mode in which a curvature operating lever is returned and to a mode in which the curvature operating lever is not returned
US566747729 Jan 199616 Sep 1997Fuji Photo Optical Co., Ltd.Inner structure of endoscope
US567418222 Dec 19947 Oct 1997Olympus Optical Co., Ltd.Endoscope system including endoscope and protection cover
US567419730 Jun 19957 Oct 1997Cordis CorporationControlled flexible catheter
US568582324 Mar 199511 Nov 1997Asahi Kogaku Kogyo Kabushiki KaishaEnd structure of endoscope
US568582521 Dec 199511 Nov 1997Olympus Optical Co., Ltd.Endoscope
US56918535 Oct 199525 Nov 1997Fuji Photo Optical Co., Ltd.Objective lens for endoscopes
US569545029 Mar 19939 Dec 1997Olympus Optical Co., Ltd.Cover-type endoscope apparatus
US569886628 May 199616 Dec 1997Pdt Systems, Inc.Uniform illuminator for phototherapy
US57023492 Jun 199530 Dec 1997Fuji Photo Optical Co., Ltd.Endoscope with acutely angled handle and associated focus adjustment mechanism
US570275422 Feb 199530 Dec 1997Meadox Medicals, Inc.Method of providing a substrate with a hydrophilic coating and substrates, particularly medical devices, provided with such coatings
US570372416 May 199630 Dec 1997Fuji Photo Film, Co., Ltd.Objective lens system for endoscope
US57043716 Mar 19966 Jan 1998Shepard; FranziskaMedical history documentation system and method
US570489619 Apr 19956 Jan 1998Kabushiki Kaisha ToshibaEndoscope apparatus with lens for changing the incident angle of light for imaging
US57084828 Sep 199513 Jan 1998Asahi Kogaku Kogyo Kabushiki KaishaImage-signal clamping circuit for electronic endoscope
US57215669 Jun 199524 Feb 1998Immersion Human Interface Corp.Method and apparatus for providing damping force feedback
US57240687 Sep 19953 Mar 1998Microsoft CorporationJoystick with uniform center return force
US572804518 Dec 199517 Mar 1998Fuji Photo Optical Co., Ltd.Endoscope having auxiliary hole
US573070217 Jul 199724 Mar 1998Fuji Photo Optical Co., Ltd.Endoscopic illumination light control
US573981127 Sep 199514 Apr 1998Immersion Human Interface CorporationMethod and apparatus for controlling human-computer interface systems providing force feedback
US57408017 Jun 199521 Apr 1998Branson; Philip J.Managing information in an endoscopy system
US574669624 Apr 19965 May 1998Fuji Photo Optical Co., Ltd.Flexible sheathing tube construction
US576480926 Sep 19969 Jun 1998Olympus Optical Co., Ltd.Image processing apparatus using correlation among images
US57678393 Mar 199516 Jun 1998Immersion Human Interface CorporationMethod and apparatus for providing passive force feedback to human-computer interface systems
US57796863 Sep 199614 Jul 1998Olympus Optical Co., Ltd.Disposable medical instrument
US578117216 Jun 199714 Jul 1998U.S. Philips CorporationData input device for use with a data processing apparatus and a data processing apparatus provided with such a device
US57887147 Aug 19964 Aug 1998Asahi Kogaku Kogyo Kabushiki KaishaFlexible tube for an endoscope
US57890478 Dec 19954 Aug 1998Japan Gore-Tex, IncFlexible, multilayered tube
US579353927 Dec 199411 Aug 1998Olympus Optical Co., Ltd.Optical system for endoscopes
US580514017 Nov 19958 Sep 1998Immersion CorporationHigh bandwidth force feedback interface using voice coils and flexures
US581071512 Sep 199622 Sep 1998Olympus Optical Co., Ltd.Endoscope provided with function of being locked to flexibility of insertion part which is set by flexibility modifying operation member
US58129833 Aug 199522 Sep 1998Kumagai; YasuoComputed medical file and chart system
US581973622 Mar 199513 Oct 1998Sightline Technologies Ltd.Viewing method and apparatus particularly useful for viewing the interior of the large intestine
US582059113 May 199613 Oct 1998E. P. Technologies, Inc.Assemblies for creating compound curves in distal catheter regions
US582146623 Dec 199613 Oct 1998Cable Design Technologies, Inc.Multiple twisted pair data cable with geometrically concentric cable groups
US582192028 Mar 199713 Oct 1998Immersion Human Interface CorporationControl input device for interfacing an elongated flexible object with a computer system
US58239488 Jul 199620 Oct 1998Rlis, Inc.Medical records, documentation, tracking and order entry system
US582717610 Feb 199727 Oct 1998Fuji Photo Optical Co., Ltd.Endoscopic imaging system with rotating photoelectric line sensor
US582718611 Apr 199727 Oct 1998Light Sciences Limited PartnershipMethod and PDT probe for minimizing CT and MRI image artifacts
US582719019 Aug 199627 Oct 1998Xillix Technologies Corp.Endoscope having an integrated CCD sensor
US582819725 Oct 199627 Oct 1998Immersion Human Interface CorporationMechanical interface having multiple grounded actuators
US582836318 Aug 199727 Oct 1998Interlink Electronics, Inc.Force-sensing pointing device
US583012419 Apr 19963 Nov 1998Fuji Photo Optical Co., Ltd.Guide structure for electronic endoscope systems
US58301283 Jan 19973 Nov 1998Fuji Photo Optical Co., Ltd.Liquid feed device for intracavitary examination instrument
US58368691 Nov 199517 Nov 1998Olympus Optical Co., Ltd.Image tracking endoscope system
US58370232 Apr 199717 Nov 1998Olympus Optical Co., Ltd.Process for making gradient index optical elements
US584001419 Dec 199724 Nov 1998Fuji Photo Optical Co., Ltd.Endoscope
US584112624 Jan 199724 Nov 1998California Institute Of TechnologyCMOS active pixel sensor type imaging system on a chip
US584297122 Sep 19971 Dec 1998Yoon; InbaeOptical endoscopic portals and methods of using the same to establish passages through cavity walls
US58430007 May 19961 Dec 1998The General Hospital CorporationOptical biopsy forceps and method of diagnosing tissue
US58461837 Jul 19978 Dec 1998Chilcoat; Robert T.Articulated endoscope with specific advantages for laryngoscopy
US585556031 Mar 19955 Jan 1999Ep Technologies, Inc.Catheter tip assembly
US585796317 Jul 199612 Jan 1999Welch Allyn, Inc.Tab imager assembly for use in an endoscope
US58657247 Jul 19972 Feb 1999Symbiosis Corp.Flexible microsurgical instruments incorporating a sheath having tactile and visual position indicators
US586866423 Feb 19969 Feb 1999Envision Medical CorporationElectrically isolated sterilizable endoscopic video camera head
US58686666 May 19969 Feb 1999Olympus Optical Co., Ltd.Endoscope apparatus using programmable integrated circuit to constitute internal structure thereof
US587381630 Oct 199523 Feb 1999Olympus Optical Co., Ltd.Electronic endoscope having an insertional portion a part of which is a conductive armor
US587386624 Jun 199723 Feb 1999Fuji Photo Optical Co., Ltd.Flexible sheathing tube construction, and method for fabrication thereof
US587632627 Dec 19952 Mar 1999Olympus Optical Co., Ltd.Electronic endoscope with grounded spirally-wound lead wires
US587633112 Nov 19962 Mar 1999Johnson & Johnson Medical, Inc.Endoscope with improved flexible insertion tube
US58763734 Apr 19972 Mar 1999Eclipse Surgical Technologies, Inc.Steerable catheter
US587642729 Jan 19972 Mar 1999Light Sciences Limited PartnershipCompact flexible circuit configuration
US587781921 Apr 19982 Mar 1999Branson; Philip J.Managing information in an endoscopy system
US587928410 Dec 19979 Mar 1999Fuji Photo Film Co., Ltd.Endoscope
US588071415 Jan 19979 Mar 1999Immersion CorporationThree-dimensional cursor control interface with force feedback
US588229313 May 199716 Mar 1999Asahi Kogaku Kogyo Kabushiki KaishaTreatment accessories for endoscope
US58823397 Jun 199516 Mar 1999Smith & Nephew, Inc.Fluid management system
US588967011 Jan 199630 Mar 1999Immersion CorporationMethod and apparatus for tactilely responsive user interface
US58896723 Jun 199830 Mar 1999Immersion CorporationTactiley responsive user interface device and method therefor
US58926308 Apr 19966 Apr 1999Linvatec CorporationDisposable endoscope
US589535016 Jul 199720 Apr 1999Vista Medical Technologies, Inc.Electronic endoscope
US589750725 Nov 199627 Apr 1999Symbiosis CorporationBiopsy forceps instrument having irrigation and aspiration capabilities
US589752515 Mar 199627 Apr 1999Dey, Uwe And Mueller, BerndProcess and apparatus for introducing a fluid
US59074872 Apr 199725 May 1999Immersion CorporationForce feedback device with safety feature
US592301812 Aug 199713 Jul 1999Kameda Medical Information LaboratoryMedical care schedule and record aiding system, medical care schedule and record aiding method, and program storage device readable by the system
US592813613 Feb 199727 Jul 1999Karl Storz Gmbh & Co.Articulated vertebra for endoscopes and method to make it
US59296072 Apr 199727 Jul 1999Immersion CorporationLow cost force feedback interface with efficient power sourcing
US59298465 Jun 199727 Jul 1999Immersion CorporationForce feedback interface device including grounded sensor system
US592990015 Oct 199727 Jul 1999Fuji Photo Optical Co., Ltd.Signal processor circuit for endoscope systems of all-pixels readout type
US59299016 Oct 199727 Jul 1999Adair; Edwin L.Reduced area imaging devices incorporated within surgical instruments
US59318339 Dec 19973 Aug 1999Silverstein; Fred E.Endoscopic accessory and containment system
US593380929 Feb 19963 Aug 1999Medcom Solutions, Inc.Computer software for processing medical billing record information
US593508524 Nov 199710 Aug 1999Stephen W. WelshMethod for prepping a patient for an endoscopic procedure
US59367789 Mar 199810 Aug 1999Fuji Photo Optical Co., Ltd.Objective lens for endoscope
US594181714 Nov 199624 Aug 1999Vista Medical Technologies, Inc.Endoscope wherein electrical components are electrically isolated from patient-engaging components
US595016818 Dec 19967 Sep 1999Knowmed SystemsCollapsible flowsheet for displaying patient information in an electronic medical record
US595146213 Oct 199814 Sep 1999Fuji Photo Optical Co., Ltd.Electronic endoscope system for displaying unconnected scope
US59564168 Sep 199521 Sep 1999Olympus Optical Co., Ltd.Endoscope image processing apparatus
US595668931 Jul 199721 Sep 1999Accordant Health Services, Inc.Systems, methods and computer program products for using event specificity to identify patients having a specified disease
US59566903 Sep 199721 Sep 1999The Detroit Medical CenterBundled billing accounting computer systems
US595961313 Nov 199628 Sep 1999Immersion CorporationMethod and apparatus for shaping force signals for a force feedback device
US597607029 Sep 19972 Nov 1999Olympus Optical Co., Ltd.Signal cable of a video endoscope provided with a solid state image pick-up device
US59760746 Jul 19982 Nov 1999Olympus Optical Co., Ltd.Endoscope provided with function of being locked to flexibility of insertion part which is set by flexibility modifying operation member
US59804541 Dec 19979 Nov 1999Endonetics, Inc.Endoscopic imaging system employing diffractive optical elements
US598046822 Sep 19979 Nov 1999Zimmon Scientific CorporationApparatus and method for serial collection storage and processing of biopsy specimens
US598669324 Nov 199716 Nov 1999Adair; Edwin L.Reduced area imaging devices incorporated within surgical instruments
US599172928 Jun 199723 Nov 1999Barry; James T.Methods for generating patient-specific medical reports
US59917308 Oct 199723 Nov 1999Queue CorporationMethods and systems for automated patient tracking and data acquisition
US599916821 Feb 19977 Dec 1999Immersion CorporationHaptic accelerator for force feedback computer peripherals
US60024252 Sep 199714 Dec 1999Fuji Photo Optical Co., Ltd.All pixels read type electronic endoscope system
US600748220 Dec 199628 Dec 1999Madni; Asad M.Endoscope with stretchable flexible sheath covering
US60075315 Jan 199928 Dec 1999Catheter Imaging Systems, Inc.Steerable catheter having disposable module and sterilizable handle and method of connecting same
US601463026 Aug 199311 Jan 2000Patient Education Services, Inc.Customized system for providing procedure-specific patient education
US60150884 Nov 199718 Jan 2000Welch Allyn, Inc.Decoding of real time video imaging
US60173225 Jan 199925 Jan 2000Catheter Imaging Systems, Inc.Steerable catheter having disposable module and sterilizable handle and method of connecting same
US602087531 Oct 19971 Feb 2000Immersion CorporationHigh fidelity mechanical transmission system and interface device
US602087614 Apr 19971 Feb 2000Immersion CorporationForce feedback interface with selective disturbance filter
US60263636 Jan 199815 Feb 2000Shepard; FranziskaMedical history documentation system and method
US603036030 Dec 199629 Feb 2000Biggs; Robert C.Steerable catheter
US603212016 Dec 199729 Feb 2000Acuson CorporationAccessing stored ultrasound images and other digital medical images
US60397282 Apr 199321 Mar 2000Ceram Optec GmbhWorking shaft for photo-thermal therapy
US604383920 Oct 199828 Mar 2000Adair; Edwin L.Reduced area imaging devices
US605071827 Jan 199718 Apr 2000Immersion CorporationMethod and apparatus for providing high bandwidth force feedback with improved actuator feel
US605782816 Jan 19972 May 2000Immersion CorporationMethod and apparatus for providing force sensations in virtual environments in accordance with host software
US60597193 Aug 19989 May 2000Olympus Optical Co., Ltd.Endoscope system
US606100429 May 19989 May 2000Immersion CorporationProviding force feedback using an interface device including an indexing function
US606609018 Jun 199823 May 2000Yoon; InbaeBranched endoscope system
US606707721 Aug 199823 May 2000Immersion CorporationPosition sensing for force feedback devices
US607124820 Nov 19986 Jun 2000Zimmon Science Corp.Apparatus for serial collection, storage and processing of biopsy specimens
US60755552 Oct 199713 Jun 2000Street; Graham S. B.Method and apparatus for image enhancement
US607830818 Jun 199720 Jun 2000Immersion CorporationGraphical click surfaces for force feedback applications to provide user selection using cursor interaction with a trigger position within a boundary of a graphical object
US607835311 Sep 199720 Jun 2000Fuji Photo Optical Co., Ltd.All-pixels reading type electronic endoscope apparatus
US607887629 Oct 199620 Jun 2000Microscribe, LlcMethod and apparatus for tracking the position and orientation of a stylus and for digitizing a 3-D object
US608010413 May 199627 Jun 2000Asahi Kogaku Kogyo Kabushiki KaishaElectronic endoscope system
US608180917 Mar 199727 Jun 2000Kumagai; YasuoInterpolative method and system for producing medical charts and monitoring and recording patient conditions
US608315211 Jan 19994 Jul 2000Welch Allyn, Inc.Endoscopic insertion tube
US608317015 May 19974 Jul 2000Biosense, Inc.Self-aligning catheter
US609597120 Oct 19981 Aug 2000Fuji Photo Optical Co., Ltd.Endoscope fluid controller
US609946521 Nov 19978 Aug 2000Fuji Photo Optical Co., Ltd.Electromagnetically coupled electronic endoscope system
US610087424 Jun 19978 Aug 2000Immersion CorporationForce feedback mouse interface
US610438210 Apr 199815 Aug 2000Immersion CorporationForce feedback transmission mechanisms
US612043528 May 199819 Sep 2000Olympus Optical Co., Ltd.Endoscope system in which operation switch sets designed to function and be handled same way are included in endoscope and image processing apparatus respectively
US612533715 Dec 199826 Sep 2000Microscribe, LlcProbe apparatus and method for tracking the position and orientation of a stylus and controlling a cursor
US612800626 Mar 19983 Oct 2000Immersion CorporationForce feedback mouse wheel and other control wheels
US613236917 Aug 199817 Oct 2000Fuji Photo Optical Co., Ltd.Opening/closing and flow rate controller for an endoscope pipe
US61340561 Feb 200017 Oct 2000Olympus Optical Co., Ltd.Objective lens system for endoscopes
US613450629 Oct 199617 Oct 2000Microscribe LlcMethod and apparatus for tracking the position and orientation of a stylus and for digitizing a 3-D object
US613594622 Jun 199824 Oct 2000U.S. Philips CorporationMethod and system for image-guided interventional endoscopic procedures
US613950810 Feb 199931 Oct 2000Endonetics, Inc.Articulated medical device
US614103718 Mar 199831 Oct 2000Linvatec CorporationVideo camera system and related method
US61429563 Feb 19977 Nov 2000Symbiosis CorporationProximal actuation handle for a biopsy forceps instrument having irrigation and aspiration capabilities
US614635531 Jul 199814 Nov 2000Myelotec, Inc.Steerable catheter
US61496074 Aug 199821 Nov 2000Endonetics, Inc.Multiple sample biopsy device
US615287716 Dec 199828 Nov 2000Scimed Life Systems, Inc.Multimode video controller for ultrasound and X-ray video exchange system
US615419817 Sep 199728 Nov 2000Immersion CorporationForce feedback interface apparatus including backlash and for generating feel sensations
US615424823 May 199728 Nov 2000Asahi Kogaku Kogyo Kabushiki KaishaElectronic endoscope
US615598819 Mar 19995 Dec 2000Nivarox-Far S.A.Device for taking samples, for example for a biopsy, and rack system fitted to such a device
US618148129 Oct 199930 Jan 2001Fuji Photo Optical Co., Ltd.Objective lens for endoscope
US618492230 Jul 19986 Feb 2001Olympus Optical Co., Ltd.Endoscopic imaging system in which still image-specific or motion picture-specific expansion unit can be coupled to digital video output terminal in freely uncoupled manner
US619371423 Feb 199927 Feb 2001Vidamed, Inc.Medical probe device with transparent distal extremity
US619559223 Mar 199927 Feb 2001Immersion CorporationMethod and apparatus for providing tactile sensations using an interface device
US620349314 Feb 199720 Mar 2001Biosense, Inc.Attachment with one or more sensors for precise position determination of endoscopes
US620682417 Mar 199927 Mar 2001Asahi Kogaku Kogyo Kabushiki KaishaFlexible tube for endoscope and method of producing the flexible tube
US62119046 Apr 20003 Apr 2001Edwin L. AdairSurgical devices incorporating reduced area imaging devices
US621610420 Feb 199810 Apr 2001Philips Electronics North America CorporationComputer-based patient record and message delivery system
US621909113 Jan 200017 Apr 2001Fuji Photo Optical Co., Ltd.All-pixels reading type electronic endoscope apparatus
US62210703 Jun 199824 Apr 2001Irvine Biomedical, Inc.Steerable ablation catheter system having disposable shaft
US62387997 Feb 199729 May 2001Surface Solutions Laboratories, Inc.Articles prepared from water-based hydrophilic coating compositions
US624166815 Jan 19995 Jun 2001Siemens AktiengesellschaftMedical system architecture
US62609943 Aug 199917 Jul 2001Fuji Photo Optical Co., Ltd.Battery-powered light source arrangement for endoscope
US62612261 Sep 199817 Jul 2001Medical Media SystemsElectronically Steerable Endoscope
US62724703 Sep 19977 Aug 2001Kabushiki Kaisha ToshibaElectronic clinical recording system
US62752551 Feb 200014 Aug 2001Micro-Medical Devices, Inc.Reduced area imaging devices
US62824429 Sep 199928 Aug 2001Surgical Laser Technologies, Inc.Multi-fit suction irrigation hand piece
US628396019 Mar 19984 Sep 2001Oratec Interventions, Inc.Apparatus for delivery of energy to a surgical site
US62950826 Jun 199625 Sep 2001Smith & Nephew, Inc.Camera head with digital memory for storing information about the image sensor
US62996257 Apr 20009 Oct 2001Karl Storz Gmbh & Co. KgHandle for a medical instrument
US630934715 Mar 199930 Oct 2001Fuji Photo Optical Co., Ltd.Air and water supply system for endoscopes
US63106423 Aug 199930 Oct 2001Micro-Medical Devices, Inc.Reduced area imaging devices incorporated within surgical instruments
US631919628 Jun 199920 Nov 2001Fuji Photo Optical Co., Ltd.Imaging element assembly unit for endoscope
US63191977 Jul 199720 Nov 2001Olympus Optical Co., LtdEndoscope system having reduced noise emission/permeation
US633484414 Aug 20001 Jan 2002Fuji Photo Optical Co., Ltd.Mechanical- and electrical-mode changeable endoscope conduit controller
US634607527 Jan 200012 Feb 2002Fuji Photo Optical Co., Ltd.Air and water supply valve structure in endoscope
US63549928 Nov 199912 Mar 2002Daniel T. KatoAutomated laparoscopic lens cleaner
US636679914 Feb 19972 Apr 2002Biosense, Inc.Movable transmit or receive coils for location system
US638102923 Dec 199830 Apr 2002Etrauma, LlcSystems and methods for remote viewing of patient images
US639872416 Mar 20004 Jun 2002Medivision, Inc.Focusable optical instrument with a sealed optical system having no internal optical moving parts
US641320721 Sep 20002 Jul 2002Fuji Photo Optical Co., Ltd.Electronic endoscope apparatus
US642107811 Feb 200016 Jul 2002Fuji Photo Optical Co., Ltd.Electronic endoscope system
US64255351 Aug 200030 Jul 2002Fuji Photo Optical Co., Ltd.Fluid supplying apparatus for endoscope
US642585816 Mar 200030 Jul 2002Fuji Photo Optical Co., Ltd.Electronic endoscope apparatus having magnification changing function
US643603230 May 200020 Aug 2002Olympus Optical Co., Ltd.Data filing system for endoscope
US644184522 Feb 199927 Aug 2002Olympus Optical Co., Ltd.Image pickup apparatus enlarging a dynamic range of an image pickup signal
US64474442 Nov 199810 Sep 2002Sightline Technologies Ltd.Video rectoscope
US644900621 Sep 199510 Sep 2002Apollo Camera, LlcLED illumination system for endoscopic cameras
US645319014 Feb 199717 Sep 2002Biosense, Inc.Medical probes with field transducers
US645416225 Jan 200124 Sep 2002David TellerProcess for controlling the misuse of disposable medical products
US645944730 Sep 19991 Oct 2002Fuji Photo Optical Co., Ltd.Video signal transmission device
US646820425 May 200122 Oct 2002Fuji Photo Film Co., Ltd.Fluorescent endoscope apparatus
US647514127 Jun 20015 Nov 2002Fuji Photo Optical Co., Ltd.Electronic endoscope device using separated area photometry
US64787309 Sep 199812 Nov 2002Visionscope, Inc.Zoom laparoscope
US64899874 Jan 19993 Dec 2002Fuji Photo Optical Co., Ltd.Electronic endoscope apparatus
US649682712 May 199817 Dec 2002Mlk SoftwareMethods and apparatus for the centralized collection and validation of geographically distributed clinical study data with verification of input data to the distributed system
US649894818 Aug 200024 Dec 2002Pentax CorporationEndoscope system
US650319313 Apr 20007 Jan 2003Pentax CorporationFlexible tube for endoscope
US652090827 Sep 200018 Feb 2003Olympus Optical Co., Ltd.Electronic endoscope
US65242347 Sep 200125 Feb 2003Pentax CorporationTip portion of an endoscope
US653088230 Jun 200011 Mar 2003Inner Vision Imaging, L.L.C.Endoscope having microscopic and macroscopic magnification
US65337221 Dec 200018 Mar 2003Pentax CorporationElectronic endoscope having reduced diameter
US654066931 Aug 20011 Apr 2003Pentax CorporationFlexible tube for an endoscope and electronic endoscope equipped with the flexible tube
US654419422 Jun 20008 Apr 2003Symbiosis CorporationProximal actuation handle for a biopsy forceps instrument having irrigation and aspiration capabilities
US654570325 Jun 19998 Apr 2003Pentax CorporationElectronic endoscope
US655123926 Jan 200122 Apr 2003Karl Storz Gmbh & Co. KgShaft for a flexible endoscope and flexible endoscope
US655831712 Jul 20016 May 2003Fuji Photo Optical Co., Ltd.Air and water supply system for endoscopes
US65619712 May 200013 May 2003Fuji Photo Optical Co., Ltd.Endoscope with magnification change function
US656550713 Sep 200120 May 2003Fuji Photo Optical Co., Ltd.Flexible tube, and method for manufacturing same
US657462923 Dec 19983 Jun 2003Agfa CorporationPicture archiving and communication system
US658916220 Feb 20018 Jul 2003Pentax CorporationEndoscope system and video camera for endoscope
US65959136 Sep 200122 Jul 2003Fuji Photo Optical Co., Ltd.Cable structure in electronic endoscope
US65973907 Jan 200022 Jul 2003Fuji Photo Optical Co., Ltd.Electronic endoscope apparatus
US659923913 Dec 200029 Jul 2003Pentax CorporationFlexible tube for endoscope, material used for producing outer cover of the flexible tube, and production method of the flexible tube
US660218613 Nov 20005 Aug 2003Pentax CorporationElectronic endoscope system
US66050355 Sep 200112 Aug 2003Fuji Photo Optical Co., Ltd.Endoscope
US660913517 Jul 200019 Aug 2003Olympus Optical Co., Ltd.Image file equipment, and database creating method in an image file equipment
US661184630 Oct 199926 Aug 2003Medtamic HoldingsMethod and system for medical patient data analysis
US661496927 Sep 20012 Sep 2003The Ludlow Company, LpHigh speed electronic remote medical imaging system and method
US661660122 Jan 20019 Sep 2003Pentax CorporationFlexible tube for endoscope
US662342431 Aug 200123 Sep 2003Pentax CorporationFlexible tube for an endoscope and electronic endoscope equipped with the flexible tube
US663821431 Jul 200128 Oct 2003Fuji Photo Optical Co., Ltd.Observation window washing device of endoscope
US663821521 Aug 200128 Oct 2003Pentax CorporationVideo endoscope system
US66415286 Sep 20014 Nov 2003Fuji Photo Optical Co., Ltd.Bending part of endoscope
US6641553 *2 Jun 20004 Nov 2003Boston Scientific CorporationDevices and methods for delivering a drug
US66516697 Sep 199925 Nov 2003Scimed Life Systems, Inc.Systems and methods to identify and disable re-used single use devices based on cataloging catheter usage
US665611016 Apr 19982 Dec 2003Karl Storz Gmbh & Co. KgEndoscopic system
US66561125 Aug 20022 Dec 2003Olympus Optical Co., Ltd.Distal endoscope part having light emitting source such as light emitting diodes as illuminating means
US66599405 Apr 20019 Dec 2003C2Cure Inc.Image sensor and an endoscope using the same
US66635613 Oct 200116 Dec 2003Pentax CorporationVideo endoscope system
US666962924 Apr 200230 Dec 2003Olympus Optical Co., Ltd.Endoscope system comprising an electrically bendable endoscope
US667301218 Apr 20016 Jan 2004Pentax CorporationControl device for an endoscope
US667798429 Nov 200013 Jan 2004Pentax CorporationElectronic endoscope system
US667839726 Jan 200013 Jan 2004Olympus CorporationMedical image filing system
US668247931 Jan 200027 Jan 2004Pentax CorporationAir feeding device for endoscope
US668563112 Mar 20023 Feb 2004Fuji Photo Optical Co., Ltd.Electronic endoscope system having variable power function
US668694912 Jan 20013 Feb 2004Pentax CorporationElectronic endoscope system
US669040915 Sep 199910 Feb 2004Pentax CorporationElectronic endoscope system
US669096324 Jan 199510 Feb 2004Biosense, Inc.System for determining the location and orientation of an invasive medical instrument
US66924317 Sep 200117 Feb 2004Smith & Nephew, Inc.Endoscopic system with a solid-state light source
US669710119 Sep 200024 Feb 2004Pentax CorporationElectronic endoscope
US669918115 Jan 20022 Mar 2004Fuji Photo Optical Co., Ltd.Connector device for endoscope
US670273729 Mar 20029 Mar 2004Fuji Photo Optical Co., Ltd.Bending manipulation device for endoscope
US67114269 Apr 200223 Mar 2004Spectros CorporationSpectroscopy illuminator with improved delivery efficiency for high optical density and reduced thermal load
US671506831 Mar 200030 Mar 2004Fuji Photo Optical Co., Ltd.Multi-microcomputer system
US671616224 Apr 20016 Apr 2004Fuji Photo Film Co., Ltd.Fluorescent endoscope apparatus
US67285997 Sep 200127 Apr 2004Computer Motion, Inc.Modularity system for computer assisted surgery
US673001829 Jun 20014 May 2004Olympus CorporationEndoscope
US673677325 Jan 200118 May 2004Scimed Life Systems, Inc.Endoscopic vision system
US67432406 Dec 20011 Jun 2004Ethicon Endo-Surgery, Inc.Flexible surgical device having a rotatable end effector assembly
US674955922 May 200015 Jun 2004Olympus Winter & Ibe GmbhEndoscope
US674956026 Oct 199915 Jun 2004Circon CorporationEndoscope shaft with slotted tube
US674956123 Aug 200115 Jun 2004Smith & Nephew, Inc.Autofocusing endoscopic system
US675390528 Sep 199822 Jun 2004Fuji Photo Optical Co., Ltd.Circuit for transmitting a solid-state image pickup device signal to a signal processor
US675880611 Jan 20026 Jul 2004Napoli, LlcEndoscopic devices and method of use
US675880723 Aug 20026 Jul 2004Fuji Photo Optical Co., Ltd.Electronic endoscope with power scaling function
US675884216 Aug 20016 Jul 2004Karl Storz Gmbh & Co. KgMedical instrument for removing tissue, bone cement or the like in the human or animal body
US677494727 Feb 200110 Aug 2004Mutsumi Corporation Ltd.Image pickup apparatus
US677820823 Nov 200117 Aug 2004Pentax CorporationElectronic endoscope system
US67801511 Mar 200224 Aug 2004Acmi CorporationFlexible ureteropyeloscope
US678541021 Nov 200131 Aug 2004Wake Forest University Health SciencesImage reporting method and system
US678541428 Sep 200031 Aug 2004Media Cybernetics, Inc.System and method for establishing an aggregate degree of brightness for each primary color to create a composite color digital image
US678559324 Apr 200331 Aug 2004Computer Motion, Inc.Modularity system for computer assisted surgery
US679693826 Apr 200228 Sep 2004Fuji Photo Film Co., Ltd.Image obtaining method and apparatus of an endoscope apparatus
US679693925 Aug 200028 Sep 2004Olympus CorporationElectronic endoscope
US679853313 Dec 200128 Sep 2004Etrauma, LlcSystems and methods for remote viewing of patient images
US68000561 Mar 20025 Oct 2004Neoguide Systems, Inc.Endoscope with guiding apparatus
US680005729 May 20025 Oct 2004Fuji Photo Film Co., Ltd.Image obtaining apparatus
US680849120 May 200226 Oct 2004Syntheon, LlcMethods and apparatus for on-endoscope instruments having end effectors and combinations of on-endoscope and through-endoscope instruments
US68245392 Aug 200230 Nov 2004Storz Endoskop Produktions GmbhTouchscreen controlling medical equipment from multiple manufacturers
US68245486 Dec 200130 Nov 2004Ethicon Endo-Surgery, Inc.Flexible surgical clip applier
US682900331 May 20017 Dec 2004Pentax CorporationSampling pulse generator of electronic endoscope
US683054513 May 200214 Dec 2004Everest VitTube gripper integral with controller for endoscope of borescope
US683299027 Aug 200221 Dec 2004Symbiosis CorporationBiopsy instrument having aspiration capabilities
US684093221 Mar 200211 Jan 2005Karl Storz Gmbh & Co. KgMedical instrument
US68421964 Apr 200011 Jan 2005Smith & Nephew, Inc.Method and system for automatic correction of motion artifacts
US684628621 May 200225 Jan 2005Pentax CorporationEndoscope system
US684793331 Dec 199725 Jan 2005Acuson CorporationUltrasound image and other medical image storage system
US684904318 Mar 20031 Feb 2005Fuji Photo Optical Co., Ltd.Suction valve for endoscope use
US685079420 Sep 20011 Feb 2005The Trustees Of The Leland Stanford Junior UniversityEndoscopic targeting method and system
US685510917 Jul 200215 Feb 2005Pentax CorporationPortable endoscope
US685800413 Nov 200022 Feb 2005Pentax CorporationElectronic endoscope system including a plurality of video-processors
US68580145 Apr 200222 Feb 2005Scimed Life Systems, Inc.Multiple biopsy device
US68608494 May 20011 Mar 2005Pentax CorporationFlexible tube for an endoscope
US686365020 Jan 20008 Mar 2005Karl Storz Gmbh & Co. KgEndoscopic instrument for performing endoscopic procedures or examinations
US686366128 May 20038 Mar 2005Scimed Life Systems, Inc.Fluid seal for endoscope
US686819519 Feb 200415 Mar 2005Fuji Photo Optical Co., Ltd.Device for detecting three-dimensional shapes of elongated flexible body
US687108624 Mar 200322 Mar 2005Robin Medical Inc.Endoscopic examining apparatus particularly useful in MRI, a probe useful in such apparatus, and a method of making such probe
US687335222 Dec 200329 Mar 2005Olympus CorporationImage processing unit whose ability to process endoscopic image signal can be expanded, and endoscopic imaging system
US687638018 Mar 20025 Apr 2005Fuji Photo Optical Co., Ltd.Electronic endoscopic apparatus connectable with electronic endoscope having different number of pixels
US687933922 Oct 200212 Apr 2005Pentax CorporationElectronic endoscope system with color-balance alteration process
US688118830 Aug 200219 Apr 2005Pentax CorporationElectronic endoscope system with liquid supply apparatus
US688278523 Jul 200319 Apr 2005The Ludlow Company LpHigh speed electronic remote medical imaging system and method
US68871957 Jul 20003 May 2005Karl Storz Gmbh & Co. KgEndoscope-type device, especially for emergency intubation
US68902942 Jun 200310 May 2005Olympus CorporationEndoscope apparatus
US689209019 Aug 200210 May 2005Surgical Navigation Technologies, Inc.Method and apparatus for virtual endoscopy
US689211217 Apr 200310 May 2005Computer Motion, Inc.Modularity system for computer assisted surgery
US689526828 Jun 200017 May 2005Siemens AktiengesellschaftMedical workstation, imaging system, and method for mixing two images
US689808613 Dec 200224 May 2005Pentax CorporationPCB structure for scope unit of electronic endoscope
US68996732 Oct 200131 May 2005Olympus CorporationEndoscope
US689967419 Feb 200331 May 2005Stm Medizintechnik Starnberg GmbhEndoscope shaft comprising a movable end portion
US689970527 Mar 200331 May 2005Intuitive SurgicalFriction compensation in a minimally invasive surgical apparatus
US690082931 Mar 199731 May 2005Pentax CorporationElectronic endoscope system for reducing random noise of a video signal
US690252716 May 20007 Jun 2005Olympus CorporationEndoscope system with charge multiplying imaging device and automatic gain control
US690252920 Jun 20037 Jun 2005Olympus CorporationEndoscope apparatus
US690376121 Jun 20007 Jun 2005Fuji Photo Optical Co., Ltd.Electronic endoscope system allowing accurate delay time to be set
US690388325 Jun 20037 Jun 2005Olympus CorporationImage pickup lens unit and image pickup device
US690505729 Sep 200314 Jun 2005Ethicon Endo-Surgery, Inc.Surgical stapling instrument incorporating a firing mechanism having a linked rack transmission
US69054626 Sep 200014 Jun 2005Olympus CorporationEndoscope image pickup optical system
US690842730 Dec 200221 Jun 2005PARÉ Surgical, Inc.Flexible endoscope capsule
US690842927 Feb 200321 Jun 2005Richard Wolf GmbhSuction valve for a medical instrument
US691191613 Jul 200028 Jun 2005The Cleveland Clinic FoundationMethod and apparatus for accessing medical data over a network
US69162869 Aug 200112 Jul 2005Smith & Nephew, Inc.Endoscope with imaging probe
US692381820 Mar 20022 Aug 2005Olympus CorporationApparatus for ligating living tissues
US692849019 May 20009 Aug 2005St. Louis UniversityNetworking infrastructure for an operating room
US693070626 Feb 200216 Aug 2005Pentax CorporationOrgan-region-indication system incorporated in electronic endoscope system
US693276126 Sep 200323 Aug 2005Olympus CorporationElectrically-bent endoscope
US693409330 Jun 200423 Aug 2005Given Imaging LtdOptical system
US69345753 Sep 200223 Aug 2005Ge Medical Systems Global Technology Company, LlcPosition tracking and imaging system for use in medical applications
US69436639 Dec 200213 Sep 2005Intuitive Surgical, Inc.General purpose distributed operating room control system
US694382120 Mar 200213 Sep 2005Fujinon CorporationElectronic endoscope apparatus to which electronic endoscopes with different numbers of pixels can be connected
US694382211 Jun 200213 Sep 2005Pentax CorporationElectronic endoscope with color adjustment function
US69439461 May 200313 Sep 2005Itt Manufacturing Enterprises, Inc.Multiple aperture imaging system
US694395930 Jun 200413 Sep 2005Olympus CorporationObjective optical system
US694396629 Oct 200113 Sep 2005Olympus CorporationOptical component and image pick-up device using the same
US694403113 Dec 200213 Sep 2005Pentax CorporationPCB structure for scope unit of electronic endoscope
US69490682 May 200227 Sep 2005Olympus CorporationEndoscope shape detector
US69502487 Feb 200327 Sep 2005Karl Stotz Gmbh & Co. KgDistance holder for lens system
US695069110 Apr 200227 Sep 2005Olympus CorporationSurgery support system and surgery support method
US695431124 Jun 200311 Oct 2005Olympus CorporationImage pickup lens unit and image pickup device
US695567130 Jul 200318 Oct 2005Olympus CorporationRemote surgery support system
US695670328 May 200418 Oct 2005Olympus CorporationObjective lens for endoscope
US696118720 Sep 20021 Nov 2005Olympus CorporationImaging device
US69625642 Dec 20038 Nov 2005Hickle Randall SSystems and methods for providing gastrointestinal pain management
US696317528 Aug 20028 Nov 2005Radiant Research LimitedIllumination control system
US69646622 Apr 200315 Nov 2005Pentax CorporationEndoscopic forceps instrument
US696767325 Jun 200222 Nov 2005Pentax CorporationElectronic endoscope system with color-balance alteration process
US69744665 Dec 200113 Dec 2005Wilson-Cook Medical Inc.Ligating band delivery apparatus
US69759688 Feb 200213 Dec 2005Olympus CorporationMedical system control apparatus, and method for dealing with trouble with the medical system control apparatus
US697695428 Jun 200220 Dec 2005Pentax CorporationEndoscope system
US697705317 Sep 200220 Dec 2005Fujinon CorporationManufacturing method of front-end component of endoscope
US697767026 Sep 200220 Dec 2005Pentax CorporationMethod and apparatus for selective registration of endoscopes with database
US69802271 Oct 200227 Dec 2005Pentax CorporationElectronic endoscope with light-amount adjustment apparatus
US698092114 Nov 200327 Dec 2005Ge Medical Systems Global Technology Company, LlcMagnetic tracking system
US698194512 Nov 20043 Jan 2006Artann Laboratories, Inc.Colonoscope handgrip with force and torque monitor
US69827404 Oct 20013 Jan 2006Micro-Medical Devices, Inc.Reduced area imaging devices utilizing selected charge integration periods
US698420613 Dec 200210 Jan 2006Olympus CorporationEndoscope and endoscope system with optical phase modulation member
US698518319 Oct 200110 Jan 2006Appro Technology Inc.Method for exploring viewpoint and focal length of camera
US698668621 Feb 200217 Jan 2006Olympus CorporationElectrical plug for supplying electric power from a power supply to a medical instrument
US699466818 Dec 20037 Feb 2006Fujinon CorporationFour-group endoscope objective lens
US699470415 Aug 20027 Feb 2006Curon Medical, Inc.Graphical user interface for monitoring and controlling use of medical devices
US700133030 May 200221 Feb 2006Pentax CorporationEndoscope system including system for obtaining usage condition
US700837626 Sep 20037 Mar 2006Olympus CorporationElectric bending endoscope
US7335159 *26 Aug 200426 Feb 2008Scimed Life Systems, Inc.Endoscope having auto-insufflation and exsufflation
US2001003937012 Jul 20018 Nov 2001Fuji Photo Optical Co., Ltd.Air and water supply system for endoscopes
US2001004949112 Apr 20016 Dec 2001Biotran Corporation, IncProcess for producing steerable sheath catheters
US200200175158 Aug 200114 Feb 2002Asahi Kogaku Kogyo Kabushiki KaishaMethod of manufacturing treatment instrument of endoscope
US2002002898431 Aug 20017 Mar 2002Asahi Kogaku Kogyo Kabushiki Kaisha Tokyo, JapanFlexible tube for an endoscope and electronic endoscope equipped with the flexible tube
US2002005566913 Jul 20019 May 2002Mitsujiro KonnoEndoscope system
US200200802484 Oct 200127 Jun 2002Adair Edwin L.Reduced area imaging devices utilizing selected charge integration periods
US2002008704816 Nov 20014 Jul 2002Brock David L.Flexible instrument
US2002008716616 Nov 20014 Jul 2002Brock David L.Flexible instrument
US2002009517516 Nov 200118 Jul 2002Brock David L.Flexible instrument
US2002012863317 Nov 200112 Sep 2002Brock David L.Surgical instrument
US2002019366226 Aug 200219 Dec 2002Amir BelsonSteerable endoscope and improved method of insertion
US2002019366428 Dec 200019 Dec 2002Ross Ian MichaelLight source for borescopes and endoscopes
US200300328639 Aug 200113 Feb 2003Yuri KazakevichEndoscope with imaging probe
US200300652508 May 20023 Apr 2003Case Western Reserve UniversityPeristaltically Self-propelled endoscopic device
US200300694745 Oct 200110 Apr 2003Couvillon Lucien AlfredRobotic endoscope
US2003006989710 Oct 200110 Apr 2003Roy Stephen C.Systems and methods for enhancing the viewing of medical images
US2003014933821 Oct 20027 Aug 2003Christian FrancoisPositioning, exploration, and/or intervention device, in particular in the field of endoscopy and/or mini-invasive surgery
US2003018190518 Sep 200225 Sep 2003Long Gary L.Endoscopic ablation system with a distally mounted image sensor
US2003021661720 Mar 200320 Nov 2003Kabushiki Kaisha ToshibaEndoscope apparatus
US200400490974 Sep 200311 Mar 2004Kiyoshi MiyakeEndoscope
US2004005425824 Mar 200318 Mar 2004Olympus Optical Co., Ltd.Electric bending endoscope apparatus
US2004007308326 Sep 200315 Apr 2004Olympus Optical Co., Ltd.Electric bending endoscope
US2004007308426 Sep 200315 Apr 2004Olympus Optical Co., Ltd.Electrically-bent endoscope
US2004007308526 Sep 200315 Apr 2004Olympus Optical Co., Ltd.Electric bending endoscope
US2004014315925 Nov 200322 Jul 2004Wendlandt Jeffrey MichaelCatheter introducer system for exploration of body cavities
US2004014780913 Jan 200429 Jul 2004Smith & Nephew, Inc., A Delaware CorporationEndoscopic system with a solid-state light source
US2004016737922 Oct 200326 Aug 2004Fuji Photo Optical Co., Ltd.Valved plug for endoscopic biopsy channel
US2004020467117 May 200314 Oct 2004Stubbs Jack B.Continuous gas flow trocar assembly
US200402204523 Jun 20024 Nov 2004Michael ShalmanEndoscope with cleaning optics
US200402492473 May 20049 Dec 2004Iddan Gavriel J.Endoscope with panoramic view
US2004025760828 Jan 200423 Dec 2004Kishore TipirneniSystems and methods for remote viewing of patient images
US200501924761 Mar 20041 Sep 2005Olympus CorporationEndoscope image pick-up apparatus
US2005019786118 Nov 20048 Sep 2005Olympus CorporationExamination management system and examination management method
US2005020069810 Jan 200515 Sep 2005Amling Marc R.Updateable endoscopic video imaging system with unified electro-optic cable
US2005020334114 Mar 200515 Sep 2005Paradigm Optics, IncorporatedPolymer endoscopic shaft
US2005020341812 Nov 200415 Sep 2005Olympus CorporationEndoscope
US2005020595818 Mar 200522 Sep 2005Fuji Photo Film., Ltd.Multilayer deposition multipixel image pickup device and television camera
US2005020764518 May 200522 Sep 2005Olympus CorporationInformation processor
US2005020950913 May 200522 Sep 2005Amir BelsonSteerable endoscope and improved method of insertion
US2005022587214 May 200413 Oct 2005Tsutomu UzawaObject lens and endoscope using it
US2005022650828 Mar 200513 Oct 2005Fuji Photo Film Co., Ltd.Image recognition system, image recognition method, and machine readable medium storing thereon an image recognition program
US2005022822129 Oct 200313 Oct 2005Olympus CorporationEndoscope information processor and processing method
US200502282226 Apr 200513 Oct 2005Olympus CorporationMethod of manufacturing endoscope flexible tube
US200502282276 Apr 200513 Oct 2005Olympus Winter & Ibe GmbhMultilevel endoscope stem
US200502286975 Apr 200513 Oct 2005Fuji Photo Film Co., Ltd.Examination appointment method and system, and server to be used for the same
US2005023159114 Apr 200520 Oct 2005Fujinon CorporationElectronic endoscope apparatus
US2005023450731 Mar 200520 Oct 2005Jeff GeskeMedical tool for access to internal tissue
US2005024316915 Jun 20053 Nov 2005Olympus CorporationEndoscope apparatus
US2005024708114 Sep 200410 Nov 2005Konica Minolta Opto, Inc.Optical glass element and manufacturing method thereof
US2005025098318 Apr 200510 Nov 2005Anthony TremaglioEndoscopic instrument having reduced diameter flexible shaft
US2005025111213 Jul 200510 Nov 2005Danitz David JArticulating mechanism for remote manipulation of a surgical or diagnostic tool
US200502519984 May 200517 Nov 2005Sightline Technologies Ltd.Method for cutting and sealing of disposable multilumen tubing
US200502530443 May 200517 Nov 2005Toshihiro KuriyamaSolid-state imaging device and manufacturing method thereof
US2005025637012 Mar 200417 Nov 2005Olympus CorporationEndoscope system for operating medical device by voice
US200502563734 May 200517 Nov 2005Sightline Technologies Ltd.Disposable set for use with an endoscope
US2005025637713 Aug 200417 Nov 2005Deppmeier Thomas REndoscope and related system
US2005025642412 May 200417 Nov 2005Zkz Science Corp.Apparatus for removable distal internal cassette for in situ fixation and specimen processing with serial collection and storage of biopsy specimens
US2005026468725 May 20051 Dec 2005Fuji Photo Film Co., Ltd.Endoscope
US2005026741725 May 20051 Dec 2005Secrest Dean JIrrigating biopsy inlet valve
US200502713401 Nov 20048 Dec 2005Ori WeisbergPhotonic crystal waveguides and systems using such waveguides
US200502729788 Jun 20058 Dec 2005Brunnen Rainer DBendable portion of an insertion tube of an endoscope and method of producing it
US2005027308524 Sep 20048 Dec 2005Novare Surgical Systems, Inc.Articulating mechanism with flex-hinged links
US2005028854531 Mar 200529 Dec 2005Jun MatsumotoFlexible tube for endoscope and method for manufacturing the same
US2005028855329 Jun 200529 Dec 2005Pentax CorporationElectronic endoscope system capable of displaying a plurality of images
US2006001500816 Sep 200519 Jan 2006Kennedy Bruce LVideo recording and image capture device
USRE324219 Aug 198419 May 1987Olympus Optical Co., Ltd.Data transmission system for an endoscope apparatus
USRE336893 May 198910 Sep 1991Olympus Optical Co., Ltd.Objective lens system for endoscopes
USRE3450411 Oct 199011 Jan 1994Olympus Optical Co., Ltd.Electronic endoscope system provided with a means of imaging frozen pictures having few picture image smears
DE19800765A112 Jan 19988 Apr 1999Siemens AgMethod of generating image representations of surface of inner wall of hollow bodies
EP0075153B12 Sep 198224 Jun 1987Olympus Optical Co., Ltd.Air-liquid supplying device for an endoscope
EP0278217A17 Jan 198817 Aug 1988Asahi Kogaku Kogyo Kabushiki KaishaBody cavity pressure adjusting device for endoscope
EP0437229A15 Jan 199117 Jul 1991Bäuerle, DieterEndoscope
EP0689851A129 Jun 19953 Jan 1996Cordis Europa N.V.Controlled flexible catheter
EP0728487B113 Feb 199621 Nov 2001Meadox Medicals, Inc.A method of providing a substrate with a hydro-philic coating and substrates, particularly medical devices, provided with such coatings
EP1300883A213 Sep 20029 Apr 2003Delphi Technologies, Inc.Thermal dissipation assembly for electronic components
JP3219521B2 Title not available
JP3372273B2 Title not available
JP3482238B2 Title not available
JP2001128933A Title not available
JP2002007134A Title not available
JP2002078675A Title not available
JP2002102152A Title not available
JP2002177197A Title not available
JP2002185873A Title not available
JP2002253481A Title not available
JP2003075113A Title not available
JPH078441A Title not available
JPH0531071A Title not available
JPH0591972A Title not available
JPH06105800A Title not available
JPH06254048A Title not available
JPH10113330A Title not available
JPH10286221A Title not available
JPH11216113A Title not available
JPS5878635A Title not available
WO1993013704A15 Jan 199322 Jul 1993Endomedix CorporationBi-directional miniscope
WO2004016310A28 Aug 200326 Feb 2004Edwards Lifesciences CorporationArticulation mechanism
WO2005023082A29 Sep 200417 Mar 2005Image In Ltd.Endoscope
Classifications
International ClassificationA61B1/00, A61B1/12
Cooperative ClassificationA61B1/126, A61B1/00068, A61B1/12, A61B1/05, A61B1/00103, A61B1/015, A61B1/127
Legal Events
DateCodeEventDescription
27 Oct 2016FPAYFee payment
Year of fee payment: 4