Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUSRE39301 E1
Publication typeGrant
Application numberUS 08/698,781
Publication date19 Sep 2006
Filing date16 Aug 1996
Priority date3 Apr 1992
Fee statusPaid
Also published asCA2090189A1, CA2090189C, US5258032, US5458645
Publication number08698781, 698781, US RE39301 E1, US RE39301E1, US-E1-RE39301, USRE39301 E1, USRE39301E1
InventorsKim C. Bertin
Original AssigneeZimmer, Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Method for resecting the knee using a resection guide and provisional prosthetic component
US RE39301 E1
Abstract
A method and apparatus for knee replacement surgery wherein a femoral provisional component is provided which corresponds to a permanent component to be implanted in a human and which includes means for establishing the correct fit and position of such a component, prior to its implantation, in relation to the soft tissues of the knee before final resection of the anterior femoral surface. The provisional component further includes cutting guide means for such anterior surface resection such that accurate cuts may be made with the provisional component in place. The method involves preparing the distal femoral surface using the femoral intramedullary canal as a constant reference point for posterior and distal cutting guides followed by locating the provisional component by means of a provisional intramedullary stem so that the relationship with the soft tissues of the knee may be accurately established.
Images(4)
Previous page
Next page
Claims(18)
1. A method of knee joint arthroplasty comprising preparing a distal femur to accept a femoral component in knee replacement surgery wherein the femoral intramedullary canal is used as the reference point for all resection cuts comprising the steps of:
i. incrementally reaming the intramedullary canal out to cortical bone with a reamer means;
ii. leaving said reamer means in place and attaching thereto a distal cutting guide;
iii. resetting medial and lateral distal surfaces of said femur along said distal cutting guide;
iv. replacing said distal cutting guide with a posterior cutting guide and resetting medial and lateral posterior condylar surfaces of said femur along said posterior cutting guide;
vi. removing said posterior cutting guide and reamer, attaching a provisional intramedullary stemattaching to a provisional femoral component to a distal femur surface what has been preliminarily resected, which said provisional femoral component including an anteriorincludes a cutting guide formed therein and an outer surface replicatingthat replicates the size of a permanent femoral component, and inserting said stem into said intramedullary canal ;
viii. evaluating flexion/extension gaps of the knee and patella tracking relative to said provisional femoral component and establishing correct gaps and soft tissue balance of said knee relative to the anatomical size of said knee;
viiiii. resetting an anterior surface of said femur surface along said anterior cutting guide of said provisional femoral component; and
viiiiv. removing said provisional stem and provisional femoral component and insertingreplacing it with a permanent femoral component correspondingthat corresponds to said provisional component.
2. The method of claim 1 wherein said provisional femoral component comprises an anterior flange, first and second posterior condylar flanges and an intermediate distal femoral joint portion, said flanges and distal femoral joint portion being formed as a single element having a continuous joint surface around its outer perimeter.
3. The method of claim 2 wherein said provisional femoral component further comprises said anterior resection cutting guide, said guide comprising means relative to said anterior flange for guiding a bone saw in resection of said anterior femoral surface.
4. The method of claim 3 wherein said guide means relative to said anterior flange comprises at least one slot formed in and through said provisional femoral component posteriorly of said anterior flange and extending inward from an edge thereof to a point adjacent a center line of said component, said slot having an angle relative to said component corresponding to that of an anterior flange of a permanent femoral knee joint prosthesis component.
5. The method of claim 2 further comprising adjusting said flexion/extension gaps and thereby the position of said provisional component by interposing provisional augment means between said component and said femur.
6. The method of claim 5 wherein said provisional augment means comprise distal and posterior portions having an angular relationship corresponding to that of said posterior condylar flanges and said intermediate distal femoral joint portion.
7. The method of claim 6 wherein said provisional augment means are temporarily interposable between said component and said femur and may be removed therefrom and permanently adhered to a permanent implant component.
8. The method of claim 1 wherein resection cuts made to said distal femur have constant angular characteristics relative to said intramedullary canal irrespective of the anatomical size of the knee on which said arthroplasty is conducted.
9. The method of claim 8 wherein resection cuts are determined by geometric constants defining the construction of a set of permanent femoral components from which said permanent component corresponding to said provisional component is selected.
10. A method of knee joint arthroplasty for revision surgery of a human knee wherein resection of a distal femur preparatory to implantation of a femoral component employs the femoral intramedullary canal as the reference point for all resection cuts, comprising:
i. removing an existing femoral component;
ii. fitting a cutting guide means to said femur by a means extending into said femoral intramedullary canal and first resetting medial and lateral distal surfaces of said femur and medial and lateral posterior condylar surfaces of said femur;
iiiii. removing said cutting guide means and fitting a provisional femoral knee component onto to said distal femur surface, said provisional component having an anteriora cutting guide means formed therein and an outer surface replicatingthat replicates the size of a permanent femoral component, and wherein said provisional component comprises an intramedullary stem which is inserted into said intramedullary canal ;
iv. evaluating and adjusting flexion and extension gaps of the knee and patella tracking relative to said provisional femoral component and establishing correct gaps and soft tissue balance of said knee relative to the anatomical size of said knee followed byiii. resecting an anteriorthe surface of said distal femur along said anterior cutting guide;
viv. removing said provisional femoral knee component and inserting a permanent femoral component corresponding to said provisional component; wherein,
said anterior resection of said femur comprises an anterior flange cut and an anterior chamfer cut, said cuts having constant angular characteristics relative to said intramedullary canal irrespective of the anatomical size of the knee on which said arthroplasty is performed .
11. The method of claim 10 wherein said provisional femoral component comprises an anterior flange, first and second posterior condylar flanges and an intermediate distal femoral joint portion, said flanges and distal femoral joint portion being formed as a single element having a continuous joint surface around its outer perimeter.
12. The method of claim 11 wherein said constant angular characteristics of said anterior resection cuts correspond to and are determined by a stem/anterior flange distance and a stem/anterior cortex angle which are constant for all sizes of provisional components.
13. A method of preparing a distal femur to accept a femoral component in knee replacement surgery wherein the femoral intramedullary canal is used as the reference point for all resection cuts, the method comprising the steps of:
i. fitting a first cutting guide means to said distal femur by a means extending into said intramedullary canal and performing a first resection of the medial and lateral distal surfaces of said femur and the medial and lateral condylar surfaces of said femur;
ii. removing said first cutting guide means;
iiii. providingfitting a provisional femoral component for connection to said resecteda distal femur to measure the correct size of a permanent component to use with the resected femur,surface that has been preliminarily resected, said provisional component including an inner surface that is engageable with thesaid resected distal femur surface and has an outer surface replicatingthat replicates the size of thesaid permanent femoral component, andthat includes at least one slot extending from thesaid provisional component outer surface to receive a cutting tool for further resection of thesaid distal femur surface to prepare thesaid distal femur surface for connection with said permanent femoral component;
ivii. fitting said provisional femoral component to said further resected distal femur surface, evaluating and adjusting flexion and extension of the knee and patella tracking relative to said provisional femoral component, and performing a second resection of said distal femur using said at least one slot of said provisional femoral component as a guide means; and
viii. removing said provisional femoral component and insetting in its place a permanent femoral component corresponding to said provisional femoral component.
14. The method of claim 13 wherein said second resection comprises resection of the anterior surface of the distal femur and is performed at angles having constant characteristics relative to said intramedullary canal irrespective of the anatomical size of the knee on which said knee replacement is performed.
15. The method of claim 14 wherein said provisional component comprises an anterior flange, first and second posterior condylar flanges and an intermediate distal femoral joint portion, said flanges and distal femoral joint portion being formed as a single element having a continuous joint surface around its outer perimeter.
16. The method of claim 15 wherein said constant angular characteristics of said anterior resection cuts correspond to and are determined by a stem/anterior flange distance and a stem/anterior cortex angle which are constant for all sizes of provisional components.
17. The method of claim 15 wherein said at least one slot of said provisional component is located posteriorly of said anterior flange and extends inward from an edge thereof to a point adjacent a center line of said component, said slot having an angle relative to said component corresponding to that of an anterior flange of said femoral component.
18. The method of claim 17 wherein said provisional component comprises a further slot located posteriorly of said at least one slot and at an angle relative to said at least one slot whereby resection of said distal femur through said further slot produces a chamber on said distal femur.
Description

This is a division of application Ser. No. 07/862,953 filed Apr. 3, 1992 now abandoned.This application is a reissue of application Ser. No. 08/021,039, now U.S. Pat. No. 5,458,645, which is a divisional of application Ser. No. 07/862,953, filed Apr. 3, 1992, now U.S. Pat. No. 5,258,032.

FIELD OF THE INVENTION

The present invention relates to a method and apparatus for a knee joint prosthes is and surgical procedure. More particularly concerning the proper fitting of the femoral component of a total knee revision prosthesis, the procedure for performing revision surgery and apparatus used therein.

BACKGROUND OF THE INVENTION

The present invention relates to a provisional knee prosthesis and resection guide component together with a surgical procedure designed for use as a system in revision surgery of previously performed knee arthroplasties. It may also find utility in an initial knee replacement procedure.

Revision surgery is performed to correct failures of previously implanted knee prostheses. These failures occur for a number of reasons including malposition, loosening of the prosthesis, infection or dislocation. Such categories are not necessarily mutually exclusive since infection may cause a loosening of the prosthesis which, in turn, might cause dislocation.

When a prosthesis must be removed and a revision prosthesis inserted, it is often the case that additional bone must be removed in order to stabilize the new prosthesis. When this occurs, the interior portion of the femoral component of the prosthesis must be augmented to add additional thickness to compensate for the bone that has been removed. In addition, the revision cuts that remove the extra bone must be made correctly relative to the revision prosthesis for accurate positioning in relation to a tibial component and the soft tissues of the knee joint. Such cuts are made with the aid of guides positioned relative to the ends of the femur and tibia.

It is preferable to perform revision in a single surgical procedure. Also, it is desirable to be able to test the fit and operation of the prosthesis relative to the rest of the knee, particularly the patella and the soft tissues, prior to or at the same time as the revision cuts are made in the end of the femur. Indeed, with regard to patellar tracking, it is preferable to ensure a proper fit before the final anterior cuts are made to the distal femur.

The apparatus and method of this invention are intended to be used in conjunction with the revision prosthesis system of applicant's co-pending application which is based around a constant geometry of the anterior flange, the distal prosthesis and the intramedullary stem of the component and uses the intramedullary canal of the femur as a reference point. Accordingly, the present invention is similarly based around the intramedullary canal of the femur as a reference point for all of the bone cuts.

DESCRIPTION OF THE PRIOR ART

Tibial resection for implantation of the tibial component of an initial knee prosthesis or revision is relatively straight-forward as it essentially only requires surface treatment of the proximal end of the tibia. In such treatments, cutting guides are normally positioned relative to the intramedullary canal of the tibia by attaching the guides to the intramedullary reamer or to an alignment rod placed within the reamed canal. Such devices are shown in U.S. Pat. Nos. 4,952,213 to Bowman, et al., and 5,002,545 to Whiteside, et al.

In contract, however, prior apparatus and methods for performing the comparable resection of the distal femur have included both intramedullary and extramedullary positionable guide means, often both, frequently requiring accurate adjustment for the individual circumstances. The intramedullary positioned guide means have been traditionally used only for the distal and posterior resection of the femur leaving the anterior cuts to be made with extramedullary positioned means.

Such intramedullary positionable distal and posterior cut guide means are represented by U.S. Pat. Nos. 4,703,751 to Pohl and 4,935,023 to Whiteside, et al. The Pohl patent presents a guide means for resection of the distal surface, which guide is positionable on a jig which is removably connected to an intramedullary rod. The jig allows the cutting guide to be angularly pivoted relative to the center line of the femur. Whiteside, et al., present a shaping guide also removably attachable to an intramedullary rod and having an adjustable positioning means together with guides for the shaping of only one condyle in preparation for the implantation of a unicondylar prosthesis.

It is known for anterior surface resection guides to be positionable relative to an intramedullary rod, for example U.S. Pat. No. 4,474,177 to Whiteside presents an apparatus for shaping the distal femoral surface wherein a plurality of shaping instruments or guides are selectively positionable on an intramedullary rod for use in guiding a saw blade during the procedure. However, what the prior art lacks is an apparatus and method whereby all cuts can be made from the common reference point of the intramedullary canal of the femur and whereby the positioning and size of a femoral component may be checked relative to the soft tissues and the track of the patella prior to making the final resection of the anterior surfaces. In the case of Whiteside, the cuts are made first then the guides are removed before any test fittings can be conducted. If the cuts are made in the wrong place or to the wrong degree, then the surfaces must be modified by further resection, bone grafts or bone cement to get a proper fit of the implant.

SUMMARY OF THE INVENTION

The present invention provides a provisional component which allows the selected size of a prospective implant to be test fit with respect to the distal and posterior resections of the femur and the soft tissues of the knee joint before making the final resection of the anterior surface of the femur. It also provides a guide means as an integral part of the provisional component for making those final cuts to the anterior surface. Furthermore, it provides a means whereby the relative spacing of the extension and flexion gaps in the knee joint may be tested using the provisional component with prospective augments or trial pieces, when necessary, in place following which the provisional component itself serves as the guide for making the final surface cuts thus ensuring that the resected femur and ultimate permanent prosthesis will result in a properly balanced knee.

The augments, which are modular and therefore independently changeable, allow adjustment of the anterior/posterior box size as well as the distal positioning of the provisional component. Such distal positioning is crucial for obtaining correct soft tissue balance in the knee during trial reduction before final anterior resection and implantation of the permanent prosthesis. Modular augments and pretesting of the knee with the provisional component of the present invention also enable the surgeon to ensure a close contact fit of the prosthesis with the resected bone surface whereby a greater degree of adhesion may be obtained through bone ingrowth or less bone cement need be used.

The provisional component is constructed to emulate the permanent implant while being temporarily placed in the joint space. Such a permanent implant system is described by my copending application Ser. No. 07/862,954 filed Apr. 3, 1992. It includes the anterior and posterior condylar flanges as well as the intermediate distal portion of the joint surface. An intramedullary stem is provided or, alternatively, the provisional may be adapted for attachment to an intramedullary rod or reamer placed in the femoral intramedullary canal. Provision is also made for the provisional component to temporarily accept distal and posterior augments for proper spacing so that the final anterior surface cuts will be accurately made. With regard to those cuts, the provisional component includes bone saw guides positioned through the body of the component relative to the anterior flange for the correct location and angular position of the chamfer and anterior surface cuts necessary to fit a final permanent implant.

It is therefor an object of this invention to provide a combination knee prosthesis provisional apparatus and resection guide for use in knee replacement surgery whereby resection and test fitting of femoral prostheses may be easily and reliably achieved.

It is a further object of this invention to provide a means whereby the spacing of extension and flexion gaps of the knee may be tested and evaluated during the process of replacement surgery prior to final resection and prosthesis implantation.

It is a still further object to provide a means whereby the resection of the distal femur is made on the basis of a reference point common to all resection cuts slid implant sizes.

It is an even further object to provide a combination knee prosthesis provisional apparatus and resection guide which emulates a permanent femoral implant component.

Further objects and advantages will become evident to those of skill in the art from the following drawings and description.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an oblique view of a standard femoral component of a knee revision prosthesis.

FIG. 2 is a view of a knee joint in full extension.

FIG. 3 is a view of a knee joint in full flexion.

FIG. 4 is an oblique view of the femoral component provisional and resection guide apparatus of the present invention.

FIG. 5 is a composite view of the femoral component provisional and resection guide apparatus of the present invention illustrating its component parts.

FIG. 6 is a cross section of a partially prepared femur illustrating the femoral component provisional and resection guide in place prior to making anterior flange and chamfer cuts on the femur.

FIG. 7 is a posterior elevation view of the femoral component provisional and resection guide apparatus of FIG. 4.

DETAILED DESCRIPTION OF THE INVENTION

The femoral component revision prosthesis of FIG. 1 is similar to that employed in most knee prosthetics in that it comprises an anterior flange 1, a pair of posterior condylar flanges 2 and 3, a distal femur contacting surface 4, an intramedullary locating and anchor shaft 5 and a distal joint surface 6 corresponding to the natural distal femoral surface of the human knee with condylar surfaces 7 and 8 for cooperation with the corresponding end of a tibia and means for patellar tracking along the arc of the joint surface of the anterior flange 1 and between the distal condylar surfaces 7 and 8. Femoral component prostheses of this general type have been used for some time in knee reconstruction and have been made available in a range of sizes to accommodate patients having different skeletal and joint sizes. Such components have required that the distal end of the femur be resected to the specific size of the individual component, necessitating careful shaving of the bone by the surgeon and multiple fittings of the prosthesis before the procedure is finished. Alternatively, a wide array of augments attachable to the distal femur contacting surface 4 of the component have been necessary to ensure a proper fit of the correct size component to a patient's femur.

For an initial femoral implant, it is generally not as difficult to obtain a correct fit of the proper size component; although the problem can occur where there is a great deal of diseased bone that must be removed before the implant is fitted. Such instances then become similar to those encountered in revision surgery where it is necessary to remove existing bone along with the original implant either due to infection or physical breakdown of the previously prepared distal femur. In these cases the size of the bone supporting the implant is reduced but it is still desired to maintain the size of the original joint in order to obtain proper anatomical characteristics of support and function for the patient. For example, a patient having an anatomical knee size of six may, following resection of the femur, have a distal femoral surface corresponding to that for a size four and a half knee. In order to maintain the proper anatomical characteristics for that knee it is desirable that the implanted component be a size six. However, adapting a larger size implant to a smaller size bone has presented difficulties which, to date, have been solved by the use of custom made implants or multiple augments.

Prior devices and methods have required measuring the size of the bone and then cutting it to fit one specific size of prosthesis. This allows a good fit to be obtained between the prosthesis and the bone but may not provide a good fit with the soft tissues and the patella. In revision surgery, the flexion space of the knee, ie., that space between the posterior edge of the prepared distal femur and the prepared proximal tibia when the knee is fully bent as shown by space B in FIG. 3, is often greater than the extension space, ie., that space between the distal femur and proximal tibia when the knee is fully extended, as shown by space A in FIG. 2. For proper working of the knee joint the tension between the distal femur and the proximal tibia should be the same whether the knee is in flexion or extension. However, it is often the case in revision surgery that resection of the distal femur is uneven resulting in irregularities in the spacing of the flexion and extension gaps which, in turn, produces uneven tension across the knee. The present apparatus and method allow testing of the knee action with the provisional component, which corresponds to the permanent implant, in order to ensure that the flexion and extension gaps are even for proper working of the knee before final resection cuts are made to the anterior surface of the femur and to ensure a close contact fit with the resected bone surface. The femoral components of applicant's copending application and the method and apparatus of this invention are based around the intramedullary canal as a constant point of reference as well as a constant geometry of the components in a set with regard to the relationship between the intramedullary stem and the anterior flange of the components. This makes adjustment and placement of femoral components during surgery easier since it eliminates at least one variable from the procedure. Since the relationship between the intramedullary stem and the anterior flange is constant, the anterior resection cuts must be properly placed relative to the intramedullary canal as well as relative to the posterior and distal cuts in order to obtain a properly workable knee joint. The apparatus and method of this invention provide the means whereby this is achieved.

FIGS. 2 and 3 illustrate the relationships of femoral 9 and tibial 10 components in a knee joint at full extension and full flexion respectively. Under optimum conditions, the extension gap A and the flexion gap B should be equal for a properly functioning and stable knee. This relationship between the femur 11 and tibia 12 is important to get the knee implant components to interface properly with the soft tissues of the joint and to achieve a proper soft tissue balance within the knee. The size of the femoral revision component usually increases relative to the centerline through the fixation stem 5 with the posterior portion 6 being increased to tighten the flexion space B. However, this often affects the other relationships within the knee and upsets the soft tissue balance. In the present invention the distal and posterior adjustments are made with the addition of augments between the femoral component 9 and the respective cuts made to the femur 11. Furthermore, since the inventions herein and in applicant's copending application are based around the intramedullary canal and the anterior flange as constants, it is important that the anterior resection be identical and properly placed. Accordingly, the provisional component of FIG. 4 provides a means whereby the knee joint may be tested for proper fit and function prior to resection of the anterior femur and whereby that resection may be accomplished while the provisional component is in place, thereby ensuring that the anterior cuts are made in the correct place relative to all other aspects of the joint replacement components.

FIGS. 4 and 7 illustrate the combination femoral provisional component and anterior resection guide 20 of the invention which comprises a femoral component similar to that shown in FIG. 1. The provisional 20 comprises an anterior flange 21, posterior condylar flanges 22 and 23, a distal femur contacting surface 24 and a distal joint surface 26 which corresponds to the natural distal femoral surface of the human knee with condylar surfaces 27 and 28. Between the distal femur contacting surface 24 and the inner surface 21a of anterior flange 21 is chamfer 29 which will correspond to a chamfer cut made to the distal femur during resection procedures to be described later. Located medially on the distal femur contacting surface 24 adjacent chamfer 29 is the fixation point 25 for an intramedullary stem, rod or reamer by which the provisional component 20 is affixed to a femur in proper relation to the intramedullary canal reference point. Any suitable means for connection of the intramedullary location means may be used such as threads, 25a as shown, press fit, detents, or the like.

The provisional component of this invention, as well as the revision prosthesis of applicant's co-pending application, have a constant relationship between the center line of the stem, or stem fixation point, and the anterior cornea of the femur for all sizes of the component. This relationship provides a constant angle between the stem and the cortex, represented by the inner surface of the anterior flange, as well as a fixed distance therebetween which is the same regardless of the anatomical sizes of the provisional components to be available in a system.

The joint surface 26 is continuous and extends around the outer periphery of the component 20 to include the outer surface 21b of the anterior flange 21 as well as the outer surfaces of the posterior condylar flanges 22 and 23 and the distal femoral joint portion. Similarly, inasmuch as the component emulates the joint surface of a natural distal femur, the condylar surfaces 27 and 28 continue around the periphery of the component as part of the joint surface 26 thereby providing distal, medial and lateral condylar surfaces between which will be located a track area or groove 26a for travel of the patella as the knee joint flexes. Such travel is shown in FIGS. 2 and 3 by the relative positions of the patella 9a. This structure of the provisional component enables it to be placed in the joint space following resection of the distal and posterior femur. Preferably, the resection of the posterior and distal surfaces of the medial and lateral condyles is kept to the least amount necessary. In addition, each condyle is preferably resected independently of the other and separate augments are selected for test fitting the provisional component and for final implantation of the a femoral implant component. These cuts may be standardized relative to the anatomical characteristics of an average range of knee sizes for a population or they may be made on the basis of each individual case. The function of the knee may then be checked as well as the relationship of the provisional to the soft tissues of the joint. Although the correct size provisional component and, thereby, the prosthesis will usually be determined before surgery, it may be necessary, following initial resection, to upsize to the next larger component in order to tighten the flexion and extension gaps. The present invention facilitates this process by permitting the sizes to be tested before the final prosthesis is implanted. Once correct working of the joint is established, including balancing of the soft tissues, the anterior chamfer and anterior flange resection may be accomplished without removing the provisional component thereby ensuring that these cuts are made in the correct locations relative to the intramedullary canal and at the correct angles relative to the intramedullary stem.

It is important that the anterior flange cut be made last, after the posterior and distal cuts and after correct working of the joint and soft tissue balance has been established. Because the system of revision for which the provisional component of this invention is intended uses the intramedullary canal of the femur as a reference point, the angle established between a reamer or intramedullary shaft and the anterior flange of an implant is constant through all sizes of such implants. Therefore, if the anterior flange cut is made before the posterior and distal cuts and before the extension and flexion gaps are stabilized, the constant relationship will be lost once those cuts are made and stabilization of the knee and soft tissue balance will be much more difficult to achieve. Thus, the correct order for the procedure is to first resect the distal and posterior femoral surfaces with the cutting guides therefor positioned relative to the reamer used to prepare the intramedullary canal. Following this, the provisional component is inserted, using either the reamer or a separate intramedullary shaft for positioning, and the fit and balance of the knee are determined before finally making the anterior flange cuts.

To accomplish this, the provisional component 20 is provided with cutting guides 30 and 31. These guides 30 and 31 comprise slots in the body of the provisional component 20 with guide 30 at the correct angle and location for the anterior flange resection cut while guide 31 is at the correct angle and location for the anterior chamfer resection cut. Each guide actually comprises two slots placed on either side of the intramedullary stem fixation point 25 and extending from the edge of the component 20 inward toward the longitudinal center line 35 of the component to a point adjacent the intramedullary stem fixation point 25. The slots further extend completely through the component 20 from the joint surface 26 to the femoral contact surface 24 with the two slots of each guide 30 and 31 being necessarily located on the same relative plane through the component 20. Clearly, cutting guides 30 and 31 do not extend completely across component 20 from edge to edge in order to maintain the component as a complete unit. Also, the cutting is primarily conducted on the condylar surfaces of the femur which will provide a guide for any final dressing of the intervening mid surface.

FIG. 5 illustrates the primary components of the provisional apparatus and resection guide of the present invention while FIG. 6 shows their position in relationship to the distal end of a femur. The entire apparatus comprises the provisional component 20 described above, an intramedullary stem 32 affixable to fixation point 25 on the provisional component 20, and a combined distal/posterior augment 33 preferably temporarily affixable to the femoral contact surface 24 of provisional component 20. Alternatively, augment 33 may comprise separate distal and posterior pieces to allow greater variation and accommodate wider ranges of differences between the individual condyles of the knee. Anterior flange resection guide 30 and anterior chamfer resection guide 31 are shown in phantom. The inner surface 21a of anterior flange 21 is relieved to allow it to fit on the end of the femur 11 prior to anterior resection, as shown in FIG. 6. However, the joint surface 21b of the anterior flange 21 when the component 20 is in place will properly correspond to the location of the same joint surface of a permanent component so that action of the joint with the provisional component 20 in place will mimic joint action following implantation of the permanent component. This relationship is important since the provisional component 20 is used to test for proper alignment of the knee joint and soft tissue balance, and to establish proper tracking of the patella 9a.

As shown in FIGS. 4, 5, 6 and 7, the position of anterior resection cutting guide 30 does not coincide with the relieved inner surface 21a of anterior flange 21. Rather, the position and angle of guide 30 corresponds to the requirement for the anterior femur contacting surface of the permanent component to be implanted and its relationship to the constant reference point of the intramedullary canal. Thus, the angle of guide 30 relative to the axis of intramedullary stem 32 will preferably correspond to that of the anterior flange and intramedullary stem of the femoral components of applicant's copending application.

Augments 33 provide buildup for the resected areas of the distal and posterior condyles of the femur 11 in order to maintain the correct anatomical relationships of the knee joint between the joint surface 26 of the provisional component 20 and the corresponding surface of a tibial component 10. The size of the augments 33 is based on the resection cuts made to the femur for the particular size of permanent component to be used. Where such cuts are standardized, there will be an equally standardized set of augments. Alternatively, where the cuts are made on a case by case basis, a wider variety of augment sizes will be available. The augments 33 may be provided with the provisional component 20 or they may be those provided with the permanent component in which case they will be temporarily attachable to the provisional component so that they may be removed and permanently mounted on the permanent component prior to its implantation. As shown in FIGS. 5 and 6, the one piece augments 33 have a substantial L-shape corresponding to the interior shape of the provisional component 20 at the distal/posterior portion. As such, the augments 33 comprise a distal portion 33a and a posterior portion 33b. Alternatively, the augments may be provided as separate distal and posterior portions corresponding to portions 33a and 33b. Due to the nature of the resection of the distal femur and the fact that the extension and flexion gaps, A and B in FIGS. 2 and 3 respectively, usually are different following resection, the distal and posterior portions of the augments are usually of different thicknesses. These thicknesses are determined by the resection cuts made to the distal femur relative to the size of the femoral component to be implanted. The provisional component of this invention allows the selection of augments 33 to be tested for accuracy in establishing the extension and flexion gaps. In addition, the provisional component and the temporary placement of the augments therewith permits the establishment of the proper position of the patella 9a relative to the joint line. As shown in FIG. 2, the joint line 34 passes through the joint at a point tangential to the femoral component 9 and the tibial component 10. The position of the patella 9a relative to this line is given as C and will depend on the particular anatomical size of a knee. This position is variable by changing the augment 33 to one having a different distal thickness 33a thus altering both the extension gap A and the patella position C. Similarly, changing the augment 33 to one having a different posterior thickness 33b will alter the flexion gap B. In instances where it becomes necessary to upsize to the next size provisional component and prosthesis, appropriately sized augments will be employed to ensure that the flexion and extension gaps are properly established for even tension across the knee. In this manner an accurate relationship of the provisional component 20 to the hard and soft tissues of the knee joint may be established before the final resection of the anterior femur is performed. In addition the necessary augments 33 to be used with a permanent implant component are selected and can then be attached to the permanent implant component.

In the surgical procedure employed with this apparatus the proximal tibia is prepared by incrementally reaming the tibial intramedullary canal out to cortical bone, leaving the reamer in place as a point of reference for a tibial cutter, resecting the proximal tibia and applying provisional components for the tibial portion of the knee joint. Following this, the distal femur is prepared using the above described apparatus. Alternatively, the femur may be prepared first followed by the preparation of the tibia.

For preparation of the distal femur, the femoral intramedullary canal is first reamed incrementally to cortical bone. The canal, as stated, is the constant reference point for the resection of the distal femur. The reamer may be left in place or a provisional stem or similar intramedullary rod may be inserted on which distal and posterior cutters are mounted for resection of the distal and posterior surfaces of the femur. These cuts will be made based on the condition of the bone and on the permanent prosthesis to be implanted but will preferably be made according to a standard established by the prosthesis system being used. The individual condyles of the posterior and distal surfaces may be resected to different levels and brought up to the same level by the use of augments.

Following the posterior and distal resection, the femoral provisional component is put in place to test the positions of the selected prosthesis and the tissues of the knee joint. If the provisional stem was used as the support for the posterior and distal cutters then the provisional component may be substituted for those cutters otherwise it is preferable that the cutter support be removed from the intramedullary canal, the provisional stem attached to the provisional component and that assembly put in place. Augments may be attached as needed to establish the correct joint characteristics or a different size provisional component may be tried. Since all sizes of provisionals have the same stem/anterior flange distance and the same stem/anterior cortex angle, those characteristics and the resulting position of the anterior flange cuts will be the same regardless of the size provisional used. Once all such characteristics have been established, the provisional component and its included anterior resection guides are used for the final anterior chamfer and anterior flange cuts following which the provisional component, stem and augments are removed and the permanent implant component inserted.

The foregoing description sets forth the preferred form of the apparatus of this invention and the method for its use. However, other modifications and variations will become apparent to those having skill in the art from an examination of that description and the accompanying drawings. Therefore, other variations of the present invention may be made which fall within the scope of the appended claims even though such variations were not specifically discussed.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US45024839 Mar 19835 Mar 1985Dow Corning CorporationMethod and apparatus for shaping a distal femoral surface
US45247667 Jan 198225 Jun 1985Petersen Thomas DSurgical knee alignment method and system
US464672919 Dec 19853 Mar 1987Howmedica, Inc.Prosthetic knee implantation
US4721104 *2 Dec 198526 Jan 1988Dow Corning Wright CorporationFemoral surface shaping apparatus for posterior-stabilized knee implants
US475935017 Oct 198626 Jul 1988Dunn Harold KInstruments for shaping distal femoral and proximal tibial surfaces
US5053037 *7 Mar 19911 Oct 1991Smith & Nephew Richards Inc.Femoral instrumentation for long stem surgery
US5100409 *7 Mar 199131 Mar 1992Dow Corning Wright CorporationShaping and trial reduction guide for implantation of femoral prosthesis and method of using same
US5250050 *30 Apr 19925 Oct 1993Pfizer Hospital Products Group, Inc.Apparatus for knee prosthesis
US5282803 *30 Mar 19921 Feb 1994Smith & Nephew Richards Inc.Instrumentation for long stem surgery
EP0121786A19 Mar 198417 Oct 1984Mtu Motoren- Und Turbinen-Union München GmbhElectrode, especially for TIG welding
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US784616215 May 20067 Dec 2010Sonoma Orthopedic Products, Inc.Minimally invasive actuable bone fixation devices
US790982521 Nov 200722 Mar 2011Sonoma Orthepedic Products, Inc.Fracture fixation device, tools and methods
US791453330 Nov 200629 Mar 2011Sonoma Orthopedic Products, Inc.Minimally invasive actuable bone fixation devices
US794287515 May 200617 May 2011Sonoma Orthopedic Products, Inc.Methods of using minimally invasive actuable bone fixation devices
US80707529 Jan 20086 Dec 2011Biomet Manufacturing Corp.Patient specific alignment guide and inter-operative adjustment
US809246531 May 200710 Jan 2012Biomet Manufacturing Corp.Patient specific knee alignment guide and associated method
US813323420 Feb 200913 Mar 2012Biomet Manufacturing Corp.Patient specific acetabular guide and method
US816034518 Apr 201117 Apr 2012Otismed CorporationSystem and method for image segmentation in generating computer models of a joint to undergo arthroplasty
US817064120 Feb 20091 May 2012Biomet Manufacturing Corp.Method of imaging an extremity of a patient
US822143018 Dec 200717 Jul 2012Otismed CorporationSystem and method for manufacturing arthroplasty jigs
US824129326 Feb 201014 Aug 2012Biomet Manufacturing Corp.Patient specific high tibia osteotomy
US826594927 Sep 200711 Sep 2012Depuy Products, Inc.Customized patient surgical plan
US828264629 Feb 20089 Oct 2012Biomet Manufacturing Corp.Patient specific knee alignment guide and associated method
US828753910 Jun 200916 Oct 2012Sonoma Orthopedic Products, Inc.Fracture fixation device, tools and methods
US828754110 Jun 200916 Oct 2012Sonoma Orthopedic Products, Inc.Fracture fixation device, tools and methods
US82982374 Feb 200830 Oct 2012Biomet Manufacturing Corp.Patient-specific alignment guide for multiple incisions
US831130614 Apr 200913 Nov 2012Otismed CorporationSystem and method for image segmentation in generating computer models of a joint to undergo arthroplasty
US834315929 Sep 20081 Jan 2013Depuy Products, Inc.Orthopaedic bone saw and method of use thereof
US835711130 Sep 200722 Jan 2013Depuy Products, Inc.Method and system for designing patient-specific orthopaedic surgical instruments
US835716629 Sep 200822 Jan 2013Depuy Products, Inc.Customized patient-specific instrumentation and method for performing a bone re-cut
US836107629 Sep 200829 Jan 2013Depuy Products, Inc.Patient-customizable device and system for performing an orthopaedic surgical procedure
US837706622 Sep 201019 Feb 2013Biomet Manufacturing Corp.Patient-specific elbow guides and associated methods
US837706829 Sep 200819 Feb 2013DePuy Synthes Products, LLC.Customized patient-specific instrumentation for use in orthopaedic surgical procedures
US839864529 Sep 200819 Mar 2013DePuy Synthes Products, LLCFemoral tibial customized patient-specific orthopaedic surgical instrumentation
US839864623 Nov 201119 Mar 2013Biomet Manufacturing Corp.Patient-specific knee alignment guide and associated method
US84039359 Nov 201026 Mar 2013Wright Medical Technology, Inc.Adjustable revision guide
US840706731 Aug 201026 Mar 2013Biomet Manufacturing Corp.Method and apparatus for manufacturing an implant
US843991722 Feb 201114 May 2013Sonoma Orthopedic Products, Inc.Fracture fixation device, tools and methods
US846030325 Oct 200711 Jun 2013Otismed CorporationArthroplasty systems and devices, and related methods
US847330512 Jun 200925 Jun 2013Biomet Manufacturing Corp.Method and apparatus for manufacturing an implant
US848067929 Apr 20089 Jul 2013Otismed CorporationGeneration of a computerized bone model representative of a pre-degenerated state and useable in the design and manufacture of arthroplasty devices
US84834692 Oct 20129 Jul 2013Otismed CorporationSystem and method for image segmentation in generating computer models of a joint to undergo arthroplasty
US84861507 Apr 201116 Jul 2013Biomet Manufacturing Corp.Patient-modified implant
US853236125 Jan 201210 Sep 2013Otismed CorporationSystem and method for image segmentation in generating computer models of a joint to undergo arthroplasty
US85328076 Jun 201110 Sep 2013Biomet Manufacturing, LlcPre-operative planning and manufacturing method for orthopedic procedure
US85353877 Mar 201117 Sep 2013Biomet Manufacturing, LlcPatient-specific tools and implants
US854550921 Sep 20091 Oct 2013Otismed CorporationArthroplasty system and related methods
US856848723 Dec 201029 Oct 2013Biomet Manufacturing, LlcPatient-specific hip joint devices
US859151629 Nov 201026 Nov 2013Biomet Manufacturing, LlcPatient-specific orthopedic instruments
US85973654 Aug 20113 Dec 2013Biomet Manufacturing, LlcPatient-specific pelvic implants for acetabular reconstruction
US860318019 May 201110 Dec 2013Biomet Manufacturing, LlcPatient-specific acetabular alignment guides
US860874816 Sep 200817 Dec 2013Biomet Manufacturing, LlcPatient specific guides
US86087497 Mar 201117 Dec 2013Biomet Manufacturing, LlcPatient-specific acetabular guides and associated instruments
US861717113 Apr 201131 Dec 2013Otismed CorporationPreoperatively planning an arthroplasty procedure and generating a corresponding patient specific arthroplasty resection guide
US861717514 Dec 200931 Dec 2013Otismed CorporationUnicompartmental customized arthroplasty cutting jigs and methods of making the same
US863254712 May 201121 Jan 2014Biomet Sports Medicine, LlcPatient-specific osteotomy devices and methods
US866870029 Apr 201111 Mar 2014Biomet Manufacturing, LlcPatient-specific convertible guides
US871528915 Apr 20116 May 2014Biomet Manufacturing, LlcPatient-specific numerically controlled instrument
US871529124 Aug 20096 May 2014Otismed CorporationArthroplasty system and related methods
US873445523 Feb 200927 May 2014Otismed CorporationHip resurfacing surgical guide tool
US873770014 Apr 201027 May 2014Otismed CorporationPreoperatively planning an arthroplasty procedure and generating a corresponding patient specific arthroplasty resection guide
US87647601 Jul 20111 Jul 2014Biomet Manufacturing, LlcPatient-specific bone-cutting guidance instruments and methods
US877787517 Jul 200915 Jul 2014Otismed CorporationSystem and method for manufacturing arthroplasty jigs having improved mating accuracy
US880171928 Dec 201212 Aug 2014Otismed CorporationTotal joint arthroplasty system
US880172018 Dec 200612 Aug 2014Otismed CorporationTotal joint arthroplasty system
US882801411 Mar 20139 Sep 2014Microport Orthopedics Holdings Inc.Adjustable revision guide
US882808713 Aug 20129 Sep 2014Biomet Manufacturing, LlcPatient-specific high tibia osteotomy
US885856118 Jun 200914 Oct 2014Blomet Manufacturing, LLCPatient-specific alignment guide
US88647697 Mar 201121 Oct 2014Biomet Manufacturing, LlcAlignment guides with patient-specific anchoring elements
US89002445 Jan 20122 Dec 2014Biomet Manufacturing, LlcPatient-specific acetabular guide and method
US89035306 Sep 20132 Dec 2014Biomet Manufacturing, LlcPre-operative planning and manufacturing method for orthopedic procedure
US895636429 Aug 201217 Feb 2015Biomet Manufacturing, LlcPatient-specific partial knee guides and other instruments
US896151613 Sep 201224 Feb 2015Sonoma Orthopedic Products, Inc.Straight intramedullary fracture fixation devices and methods
US89683205 Jun 20123 Mar 2015Otismed CorporationSystem and method for manufacturing arthroplasty jigs
US89798476 Jun 201117 Mar 2015Biomet Manufacturing, LlcMethod and apparatus for implanting a knee prosthesis
US897993621 Jun 201317 Mar 2015Biomet Manufacturing, LlcPatient-modified implant
US900529717 Jan 201314 Apr 2015Biomet Manufacturing, LlcPatient-specific elbow guides and associated methods
US90114539 Sep 201121 Apr 2015Zimmer, Inc.Bone preserving intraoperative downsizing system for orthopaedic implants
US901733619 Jan 200728 Apr 2015Otismed CorporationArthroplasty devices and related methods
US906078811 Dec 201223 Jun 2015Biomet Manufacturing, LlcPatient-specific acetabular guide for anterior approach
US906082013 Sep 201223 Jun 2015Sonoma Orthopedic Products, Inc.Segmented intramedullary fracture fixation devices and methods
US90667273 Mar 201130 Jun 2015Materialise NvPatient-specific computed tomography guides
US906673431 Aug 201130 Jun 2015Biomet Manufacturing, LlcPatient-specific sacroiliac guides and associated methods
US908461811 Jun 201221 Jul 2015Biomet Manufacturing, LlcDrill guides for confirming alignment of patient-specific alignment guides
US911397129 Sep 201025 Aug 2015Biomet Manufacturing, LlcFemoral acetabular impingement guide
US913824817 Mar 201422 Sep 2015Microport Orthopedics Holdings Inc.Adjustable revision guide
US915557428 Sep 200913 Oct 2015Sonoma Orthopedic Products, Inc.Bone fixation device, tools and methods
US91736611 Oct 20093 Nov 2015Biomet Manufacturing, LlcPatient specific alignment guide with cutting surface and laser indicator
US917366627 Jun 20143 Nov 2015Biomet Manufacturing, LlcPatient-specific-bone-cutting guidance instruments and methods
US92049778 Mar 20138 Dec 2015Biomet Manufacturing, LlcPatient-specific acetabular guide for anterior approach
US920826331 Dec 20128 Dec 2015Howmedica Osteonics CorporationSystem and method for image segmentation in generating computer models of a joint to undergo arthroplasty
US923795031 Jan 201319 Jan 2016Biomet Manufacturing, LlcImplant with patient-specific porous structure
US924174513 Dec 201226 Jan 2016Biomet Manufacturing, LlcPatient-specific femoral version guide
US925925011 Apr 201316 Feb 2016Sonoma Orthopedic Products, Inc.Fracture fixation device, tools and methods
US927174418 Apr 20111 Mar 2016Biomet Manufacturing, LlcPatient-specific guide for partial acetabular socket replacement
US92892533 Nov 201022 Mar 2016Biomet Manufacturing, LlcPatient-specific shoulder guide
US929549718 Dec 201229 Mar 2016Biomet Manufacturing, LlcPatient-specific sacroiliac and pedicle guides
US930181217 Oct 20125 Apr 2016Biomet Manufacturing, LlcMethods for patient-specific shoulder arthroplasty
US933927821 Feb 201217 May 2016Biomet Manufacturing, LlcPatient-specific acetabular guides and associated instruments
US934554820 Dec 201024 May 2016Biomet Manufacturing, LlcPatient-specific pre-operative planning
US935174317 Oct 201231 May 2016Biomet Manufacturing, LlcPatient-specific glenoid guides
US938699326 Sep 201212 Jul 2016Biomet Manufacturing, LlcPatient-specific femoroacetabular impingement instruments and methods
US939302810 Aug 201019 Jul 2016Biomet Manufacturing, LlcDevice for the resection of bones, method for producing such a device, endoprosthesis suited for this purpose and method for producing such an endoprosthesis
US940263724 Jan 20132 Aug 2016Howmedica Osteonics CorporationCustomized arthroplasty cutting guides and surgical methods using the same
US940861612 May 20149 Aug 2016Biomet Manufacturing, LlcHumeral cut guide
US940861823 Feb 20099 Aug 2016Howmedica Osteonics CorporationTotal hip replacement surgical guide tool
US942732027 Nov 201330 Aug 2016Biomet Manufacturing, LlcPatient-specific pelvic implants for acetabular reconstruction
US943965929 Jun 201513 Sep 2016Biomet Manufacturing, LlcPatient-specific sacroiliac guides and associated methods
US944590716 Sep 201320 Sep 2016Biomet Manufacturing, LlcPatient-specific tools and implants
US945197317 Oct 201227 Sep 2016Biomet Manufacturing, LlcPatient specific glenoid guide
US94745397 Mar 201425 Oct 2016Biomet Manufacturing, LlcPatient-specific convertible guides
US948049016 Dec 20131 Nov 2016Biomet Manufacturing, LlcPatient-specific guides
US94805809 Dec 20131 Nov 2016Biomet Manufacturing, LlcPatient-specific acetabular alignment guides
US949823313 Mar 201322 Nov 2016Biomet Manufacturing, Llc.Universal acetabular guide and associated hardware
US951714511 Mar 201413 Dec 2016Biomet Manufacturing, LlcGuide alignment system and method
US952201021 Nov 201320 Dec 2016Biomet Manufacturing, LlcPatient-specific orthopedic instruments
US953901313 Apr 201510 Jan 2017Biomet Manufacturing, LlcPatient-specific elbow guides and associated methods
US955491017 Oct 201231 Jan 2017Biomet Manufacturing, LlcPatient-specific glenoid guide and implants
US95610403 Jun 20147 Feb 2017Biomet Manufacturing, LlcPatient-specific glenoid depth control
US957910711 Mar 201428 Feb 2017Biomet Manufacturing, LlcMulti-point fit for patient specific guide
US957911229 Jun 201528 Feb 2017Materialise N.V.Patient-specific computed tomography guides
US959720115 Sep 201521 Mar 2017Biomet Manufacturing, LlcPatient-specific acetabular guide for anterior approach
US96036131 Aug 201628 Mar 2017Biomet Manufacturing, LlcPatient-specific sacroiliac guides and associated methods
US964611320 Jun 20139 May 2017Howmedica Osteonics CorporationGeneration of a computerized bone model representative of a pre-degenerated state and useable in the design and manufacture of arthroplasty devices
US964917028 Aug 201316 May 2017Howmedica Osteonics CorporationArthroplasty system and related methods
US966212713 Dec 201330 May 2017Biomet Manufacturing, LlcPatient-specific acetabular guides and associated instruments
US966221628 Oct 201330 May 2017Biomet Manufacturing, LlcPatient-specific hip joint devices
US966874725 Sep 20156 Jun 2017Biomet Manufacturing, LlcPatient-specific-bone-cutting guidance instruments and methods
US967540019 Apr 201113 Jun 2017Biomet Manufacturing, LlcPatient-specific fracture fixation instrumentation and method
US96872617 Jul 201527 Jun 2017Biomet Manufacturing, LlcDrill guides for confirming alignment of patient-specific alignment guides
US970032512 Jan 201711 Jul 2017Biomet Manufacturing, LlcMulti-point fit for patient specific guide
US970032916 Nov 201611 Jul 2017Biomet Manufacturing, LlcPatient-specific orthopedic instruments
US97175105 May 20141 Aug 2017Biomet Manufacturing, LlcPatient-specific numerically controlled instrument
US974393517 Dec 201529 Aug 2017Biomet Manufacturing, LlcPatient-specific femoral version guide
US974394013 Feb 201529 Aug 2017Biomet Manufacturing, LlcPatient-specific partial knee guides and other instruments
US97572381 Dec 201412 Sep 2017Biomet Manufacturing, LlcPre-operative planning and manufacturing method for orthopedic procedure
US20090270868 *29 Apr 200829 Oct 2009Otismed CorporationGeneration of a computerized bone model representative of a pre-degenerated state and useable in the design and manufacture of arthroplasty devices
US20110112542 *9 Nov 201012 May 2011Wright Medical Technology, Inc.Adjustable revision guide
USD64226325 Oct 200726 Jul 2011Otismed CorporationArthroplasty jig blank
USD69171922 Jun 201115 Oct 2013Otismed CorporationArthroplasty jig blank
WO2012173605A1 *14 Jun 201120 Dec 2012Concept, Design And Development, LlcNeck sparing total hip implant system
Classifications
U.S. Classification606/88, 606/86.00R, 623/20.14, 128/898
International ClassificationA61B17/15, A61F2/00, A61F2/46, A61F2/30, A61F2/38, A61B19/00, A61B17/00
Cooperative ClassificationA61F2/3859, A61F2220/0025, A61F2002/30797, A61F2002/30672, A61F2002/30736, A61F2002/30405, A61F2002/30594, A61B17/155, A61F2/4684
European ClassificationA61F2/46T, A61F2/38F, A61B17/15K2
Legal Events
DateCodeEventDescription
24 Mar 2003ASAssignment
Owner name: ZIMMER TECHNOLOGY, INC., ILLINOIS
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ZIMMER, INC.;REEL/FRAME:013862/0766
Effective date: 20020628
17 Apr 2007FPAYFee payment
Year of fee payment: 12
20 Jul 2009ASAssignment
Owner name: ZIMMER, INC., INDIANA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BERTIN, KIM C.;REEL/FRAME:022973/0435
Effective date: 20090426