USRE36218E - Disc recording/reproducing apparatus having a servo system capable of successively recording and reproducing tracks on a disc irrespective of turbulence of the servo system due to a disturbance - Google Patents

Disc recording/reproducing apparatus having a servo system capable of successively recording and reproducing tracks on a disc irrespective of turbulence of the servo system due to a disturbance Download PDF

Info

Publication number
USRE36218E
USRE36218E US08/296,239 US29623994A USRE36218E US RE36218 E USRE36218 E US RE36218E US 29623994 A US29623994 A US 29623994A US RE36218 E USRE36218 E US RE36218E
Authority
US
United States
Prior art keywords
iaddend
iadd
data
recording
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US08/296,239
Inventor
Yasuaki Maeda
Yuji Arataki
Tadao Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2169976A external-priority patent/JP2976492B2/en
Priority claimed from JP2169977A external-priority patent/JP2881980B2/en
Application filed by Sony Corp filed Critical Sony Corp
Priority to US08/296,239 priority Critical patent/USRE36218E/en
Application granted granted Critical
Publication of USRE36218E publication Critical patent/USRE36218E/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B27/00Editing; Indexing; Addressing; Timing or synchronising; Monitoring; Measuring tape travel
    • G11B27/10Indexing; Addressing; Timing or synchronising; Measuring tape travel
    • G11B27/34Indicating arrangements 
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B19/00Driving, starting, stopping record carriers not specifically of filamentary or web form, or of supports therefor; Control thereof; Control of operating function ; Driving both disc and head
    • G11B19/02Control of operating function, e.g. switching from recording to reproducing
    • G11B19/04Arrangements for preventing, inhibiting, or warning against double recording on the same blank or against other recording or reproducing malfunctions
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10527Audio or video recording; Data buffering arrangements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B27/00Editing; Indexing; Addressing; Timing or synchronising; Monitoring; Measuring tape travel
    • G11B27/005Reproducing at a different information rate from the information rate of recording
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B27/00Editing; Indexing; Addressing; Timing or synchronising; Monitoring; Measuring tape travel
    • G11B27/10Indexing; Addressing; Timing or synchronising; Measuring tape travel
    • G11B27/19Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier
    • G11B27/28Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier by using information signals recorded by the same method as the main recording
    • G11B27/30Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier by using information signals recorded by the same method as the main recording on the same track as the main recording
    • G11B27/3027Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier by using information signals recorded by the same method as the main recording on the same track as the main recording used signal is digitally coded
    • G11B27/3036Time code signal
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B27/00Editing; Indexing; Addressing; Timing or synchronising; Monitoring; Measuring tape travel
    • G11B27/10Indexing; Addressing; Timing or synchronising; Measuring tape travel
    • G11B27/19Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier
    • G11B27/28Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier by using information signals recorded by the same method as the main recording
    • G11B27/30Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier by using information signals recorded by the same method as the main recording on the same track as the main recording
    • G11B27/3027Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier by using information signals recorded by the same method as the main recording on the same track as the main recording used signal is digitally coded
    • G11B27/3063Subcodes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B27/00Editing; Indexing; Addressing; Timing or synchronising; Monitoring; Measuring tape travel
    • G11B27/10Indexing; Addressing; Timing or synchronising; Measuring tape travel
    • G11B27/19Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier
    • G11B27/28Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier by using information signals recorded by the same method as the main recording
    • G11B27/32Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier by using information signals recorded by the same method as the main recording on separate auxiliary tracks of the same or an auxiliary record carrier
    • G11B27/327Table of contents
    • G11B27/329Table of contents on a disc [VTOC]
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B27/00Editing; Indexing; Addressing; Timing or synchronising; Monitoring; Measuring tape travel
    • G11B27/36Monitoring, i.e. supervising the progress of recording or reproducing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10527Audio or video recording; Data buffering arrangements
    • G11B2020/10537Audio or video recording
    • G11B2020/10592Audio or video recording specifically adapted for recording or reproducing multichannel signals
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10527Audio or video recording; Data buffering arrangements
    • G11B2020/1062Data buffering arrangements, e.g. recording or playback buffers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10527Audio or video recording; Data buffering arrangements
    • G11B2020/1062Data buffering arrangements, e.g. recording or playback buffers
    • G11B2020/10824Data buffering arrangements, e.g. recording or playback buffers the buffer being used to prevent vibrations or shocks from causing delays
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • G11B2220/25Disc-shaped record carriers characterised in that the disc is based on a specific recording technology
    • G11B2220/2525Magneto-optical [MO] discs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • G11B2220/25Disc-shaped record carriers characterised in that the disc is based on a specific recording technology
    • G11B2220/2525Magneto-optical [MO] discs
    • G11B2220/2529Mini-discs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • G11B2220/25Disc-shaped record carriers characterised in that the disc is based on a specific recording technology
    • G11B2220/2537Optical discs
    • G11B2220/2545CDs

Abstract

During recording the inputted data are sequentially written into a memory at one transfer rate and are read out at a second, higher transfer rate for recording on a record medium. The reading of the memory is such that data in a preset first amount are successively read from the memory to always ensure a write space in the memory which has a capacity which is higher than a predetermined second amount when the amount of the inputted data stored in the memory exceeds the first amount. During playback, the recorded data are reproduced at a second transfer rate, which is higher than a first transfer rate required for outputting the reproduced data, and are written in the memory. The thus written data are successively read out of the memory as reproduced output data at the first transfer rate. The writing of the reproduced data to the memory is controlled so that a second amount of the reproduced data is written into the memory and an amount of reproduced data, not less than a first amount, is always stored in the memory when the amount of the reproduced data stored in the memory becomes not higher than the first given amount.

Description

.Iadd.This application is a reissue of U.S. application Ser. No. 07/717,700, now U.S. Pat. No. 5,214,631. .Iaddend.
This application is a reissue of U.S. application Ser. No. 07/717,700, now U.S. Pat. No. 5,214,631. .Iaddend.
FIELD OF THE INVENTION
The present invention relates to a disc recording apparatus for successively recording successively input data on a disc recording medium and a disc reproducing apparatus for obtaining successively reproduced output data from the disc recording medium.
BACKGROUND OF THE INVENTION
In a disc apparatus, such as .Iadd.a .Iaddend.CD player which plays back a compact disc (CD) having concentric tracks on which digital audio data are recorded as a pit train, the disc is irradiated with a laser beam along the tracks thereon while the disc is driven to rotate at a constant linear velocity by a spindle motor. The digital audio data are reproduced by detecting changes in the strength of the reflected light due to the presence or absence of the pits.
Although the error rate on reproduction of the data may be, for example, about 10-5 in the CD player, the reproduced data are subjected to an error correction processing using error detection codes and error correction codes so that no problem will occur in the normal application environment.
In a CD player, which includes an optical reproducing head, a servo system, such as a focus servo or a tracking servo for the reproducing head, will deviate due to mechanical disturbances such as vibration or shock so that normal data reproduction may become difficult. In such a case, an error can not be corrected even if the above mentioned error detection codes or error correction codes are used, so that reproduction may be temporarily interrupted.
In a CD player for vehicles or a portable CD player, which have a high possibility of experiencing a large vibration or shock, unlike a desk top type home use CD player, a mechanical anti-vibration mechanism has heretofore been provided to prevent the servo system from deviating due to disturbance as mentioned above.
In the so-called CD-I (CD-interactive) system for simultaneously recording video data, character data, and audio information on the compact disc, 6 modes have heretofore been standardized in addition to a CD digital audio (CD-DA) mode as shown in FIG. 6.
Liner PCM (Pulse Code Modulation) having a sampling frequency of 44.1 kHz and a quantization number of 16 bits is used in the CD-DA mode having a level of sound quality equivalent to existing 16 bits PCM. ADPCM (Adaptive Differential Pulse Code Modulation) having a sampling frequency of 37.8 kHz and a quantization number of 8 bits is used in the A level stereo mode and A level monaural mode having a sound quality equivalent to an LP disc record.
ADPCM having a sampling frequency of 37.8 kHz and a quantization number of 4 bits is used in the B level stereo mode and the B level monaural mode having a sound quality equivalent to FM broadcasting. ADPCM having a sampling frequency of 18.9 kHz and a quantization number of 4 bits is used in the C level stereo mode and C level monaural mode equivalent to AM broadcasting.
In other words, as shown in FIG. 6, the bit saving factor is 1/2 in the A level stereo mode in comparison with CD-DA mode. Data are recorded at intervals of 2 sectors. The black squares in the drawing represent recorded sectors. The reproduction or playback period of time of one disc is about 2 hours. The bit saving factor is 1/4 in the A level monaural mode. Data are recorded at intervals of four sectors. The reproduction period time is about 4 hours. The bit saving factor is 1/8 in the B level monaural mode. Data are recorded at intervals of 8 sectors. The reproduction period of time is about 8 hours. The bit saving factor is 1/8 in the C level stereo mode. Data are recorded at intervals of 8 sectors. The reproduction period of time is 1/16 in the C level monaural mode and data are recorded at intervals of 16 sectors. The reproduction period of time is about 16 hours.
For example, in the B level stereo mode, the audio information is discretely recorded in sector units at intervals of 4 sectors along the tracks from the first sector on the innermost track.
After the audio information is recorded on the outermost track, the audio information is recorded along tracks at intervals of four sectors . .form.!. .Iadd.from .Iaddend.the second sector on the innermost to the outermost track. When the audio information which has been recorded in such a manner is reproduced, the data is not continuously reproduced so that playback music, for example, is interrupted while the playback head jumps to return from the outermost track to the innermost track.
A disc recording apparatus which records digital data which meets the standards of the above mentioned CD or CD-I on an optical disc, of a type which will be described hereafter, or an information rewritable magneto-optical disc has heretofore been provided. Also in this disc recording apparatus, the servo system of a focus servo or tracking servo for a recording head will deviate due to mechanical disturbances such as vibration or shock so that recording may be temporarily interrupted.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a disc recording apparatus which is capable of successively recording or reproducing data on recording tracks of a disc recording medium irrespective of turbulence of the servo system due to a disturbance.
A disc recording apparatus for recording inputted data on tracks on a disc recording medium of the present invention comprises memory means into which successively inputted data are sequentially written at a first transfer rate and from which the inputted data are read out at a second, higher transfer rate, and recording means for recording on the disc recording medium the data read . .form.!. .Iadd.from .Iaddend.the memory means. Control means are provided for controlling the reading of the memory means so that data in a preset first amount are successively read from the memory means to always ensure a write space in the memory means which has a capacity which is higher than a predetermined second amount when the amount of the inputted data stored in the memory means exceeds the first amount. The control means is connected to the recording means to control the recording position on the disc recording medium so that data in the first amount which are sequentially read from the memory means in an interrupted manner are successively recorded on the recording tracks of the recording medium.
A disc reproducing apparatus for reproducing data successively recorded on tracks on a disc recording medium of the present invention comprises reproducing means for successively reproducing the recorded data at a second transfer rate which is higher than a first transfer rate required for outputting the reproduced data, and memory means into which the reproduced data read out by the reproducing means are sequentially written at the second transfer rate and from which the thus written data are successively read out as reproduced output data at the first transfer rate. Control means are provided which performs control of the writing of the reproduced data to the memory means so that a second amount of the reproduced data is written into the memory means and an amount of reproduced data, not less than a first amount, are always stored in the memory means when the amount of the reproduced data stored in the memory means becomes not higher than the first given amount. The control means also causes the reproducing means to control the reproduction position on the recording medium so that the reproduced data sequentially written into the memory mean in an interrupted manner are successively read from the recording tracks on the disc recording medium.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a block diagram showing the structure of a disc recording/reproducing apparatus of the present invention;
FIG. 2 is a block diagram showing the structure of a display unit in the disc recording/reproducing apparatus depicted in FIG. 1;
FIG. 3 is a schematic diagram showing a data format used for the disc recording/reproducing apparatus depicted in FIG. 1;
FIGS. 4(a) to 4(f) are schematic views showing the sequential states of a memory which is controlled in the recording system of the disc recording/reproducing apparatus according to the invention;
FIGS. 5(a) to 5(f) are schematic views showing the sequential states of the memory which is controlled in the reproducing system of the disc recording/reproducing apparatus depicted in FIG. 1; and
FIG. 6 is a diagram showing a data format of CD-I.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
The embodiments of a disc recording apparatus and a disc reproducing apparatus of the present invention will be described with reference to the drawings.
Referring now to FIG. 1, the disc recording/reproducing system includes a magneto-optical disc 2 serving as a recording medium which is driven to rotate at a given speed by a spindle motor 1. Recording of data along recording tracks (not shown) of the optical magnetic disc 2 is achieved by applying a magnetic field modulated in accordance with recording data by a magnetic head 4 while the magneto-optical disc 2 is irradiated with a laser light from an optical head 3. Reproduction of the recorded data is achieved by tracing the recording tracks on the optical magnetic disc 2 with a laser light from the optical head . .8.!. .Iadd.3.Iaddend..
Although not shown in the figures, it will be understood by those skilled in the art that the optical head 3 comprises a laser light source such as a laser diode, optical components such as a collimator lens, an objective lens, a polarized light beam splitter, a cylindrical lens and a photodetector which are arranged in given positions. The optical head 3 is opposite to the magnetic head 4 so that the magneto-optical disc 2 is located between the heads 3 and 4. The optical head 3 directs a laser light beam upon a target track on the magneto-optical disc 2 to which is applied a magnetic field modulated in accordance with recording data. By driving the magnetic head 4 with a head driving circuit 16 of a recording system, which will be described hereafter, the data is recorded on the magneto-optical disc 2 by thermomagnetic recording.
The optical head 3 also detects the laser light reflected from the irradiated target track for detecting a focus error by, for example, a so-called astigmatism method or for detecting a tracking error by, for example.Iadd., a .Iaddend.so-called push-pull method, and generates a reproduced signal by detecting the difference in the polarization angle (Kerr rotational angle) of the laser light reflected from the target track when data is reproduced from the magneto-optical disc 2.
The output of the optical head 3 is supplied to an RF circuit 5. The RF circuit 5 extracts a focus error signal or a tracking error signal from the output of the optical head 3 for supplying them to a servo control circuit 6 and to code the reproduced signals to binary signals for supplying the binary coded signals to a decoder 21 of the reproducing system which will be described hereafter.
Although not shown in the figures, those . .skill.!. .Iadd.skilled .Iaddend.in the art will understand that the servo control circuit 6 comprises, for example, a focus servo control circuit, a tracking servo control circuit, a spindle motor servo control circuit and a sled servo control circuit. The focus servo control circuit performs a focus control of the optical system (not shown) of the optical head 3 so that the focus error signal becomes zero. The tracking servo control circuit performs a tracking control of the optical system of the optical head 3 so that the tracking error signal becomes zero. The spindle motor servo control circuit controls the spindle motor 1 so that the magneto-optical disc 2 is driven to rotate at a given rotational speed. The sled servo control circuit moves the optical head 3 and the magnetic head 4 to the target track position of the magneto-optical disc 2 specified by a system controller (CPU) 7. The servo control circuit 6 which performs these various controls supplies the system controller 7 with information representative of the operational conditions of the various units controlled by the servo control circuit 6.
The system controller 7 is connected with a key input manipulating unit 8 and a display unit 9. The system controller 7 controls the recording system and the reproducing system in an operation mode (compression mode), specified by manipulation input information outputted from the key input manipulation unit 8. The system controller 7 controls the recording position and the reproducing position on the recording track traced by the optical head 3 and the magnetic head 4, respectively.Iadd., .Iaddend.based upon address information of a sector unit reproduced from the recording track of the magneto-optical disc 2 by a header time and a sub-Q data. The system controller supplies the display unit 9 with an absolute time data DTM corresponding to the recording position and the reproducing position, a compression ratio data DCOMP depending upon the operational modes of the recording system and the reproducing system, and an offset data DOFFSET display so that the recording time and the reproducing time are displayed by the display unit 9.
Referring now more particularly to FIG. . .3.!. .Iadd.2.Iaddend., the display unit 9 comprises a subtracter 34 which is supplied with the absolute time data DTM, via a first register 31, and the offset data DOFFSET, via a second register 33. Also included is a multiplier 35 which is supplied with the compression ratio data DCOMP from the system controller 7, via a third register 32, and is supplied with a subtraction output data DADD from the subtracter 34. A display 36 is supplied with a multiplication output data DMULT from the multiplier 35.
The subtracter 34 subtracts the offset data DOFFSET, which is temporarily stored in the second register 33, from the absolute time data DTM which is temporarily stored in the first register 31. That is, the subtracter 34 subtracts the offset data DOFFSET from the absolute time data DTM, which are representative of the current recording position and the reproducing position in the recording system and the reproducing system, respectively, in accordance with the address information of the sector unit for forming the subtraction output data DADD (=DTM -DOFFSET). DADD are representative of the elapsed absolute time of only the data of the program which is currently recorded or reproduced and is supplied to the multiplier 35.
The multiplier 35 multiplies the compression ratio data DCOMP, which are temporarily stored in the third register 32, with the subtraction output data DADD from the subtracter 34. The multiplier 35 thus forms multiplication output data DMULT, which are representative of an actual elapsed time of the current recording or reproducing program data and supplies the display 36 with the multiplication output data DMULT.
The display 36 then displays the actual elapsed period of time of only the data of the program which is currently recorded or reproduced based on the multiplication output data DMULT. Although the actual time of only the program data is displayed in the above-mentioned embodiment, the total period of time until the present time may be displayed by selecting the value of DOFFSET. The DOFFSET information is prepared based upon table of contents (TOC) data which have been preliminarily recorded upon the disc. The display 36 is also connected with a time base 37 which interpolation-displays a display time if the compression ratio of the recording system or the reproducing system is high or a time display in a small unit is necessary.
The recording system of the disc recording/ reproducing apparatus comprises an A/D convener 12 to which an analog audio signal AIN is supplied via a low pass fiber 11 from an input terminal .Iadd.10.Iaddend.. The A/D converter 12 quantizes the audio signal AIN to form digital audio data of a given transfer rate (75 sectors/second) corresponding to the CD-DA mode in the above-mentioned CD-I system. The digital audio data obtained by the A/D converter 12 are supplied to an ADPCM encoder 13.
The ADPCM encoder 13 performs, in accordance with the various modes in the above-mentioned CD-I system, a data compression processing of the digital audio data of a given transfer rate which has been obtained by quantizing the audio signal AIN in the A/D converter 12. The operation mode is specified by the system controller 7. In this embodiment, it is assumed that the digital audio data of the CD-DA mode is converted into the ADPCM audio data of the B level stereo mode having a transfer rate of 18.75 (75/4) sectors/second by performing a data time-axis compression to 1/4 by the ADPCM encoder 13. The ADPCM audio data of the B level stereo mode which are successively outputted at a transfer rate of 18.75 sectors/second from the ADPCM encoder 13 are supplied to a memory 14.
Writing or reading of the data to and from the memory 14 is controlled by the system controller 7. The ADPCM audio data of the B level stereo mode which are supplied from the ADPCM encoder 13 are sequentially written into the memory 14 at a transfer rate of 18.75 sectors/second and are thereafter read out in a burst from the memory 14 at a transfer rate of 75 sectors/second as recording data.
The system controller 7 successively writes the ADPCM audio data into the memory 14 at a transfer rate of 18.75 sectors/second by successively incrementing the write pointer W of the memory 14 at a transfer rate of 18.75 sectors/second as shown in FIGS. 4(a) to 4(b). Next, as shown in FIGS. 4(c) to 4(d) and again in FIGS. 4(e) to 4(f), the system controller 7 reads out from the memory 14 an amount K of the stored data in a burst, i.e., at a transfer rate of 75 sectors/second, as the recording data by incrementing the read pointer R of the memory 14 at a transfer rate of 75 sectors/second when the amount of the ADPCM audio data stored in the memory 14 exceeds the given value K. The ADPCM audio data, that is, the recording data which have been read in a burst at a transfer rate of 75 sectors/second from the memory 14 are supplied to the encoder 15.
The encoder 15 performs a coding processing or an EFM coding processing of the recording data supplied in a burst from the memory 14 for correcting the error. The recording data which have been subjected to coding processing by the encoder 15 are supplied to the magnetic head driving circuit 16.
The magnetic head driving circuit 16 is connected with the magnetic head 4 for driving it so that the magnetic field which is modulated in accordance with the recording data is applied to the magneto-optical disc 2.
The system controller 7 performs the above mentioned control of the memory 14 and the control of the recording position on the recording tracks so that the recording data which are read in a burst from the memory 14 by this memory control are successively recorded on the recording tracks of the magneto-optical disc 2 as shown in FIG. 3. The system controller 7 monitors the last position of the recorded data on the recording tracks of the magneto-optical disc 2, and supplies the servo control circuit 6 with a control signal for specifying the recording position according to the last position of the recorded data.
. .I.!. .Iadd.In .Iaddend.the recording system of the disc recording/reproducing apparatus, the ADPCM audio data sequentially outputted at a transfer rate of 18.75
sectors/second from the ADPCM encoder 13 are written into the memory 14 at a transfer rate of 18.75 sectors/second by the above mentioned memory control of the system controller 7. When the amount of the ADPCM audio data stored in the memory 14 exceeds a given amount K, the ADPCM audio data are read in a burst at a transfer rate of 75 sectors/second as recorded data from the memory 14. Preferably the given amount of data is not less than a minimum recording unit of the recording data. Therefore, input data can be successively written into the memory 14 while always ensuring a data write area having a capacity of more than a given amount in the memory 14.
The recorded data which are read out from the memory in a burst can be recorded on the recording tracks of the magneto-optical disc 2 in a successive manner by controlling the recording position on the recording track of the magneto-optical disc 2 by the system controller 7. As mentioned above, the data write area having a capacity of more than a given amount is always assumed in the memory 14. Accordingly, if the operation of recording on the magneto-optical disc is interrupted by the occurrence of a track jump or other accident due to a disturbance which is detected by the system controller 7, a recovery operation can be carried out while inputted data continue to be written into the data write area having a capacity of more than a given amount and the inputted data can be recorded on the recording track of the magneto-optical disc 2 in a successive manner.
A header time data (absolute time information) corresponding to the physical address of the sector is added to the ADPCM audio data for each sector and recorded upon the magneto-optical disc 2. Table-of-contents (TOC) data representative of the recording area and the recording mode are recorded on a table-of-contents (TOC) area preset on the disc at a predetermined position.
The reproducing system of the disc recording/reproducing apparatus will now be described. The reproducing system reproduces the data which have been successively recorded on the recording track of the magneto-optical disc 2 by the recording system as mentioned above. The reproducing system comprises a decoder 21 which is supplied with reproduced outputs which are obtained by tracing the recording track of the magneto-optical disc 2 with a laser light generated by the optical head 3 and are binary coded by the RF circuit 5.
The decoder 21 corresponds to the encoder 15 and performs processing such as error correction decoding processing and EFM decoding processing of the reproduced outputs which are binary coded by the RF circuit 5. The output of the decoder 21 is the ADPCM audio data of the above mentioned 8 level stereo mode at a transfer rate of 75 sectors/second which is higher than a normal transfer rate in the B level stereo mode. The reproduced data obtained by the decoder 21 are supplied to the memory 22.
Writing and reading of data to and from the memory 22 are controlled by the system controller 7 so that the reproduced data supplied at a transfer rate of 75 sector/second from the decoder 21 are written to the memory 22 in a burst at a transfer rate of 75 sectors/second and are sequentially read out from the memory 22 at a normal transfer rate of 18.75 sectors/second of the B level stereo mode.
The system controller 7 writes the reproduced data into the memory 22 at a transfer rate of 75 sectors/second by incrementing a write pointer W of the memory 22 and successively reads the reproduced data at a transfer rate of 18.75 sectors/second from the memory 22 by successively incrementing a read pointer R of the memory 22 at a transfer rate of 18.75 sectors/second. As best shown in FIGS. 5(a) to 5(b), the controller 7 performs the memory control by incrementing the write pointer W of the memory 22 in a burst at a transfer rate of 75 sectors/second to stop writing when the write pointer W catches up with the read pointer R (FIG. 5(c)) and to start writing when the amount of the reproduced data stored in the memory 22 exceeds a given amount L (FIGS. 5(d) to 5(e)). Preferably, the given amount of data is not less than a minimum recording unit of the recording data.
The system controller 7 not only controls the memory 22, as described above, but also controls the reproducing position on the recording tracks so that the reproduced data which are successively written into the memory 22 in a burst by this memory control are successively reproduced from the recording track of the magneto-optical disc 2. The system controller 7 monitors the last position of the reproduced data on the recording tracks of the magneto-optical disc 2, and supplies the servo control circuit 6 with a control signal for specifying the reproducing position according to the last position of the reproduced data.
The ADPCM audio data of the B level stereo mode which are obtained as reproduced data successively read out from the memory 22 at a transfer rate of 18.75 sectors/second are supplied to ADPCM decoder 23.
The ADPCM decoder 23 corresponds to the ADPCM encoder of the recording system. The operation mode of the ADPCM decoder 23 is specified by the system controller 7. In this embodiment, the decoder 23 reproduces the digital audio data by extending the ADPCM audio data of the B level stereo mode to four times. The digital audio data are supplied to the D/A converter 24 from the ADPCM decoder 23.
The D/A converter 24 converts the digital audio data supplied from the ADPCM decoder 23 into analog audio signals. AOUT and outputs them from an output terminal 26 via a low pass filter 25. Digital audio signals DOUT from the ADPCM decoder 23 are output at a digital output terminal 28 via digital output encoder 27.
In the reproducing system of the disc recording/reproducing apparatus, the ADPCM audio data of the B level stereo mode reproduced from the recording track of the magneto-optical disc 2 are written in a burst into the memory 22 at a transfer rate of 75 sectors/second and the ADPCM audio data are successively read out from the memory as reproduced data at a transfer rate of 18.75 sectors/ second under memory control by the system controller 7. Accordingly, the reproduced data can be successively read out from the memory 22 while always ensuring a data read area having a capacity of more than an amount L in the memory 22.
The reproducing data which are read out in a burst from the memory 22 can be reproduced from the recording track of the magneto-optical disc 2 in a successive manner by controlling the reproducing position on the recording track of the magneto-optical disc 2 by the system controller 7. Since a data read area having a capacity of more than an amount L is always ensured in the memory 22 as mentioned above, the analog audio signal continues to be outputted by reading reproduced data from the data read out area having a capacity of more than L and the recovery processing operation can be performed during that time even if the reproducing operation of the magneto-optical disc 2 is interrupted by the occurrence of a . .t rack.!. .Iadd.track .Iaddend.jump due to a disturbance which is detected by the system controller 7.
The display unit 9 of the recording/ reproducing apparatus forms an addition output data DADD (=DTM -DOFFSET). . .DADD .!. .Iadd.DADD .Iaddend.is representative of the elapsed absolute period of time of only the data of a currently recorded or reproduced program and is formed by subtracting the offset data DOFFSET from the absolute time data DTM representative of the current recording position or reproducing position in the recording or reproducing system, respectively, depending upon the address information in the sector unit supplied from the system controller 7 as mentioned above. The display unit 9 forms multiplication output data DMULT which is representative of the actual elapsed period of time of the currently recorded or reproduced program data by multiplying the addition output data DADD with the compression ratio data DCOMP, that is, by the factor 4 in the B level stereo mode. Thus, the actual elapsed period of time of only the currently recorded or reproduced program data can be displayed based upon the multiplication output data DMULT.
Although the embodiment of the disc recording/reproducing apparatus has been described with reference to recording and reproducing of the ADPCM audio data in the B level stereo mode, recording and reproducing of the ADPCM audio data of the other mode in the other CD-I system can be performed. It will suffice to perform a time-axis compression processing of the PCM audio data of CD-DA mode in the memory 22 for recording the recorded data while driving the magneto-optical disc 2 to rotate at a speed depending upon the compression ratio of the time axis compression processing in the recording system and to perform a time-axis extension processing in the memory 22 in the reproducing system.
In the disc recording apparatus of the present invention as mentioned above, input data to be successively inputted are sequentially written into memory means. When the amount of the input data stored in the memory means exceeds a given amount, the stored input data are sequentially read out of the memory means, as recording data, in a burst at a transfer rate which is higher than the transfer rate of the input data. Accordingly, the input data can be successively written into the memory means while always ensuring the presence of a data write area having a capacity of more than a given amount in the memory means. The recording data which are read out from the memory means in a burst are recorded on the recording tracks in a successive manner by controlling the recording position on the recording tracks on the disc recording medium.
A data write area having a capacity of more than a given value is always ensured in the memory means as mentioned above. Therefore, the input data can continue to be written into the memory means even if the recording operation on the disc recording medium is interrupted by a track jump or other accident occurs due to disturbances and the recovery operation can be performed during this interruption. The input data can be thus recorded on the recording tracks of the disc recording medium in a successive manner. Therefore, the present invention provides a disc recording apparatus which is capable of successively recording data on the recording tracks of the disc recording medium irrespective of turbulence of servo system due to a disturbance.
In the disc reproducing apparatus, the data recorded on the disc recording medium, which is driven to rotate at a given speed, are sequentially reproduced at a transfer rate which is higher than a given transfer rate at which the reproduced data are to be output. The recorded data are reproduced by reproducing means and are sequentially written in the memory means at the high transfer rate and are thereafter successively read out from the memory means as reproduced output data at the lower, given transfer rate. Accordingly, the reproduced output data can be successively readout from the memory means while always ensuring the presence of a data read area, having a capacity which is higher than a given value, in the memory means.
The reproduced data which have been written into the memory means in a burst are reproduced from the recording tracks in a successive manner by controlling the reproduction position on the recording tracks of the disc recording medium. Since a data read area having a capacity of more than the given value is always ensured in the memory means as mentioned above, the reproduction data can continue to be read out from the memory means even if reproduction operation of the disc recording medium is interrupted when a track jump or other accident occurs due to a disturbance. A recovery operation can be performed during this interruption and the reproduced audio signals can be successively outputted.
Therefore, the present invention can provide a disc reproduction apparatus which is capable of successively reproducing data from the recording tracks on the disc recording medium irrespective of the turbulence of the servo system due to a disturbance.
Although the present invention has been shown and described with respect to preferred embodiments, various changes and modifications which are obvious to a person skilled in the art to which the invention pertains are deemed to lie within the spirit and scope of the invention as claimed.

Claims (17)

What is claimed is:
1. A disc recording apparatus for recording inputted data on tracks on a disc recording medium comprising:
. .control means for controlling the reading of the memory means so that data in a first amount are successively read from the memory means when the amount of the inputted data stored in the memory means exceeds the first amount in order to always ensure a write area for writing the data in the memory means, the write area having a capacity higher than a predetermined second amount of the inputted data, the control means being connected to the recording means to control the recording position on the disc recording medium so that the first amount of the data which are sequentially read from the memory means are successively recorded on the recording tracks of the recording medium;.!.
.Iadd.memory means, having a total capacity, into which successively inputted data are written at a first transfer rate and from which the inputted data are read out at a second transfer rate, higher than said first transfer rate; .Iaddend.
recording means for recording on the disc recording medium the data read from the memory means;
.Iadd.detecting means for detecting when an amount of data in the memory means exceeds a first amount, the difference between the total capacity and the first amount being greater than a predetermined second amount, and for generating a detection signal responsive thereto; .Iaddend.
control means for controlling the reading of .Iadd.data from .Iaddend.the memory means so that data in . .a preset.!. .Iadd.amounts equal to said .Iaddend.first amount are successively read from the memory means . .to always ensure a write space in the memory means which has a capacity which is higher than a predetermined second amount when the amount of the inputted data stored in the memory means exceeds the first amount.!. .Iadd.responsive to the detection signal, in order to always ensure a write area for writing the data in the memory means such that the write area is maintained at a capacity higher than the predetermined second amount.Iaddend., the control means being connected to the recording means to control the recording position on the disc recording medium so that . .data in the first amount.!. .Iadd.the data .Iaddend.which are . .sequentially.!. read from the memory means are successively recorded on the recording tracks of the recording medium.
2. A disc recording apparatus as defined in claim 1 in which the first amount of data is not less than a minimum recording unit of the recording data.
3. A disc recording apparatus as defined in claim 2 in which the control means stops reading the data . .form.!. .Iadd.from .Iaddend.the memory means when the recording means becomes incapable of recording .Iadd.data successively on the tracks on the disc recording medium.Iaddend., due for example to a physical disturbance of the .Iadd.disc .Iaddend.recording medium, and .Iadd.wherein the control means .Iaddend.thereafter . .resumes.!. .Iadd.causes resumption of .Iaddend.reading .Iadd.of .Iaddend.the data from the memory means after the recording means is again capable of recording .Iadd.data successively on the tracks of the disc recording medium.Iaddend..
4. A disc recording apparatus as defined in claim 3 in which the second . .given.!. amount of data is not less than the amount of data which is written in the memory means during . .the.!. .Iadd.a maximum amount of .Iaddend.time that the recording means is .Iadd.expected to be .Iaddend.incapable of recording .Iadd.data successively on the tracks on the disc recording medium.Iaddend..
5. A disc recording apparatus as defined in claim 1 in which the . .input.!. .Iadd.inputted .Iaddend.data are time-axis compressed data.
6. A disc recording apparatus as defined in claim 5 in which a key for presetting the time-axis compression ratio of the input data is provided.
7. A disc recording apparatus as defined in claim 5 further including an ADPCM encoder . .and in.!. .Iadd.via .Iaddend.which the . .input.!. .Iadd.inputted .Iaddend.data are written into the memory means . .via an ADOCM error.!..
8. A disc recording apparatus as defined in claim 1 in which the disc recording medium is a magneto-optical recording medium.
9. A disc recording apparatus as defined in claim 1 wherein an absolute time information corresponding to the recording position on the disc .Iadd.recording medium, .Iaddend.together with the . .recording.!. .Iadd.inputted .Iaddend.data .Iadd.read from the memory means, .Iaddend.are recorded on the recording medium.
10. A disc . .recording.!. .Iadd.reproducing .Iaddend.apparatus for reproducing data successively recorded on tracks on a disc recording medium comprising:
reproducing means for successively reproducing the recorded data at a second transfer rate which is higher than a first transfer rate required for outputting the reproduced data;
.Iadd.memory means, having a total capacity, into which the reproduced recorded data are written at the second transfer rate and from which the thus written data are successively read out as reproduced output data at the first transfer rate;
detecting means for detecting when an amount of data in the memory means is not greater than a first amount, and for generating a detection signal responsive thereto; and .Iaddend.
control means for controlling the writing of the reproduced .Iadd.recorded .Iaddend.data to the memory means .Iadd.responsive to the detection signal .Iaddend.so that . .a second.!. .Iadd.an .Iaddend.amount of the . .of the reproduced data.!. .Iadd.reproduced recorded data .Iaddend.is written into the memory means . .and.!. .Iadd.in order to always ensure that .Iaddend.an amount of reproduced .Iadd.recorded .Iaddend.data, . .not less.!. .Iadd.greater .Iaddend.than . .a.!. .Iadd.the .Iaddend.first amount, are always stored in the memory means . .when the amount of the reproduced data stored in the memory means becomes not higher than the first given amount.!., .Iadd.wherein .Iaddend.the control means also causes the reproducing means to control the reproduction position on the .Iadd.disc .Iaddend.recording medium so that the reproduced .Iadd.recorded .Iaddend.data . .sequentially.!. written into the memory means in an interrupted manner are successively read . .form.!. .Iadd.from .Iaddend.the recording tracks on the disc recording medium.
11. A disc . .recording.!. .Iadd.reproducing .Iaddend.apparatus as defined in claim 10 in which the first . .given.!. amount of data is not less than a minimum recording unit of the . .recording.!. .Iadd.recorded .Iaddend.data.
12. A disc . .recording.!. .Iadd.reproducing .Iaddend.apparatus as defined in claim 11 in which the control means . .stops.!. .Iadd.causes the .Iaddend.writing .Iadd.of .Iaddend.the reproduced .Iadd.recorded .Iaddend.data into the memory means .Iadd.to stop .Iaddend.when the reproducing means becomes unable to reproduce the recorded data .Iadd.in the order in which the recorded data was successively recorded on the tracks on the disc recording medium, .Iaddend.due for example to a physical disturbance of the .Iadd.disc .Iaddend.recording medium.Iadd., .Iaddend.and . .thereafter resumes.!. .Iadd.wherein the controls means causes resumption of .Iaddend.writing .Iadd.of .Iaddend.the reproduced .Iadd.recorded .Iaddend.data into the memory means . .after.!. .Iadd.when .Iaddend.the reproducing means is again capable of reproducing the recorded data .Iadd.in the order in which the recorded data was successively recorded on the tracks on the disc.Iaddend..
13. A disc . .recording.!. .Iadd.reproducing .Iaddend.apparatus as defined in claim 12 in which the first . .given.!. amount of data is not less than . .the.!. .Iadd.a maximum .Iaddend.amount of data outputted from the memory means during the time the reproducing means is .Iadd.expected to be .Iaddend.incapable of reproducing the recorded data.
14. A disc . .recording.!. .Iadd.reproducing .Iaddend.apparatus as defined in claim 10 in which the reproduced data read out from .Iadd.disc .Iaddend.recording medium are time-axis compressed data.
15. A disc . .recording.!. .Iadd.reproducing .Iaddend.apparatus as defined in claim 10 in which the . .reproduced.!. .Iadd.recorded .Iaddend.data . .read.!. .Iadd.reproduced .Iaddend.. .out.!. by the reproducing means includes absolute time information corresponding to the reproduction position on the disc .Iadd.recording medium.Iaddend..
16. A disc . .recording.!. .Iadd.reproducing .Iaddend.apparatus as defined in claim 15 and including a display means for displaying reproduction time information depending upon absolute time information obtained by the reproducing means, and including means for multiplying the absolute time information by the ratio of the time of the actual reproduced output data to the reproduced absolute time and supplying the product of such multiplying to the display means.
17. A disc recording .Iadd.and reproducing .Iaddend.apparatus for recording inputted data on tracks on a disc recording medium and reproducing data from the tracks on the disc .Iadd.recording medium.Iaddend., comprising:
. .control means for controlling the reading of the memory means so that data in a first amount are successively read from the memory means when the amount of the inputted data stored in the memory means exceeds the first amount, in order to always ensure a write area for writing the data in the memory means, the write area having a capacity higher than a predetermined second amount of the inputted data, the control means being connected to the recording means to control the recording position on the disc recording medium so that the first amount of the data which are sequentially read from the memory means are successively recorded on the recording tracks of the recording medium;.!.
.Iadd.first memory means, having a total capacity, into which successively inputted data are written at a first transfer rate and from which the inputted data are read out at a second transfer rate, higher than said first transfer rate; .Iaddend.
recording means for recording on the disc recording medium the data read from the .Iadd.first .Iaddend.memory means;
.Iadd.first detecting means for detecting when an amount of data in the first memory means exceeds a first amount, the difference between the total capacity and the first amount being greater than a predetermined second amount, and for generating a first detection signal responsive thereto; .Iaddend.
.Iadd.reading .Iaddend.control means for controlling the reading of .Iadd.data from .Iaddend.the .Iadd.first .Iaddend.memory means so that data in . .a preset.!. .Iadd.amounts equal to said .Iaddend.first amount are successively read . .form.!. .Iadd.from .Iaddend.the .Iadd.first .Iaddend.memory means . .to always ensure a write space in the memory means which has a capacity which is higher than a predetermined second amount.!. when the amount of the inputted data stored in the memory means exceeds the first amount .Iadd.responsive to the first detection signal, in order to always ensure a write area for writing the data in the first memory means such that the write area is maintained at a capacity higher than the predetermined second amount, .Iaddend.the control means being connected to the recording means to control the recording position on the disc recording medium so . .the first amount.!. .Iadd.the data .Iaddend.which are . .sequentially red form.!. .Iadd.read from .Iaddend.the .Iadd.first .Iaddend.memory means are successively recorded on the recording tracks of the recording medium;
reproducing means for successively reproducing the recorded data at a . .second.!. .Iadd.fourth .Iaddend.transfer rate which is higher than a . .first.!. .Iadd.third .Iaddend.transfer rate required for outputting the reproduced data;
.Iadd.second .Iaddend.memory means.Iadd., having a total capacity, .Iaddend.into which the reproduced .Iadd.recorded .Iaddend.data . .read out.!. .Iadd.reproduced .Iaddend.by the reproducing means are . .sequentially.!. written at the . .second.!. .Iadd.fourth .Iaddend.transfer rate and from which the thus written data are . .successively.!. read out as reproduced output data at the . .first.!. .Iadd.third .Iaddend.transfer rate; . .and.!.
.Iadd.second detecting means for detecting when an amount of data in the second memory means is not greater than a third amount, and for generating a second detection signal responsive thereto; and
writing .Iaddend.control means for controlling the writing of the .Iadd.recorded data, .Iaddend.reproduced . .data.!. .Iadd.from the disc recording medium, .Iaddend.to the .Iadd.second .Iaddend.memory means .Iadd.responsive to the second detection signal .Iaddend.so that . .a second.!. .Iadd.an .Iaddend.amount of the reproduced .Iadd.recorded .Iaddend.data is written into the .Iadd.second .Iaddend.memory means . .and.!. .Iadd.in order to always ensure that .Iaddend.an amount of reproduced .Iadd.recorded .Iaddend.data, not less than . .a first.!. .Iadd.the third .Iaddend.amount, are always stored in the .Iadd.second .Iaddend.memory means . .when the amount of the reproduced data stored in the memory means becomes not higher than the first given amount.!., .Iadd.wherein .Iaddend.the .Iadd.writing .Iaddend.control means also causes the reproducing means to control the reproduction position on the .Iadd.disc .Iaddend.recording medium so that . .the.!. reproduced data . .sequentially.!. written into the .Iadd.second .Iaddend.memory means in an interrupted manner are successively read from the recording tracks on the disc recording medium. .Iadd.18. A disc recording apparatus as in claim 1, wherein the successively inputted data written at the first transfer rate into memory means are written sequentially. .Iaddend..Iadd.19. A disc reproducing apparatus as in claim 10, wherein the successively inputted data written at the first transfer rate into the memory means are written sequentially. .Iaddend..Iadd.20. A disc recording and reproducing apparatus as in claim 17, wherein the successively inputted data written into the first memory means are written sequentially, and wherein the reproduced recorded data written into the memory means are written sequentially. .Iaddend.
US08/296,239 1990-06-29 1994-08-25 Disc recording/reproducing apparatus having a servo system capable of successively recording and reproducing tracks on a disc irrespective of turbulence of the servo system due to a disturbance Expired - Lifetime USRE36218E (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US08/296,239 USRE36218E (en) 1990-06-29 1994-08-25 Disc recording/reproducing apparatus having a servo system capable of successively recording and reproducing tracks on a disc irrespective of turbulence of the servo system due to a disturbance

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2169976A JP2976492B2 (en) 1990-06-29 1990-06-29 Disc playback device
JP2-169976 1990-06-29
JP2169977A JP2881980B2 (en) 1990-06-29 1990-06-29 Disk recording device and disk reproducing device
JP2-169977 1990-06-29
US07/717,700 US5214631A (en) 1990-06-29 1991-06-19 Disc recording/reproducing apparatus having a servo system capable of successively recording and reproducing tracks on a disc irrespective of turbulence of the servo system due to a disturbance
US08/296,239 USRE36218E (en) 1990-06-29 1994-08-25 Disc recording/reproducing apparatus having a servo system capable of successively recording and reproducing tracks on a disc irrespective of turbulence of the servo system due to a disturbance

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US07/717,700 Reissue US5214631A (en) 1990-06-29 1991-06-19 Disc recording/reproducing apparatus having a servo system capable of successively recording and reproducing tracks on a disc irrespective of turbulence of the servo system due to a disturbance

Publications (1)

Publication Number Publication Date
USRE36218E true USRE36218E (en) 1999-06-01

Family

ID=26493139

Family Applications (1)

Application Number Title Priority Date Filing Date
US08/296,239 Expired - Lifetime USRE36218E (en) 1990-06-29 1994-08-25 Disc recording/reproducing apparatus having a servo system capable of successively recording and reproducing tracks on a disc irrespective of turbulence of the servo system due to a disturbance

Country Status (10)

Country Link
US (1) USRE36218E (en)
EP (1) EP0465053B1 (en)
BR (1) BR9102734A (en)
CZ (1) CZ286226B6 (en)
DK (1) DK0465053T3 (en)
HU (1) HU212062B (en)
MY (1) MY106883A (en)
NO (1) NO314428B1 (en)
PT (1) PT98136B (en)
RU (1) RU2105356C1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030090975A1 (en) * 2000-12-06 2003-05-15 Satoshi Tsuchiya Recording apparatus and recording method
US20040042768A1 (en) * 2002-08-28 2004-03-04 Jun Momose Apparatus and control method for recording and reproducing audio-video data
US7065417B2 (en) 1997-11-24 2006-06-20 Sigmatel, Inc. MPEG portable sound reproducing system and a reproducing method thereof

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK0465053T3 (en) * 1990-06-29 2002-10-07 Sony Corp Plate recording / reproduction apparatus
JPH05151758A (en) * 1991-11-28 1993-06-18 Sharp Corp Information recording/reproducing device
JP2843703B2 (en) * 1992-01-24 1999-01-06 株式会社ケンウッド Digital recording and playback device
EP0554858B1 (en) * 1992-02-05 1998-12-16 Sony Corporation Disc reproducing apparatus and disc recording apparatus
DE69318598T2 (en) * 1992-02-29 1998-09-10 Sony Corp Optical disk recording apparatus
NL9200397A (en) * 1992-03-04 1993-10-01 Philips Nv INFORMATION RECORDING DEVICE.
JP3355649B2 (en) * 1992-05-20 2002-12-09 ソニー株式会社 Recording or playback device
JP2788380B2 (en) * 1992-06-11 1998-08-20 シャープ株式会社 Digital information reproducing device
JP3230319B2 (en) * 1992-07-09 2001-11-19 ソニー株式会社 Sound reproduction device
AU4638093A (en) * 1992-08-10 1994-03-03 Digital Pictures, Inc. System and method of selecting among multiple data streams
JPH06139697A (en) * 1992-10-29 1994-05-20 Kenwood Corp Optical disk recording and reproducing device
JP3393345B2 (en) 1992-10-31 2003-04-07 ソニー株式会社 Disk playback device, memory control circuit, and memory control method
JPH06259945A (en) * 1993-03-09 1994-09-16 Sony Corp Disk recording and reproducing device
US5706260A (en) * 1993-03-09 1998-01-06 Sony Corporation Apparatus for and method of synchronously recording signals onto a disk medium by a single head
US5897652A (en) * 1993-04-23 1999-04-27 Sony Corporation Memory control device and address generating circuit
JP3353382B2 (en) * 1993-04-23 2002-12-03 ソニー株式会社 Recording or reproducing device and memory control device
JP3353381B2 (en) * 1993-04-23 2002-12-03 ソニー株式会社 Recording and playback device
TW347899U (en) * 1994-08-31 1998-12-11 Sony Corp Optical recording/reproducing device
JP3591028B2 (en) * 1995-01-25 2004-11-17 ソニー株式会社 Playback device and playback method
JPH1064244A (en) * 1996-08-23 1998-03-06 Sony Corp Storage medium and reproducing device
AU2392201A (en) * 2000-01-06 2001-07-16 Vm Labs, Inc. Digital music player audio buffering
EP1571671A4 (en) * 2002-12-13 2008-04-02 Matsushita Electric Ind Co Ltd Optical disc device
EP2112657B1 (en) 2008-04-24 2010-12-15 Harman Becker Automotive Systems GmbH Lifetime improvement of laser diodes in optical drives

Citations (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2317726A1 (en) * 1975-07-09 1977-02-04 Labo Electronique Physique INFORMATION RECORDING AND REPRODUCTION SYSTEM, ESPECIALLY SOUND INFORMATION
GB2136192A (en) * 1983-03-09 1984-09-12 Philips Nv Apparatus for reading an optically coded disc-shaped record carrier
US4495609A (en) * 1975-03-10 1985-01-22 Digital Recording Corporation Recording and playback system
EP0138246A2 (en) * 1983-09-01 1985-04-24 Koninklijke Philips Electronics N.V. Disc playback apparatus
EP0155970A1 (en) * 1983-09-09 1985-10-02 Sony Corporation Apparatus for reproducing audio signal
EP0196590A2 (en) * 1985-03-27 1986-10-08 Sony Corporation Signal recording and reproducing apparatus for an opto-magnetic disk
EP0249781A2 (en) * 1986-06-07 1987-12-23 Blaupunkt-Werke GmbH Compact disc (CD) player
EP0283727A2 (en) * 1987-02-20 1988-09-28 1K Music International Ltd. Method and apparatus for producing an audio magnetic tape recording at high speed from a preselected music libray
US4796123A (en) * 1985-10-18 1989-01-03 Kabushiki Kaisha Toshiba Slow reproducing apparatus for VTR or VCR using image memory
US4982390A (en) * 1987-12-15 1991-01-01 Kabushiki Kaisha Toshiba Real time signal recording apparatus for effecting variable signal transfer rate
US4984103A (en) * 1987-12-07 1991-01-08 Fujitsu America, Inc. Method for reading/writing for a floppy disc drive with buffer memory
US5014136A (en) * 1987-10-29 1991-05-07 Asahi Kogaku Kogyo Kabushiki Kaisha Electronic still camera device
EP0429139A1 (en) * 1989-11-23 1991-05-29 Koninklijke Philips Electronics N.V. Information recording and reading system, and recording device and reading device for use in such a system
US5032930A (en) * 1986-12-18 1991-07-16 Casio Computer Co., Ltd. Electronic still camera
US5034827A (en) * 1987-06-30 1991-07-23 Canon Kabushiki Kaisha Video signal processing apparatus with memory read/write timing related to horizontal scanning period
US5070419A (en) * 1988-10-07 1991-12-03 Sharp Kabushiki Kaisha Method and apparatus for recording and reproducing of a recording medium
JPH03296927A (en) * 1990-04-16 1991-12-27 Victor Co Of Japan Ltd Laser diode output control device
EP0465053A2 (en) * 1990-06-29 1992-01-08 Sony Corporation Disc recording/reproducing apparatus
EP0485234A2 (en) * 1990-11-09 1992-05-13 Sharp Kabushiki Kaisha Information recording and reproducing device
US5140571A (en) * 1990-05-30 1992-08-18 Sony Corporation Disk drive apparatus with intermittently operated servo signal processor for low power consumption
GB2258372A (en) * 1991-08-02 1993-02-03 Sony Corp Method of recording compressed digital audio data by removing redundant bits
JPH0589469A (en) * 1991-09-30 1993-04-09 Pioneer Electron Corp Optical disk reproducing device
US5212678A (en) * 1989-11-23 1993-05-18 U.S. Philips Corporation System for recording and reading information on a record carrier at a constant scanning speed independent of the bit rate of such information
US5224089A (en) * 1989-06-30 1993-06-29 Matsushita Electric Industrial Co., Ltd. Digital signal information reproduction apparatus
US5243587A (en) * 1992-02-03 1993-09-07 Pioneer Video Corporation Disc playing apparatus capable of both long time reproduction and high speed access
US5289440A (en) * 1991-12-30 1994-02-22 U.S. Philips Corporation Optical reading device and optical recording device
US5291467A (en) * 1991-07-16 1994-03-01 Sony Corporation Disc recording apparatus for recording a signal without losing the signal during an occurrence of a track jump
US5317553A (en) * 1990-08-23 1994-05-31 Sony Corporation Optical disc recording and/or reproducing apparatus having a buffer memory to accommodate track jumps
US5418762A (en) * 1992-12-09 1995-05-23 Sony Corporation Optical disk recording device having a pre-recording mode
US5440529A (en) * 1993-02-24 1995-08-08 Sony Corporation Audio and general digital data recording and/or reproducing apparatus having two interface circuits
US5442608A (en) * 1990-07-19 1995-08-15 Mitsubishi Electric Corp Disk apparatus having a power consumption reducing mechanism

Patent Citations (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4495609A (en) * 1975-03-10 1985-01-22 Digital Recording Corporation Recording and playback system
GB1560494A (en) * 1975-07-09 1980-02-06 Philips Electronic Associated Method of recording and reproducing information on a disc-shaped record carrier and apparatus for carrying out this method
FR2317726A1 (en) * 1975-07-09 1977-02-04 Labo Electronique Physique INFORMATION RECORDING AND REPRODUCTION SYSTEM, ESPECIALLY SOUND INFORMATION
GB2136192A (en) * 1983-03-09 1984-09-12 Philips Nv Apparatus for reading an optically coded disc-shaped record carrier
US4536864A (en) * 1983-03-09 1985-08-20 U.S. Philips Corporation Apparatus for reading an optically coded disc-shaped record carrier
EP0138246A2 (en) * 1983-09-01 1985-04-24 Koninklijke Philips Electronics N.V. Disc playback apparatus
EP0155970A1 (en) * 1983-09-09 1985-10-02 Sony Corporation Apparatus for reproducing audio signal
EP0196590A2 (en) * 1985-03-27 1986-10-08 Sony Corporation Signal recording and reproducing apparatus for an opto-magnetic disk
US4796123A (en) * 1985-10-18 1989-01-03 Kabushiki Kaisha Toshiba Slow reproducing apparatus for VTR or VCR using image memory
US4796247A (en) * 1986-06-07 1989-01-03 Blaupunkt Werke Gmbh Compact disc (CD) player and method of compensating for tracking jumps
EP0249781A2 (en) * 1986-06-07 1987-12-23 Blaupunkt-Werke GmbH Compact disc (CD) player
US5032930A (en) * 1986-12-18 1991-07-16 Casio Computer Co., Ltd. Electronic still camera
EP0283727A2 (en) * 1987-02-20 1988-09-28 1K Music International Ltd. Method and apparatus for producing an audio magnetic tape recording at high speed from a preselected music libray
US5034827A (en) * 1987-06-30 1991-07-23 Canon Kabushiki Kaisha Video signal processing apparatus with memory read/write timing related to horizontal scanning period
US5014136A (en) * 1987-10-29 1991-05-07 Asahi Kogaku Kogyo Kabushiki Kaisha Electronic still camera device
US4984103A (en) * 1987-12-07 1991-01-08 Fujitsu America, Inc. Method for reading/writing for a floppy disc drive with buffer memory
US4982390A (en) * 1987-12-15 1991-01-01 Kabushiki Kaisha Toshiba Real time signal recording apparatus for effecting variable signal transfer rate
US5070419A (en) * 1988-10-07 1991-12-03 Sharp Kabushiki Kaisha Method and apparatus for recording and reproducing of a recording medium
US5224089A (en) * 1989-06-30 1993-06-29 Matsushita Electric Industrial Co., Ltd. Digital signal information reproduction apparatus
EP0429139A1 (en) * 1989-11-23 1991-05-29 Koninklijke Philips Electronics N.V. Information recording and reading system, and recording device and reading device for use in such a system
US5212678A (en) * 1989-11-23 1993-05-18 U.S. Philips Corporation System for recording and reading information on a record carrier at a constant scanning speed independent of the bit rate of such information
JPH03296927A (en) * 1990-04-16 1991-12-27 Victor Co Of Japan Ltd Laser diode output control device
US5140571A (en) * 1990-05-30 1992-08-18 Sony Corporation Disk drive apparatus with intermittently operated servo signal processor for low power consumption
EP0465053A2 (en) * 1990-06-29 1992-01-08 Sony Corporation Disc recording/reproducing apparatus
US5442608A (en) * 1990-07-19 1995-08-15 Mitsubishi Electric Corp Disk apparatus having a power consumption reducing mechanism
US5317553A (en) * 1990-08-23 1994-05-31 Sony Corporation Optical disc recording and/or reproducing apparatus having a buffer memory to accommodate track jumps
EP0485234A2 (en) * 1990-11-09 1992-05-13 Sharp Kabushiki Kaisha Information recording and reproducing device
US5291467A (en) * 1991-07-16 1994-03-01 Sony Corporation Disc recording apparatus for recording a signal without losing the signal during an occurrence of a track jump
GB2258372A (en) * 1991-08-02 1993-02-03 Sony Corp Method of recording compressed digital audio data by removing redundant bits
JPH0589469A (en) * 1991-09-30 1993-04-09 Pioneer Electron Corp Optical disk reproducing device
US5289440A (en) * 1991-12-30 1994-02-22 U.S. Philips Corporation Optical reading device and optical recording device
US5243587A (en) * 1992-02-03 1993-09-07 Pioneer Video Corporation Disc playing apparatus capable of both long time reproduction and high speed access
US5418762A (en) * 1992-12-09 1995-05-23 Sony Corporation Optical disk recording device having a pre-recording mode
US5440529A (en) * 1993-02-24 1995-08-08 Sony Corporation Audio and general digital data recording and/or reproducing apparatus having two interface circuits

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070112448A1 (en) * 1997-11-24 2007-05-17 Texas Mp3 Technologies, Ltd. Portable sound reproducing system and method
US7065417B2 (en) 1997-11-24 2006-06-20 Sigmatel, Inc. MPEG portable sound reproducing system and a reproducing method thereof
US8615315B2 (en) 1997-11-24 2013-12-24 Mpman.Com, Inc. Portable sound reproducing system and method
US8214064B2 (en) 1997-11-24 2012-07-03 Lg Electronics Inc. Portable sound reproducing system and method
US20070112449A1 (en) * 1997-11-24 2007-05-17 Texas Mp3 Technologies, Ltd. Portable sound reproducing system and method
US20060195206A1 (en) * 1997-11-24 2006-08-31 Sigmatel, Inc. Portable sound reproducing system and method
US20070038319A1 (en) * 1997-11-24 2007-02-15 Texas Mp3 Technologies, Ltd. Portable sound reproducing system and method
US20070276522A9 (en) * 1997-11-24 2007-11-29 Texas Mp3 Technologies, Ltd. Portable sound reproducing system and method
US8175727B2 (en) 1997-11-24 2012-05-08 Mpman.Com, Inc. Portable sound reproducing system and method
US8170700B2 (en) 1997-11-24 2012-05-01 Mpman.Com, Inc. Portable sound reproducing system and method
US20070038320A1 (en) * 1997-11-24 2007-02-15 Texas Mp3 Technologies, Ltd. Portable sound reproducing system and method
US8116890B2 (en) 1997-11-24 2012-02-14 Mpman.Com, Inc. Portable sound reproducing system and method
US7324414B2 (en) 2000-12-06 2008-01-29 Sony Corporation Apparatus and method of optical disk recording while detecting vibration
US7038980B2 (en) * 2000-12-06 2006-05-02 Sony Corporation Optical disk recording apparatus and optical disk recording method
US20060098545A1 (en) * 2000-12-06 2006-05-11 Sony Corporation Optical disk recording apparatus and optical disk recording method
US20030090975A1 (en) * 2000-12-06 2003-05-15 Satoshi Tsuchiya Recording apparatus and recording method
US20040042768A1 (en) * 2002-08-28 2004-03-04 Jun Momose Apparatus and control method for recording and reproducing audio-video data

Also Published As

Publication number Publication date
CZ88596A3 (en) 1997-02-12
HUT61627A (en) 1993-01-28
EP0465053B1 (en) 2002-08-28
MY106883A (en) 1995-08-30
BR9102734A (en) 1992-02-04
NO912546D0 (en) 1991-06-28
EP0465053A3 (en) 1992-08-12
EP0465053A2 (en) 1992-01-08
DK0465053T3 (en) 2002-10-07
RU2105356C1 (en) 1998-02-20
NO314428B1 (en) 2003-03-17
HU212062B (en) 1996-01-29
PT98136B (en) 1999-03-31
CZ286226B6 (en) 2000-02-16
PT98136A (en) 1993-10-29
NO912546L (en) 1991-12-30
HU912197D0 (en) 1991-12-30

Similar Documents

Publication Publication Date Title
US5214631A (en) Disc recording/reproducing apparatus having a servo system capable of successively recording and reproducing tracks on a disc irrespective of turbulence of the servo system due to a disturbance
USRE36218E (en) Disc recording/reproducing apparatus having a servo system capable of successively recording and reproducing tracks on a disc irrespective of turbulence of the servo system due to a disturbance
EP1102264B1 (en) Data recording apparatus and data reproducing apparatus
US5537387A (en) Information storage disk with display data recorded in a lead-in region and an apparatus for recording and/reproducing the disc
JP3141242B2 (en) Optical disk recording device
US5552896A (en) Disk recording/reproducing apparatus and disks applied therein
EP0506471A1 (en) Disk recording and reproduction
JPH0589601A (en) Disk recording device, disk reproducing device, and disk
JPH0589643A (en) Disk recording apparatus, disk replay apparatus and disk
JPH05189941A (en) Disk recording and reproducing device
JP3196205B2 (en) Disk recording device and disk reproducing device
JP2976492B2 (en) Disc playback device
JP3436257B2 (en) Data recording method and data recording device, data reproducing method and data reproducing device
JP3449748B2 (en) Recording and playback device
JP2003030929A (en) Data recording method
JPH05217287A (en) Disk reproducing device
JPH05198087A (en) Disk recording device, disk reproduction device, and disk
JPH05217305A (en) Disk reproducing device
JP2002100051A (en) Disk
JPH11162109A (en) Disk recording device and disk reproducing device

Legal Events

Date Code Title Description
FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12