US9340555B2 - Compounds as tyrosine kinase modulators - Google Patents

Compounds as tyrosine kinase modulators Download PDF

Info

Publication number
US9340555B2
US9340555B2 US14/444,161 US201414444161A US9340555B2 US 9340555 B2 US9340555 B2 US 9340555B2 US 201414444161 A US201414444161 A US 201414444161A US 9340555 B2 US9340555 B2 US 9340555B2
Authority
US
United States
Prior art keywords
amino
fluoro
carbonyl
thieno
phenoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US14/444,161
Other versions
US20140336108A1 (en
Inventor
Xialing Guo
Zhen Zhu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Allergan Inc
Original Assignee
Allergan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=51865223&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US9340555(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from US12/875,223 external-priority patent/US8809534B2/en
Application filed by Allergan Inc filed Critical Allergan Inc
Priority to US14/444,161 priority Critical patent/US9340555B2/en
Publication of US20140336108A1 publication Critical patent/US20140336108A1/en
Priority to US14/989,943 priority patent/US20160355527A1/en
Application granted granted Critical
Publication of US9340555B2 publication Critical patent/US9340555B2/en
Priority to US15/599,333 priority patent/US10221192B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides

Definitions

  • the present invention is directed to novel compounds with multiple aromatic components capable of modulating, regulating and/or inhibiting tyrosine kinase signal transduction.
  • the present invention is also directed to methods of prevention and/or treatment of disorders related to unregulated tyrosine kinase signal transduction, including but not limited to, cell growth disorders, metabolic disorders, blood vessel proliferative disorders, inflammatory disorders, neurodegenerative diseases and immune disorders.
  • PTKs Protein tyrosine kinases
  • RTKs receptor tyrosine kinases
  • RTKs signal transduction mediated by receptor tyrosine kinases
  • RTKs receptor tyrosine kinases
  • Binding sites are thereby created for intracellular signal transduction molecules and lead to the formation of complexes with a spectrum of cytoplasmic signaling molecules that facilitate the appropriate cellular response (e.g., cell division, metabolic homeostasis, and responses to the extracellular microenvironment).
  • tyrosine phosphorylation sites function as high-affinity binding sites for SH2 (src homology) domains of signaling molecules.
  • SH2 serosine phosphorylation sites
  • Several intracellular substrate proteins that associate with RTKs have been identified and are divided into two principal groups: (1) substrates which have a catalytic domain; and (2) substrates which lack a catalytic domain but serve as adapters and associate with catalytically active molecules.
  • the specificity of the interactions between receptors or proteins and SH2 domains of their substrates is determined by the amino acid residues immediately surrounding the phosphorylated tyrosine residue.
  • the RTKs comprise a large family of transmembrane receptors with diverse biological activities.
  • the intrinsic function of RTKs is activated upon ligand binding, which results in phosphorylation of the receptor and multiple cellular substrates, and subsequently in a variety of cellular responses.
  • At present, at least nineteen distinct RTK subfamilies have been identified.
  • One RTK subfamily, designated the HER subfamily is believed to be comprised of EGFR, HER2, HER3 and HER4.
  • Ligands to the HER subfamily of receptors include epithelial growth factor (EGF), TGF- ⁇ , amphiregulin, HB-EGF, betacellulin and heregulin.
  • the second subfamily of RTKs designated the insulin subfamily, is comprised of the INS-R, the IGF-1R and the IR-R.
  • the third RTK subfamily, the “PDGF” family includes the PDGF ⁇ and ⁇ receptors, CSFIR, c-kit and FLK-II.
  • Another subfamily of RTKs, identified as the FLK family is believed to be comprised of the kinase insert domain-receptor fetal liver kinase-1 (KDR/FLK-1), the fetal liver kinase 4 (FLK-4) and the fms-like tyrosine kinase 1 (flt-1).
  • RTK receptor for hematopoietic growth factors.
  • FGF receptor family FGFR1, FGFR2, FGFR3 and FGFR4
  • Met subfamily c-met and Ron. Because of the similarities between the PDGF and FLK subfamilies, the two subfamilies are often considered together.
  • the known RTK subfamilies are identified in Plowman et al, 1994, DN&P 7(6): 334-339, which is incorporated herein by reference.
  • the non-receptor tyrosine kinases represent a collection of cellular enzymes which lack extracellular and transmembrane sequences. At present, over twenty-four individual non-receptor tyrosine kinases, comprising eleven subfamilies (Src, Frk, Btk, Csk, Abl, Zap70, Fes/Fps, Fak, Jak, Ack and LIMK) have been identified. At present, the Src subfamily of non-receptor tyrosine kinases is comprised of the largest number of PTKs, and include Src, Yes, Fyn, Lyn, Lck, Blk, Hck, Fgr and Yrk. The Src subfamily of enzymes has been linked to oncogenesis. A more detailed discussion of non-receptor tyrosine kinases is provided in Bolen, 1993, Oncogen 8: 2025-2031, which is incorporated herein by reference.
  • PTKs protein tyrosine kinases
  • RTKs protein tyrosine kinases
  • RNA ligands (Jellinek, et al, Biochemistry 33: 10450-56); Takano, et al, 1993, Mol. Bio. Cell 4:358A; Kinsella, et al, 1992, Exp. Cell Res. 199: 56-62; Wright, et al, 1992, J. Cellular Phys. 152: 448-57) and tyrosine kinase inhibitors (U.S. Pat. No. 5,330,992; Mariani, et al, 1994, Proc. Am. Assoc. Cancer Res. 35: 2268).
  • the present invention is directed to compounds represented by Formula I capable of modulating, regulating and/or inhibiting tyrosine kinase signal transduction, and uses of the compounds and compositions incorporating the compounds for disease treatment and prevention.
  • R III represents optionally 1-3 substituents independently selected from the group consisting of C 1 -C 5 linear or branched alkyl, C 1 -C 5 linear or branched haloalkyl, C 1 -C 5 alkoxy, hydroxy, amino, C 1 -C 5 alkylamino, C1-C6 dialkylamino, halogen, cyano, and nitro;
  • Z is selected from the group consisting of
  • R IV represents optionally 1-3 substituents, independently selected from the group consisting of alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, aryloxy, arylalkyl, carboxy, cyano, halo, haloalkoxy, haloalkyl, hydroxy, hydroxyalkyl, nitro, and —NR 9 R 10 ; wherein R 9 and R 10 are independently selected from the group consisting of hydrogen, alkyl, alkylcarbonyl, aryl, arylalkyl, cycloalkyl, cycloalkyl, cycloalkyl
  • the present invention is directed to a series of compounds with multiple aromatic components useful as protein tyrosine kinase inhibitors.
  • the compounds of the present invention are useful for treating diseases related to unregulated tyrosine kinase signal transduction, for example, cancer, blood vessel proliferative disorders, fibrotic disorders, and neurodegenerative diseases.
  • compounds of the present invention are useful for the treatment of colorectal cancer, lung cancer, hematological cancer, renal cancer, liver cancer, breast cancer, diabetic retinopathy, macular degeneration, age-related macular degeneration, retinopathy of prematurity, ocular angiogenesis, retinal edema, retinal ischemia, diabetic macular edema, cystoid macular edema, retinal vein occlusion, branch vein occlusion, preretinal neovascularization, laser-induced choroidal neovascularization, neovascularization associated with keratoplasty, glaucoma and ocular tumors, arthritis, restenosis, hepatic cirrhosis, atherosclerosis, psoriasis, diabetes mellitus, wound healing, inflammation, neurodegenerative diseases and immune disorders.
  • the present invention is directed to a compound of Formula I:
  • R III represents optionally 1-3 substituents independently selected from the group consisting of C 1 -C 5 linear or branched alkyl, C 1 -C 5 linear or branched haloalkyl, C 1 -C 5 alkoxy, hydroxy, amino, C 1 -C 5 alkylamino, C1-C6 dialkylamino, halogen, cyano, and nitro;
  • Z is selected from the group consisting of
  • R IV represents optionally 1-3 substituents, independently selected from the group consisting of alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, aryloxy, arylalkyl, carboxy, cyano, halo, haloalkoxy, haloalkyl, hydroxy, hydroxyalkyl, nitro, and —NR 9 R 10 ; wherein R 9 and R 10 are independently selected from the group consisting of hydrogen, alkyl, alkylcarbonyl, aryl, arylalkyl, cycloalkyl, cycloalkyl, cycloalkyl
  • reference to a compound should be construed broadly to include compounds, pharmaceutically acceptable salts, prodrugs, tautomers, stereoisomers, diastereoisomers, alternate solid forms, crystal forms, polymorphic forms, hydrates, solvates, metabolites, mixtures of stereoisomers, mixtures of crystal forms, non-covalent complexes, and combinations thereof, of a chemical entity of a depicted structure or a chemical name.
  • a pharmaceutically acceptable salt is any salt of the parent compound that is suitable for administration to an animal or human.
  • a pharmaceutically acceptable salt also refers to any salt which may form in vivo as a result of administration of an acid, another salt, or a prodrug which is converted into an acid or salt.
  • a salt comprises one or more ionic forms of the compound, such as a conjugate acid or base, associated with one or more corresponding counter-ions. Salts can form from or incorporate one or more deprotonated acidic groups (e.g. carboxylic acids), one or more protonated basic groups (e.g. amines), or both (e.g. zwitterions).
  • a “prodrug” is a compound, which when administered to the body of a subject (such as a mammal), breaks down in the subject's metabolic pathway to provide an active compound of Formula I. More specifically, a prodrug is an active or inactive “masked” compound that is modified chemically through in vivo physiological action, such as hydrolysis, metabolism and the like, into a compound of this invention following administration of the prodrug to a subject or patient.
  • a prodrug is a masked carboxylic acid group.
  • Examples of a masked carboxylate anion include a variety of esters, such as alkyl (for example, methyl, ethyl), cycloalkyl (for example, cyclohexyl), aralkyl (for example, benzyl, p-methoxybenzyl), and alkylcarbonyloxyalkyl (for example, pivaloyloxymethyl).
  • esters such as alkyl (for example, methyl, ethyl), cycloalkyl (for example, cyclohexyl), aralkyl (for example, benzyl, p-methoxybenzyl), and alkylcarbonyloxyalkyl (for example, pivaloyloxymethyl).
  • Amines have been masked as arylcarbonyloxymethyl substituted derivatives which are cleaved by esterases in vivo releasing the free drug and formaldehyde (Bundgaard J. Med. Chem. 2503 (19
  • drugs containing an acidic NH group such as imidazole, imide, indole and the like, have been masked with N-acyloxymethyl groups (Bundgaard Design of Prodrugs, Elsevier (1985)). Hydroxy groups have been masked as esters and ethers.
  • EP 039,051 (Sloan and Little, Apr. 11, 1981) discloses Mannich-base hydroxamic acid prodrugs, their preparation and use. For example, conversion may occur by hydrolysis of an ester group or some other biologically labile group.
  • Prodrug preparation is well known in the art. For example, “Prodrugs and Drug Delivery Systems,” which is a chapter in Richard B. Silverman, Organic Chemistry of Drug Design and Drug Action, 2d Ed., Elsevier Academic Press: Amsterdam, 2004, pp. 496-557, provides further detail on the subject.
  • Tautomers are isomers that are in rapid equilibrium with one another.
  • tautomers may be related by transfer of a proton, hydrogen atom, or hydride ion.
  • a structure is intended to include every possible stereoisomer, both pure or in any possible mixture.
  • Alternate solid forms are different solid forms than those that may result from practicing the procedures described herein.
  • alternate solid forms may be amorphous forms, crystal forms, polymorphs, and the mixtures thereof.
  • Non-covalent complexes are complexes that may form between the compound and one or more additional chemical species that do not involve a covalent bonding interaction between the compound and the additional chemical species. They may or may not have a specific ratio between the compound and the additional chemical species. Examples might include solvates, hydrates, charge transfer complexes, and the like.
  • the present invention is also directed to the use of the compounds as protein tyrosine kinase modulators and inhibitors. These compounds can be used to treat diseases related to unregulated tyrosine kinase signal transduction, for example, various cancers, blood vessel proliferative disorders, fibrotic disorders, and neurodegenerative diseases.
  • compounds of the present invention are useful for the treatment and/or prevention of colorectal cancer, lung cancer, hematological cancer, renal cancer, liver cancer, breast cancer, diabetic retinopathy, macular degeneration, age-related macular degeneration, retinopathy of prematurity, ocular angiogenesis, retinal edema, retinal ischemia, diabetic macular edema, cystoid macular edema, retinal vein occlusion, branch vein occlusion, preretinal neovascularization, laser-induced choroidal neovascularization, neovascularization associated with keratoplasty, glaucoma and ocular tumors, arthritis, restenosis, hepatic cirrhosis, atherosclerosis, psoriasis, diabetes mellitus, wound healing, inflammation, neurodegenerative diseases and immune disorders in the human being.
  • the present invention is also directed to the preparation of a medicament for the treatment and prevention of diseases and conditions related with abnormal activities of tyrosine kinase receptors.
  • the medicament contains a pharmaceutical acceptable composition, which comprises the therapeutic effective amount of the compounds of present invention, together with a pharmaceutical acceptable carrier.
  • treat refers to the diagnosis, cure, mitigation, treatment, or prevention of disease or other undesirable conditions.
  • compositions contain therapeutic effective amount of the compounds of the present invention. These compositions can be used as a medicament and administered to a mammal, such as a person, in need thereof.
  • suitable dosage forms and medicaments are well known in the art, and can be readily adapted for delivery of the compounds of the present invention, such as, but not limited to, systematic, parenteral, local and topical delivery.
  • the dosage forms can be tablets, capsules, intravenous injections, intramuscular injections, local injections, topical creams, gels and ointments, eye drops, ophthalmic solutions, ophthalmic suspensions, ophthalmic emulsions, intravitreal injections, subtenon injections, ophthalmic biodrodible implant, and non-bioeordible ophthalmic inserts or depots, nasal sprays and ointment, various rectal or vaginal preparations.
  • Methyl 7-chlorothieno[3,2-b]pyridine-2-carboxylate (5 g, 0.022 mol) and the 4-amino-3-fluorophenol (3.3 g, 0.026 mol) were added to a round bottom flask containing cesium carbonate (14.8 g, 0.045 mol), ethyl-2-cyclohexanone carboxylate (0.73 g, 0.004 mol), and copper (I) chloride (0.22 g, 0.002 mol).
  • the mixture was diluted with DMSO (250 mL) and stirred at 70 C under an atmosphere of nitrogen for 2 hours.
  • Methyl 7-(4-amino-3-fluorophenoxy)thieno[3,2-b]pyridine-2-carboxylate (1.62 g, 5.1 mmol) was taken up in 55 mL of ethyl acetate followed by the dropwise addition of 2-fluoro-5-methylphenyl isocyanate (0.85 g, 5.6 mmol) in 5 mL ethyl acetate. The solution afforded a lavender solid after stirring at room temperature for overnight.
  • Methyl 7-(3-fluoro-4-(3-(2-fluoro-5-methylphenyl)ureido)phenoxy)thieno[3,2-b]pyridine-2-carboxylate (1.84 g, 3.92 mmol) was taken up in 100 mL THF followed by the dropwise addition of 1N sodium hydroxide (4.8 mL, 4.8 mmol). The solution was stirred at room temperature for 3 hours, at which time an additional 2.4 mL of 1N sodium hydroxide was added. The solution was stirred at room temperature for overnight and the resulting mixture was diluted with 75 mL of water and acidified using 1N HCl.
  • the insoluble material was separated by filtration and the filter cake was suspended in ethyl acetate and stirred for several minutes before filtering.
  • the filter cake was washed several times with ethyl acetate and dried under high vacuum to give 7-[3-fluoro-4-( ⁇ [(2-fluoro-5-methylphenyl)amino]carbonyl ⁇ amino)phenoxy]thieno[3,2-b]pyridine-2-carboxylic acid as an off white solid.
  • Example 13 was prepared using the experiment procedure described in Example 12, but with the appropriate reagent, reaction conditions and reactant substitutions that will be readily realized by those of ordinary skill in this art without the exercise of undue experimentation.
  • Example 18 was prepared using the experiment procedure described in Example 25, but with the appropriate reagent, reaction conditions and reactant substitutions that will be readily realized by those of ordinary skill in this art without the exercise of undue experimentation.
  • Example 19 was prepared using the experiment procedure described in Example 26, but with the appropriate reagent, reaction conditions and reactant substitutions that will be readily realized by those of ordinary skill in this art without the exercise of undue experimentation.
  • Example 24 was prepared using the experiment procedure described in Example 38, but with the appropriate reagent, reaction conditions and reactant substitutions that will be readily realized by those of ordinary skill in this art without the exercise of undue experimentation.
  • Example 27 was prepared using the experiment procedure described in Example 26, but with the appropriate reagent, reaction conditions and reactant substitutions that will be readily realized by those of ordinary skill in this art without the exercise of undue experimentation.
  • Example 28 was prepared using the experiment procedure described in Example 30, but with the appropriate reagent, reaction conditions and reactant substitutions that will be readily realized by those of ordinary skill in this art without the exercise of undue experimentation.
  • Example 31 was prepared using the experiment procedure described in Example 25, but with the appropriate reagent, reaction conditions and reactant substitutions that will be readily realized by those of ordinary skill in this art without the exercise of undue experimentation.
  • Example 39 was prepared using the experiment procedure described in Example 42, but with the appropriate reagent, reaction conditions and reactant substitutions that will be readily realized by those of ordinary skill in this art without the exercise of undue experimentation.
  • Example 43 was prepared using the experiment procedure described in Example 34, but with the appropriate reagent, reaction conditions and reactant substitutions that will be readily realized by those of ordinary skill in this art without the exercise of undue experimentation.
  • Example 49 was prepared using the experiment procedure described in Example 54, but with the appropriate reagent, reaction conditions and reactant substitutions that will be readily realized by those of ordinary skill in this art without the exercise of undue experimentation.
  • Example 51 was prepared using the experiment procedure described in Example 42, but with the appropriate reagent, reaction conditions and reactant substitutions that will be readily realized by those of ordinary skill in this art without the exercise of undue experimentation.
  • Example 55 was prepared using the experiment procedure described in Example 34, but with the appropriate reagent, reaction conditions and reactant substitutions that will be readily realized by those of ordinary skill in this art without the exercise of undue experimentation.
  • the above compound was prepared using procedures similar to that used to prepare the compound of Example 66 above.
  • the above compound was prepared using procedures similar to that used to prepare the compound of Example 66 above.
  • the above compound was prepared using procedures similar to that used to prepare the compound of Example 66 above.
  • the above compound was prepared using procedures similar to that used to prepare the compound of Example 66 above.
  • Step 1 A mixture of methyl 7-chlorothieno[3,2-b]pyridine-2-carboxylate (500 mg, 2.20 mmol), 3-aminophenol (330 mg, 3.0 mmol), ethyl 2-cyclohexanonecarboxylate (73 mg, 0.43 mmol), copper(I) chloride (22 mg, 0.22 mmol) and cesium carbonate (1.48 g, 4.55 mmol) in 20 ml of anhydrous DMSO was placed in a 50 ml pressure tube, flushed with nitrogen, sealed and heated at 70° C. for 3 hours. The mixture was cooled to room temperature and poured into 100 ml of water. The precipitates were filtered, washed with water and dried to give crude methyl 7-(3-aminophenoxy)thieno[3,2-b]pyridine-2-carboxylate as brown solid. Yield: 330 mg.
  • Step 1 To a stirred solution of 3-benzyloxy benzoic acid (1.00 g, 4.38 mmol) in 20 ml of anhydrous DMF were added HATU (1.83 g, 4.82 mmol) and DIPEA (1.7 ml, 9.6 mmol). The mixture was stirred at room temperature for 10 minutes, followed by addition of 2-fluoro-5-methylaniline (657 mg, 5.25 mmol). The mixture was heated at 66° C. for 16 hours, cooled to room temperature, and partitioned between EtOAc (100 ml) and 0.5M HCl (200 ml).
  • Step 2 A solution of 3-(benzyloxy)-N-(2-fluoro-5-methylphenyl)benzamide (1.5 g, 4.48 mmol from Step 1) in 20 ml of MeOH containing 10% Pd/C (150 mg) was stirred under a hydrogen balloon at room temperature for 2 hours. The catalyst was removed by filtration. The filtrate solution was evaporated to dryness under reduced pressure to give N-(2-fluoro-5-methylphenyl)-3-hydroxybenzamide as light-beige solid. Yield: 1.1 g, 100%.
  • Biological data for the compounds of the present invention was generated by the use of one or more of the following assays.
  • test agents For screening, cells were pre-incubated with test agents for 30 minutes, at a single concentration (10 .mu.M) or at concentrations ranging from 0.01 to 10.0 .mu.M followed by VEGF stimulation (5 ng/mL). Changes in fluorescence at 516 nm were measured simultaneously in all 96 wells using a cooled CCD camera. Data were generated by determining max-min fluorescence levels for unstimulated, stimulated, and drug treated samples. IC.sub.50 values for test compounds were calculated from % inhibition of VEGF stimulated responses in the absence of inhibitor.
  • the cytoplasmic domain of the human VEGF receptor (VEGFR-2) was expressed as a Histidine-tagged fusion protein following infection of insect cells using an His engineered baculovirus. His-VEGFR-2 was purified to homogeneity, as determined by SDS-PAGE, using nickel resin chromatography. Kinase assays were performed in 96 well microtiter plates that were coated overnight with 30 .mu.g of poly-Glu-Tyr (4:1) in 10 mM Phosphate Buffered Saline (PBS), pH 7.2-7.4. The plates were incubated with 1% BSA and then washed four times with PBS prior to starting the reaction.
  • PBS Phosphate Buffered Saline
  • Reactions were carried out in 120 .mu.L reaction volumes containing 3.6 .mu.M ATP in kinase buffer (50 mM Hepes buffer pH 7.4, 20 mM MgCl.sub.2, 0.1 mM MnCl.sub.2 and 0.2 mM Na.sub.3 VO.sub.4).
  • Test compounds were reconstituted in 100% DMSO and added to the reaction to give a final DMSO concentration of 5%.
  • Reactions were initiated by the addition 0.5 ng of purified protein. Following a ten minute incubation at 25.degree. C., the reactions were washed four times with PBS containing 0.05% Tween-20.
  • mice Male Hartley guinea pigs (300-600 g) were anesthetized with isofluorane, sheared, and given a single dose of drug or the respective vehicle. The guinea pigs were dosed orally unless indicated otherwise in Table 3. Ten minutes prior to the end of drug treatment, guinea pigs were anesthetized with isofluorane, and 0.5% Evans blue dye (EBD) in PBS (13-15 mg/kg dose of EBD) was injected intravenously. After 5 minutes, triplicate intradermal injections of 100 ng rhVEGF.sub.165 in 100 .mu.l PBS and of 100 .mu.l PBS alone were administered on the flank.
  • EBD Evans blue dye
  • each animal was cuthanized with Pentosol, and the skin containing the intradermal injection sites was removed for image analysis.
  • an analog video camera coupled to a PC an image of each trans-illuminated skin sample was captured, and the integrated optical density of each injection site was measured using ImagePro 4.
  • ImagePro 4 the difference between the mean optical density of the VEGF sites and mean optical density of the PBS sites is the measure of VEGF-induced EBD extravasation in that animal.
  • the percent inhibition data was plotted as a function of oral dose, using the ‘best-fit’ analysis within MicroSoft Excel software.
  • the ID.sub.50 value was verified visually by using the plotted data (horizontal line from 50% y value, at intersection with best-fit line drop vertical line to x axis (dose).
  • CNV was induced and quantified in this model as previously described (Edelman and Castro. Exp. Eye Res. 2000; 71:523-533).
  • male Brown Norway rats 200-300 g were anesthetized with 100 mg/kg Ketamine and 10 mg/kg Xylazine, and pupils were dilated with 1% Tropicamide.
  • 3 laser bus 90 mW for 0.1 s; 100 .mu.m diameter
  • Rats were dosed with test compounds in their indicated vehicles orally once daily.
  • FITC-dextran MW 2.times.10.sup.6
  • images were obtained from the flat mounts of the RPE-choroid-sclera from each eye, and the area occupied by hyperfluorescent neovessels within each laser lesion was measured using ImagePro 4 software.
  • the percent inhibition data was plotted as a function of oral dose, using the ‘best-fit’ analysis within MicroSoft Excel software.
  • the ID.sub.50 value was verified visually by using the plotted data (horizontal line from 50% y value, at intersection with best-fit line drop vertical line to x axis (dose).
  • test agents For screening, cells were pre-incubated with test agents for 30 minutes, at a single concentration (10 ⁇ M) or at concentrations ranging from 0.001 nM to 10 ⁇ M followed by PDGF stimulation (10 ng/mL). Changes in fluorescence at 515 nm were measured simultaneously in all 384 wells using a cooled CCD camera. Data were generated by determining max-min fluorescence levels for unstimulated, stimulated, and drug treated samples. IC 50 values for test compounds were calculated from % inhibition of PDGF stimulated responses in the absence of inhibitor.

Abstract

The present invention is directed to novel compounds of Formula I. The compounds of the present invention are potent tyrosine kinase modulators, and are suitable for the treatment and prevention of diseases and conditions related to abnormal activities of tyrosine kinase receptors.
Figure US09340555-20160517-C00001

Description

CROSS REFERENCE TO RELATED APPLICATIONS
This application is a continuation in part of U.S. application Ser. No. 12/875,223, filed Sep. 3, 2010, which claims priority under 35 U.S.C. 119(e) to U.S. Provisional Application No. 61/239,603, filed on Sep. 3, 2009, 61/306,616, filed on Feb. 22, 2010, 61/356,699 filed on Jun. 21, 2010 and 61/360,531 filed on Jul. 1, 2010, all of which are expressly incorporated herein by reference in their entireties.
FIELD OF THE INVENTION
The present invention is directed to novel compounds with multiple aromatic components capable of modulating, regulating and/or inhibiting tyrosine kinase signal transduction. The present invention is also directed to methods of prevention and/or treatment of disorders related to unregulated tyrosine kinase signal transduction, including but not limited to, cell growth disorders, metabolic disorders, blood vessel proliferative disorders, inflammatory disorders, neurodegenerative diseases and immune disorders.
BACKGROUND OF THE INVENTION
Protein tyrosine kinases (“PTKs”) play an important role in the control of cell growth and differentiation. PTKs comprise a large and diverse class of proteins having enzymatic activity. PTKs can be of the receptor-type (having extracellular, transmembrane and intracellular domains) or the non-receptor type (being wholly intracellular). For example, signal transduction mediated by receptor tyrosine kinases (“RTKs”) is initiated by extracellular interaction with a specific growth factor (i.e., a ligand), followed by receptor dimerization, transient stimulation of the intrinsic protein tyrosine kinase activity and phosphorylation. Binding sites are thereby created for intracellular signal transduction molecules and lead to the formation of complexes with a spectrum of cytoplasmic signaling molecules that facilitate the appropriate cellular response (e.g., cell division, metabolic homeostasis, and responses to the extracellular microenvironment).
With respect to RTKs, it has been shown also that tyrosine phosphorylation sites function as high-affinity binding sites for SH2 (src homology) domains of signaling molecules. Several intracellular substrate proteins that associate with RTKs have been identified and are divided into two principal groups: (1) substrates which have a catalytic domain; and (2) substrates which lack a catalytic domain but serve as adapters and associate with catalytically active molecules. The specificity of the interactions between receptors or proteins and SH2 domains of their substrates is determined by the amino acid residues immediately surrounding the phosphorylated tyrosine residue. Differences in binding affinities between SH2 domains and the amino acid sequences surrounding the phosphotyrosine residues on particular receptors are consistent with the observed differences in their substrate phosphorylation profiles. These observations suggest that the function of each RTK is determined not only by its pattern of expression and ligand availability, but also by the array of downstream signal transduction pathways that are activated by a particular receptor. Thus, phosphorylation provides an important regulatory step which determines the selectivity of signaling pathways recruited by specific growth factor receptors, as well as differentiation factor receptors.
The RTKs comprise a large family of transmembrane receptors with diverse biological activities. The intrinsic function of RTKs is activated upon ligand binding, which results in phosphorylation of the receptor and multiple cellular substrates, and subsequently in a variety of cellular responses. At present, at least nineteen distinct RTK subfamilies have been identified. One RTK subfamily, designated the HER subfamily, is believed to be comprised of EGFR, HER2, HER3 and HER4. Ligands to the HER subfamily of receptors include epithelial growth factor (EGF), TGF-α, amphiregulin, HB-EGF, betacellulin and heregulin. The second subfamily of RTKs, designated the insulin subfamily, is comprised of the INS-R, the IGF-1R and the IR-R. The third RTK subfamily, the “PDGF” family, includes the PDGF α and β receptors, CSFIR, c-kit and FLK-II. Another subfamily of RTKs, identified as the FLK family, is believed to be comprised of the kinase insert domain-receptor fetal liver kinase-1 (KDR/FLK-1), the fetal liver kinase 4 (FLK-4) and the fms-like tyrosine kinase 1 (flt-1). Each of these receptors was initially believed to be a receptor for hematopoietic growth factors. Two other subfamilies of RTKs have been designated as the FGF receptor family (FGFR1, FGFR2, FGFR3 and FGFR4) and the Met subfamily (c-met and Ron). Because of the similarities between the PDGF and FLK subfamilies, the two subfamilies are often considered together. The known RTK subfamilies are identified in Plowman et al, 1994, DN&P 7(6): 334-339, which is incorporated herein by reference.
The non-receptor tyrosine kinases represent a collection of cellular enzymes which lack extracellular and transmembrane sequences. At present, over twenty-four individual non-receptor tyrosine kinases, comprising eleven subfamilies (Src, Frk, Btk, Csk, Abl, Zap70, Fes/Fps, Fak, Jak, Ack and LIMK) have been identified. At present, the Src subfamily of non-receptor tyrosine kinases is comprised of the largest number of PTKs, and include Src, Yes, Fyn, Lyn, Lck, Blk, Hck, Fgr and Yrk. The Src subfamily of enzymes has been linked to oncogenesis. A more detailed discussion of non-receptor tyrosine kinases is provided in Bolen, 1993, Oncogen 8: 2025-2031, which is incorporated herein by reference.
Many of the protein tyrosine kinases (PTKs), whether an RTK or non-receptor tyrosine kinase, have been found to be involved in cellular signaling pathways leading to cellular signal cascades and pathogenic conditions such as cancer, psoriasis and hyper immune responses. In view of the importance of PTKs to the control, regulation and modulation of cell proliferation and the diseases and disorders associated with abnormal cell proliferation, many attempts have been made to identify receptor and non-receptor tyrosine kinase “inhibitors” using a variety of approaches, including the use of mutant ligands (U.S. Pat. No. 4,966,849), soluble receptors and antibodies (Kendall & Thomas, 1994, Proc. Nat'l Acad. Sci 90: 10705-09; Kim, et al, 1993, Nature 362: 841-844), RNA ligands (Jellinek, et al, Biochemistry 33: 10450-56); Takano, et al, 1993, Mol. Bio. Cell 4:358A; Kinsella, et al, 1992, Exp. Cell Res. 199: 56-62; Wright, et al, 1992, J. Cellular Phys. 152: 448-57) and tyrosine kinase inhibitors (U.S. Pat. No. 5,330,992; Mariani, et al, 1994, Proc. Am. Assoc. Cancer Res. 35: 2268).
More recently, attempts have been made to identify small molecules which act as tyrosine kinase inhibitors. For example, bis monocyclic, bicyclic or heterocyclic aryl compounds (PCT Application No. WO 92/20642), vinylene-azaindole derivatives (PCT Application No. WO 94/14808) and 1-cyclopropyl-4-pyridyl-quinolones (U.S. Pat. No. 5,330,992) have been described generally as tyrosine kinase inhibitors. Styryl compounds (U.S. Pat. No. 5,217,999), styryl-substituted pyridyl compounds (U.S. Pat. No. 5,302,606), certain quinazoline derivatives (EP Application No. 0 566 266 A1), seleoindoles and selenides (PCT Application No. WO 94/03427), tricyclic polyhydroxylic compounds (PCT Application No. WO 92/21660) and benzylphosphonic acid compounds (PCT Application No. WO 91/15495) have been described as compounds for use as tyrosine kinase inhibitors for use in the treatment of cancer.
In addition, other small molecules were studied as tyrosine kinase inhibitors, such as the compounds disclosed in U.S. Pat. Nos. 6,765,012; 6,541,504; 6,747,025; 5,792,783; 5,834,504; 5,883,113; 5,883,116 and 5,886,020, all of which are incorporated by reference in their entireties.
The identification and use of compounds which specifically inhibit signal transduction by modulating the activity of receptor and non-receptor tyrosine is one aspect of the present invention.
SUMMARY OF THE INVENTION
The present invention is directed to compounds represented by Formula I capable of modulating, regulating and/or inhibiting tyrosine kinase signal transduction, and uses of the compounds and compositions incorporating the compounds for disease treatment and prevention.
The compounds of the present invention can be found in general Formula I:
Figure US09340555-20160517-C00002
    • wherein
    • X is selected from the group consisting of NR1, O, S(O)n;
    • n is 0 or an integer of from 1 to 2;
    • R1 is independently selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, CF3, alkyl, alkylcarbonyl, alkoxycarbonyl, aryl, heterocycloalkyl, hydroxyalkyl, and alkyl(NR2R3), wherein R2 and R3 are independently selected from the group consisting of hydrogen, alkyl, alkylcarbonyl, alkoxycarbonyl, alkylsulfonyl, arylsulfonyl, haloalkylsulfonyl, and heterocyclylsulfonyl; alternatively R2 and R3 and may be taken together to form a 5-7 membered heterocyclic ring with N;
    • RI is selected from the group consisting of hydrogen, halogen, C1 to C8 alkyl, S(O)fR4, (CR5R6)dC(O)OR4, S(O)f(CR5R6)dC(O)OR4, (CR5R6)dAr, NR4(CR5R6)dAr, O(CR5R6)dAr, S(O)f(CR5R6)dAr, (CR5R6)dS(O)fR4, NR4(CR5R6)dS(O)fR4, O(CR5R6)dS(O)fR4, S(O)f(CR5R6)eS(O)fR4, (CR5R6)dC(O)N(R4)2, NR4(CR5R6)dC(O)N(R4)2, O(CR5R6)dC(O)N(R4)2, S(O)f(CR5R6)eC(O)N(R4)2, (CR5R6)dOR4, S(O)f(CR5R6)dOR4, (CR5R6)dOSO2R4, S(O)f(CR5R6)eOSO2R4, (CR5R6)dP(O)(OR4)2, S(O)f(CR5R6)eP(O)(OR4)2, OC(O)(CR5R6)dN(R4)2, C(O)(CR5R6)dN(R4)2, C(O)N═S(O)R5R6, NR2C(O)(CR5R6)dN(R4)2, (CR5R6)dR5, S(O)f(CR5R6)dR5, HNC(O)R4, HN—C(O)OR4, (CR5R6)dN(R4)2, S(O)f(CR5R6)dN(R4)2, OC(O)OR4, (CR5R6)dC(O)(CR5R6)dR4, (CR5R6)dC(O)(CR5R6)dOR4, and (CR5R6)dC(O)(CR5R6)dN(R4)2, wherein each R4 is independently selected from the group consisting of hydrogen, hydroxyl, C1-C8 alkyl, aryl, C1-C8 hydroxyalkyl, C1-C8 alkoxyalkyl, (CR5R6)d and N(R4)2 may form a 3-7 membered heterocyclic ring, comprising of aziridine, azetidine, pyrrolidine, 5-fluoropyrrolidine, piperidine, 6-fluoropiperidine, N-methylpiperazine, morpholine, 2,6-dimethylmorpholine, thiomorpholine, and wherein said heterocyclic ring may be optionally substituted with up to three of R5; wherein R5 and R6 are independently selected from the group consisting of hydrogen, halo, hydroxyl, C1-C8 alkyl, C1-C8 hydroxyalkyl, C1-C8 alkoxyalkyl, alkoxycarbonylalkyl, alkoxycarbonyl, hydroxycarbonyl, hydroxycarbonylalkyl, amide, alkylamide, amidoalkyl, sulfonate and CR5R6 may represent a carbocyclic or heterocyclic ring of from 5 to 6 carbons or alternatively, (CR5R6)d and (CR5R6)e may form a 3-7 membered carbocyclic or heterocyclic ring, wherein the ring may be optionally substituted with up to three of hydroxyl, halo, C1-C8 alkyl, C1-C8 hydroxyalkyl, C1-C8 alkoxyalkyl, alkoxycarbonylalkyl, alkoxycarbonyl, hydroxycarbonyl, hydroxycarbonylalkyl, amide, alkylamide, amidoalkyl and sulfonate;
    • a is 0 or an integer of from 1 to 3;
    • d is 0 or an integer of from 1 to 5;
    • e is an integer of from 1 to 4;
    • f is 0 or an integer of from 1 to 2;
    • RII is independently selected from the group consisting of hydrogen, alkoxy, alkoxyalkoxy, alkoxyalkyl, alkyl, aryloxy, aryloxyalkyl, halo, haloalkoxy, haloalkyl, hydroxy, hydroxyalkoxy, hydroxyalkyl, (NR2R3)alkoxy, (NR2R3)alkenyl, (NR2R3)alkyl, (NR2R3)carbonylalkenyl, and (NR2R3)carbonylalkyl, wherein R2 and R3 are independently selected from the group consisting of hydrogen, alkyl, alkylcarbonyl, alkylsulfonyl, arylsulfonyl, haloalkylsulfonyl, and heterocyclylsulfonyl; alternatively R2 and R3 and may be taken together to form a 5-7 membered heterocyclic ring with N;
    • b is 0 or an integer of from 1 to 2;
    • Y is selected from the group consisting of
      • (1) —(CH2)g-O—(CH2)h-;
      • (2) —(CH2)g-NR1—(CH2)h-;
      • (3) —(CH2)g-CO—(CH2)h-;
      • (4) —(CH2)g-C(O)NR2—(CH2)h-;
      • (5) —(CH2)g-NR2C(O)—(CH2)h-;
      • (6) —(CH2)g-(CH2)h-;
      • (7) —(CH2)g-CH(OH)—(CH2)h-;
      • (8) —(CH2)g-C═C—(CH2)h-;
      • and (9) a single bond;
    • wherein
    • g is 0 or an integer of from 1 to 3;
    • h is 0 or an integer of from 1 to 3;
    • R1 is independently selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, CF3, alkyl, alkylcarbonyl, alkoxycarbonyl, aryl, heterocycloalkyl, hydroxyalkyl, and alkyl(NR2R3), wherein R2 and R3 are independently selected from the group consisting of hydrogen, alkyl, alkylcarbonyl, alkoxycarbonyl, alkylsulfonyl, arylsulfonyl, haloalkylsulfonyl, and heterocyclylsulfonyl; alternatively R2 and R3 and may be taken together to form a 5-7 membered heterocyclic ring with N;
    • R2 is selected from the group consisting of hydrogen, alkyl, alkylcarbonyl, alkoxycarbonyl, alkylsulfonyl, arylsulfonyl, haloalkylsulfonyl, and heterocyclylsulfonyl;
      Ring A is selected from the group consisting of:
Figure US09340555-20160517-C00003

(i) Phenyl;
(ii) Naphthyl;
(iii) A 5 or 6 membered monocyclic heteroaryl group which has 1-5 heteroatoms independently selected from the group consisting of O, N and S;
and (iv) An 8 to 10 membered bicyclic heteroaryl group which has 1-6 heteroatoms independently selected from the group consisting of O, N and S;
RIII represents optionally 1-3 substituents independently selected from the group consisting of C1-C5 linear or branched alkyl, C1-C5 linear or branched haloalkyl, C1-C5 alkoxy, hydroxy, amino, C1-C5 alkylamino, C1-C6 dialkylamino, halogen, cyano, and nitro;
Z is selected from the group consisting of
    • (1′) (CH2)iN(R7)C(O)N(R8)(CH2)j;
    • (2′) (CH2)iN(R7)C(S)N(R8)(CH2)j;
    • (3′) (CH2)iN(R7)C(O);
    • (4′) C(O)N(R8)(CH2)j;
    • (5′) (CH2)iN(R7)S(O)2;
    • and (6′) S(O)2N(R8)(CH2)j;
      wherein
    • i is 0 or 1;
    • j is 0 or 1;
    • R7 and R8 are independently selected from the group consisting of hydrogen and alkyl.
      Ring B is selected from the group consisting of:
Figure US09340555-20160517-C00004

(i′) Phenyl;
(ii′) Naphthyl;
(iii′) A 5 or 6 membered monocyclic heteroaryl group which has 1-3 heteroatoms independently selected from the group consisting of O, N and S;
and (iv′) An 8 to 10 membered bicyclic heteroaryl group which has 1-3 heteroatoms independently selected from the group consisting of O, N and S;
RIV represents optionally 1-3 substituents, independently selected from the group consisting of alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, aryloxy, arylalkyl, carboxy, cyano, halo, haloalkoxy, haloalkyl, hydroxy, hydroxyalkyl, nitro, and —NR9R10; wherein R9 and R10 are independently selected from the group consisting of hydrogen, alkyl, alkylcarbonyl, aryl, arylalkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl.
Some embodiments of the present invention are included in the following paragraphs:
    • 1) A compound according to Formula I, including any tautomer, stereoisomer, diastereoisomeric form, polymorphic form, crystal form, a solvate, a hydrate, a metabolite, a pharmaceutically acceptable salt or prodrug, mixture of different stereoisomers, mixture of different crystal forms.
    • 2) A compound of Formula I in the form of a prodrug.
    • 3) The compound according to paragraph 1, wherein Y is selected from the group consisting of
      • (a) —(CH2)g-C═C—(CH2)h-;
      • (b) —(CH2)g-NR1—(CH2)h-;
      • (c) —(CH2)g-CO—(CH2)h-;
      • (d) —(CH2)g-C(O)NR2—(CH2)h-;
      • (e) —(CH2)g-NR2C(O)—(CH2)h-;
      • (f) —(CH2)g-(CH2)h-;
      • (g) —(CH2)g-CH(OH)—(CH2)h-;
      • (h) —(CH2)g-O—(CH2)h-;
      • and (i) a single bond.
    • 4) The compound according to paragraphs 1-3, wherein Z is selected from the group consisting of (CH2)iN(R7)C(O)N(R8)(CH2)j, (CH2)iN(R7)C(S)N(R8)(CH2)j, (CH2)iN(R7)C(O), and C(O)N(R8)(CH2)j.
    • 5) The compound according to paragraphs 1-4, wherein X is NH.
    • 6) The compound according to paragraphs 1-5, wherein Ring A and Ring B are independently selected from the group consisting of
Figure US09340555-20160517-C00005
    • 7) The compound according to paragraph 6, wherein X is S.
    • 8) The compound according to paragraph 1, which can be further represented by Formula II:
Figure US09340555-20160517-C00006
    •  including any tautomer, stereoisomer, diastereoisomeric form, crystal form, polymorphic form, mixture of stereoisomers, mixture of polymorphic forms, mixture of crystal forms, a solvate, a hydrate, a metabolite, a pharmaceutically acceptable salt or a prodrug.
    • 9) The compound according to paragraphs 1-8, wherein RI is selected from the group consisting of hydrogen, halogen, C1 to C8 alkyl, (CR5R6)dC(O)OR4, (CR5R6)dAr, NR4(CR5R6)dAr, (CR5R6)dC(O)N(R4)2, NR4(CR5R6)dC(O)N(R4)2, O(CR5R6)dC(O)N(R4)2, (CR5R6)dOR4, OC(O)(CR5R6)dN(R4)2, C(O)(CR5R6)dN(R4)2, NR2C(O)(CR5R6)dN(R4)2, (CR5R6)dR5, HNC(O)R4, HN—C(O)OR4, (CR5R6)dN(R4)2, S(O)f(CR5R6)dN(R4)2, OC(O)OR4, (CR5R6)dC(O)(CR5R6)dR4, (CR5R6)dC(O)(CR5R6)dOR4, and (CR5R6)dC(O)(CR5R6)dN(R4)2, wherein each R4 is independently selected from the group consisting of hydrogen, hydroxyl, C1-C8 alkyl, aryl, C1-C8 hydroxyalkyl, C1-C8 alkoxyalkyl, (CR5R6)d and N(R4)2 may form a 3-7 membered heterocyclic ring, comprising of aziridine, azetidine, pyrrolidine, 5-fluoropyrrolidine, piperidine, 6-fluoropiperidine, N-methylpiperazine, morpholine, 2,6-dimethylmorpholine, thiomorpholine, and wherein said heterocyclic ring may be optionally substituted with up to three of R5; wherein R5 and R6 are independently selected from the group consisting of hydrogen, halo, hydroxyl, C1-C8 alkyl, C1-C8 hydroxyalkyl, C1-C8 alkoxyalkyl, alkoxycarbonylalkyl, alkoxycarbonyl, hydroxycarbonyl, hydroxycarbonylalkyl, amide, alkylamide, amidoalkyl, sulfonate and CR5R6 may represent a carbocyclic or heterocyclic ring of from 5 to 6 carbons or alternatively, (CR5R6)d and (CR5R6)e may form a 3-7 membered carbocyclic or heterocyclic ring, wherein the ring may be optionally substituted with up to three of hydroxyl, halo, C1-C8 alkyl, C1-C8 hydroxyalkyl, C1-C8 alkoxyalkyl, alkoxycarbonylalkyl, alkoxycarbonyl, hydroxycarbonyl, hydroxycarbonylalkyl, amide, alkylamide, amidoalkyl and sulfonate.
    • 10) A compound selected from the group consisting of
Figure US09340555-20160517-C00007
Figure US09340555-20160517-C00008
Figure US09340555-20160517-C00009
Figure US09340555-20160517-C00010
    • 11) A method of use of the compounds of paragraphs 1-10, wherein the compounds are used as tyrosine kinase modulators.
    • 12) Use of the compounds of paragraphs 1-10 in the preparation of a medicament for the treatment or prevention of diseases or conditions related with unregulated tyrosine kinase activities, comprising administering a therapeutically effective amount of the compound of paragraphs 1-10 together with a pharmaceutically acceptable carrier;
    • 13) The use of paragraph 12, wherein the diseases or conditions are selected from the group consisting of cell growth and metabolic disorders, blood vessel proliferative disorders, inflammatory disorders, neurodegenerative diseases, and immune disorders.
    • 14) The use of paragraphs 12-13 wherein the diseases or conditions are selected from the group consisting of colorectal cancer, lung cancer, hematological cancer, renal cancer, liver cancer, breast cancer, diabetic retinopathy, macular degeneration, age-related macular degeneration, retinopathy of prematurity, ocular angiogenesis, retinal edema, retinal ischemia, diabetic macular edema, cystoid macular edema, retinal vein occlusion, branch vein occlusion, preretinal neovascularization, laser-induced choroidal neovascularization, neovascularization associated with keratoplasty, glaucoma and ocular tumors, arthritis, restenosis, hepatic cirrhosis, atherosclerosis, psoriasis, diabetes mellitus, wound healing, inflammation, neurodegenerative diseases and immune disorders.
    • 15) A pharmaceutical composition comprising a therapeutic effective amount of a compound according to paragraphs 1-10 together with a pharmaceutically acceptable carrier which is suitable for systematic, parenteral, local or topical delivery.
    • 16) The pharmaceutical composition of paragraph 15 which are in the form selected from the group consisting of tablets, capsules, intravenous injections, intramuscular injections, local injections, topical creams, gels and ointments, eye drops, ophthalmic solutions, ophthalmic suspensions, ophthalmic emulsions, intravitreal injections, subtenon injections, ophthalmic biodrodible implant, and non-bioeordible ophthalmic inserts or depots.
    • 17) Use of the compounds of paragraph 10 in the preparation of a medicament for the treatment of diseases and conditions, wherein the medicament contains a pharmaceutical acceptable composition according to paragraphs 15 and 16.
DETAILED DESCRIPTION OF THE INVENTION
The present invention is directed to a series of compounds with multiple aromatic components useful as protein tyrosine kinase inhibitors. The compounds of the present invention are useful for treating diseases related to unregulated tyrosine kinase signal transduction, for example, cancer, blood vessel proliferative disorders, fibrotic disorders, and neurodegenerative diseases. In particular, compounds of the present invention are useful for the treatment of colorectal cancer, lung cancer, hematological cancer, renal cancer, liver cancer, breast cancer, diabetic retinopathy, macular degeneration, age-related macular degeneration, retinopathy of prematurity, ocular angiogenesis, retinal edema, retinal ischemia, diabetic macular edema, cystoid macular edema, retinal vein occlusion, branch vein occlusion, preretinal neovascularization, laser-induced choroidal neovascularization, neovascularization associated with keratoplasty, glaucoma and ocular tumors, arthritis, restenosis, hepatic cirrhosis, atherosclerosis, psoriasis, diabetes mellitus, wound healing, inflammation, neurodegenerative diseases and immune disorders.
1. Compounds of the Invention
The present invention is directed to a compound of Formula I:
Figure US09340555-20160517-C00011
    • wherein
    • X is selected from the group consisting of NR1, O, S(O)n;
    • n is 0 or an integer of from 1 to 2;
    • R1 is independently selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, CF3, alkyl, alkylcarbonyl, alkoxycarbonyl, aryl, heterocycloalkyl, hydroxyalkyl, and alkyl(NR2R3), wherein R2 and R3 are independently selected from the group consisting of hydrogen, alkyl, alkylcarbonyl, alkoxycarbonyl, alkylsulfonyl, arylsulfonyl, haloalkylsulfonyl, and heterocyclylsulfonyl; alternatively R2 and R3 and may be taken together to form a 5-7 membered heterocyclic ring with N;
    • RI is selected from the group consisting of hydrogen, halogen, C1 to C8 alkyl, S(O)fR4, (CR5R6)dC(O)OR4, S(O)f(CR5R6)dC(O)OR4, (CR5R6)dAr, NR4(CR5R6)dAr, O(CR5R6)dAr, S(O)f(CR5R6)dAr, (CR5R6)dS(O)fR4, NR4(CR5R6)dS(O)fR4, O(CR5R6)d S(O)fR4, S(O)f(CR5R6)eS(O)fR4, (CR5R6)dC(O)N(R4)2, NR4(CR5R6)dC(O)N(R4)2, O(CR5R6)dC(O)N(R4)2, S(O)f(CR5R6)eC(O)N(R4)2, (CR5R6)dOR4, S(O)f(CR5R6)dOR4, (CR5R6)dOSO2R4, S(O)f(CR5R6)eOSO2R4, (CR5R6)dP(O)(OR4)2, S(O)f(CR5R6)eP(O)(OR4)2, OC(O)(CR5R6)dN(R4)2, C(O)(CR5R6)dN(R4)2, C(O)N═S(O)R5R6, NR2C(O)(CR5R6)dN(R4)2, (CR5R6)dR5, S(O)f(CR5R6)dR5, HNC(O)R4, HN—C(O)OR4, (CR5R6)dN(R4)2, S(O)f(CR5R6)dN(R4)2, OC(O)OR4, (CR5R6)dC(O)(CR5R6)dR4, (CR5R6)dC(O)(CR5R6)dOR4, and (CR5R6)dC(O)(CR5R6)dN(R4)2, wherein each R4 is independently selected from the group consisting of hydrogen, hydroxyl, C1-C8 alkyl, aryl, C1-C8 hydroxyalkyl, C1-C8 alkoxyalkyl, (CR5R6)d and N(R4)2 may form a 3-7 membered heterocyclic ring, comprising of aziridine, azetidine, pyrrolidine, 5-fluoropyrrolidine, piperidine, 6-fluoropiperidine, N-methylpiperazine, morpholine, 2,6-dimethylmorpholine, thiomorpholine, and wherein said heterocyclic ring may be optionally substituted with up to three of R5; wherein R5 and R6 are independently selected from the group consisting of hydrogen, halo, hydroxyl, C1-C8 alkyl, C1-C8 hydroxyalkyl, C1-C8 alkoxyalkyl, alkoxycarbonylalkyl, alkoxycarbonyl, hydroxycarbonyl, hydroxycarbonylalkyl, amide, alkylamide, amidoalkyl, sulfonate and CR5R6 may represent a carbocyclic or heterocyclic ring of from 5 to 6 carbons or alternatively, (CR5R6)d and (CR5R6)e may form a 3-7 membered carbocyclic or heterocyclic ring, wherein the ring may be optionally substituted with up to three of hydroxyl, halo, C1-C8 alkyl, C1-C8 hydroxyalkyl, C1-C8 alkoxyalkyl, alkoxycarbonylalkyl, alkoxycarbonyl, hydroxycarbonyl, hydroxycarbonylalkyl, amide, alkylamide, amidoalkyl and sulfonate;
    • a is 0 or an integer of from 1 to 3;
    • d is 0 or an integer of from 1 to 5;
    • e is an integer of from 1 to 4;
    • f is 0 or an integer of from 1 to 2;
    • RII is independently selected from the group consisting of hydrogen, alkoxy, alkoxyalkoxy, alkoxyalkyl, alkyl, aryloxy, aryloxyalkyl, halo, haloalkoxy, haloalkyl, hydroxy, hydroxyalkoxy, hydroxyalkyl, (NR2R3)alkoxy, (NR2R3)alkenyl, (NR2R3)alkyl, (NR2R3)carbonylalkenyl, and (NR2R3)carbonylalkyl, wherein R2 and R3 are independently selected from the group consisting of hydrogen, alkyl, alkylcarbonyl, alkylsulfonyl, arylsulfonyl, haloalkylsulfonyl, and heterocyclylsulfonyl; alternatively R2 and R3 and may be taken together to form a 5-7 membered heterocyclic ring with N;
    • b is 0 or an integer of from 1 to 2;
    • Y is selected from the group consisting of
      • (1′) —(CH2)g-O—(CH2)h-;
      • (2′) —(CH2)g-NR1—(CH2)h-;
      • (3′) —(CH2)g-CO—(CH2)h-;
      • (4′) —(CH2)g-C(O)NR2—(CH2)h-;
      • (5′) —(CH2)g-NR2C(O)—(CH2)h-;
      • (6′) —(CH2)g-(CH2)h-;
      • (7′) —(CH2)g-CH(OH)—(CH2)h-;
      • (8′) —(CH2)g-C═C—(CH2)h-;
      • and (9′) a single bond;
    • wherein
    • g is 0 or an integer of from 1 to 3;
    • h is 0 or an integer of from 1 to 3;
    • R1 is independently selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, CF3, alkyl, alkylcarbonyl, alkoxycarbonyl, aryl, heterocycloalkyl, hydroxyalkyl, and alkyl(NR2R3), wherein R2 and R3 are independently selected from the group consisting of hydrogen, alkyl, alkylcarbonyl, alkoxycarbonyl, alkylsulfonyl, arylsulfonyl, haloalkylsulfonyl, and heterocyclylsulfonyl; alternatively R2 and R3 and may be taken together to form a 5-7 membered heterocyclic ring with N;
    • R2 is selected from the group consisting of hydrogen, alkyl, alkylcarbonyl, alkoxycarbonyl, alkylsulfonyl, arylsulfonyl, haloalkylsulfonyl, and heterocyclylsulfonyl;
      Ring A is selected from the group consisting of:
Figure US09340555-20160517-C00012

(i) Phenyl;
(ii) Naphthyl;
(iii) A 5 or 6 membered monocyclic heteroaryl group which has 1-5 heteroatoms independently selected from the group consisting of O, N and S;
and (iv) An 8 to 10 membered bicyclic heteroaryl group which has 1-6 heteroatoms independently selected from the group consisting of O, N and S;
RIII represents optionally 1-3 substituents independently selected from the group consisting of C1-C5 linear or branched alkyl, C1-C5 linear or branched haloalkyl, C1-C5 alkoxy, hydroxy, amino, C1-C5 alkylamino, C1-C6 dialkylamino, halogen, cyano, and nitro;
Z is selected from the group consisting of
    • (1′) (CH2)iN(R7)C(O)N(R8)(CH2)j;
    • (2′) (CH2)iN(R7)C(S)N(R8)(CH2)j,
    • (3′) (CH2)iN(R7)C(O);
    • (4′) C(O)N(R8)(CH2)j;
    • (5′) (CH2)iN(R7)S(O)2;
    • and (6′) S(O)2N(R8)(CH2)j.
      wherein
    • i is 0 or 1;
    • j is 0 or 1;
    • R7 and R8 are independently selected from the group consisting of hydrogen and alkyl;
      Ring B is selected from the group consisting of:
Figure US09340555-20160517-C00013

(i′) Phenyl;
(ii′) Naphthyl;
(iii′) A 5 or 6 membered monocyclic heteroaryl group which has 1-3 heteroatoms independently selected from the group consisting of O, N and S;
and (iv′) An 8 to 10 membered bicyclic heteroaryl group which has 1-3 heteroatoms independently selected from the group consisting of O, N and S;
RIV represents optionally 1-3 substituents, independently selected from the group consisting of alkoxy, alkoxyalkyl, alkoxycarbonyl, alkyl, aryloxy, arylalkyl, carboxy, cyano, halo, haloalkoxy, haloalkyl, hydroxy, hydroxyalkyl, nitro, and —NR9R10; wherein R9 and R10 are independently selected from the group consisting of hydrogen, alkyl, alkylcarbonyl, aryl, arylalkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl.
Unless otherwise indicated, reference to a compound should be construed broadly to include compounds, pharmaceutically acceptable salts, prodrugs, tautomers, stereoisomers, diastereoisomers, alternate solid forms, crystal forms, polymorphic forms, hydrates, solvates, metabolites, mixtures of stereoisomers, mixtures of crystal forms, non-covalent complexes, and combinations thereof, of a chemical entity of a depicted structure or a chemical name.
A pharmaceutically acceptable salt is any salt of the parent compound that is suitable for administration to an animal or human. A pharmaceutically acceptable salt also refers to any salt which may form in vivo as a result of administration of an acid, another salt, or a prodrug which is converted into an acid or salt. A salt comprises one or more ionic forms of the compound, such as a conjugate acid or base, associated with one or more corresponding counter-ions. Salts can form from or incorporate one or more deprotonated acidic groups (e.g. carboxylic acids), one or more protonated basic groups (e.g. amines), or both (e.g. zwitterions).
A “prodrug” is a compound, which when administered to the body of a subject (such as a mammal), breaks down in the subject's metabolic pathway to provide an active compound of Formula I. More specifically, a prodrug is an active or inactive “masked” compound that is modified chemically through in vivo physiological action, such as hydrolysis, metabolism and the like, into a compound of this invention following administration of the prodrug to a subject or patient. One common form of a prodrug is a masked carboxylic acid group. Examples of a masked carboxylate anion include a variety of esters, such as alkyl (for example, methyl, ethyl), cycloalkyl (for example, cyclohexyl), aralkyl (for example, benzyl, p-methoxybenzyl), and alkylcarbonyloxyalkyl (for example, pivaloyloxymethyl). Amines have been masked as arylcarbonyloxymethyl substituted derivatives which are cleaved by esterases in vivo releasing the free drug and formaldehyde (Bundgaard J. Med. Chem. 2503 (1989)). Also, drugs containing an acidic NH group, such as imidazole, imide, indole and the like, have been masked with N-acyloxymethyl groups (Bundgaard Design of Prodrugs, Elsevier (1985)). Hydroxy groups have been masked as esters and ethers. EP 039,051 (Sloan and Little, Apr. 11, 1981) discloses Mannich-base hydroxamic acid prodrugs, their preparation and use. For example, conversion may occur by hydrolysis of an ester group or some other biologically labile group. Prodrug preparation is well known in the art. For example, “Prodrugs and Drug Delivery Systems,” which is a chapter in Richard B. Silverman, Organic Chemistry of Drug Design and Drug Action, 2d Ed., Elsevier Academic Press: Amsterdam, 2004, pp. 496-557, provides further detail on the subject.
Tautomers are isomers that are in rapid equilibrium with one another. For example, tautomers may be related by transfer of a proton, hydrogen atom, or hydride ion. Unless stereochemistry is explicitly and unambiguously depicted, a structure is intended to include every possible stereoisomer, both pure or in any possible mixture.
Alternate solid forms are different solid forms than those that may result from practicing the procedures described herein. For example, alternate solid forms may be amorphous forms, crystal forms, polymorphs, and the mixtures thereof.
Non-covalent complexes are complexes that may form between the compound and one or more additional chemical species that do not involve a covalent bonding interaction between the compound and the additional chemical species. They may or may not have a specific ratio between the compound and the additional chemical species. Examples might include solvates, hydrates, charge transfer complexes, and the like.
2. Uses, Formulation and Administration
The present invention is also directed to the use of the compounds as protein tyrosine kinase modulators and inhibitors. These compounds can be used to treat diseases related to unregulated tyrosine kinase signal transduction, for example, various cancers, blood vessel proliferative disorders, fibrotic disorders, and neurodegenerative diseases. In particular, compounds of the present invention are useful for the treatment and/or prevention of colorectal cancer, lung cancer, hematological cancer, renal cancer, liver cancer, breast cancer, diabetic retinopathy, macular degeneration, age-related macular degeneration, retinopathy of prematurity, ocular angiogenesis, retinal edema, retinal ischemia, diabetic macular edema, cystoid macular edema, retinal vein occlusion, branch vein occlusion, preretinal neovascularization, laser-induced choroidal neovascularization, neovascularization associated with keratoplasty, glaucoma and ocular tumors, arthritis, restenosis, hepatic cirrhosis, atherosclerosis, psoriasis, diabetes mellitus, wound healing, inflammation, neurodegenerative diseases and immune disorders in the human being.
The present invention is also directed to the preparation of a medicament for the treatment and prevention of diseases and conditions related with abnormal activities of tyrosine kinase receptors. The medicament contains a pharmaceutical acceptable composition, which comprises the therapeutic effective amount of the compounds of present invention, together with a pharmaceutical acceptable carrier.
For the purposes of this disclosure, “treat,” “treating,” or “treatment” refer to the diagnosis, cure, mitigation, treatment, or prevention of disease or other undesirable conditions.
The pharmaceutical acceptable compositions contain therapeutic effective amount of the compounds of the present invention. These compositions can be used as a medicament and administered to a mammal, such as a person, in need thereof. Different types of suitable dosage forms and medicaments are well known in the art, and can be readily adapted for delivery of the compounds of the present invention, such as, but not limited to, systematic, parenteral, local and topical delivery. The dosage forms can be tablets, capsules, intravenous injections, intramuscular injections, local injections, topical creams, gels and ointments, eye drops, ophthalmic solutions, ophthalmic suspensions, ophthalmic emulsions, intravitreal injections, subtenon injections, ophthalmic biodrodible implant, and non-bioeordible ophthalmic inserts or depots, nasal sprays and ointment, various rectal or vaginal preparations.
3. Examples
TABLE 1
Exemplified Compounds of the Present Invention
Compound Structure MW Chemical Name
F1
Figure US09340555-20160517-C00014
451 methyl 7-[4-({[(2-fluoro-5- methylphenyl)amino]carbonyl}amino)phenoxy] thieno[3,2-b]pyridine-2-carboxylate
F2
Figure US09340555-20160517-C00015
437 7-[4-({[(2-fluoro-5- methylphenyl)amino]carbonyl}amino)phenoxy] thieno[3,2-b]pyridine-2-carboxylic acid
F3
Figure US09340555-20160517-C00016
451 methyl 7-[3-({[(2-fluoro-5- methylphenyl)amino]carbonyl}amino)phenoxy] thieno[3,2-b]pyridine-2-carboxylate
F4
Figure US09340555-20160517-C00017
435 methyl 7-[4-({[(2-fluoro-5- methylphenyl)amino]carbonyl}amino)phenyl] thieno[3,2-b]pyridine-2-carboxylate
F5
Figure US09340555-20160517-C00018
421 7-[4-({[(2-fluoro-5- methylphenyl)amino]carbonyl}amino)phenyl] thieno[3,2-b]pyridine-2-carboxylic acid
F6
Figure US09340555-20160517-C00019
509 3-[({7-[4-({[(2-fluoro-5- methylphenyl)amino]carbonyl}amino) phenoxy]thieno[3,2-b]pyridin-2- yl}carbonyl)amino]propanoic acid
F7
Figure US09340555-20160517-C00020
527 3-[({7-[3-fluoro-4-({[(2-fluoro-5- methylphenyl)amino]carbonyl}amino) phenoxy]thieno[3,2-b]pyridin-2- yl}carbonyl)amino]propanoic acid
F8
Figure US09340555-20160517-C00021
455 7-[3-fluoro-4-({[(2-fluoro-5- methylphenyl)amino]carbonyl}amino) phenoxy]thieno[3,2-b]pyridine- 2-carboxylic acid
F9
Figure US09340555-20160517-C00022
469 methyl 7-(3-fluoro-4-(3-(2-fluoro-5- methylphenyl)ureido)phenoxy)thieno[3,2- b]pyridine-2-carboxylate
F10
Figure US09340555-20160517-C00023
541 methyl 3-[({7-[3-fluoro-4-({[(2-fluoro-5- methylphenyl)amino]carbonyl}amino) phenoxy]thieno[3,2-b]pyridin-2- yl}carbonyl)amino]propanoate
F11
Figure US09340555-20160517-C00024
523 methyl 3-[({7-[4-({[(2-fluoro-5- methylphenyl)amino]carbonyl}amino) phenoxy]thieno[3,2-b]pyridin-2- yl}carbonyl)amino]propanoate
Additional compounds of the present invention are listed below.
Example # Chemical Structure MW Chemical Name
12
Figure US09340555-20160517-C00025
547 7-[4-({[(2-fluoro-5- methylphenyl)amino]carbonyl}amino) phenoxy]-N-[3-(2H-tetrazol-5- yl)propyl]thieno[3,2-b]pyridine-2- carboxamide
13
Figure US09340555-20160517-C00026
533 7-[4-({[(2-fluoro-5- methylphenyl)amino]carbonyl}amino) phenoxy]-N-[2-(2H-tetrazol-5-yl)ethyl] thieno[3,2-b]pyridine-2-carboxamide
14
Figure US09340555-20160517-C00027
649 ethyl (4-{3-[({7-[4-({[(2-fluoro-5- methylphenyl)amino]carbonyl}amino) phenoxy]thieno[3,2-b]pyridin-2- yl}carbonyl)amino]propyl}piperazin-1- yl)acetate
15
Figure US09340555-20160517-C00028
592 7-[4-({[(2-fluoro-5- methylphenyl)amino]carbonyl}amino) phenoxy]-N-{3-[3-(hydroxymethyl)piperidin-1- yl]propyl}thieno[3,2-b]pyridine-2- carboxamide
16
Figure US09340555-20160517-C00029
594 7-[4-({[(2-fluoro-5- methylphenyl)amino]carbonyl}amino) phenoxy]-N-{3-[2-(hydroxymethyl) morpholin-4-yl]propyl}thieno[3,2-b] pyridine-2-carboxamide
17
Figure US09340555-20160517-C00030
622 methyl rel-(2R,4S)-1-{3-[({7-[4-({[(2-fluoro- 5- methylphenyl)amino]carbonyl}amino) phenoxy]thieno[3,2-b]pyridin-2- yl}carbonyl)amino]propyl}-4- hydroxypyrrolidine-2-carboxylate
18
Figure US09340555-20160517-C00031
556 methyl ({3-[({7-[4-({[(2-fluoro-5- methylphenyl)amino]carbonyl}amino) phenoxy]thieno[3,2-b]pyridin-2- yl}carbonyl)amino]propyl}amino)acetate
19
Figure US09340555-20160517-C00032
566 dimethyl 2,2′-({3-[({7-[4-({[(2-fluoro-5- methylphenyl)amino]carbonyl}amino) phenoxy]thieno[3,2-b]pyridin-2- yl}carbonyl)amino]propyl}imino)diacetate
20
Figure US09340555-20160517-C00033
638 N-(3-aminopropyl)-7-[4-({[(2-fluoro-5- methylphenyl)amino]carbonyl}amino) phenoxy]thieno[3,2-b]pyridine-2- carboxamide
21
Figure US09340555-20160517-C00034
494 tert-butyl {3-[({7-[4-({[(2-fluoro-5- methylphenyl)amino]carbonyl}amino) phenoxy]thieno[3,2-b]pyridin-2- yl}carbonyl)amino]propyl}carbamate
 21A
Figure US09340555-20160517-C00035
594 N-(3,3-diethoxypropyl)-7-[4-({[(2-fluoro-5- methylphenyl)amino]carbonyl}amino) phenoxy]thieno[3,2-b]pyridine-2-carboxamide
22
Figure US09340555-20160517-C00036
493 7-[4-({[(2-fluoro-5- methylphenyl)amino]carbonyl}amino) phenoxy]-N-(3-oxopropyl)thieno[3,2-b] pyridine-2-carboxamide
23
Figure US09340555-20160517-C00037
639 ethyl 4-{2-[({7-[3-fluoro-4-({[(2-fluoro-5- methylphenyl)amino]carbonyl}amino) phenoxy]thieno[3,2-b]pyridin-2- yl}carbonyl)amino]ethyl}piperazine-1- carboxylate
24
Figure US09340555-20160517-C00038
653 ethyl 4-{3-[({7-[3-fluoro-4-({[(2-fluoro-5- methylphenyl)amino]carbonyl}amino) phenoxy]thieno[3,2-b]pyridin-2- yl}carbonyl)amino]propyl}piperazine-1- carboxylate
25
Figure US09340555-20160517-C00039
584 methyl ({3-[({7-[3-fluoro-4-({[(2-fluoro-5- methylphenyl)amino]carbonyl}amino) phenoxy]thieno[3,2-b]pyridin-2- yl}carbonyl)amino]propyl}amino)acetate
26
Figure US09340555-20160517-C00040
656 dimethyl 2,2′-({3-[({7-[3-fluoro-4-({[(2- fluoro-5- methylphenyl)amino]carbonyl}amino) phenoxy]thieno[3,2-b]pyridin-2- yl}carbonyl)amino]propyl}imino)diacetate
27
Figure US09340555-20160517-C00041
642 dimethyl 2,2′-({2-[({7-[3-fluoro-4-({[(2- fluoro-5- methylphenyl)amino]carbonyl}amino) phenoxy]thieno[3,2-b]pyridin-2- yl}carbonyl)amino]ethyl}imino)diacetate
28
Figure US09340555-20160517-C00042
567 methyl 1-({7-[3-fluoro-4-({[(2-fluoro-5- methylphenyl)amino]carbonyl}amino) phenoxy]thieno[3,2-b]pyridin-2- yl}carbonyl)pyrrolidine-3-carboxylate
29
Figure US09340555-20160517-C00043
736 ethyl (4-{[4-({7-[3-fluoro-4-({[(2-fluoro-5- methylphenyl)amino]carbonyl}amino) phenoxy]thieno[3,2-b]pyridin-2- yl}carbonyl)piperazin-1-yl]acetyl}piperazin- 1-yl)acetate
30
Figure US09340555-20160517-C00044
610 ethyl [4-({7-[3-fluoro-4-({[(2-fluoro-5- methylphenyl)amino]carbonyl}amino) phenoxy]thieno[3,2-b]pyridin-2- yl}carbonyl)piperazin-1-yl]acetate
31
Figure US09340555-20160517-C00045
570 methyl ({2-[({7-[3-fluoro-4-({[(2-fluoro-5- methylphenyl)amino]carbonyl}amino) phenoxy]thieno[3,2-b]pyridin-2- yl}carbonyl)amino]ethyl}amino)acetate
32
Figure US09340555-20160517-C00046
498 N-(2-aminoethyl)-7-[3-fluoro-4-({[(2-fluoro- 5- methylphenyl)amino]carbonyl}amino) phenoxy]thieno[3,2-b]pyridine-2-carboxamide
33
Figure US09340555-20160517-C00047
598 tert-butyl {2-[({7-[3-fluoro-4-({[(2-fluoro-5- methylphenyl)amino]carbonyl}amino) phenoxy]thieno[3,2-b]pyridin-2- yl}carbonyl)amino]ethyl}carbamate
34
Figure US09340555-20160517-C00048
595 7-[3-fluoro-4-({[(2-fluoro-5- methylphenyl)amino]carbonyl}amino) phenoxy]-N-[3-(4-methylpiperazin-1- yl)propyl]thieno[3,2-b]pyridine-2- carboxamide
35
Figure US09340555-20160517-C00049
571 N-(2,2-diethoxyethyl)-7-[3-fluoro-4-({[(2- fluoro-5- methylphenyl)amino]carbonyl}amino) phenoxy]thieno[3,2-b]pyridine-2- carboxamide
36
Figure US09340555-20160517-C00050
610 7-[3-fluoro-4-({[(2-fluoro-5- methylphenyl)amino]carbonyl}amino) phenoxy]-N-{3-[3-(hydroxymethyl) piperidin-1-yl]propyl}thieno[3,2-b]pyridine-2- carboxamide
37
Figure US09340555-20160517-C00051
612 7-[3-fluoro-4-({[(2-fluoro-5- methylphenyl)amino]carbonyl}amino) phenoxy]-N-{3-[2-(hydroxymethyl) morpholin-4-yl]propyl}thieno[3,2-b] pyridine-2-carboxamide
38
Figure US09340555-20160517-C00052
596 7-[3-fluoro-4-({[(2-fluoro-5- methylphenyl)amino]carbonyl}amino) phenoxy]-N-[3-(4-hydroxypiperidin-1- yl)propyl]thieno[3,2-b]pyridine-2- carboxamide
39
Figure US09340555-20160517-C00053
640 methyl (2S,4R)-1-{3-[({7-[3-fluoro-4-({[(2- fluoro-5- methylphenyl)amino]carbonyl}amino) phenoxy]thieno[3,2-b]pyridin-2- yl}carbonyl)amino]propyl}-4- hydroxypyrrolidine-2-carboxylate
40
Figure US09340555-20160517-C00054
585 N-(3,3-diethoxypropyl)-7-[3-fluoro-4-({[(2- fluoro-5- methylphenyl)amino]carbonyl}amino) phenoxy]thieno[3,2-b]pyridine-2-carboxamide
41
Figure US09340555-20160517-C00055
496 7-[3-fluoro-4-({[(2-fluoro-5- methylphenyl)amino]carbonyl}amino) phenoxy]-N-(2-oxoethyl)thieno[3,2-b] pyridine-2-carboxamide
42
Figure US09340555-20160517-C00056
624 methyl 1-{3-[({7-[3-fluoro-4-({[(2-fluoro-5- methylphenyl)amino]carbonyl}amino) phenoxy]thieno[3,2-b]pyridin-2- yl}carbonyl)amino]propyl}pyrrolidine-2- carboxylate
43
Figure US09340555-20160517-C00057
566 7-[3-fluoro-4-({[(2-fluoro-5- methylphenyl)amino]carbonyl}amino) phenoxy]-N-(3-pyrrolidin-1-ylpropyl) thieno[3,2-b]pyridine-2-carboxamide
44
Figure US09340555-20160517-C00058
612 tert-butyl {3-[({7-[3-fluoro-4-({[(2-fluoro-5- methylphenyl)amino]carbonyl}amino) phenoxy]thieno[3,2-b]pyridin-2- yl}carbonyl)amino]propyl}carbamate
45
Figure US09340555-20160517-C00059
512 N-(3-aminopropyl)-7-[3-fluoro-4-({[(2- fluoro-5- methylphenyl)amino]carbonyl}amino) phenoxy]thieno[3,2-b]pyridine-2- carboxamide
46
Figure US09340555-20160517-C00060
612 (4S)-5-(ethylamino)-4-[({7-[3-fluoro-4-({[(2- fluoro-5- methylphenyl)amino]carbonyl}amino) phenoxy]thieno[3,2-b]pyridin-2- yl}carbonyl)amino]-5-oxopentanoic acid
47
Figure US09340555-20160517-C00061
668 tert-butyl (4S)-5-(ethylamino)-4-[({7-[3- fluoro-4-({[(2-fluoro-5- methylphenyl)amino]carbonyl}amino) phenoxy]thieno[3,2-b]pyridin-2- yl}carbonyl)amino]-5-oxopentanoate
48
Figure US09340555-20160517-C00062
641 (2S)-5-tert-butoxy-2-[({7-[3-fluoro-4-({[(2- fluoro-5- methylphenyl)amino]carbonyl}amino) phenoxy]thieno[3,2-b]pyridin-2- yl}carbonyl)amino]-5-oxopentanoic acid
49
Figure US09340555-20160517-C00063
655 5-tert-butyl 1-methyl (2S)-2-[({7-[3-fluoro- 4-({[(2-fluoro-5- methylphenyl)amino]carbonyl}amino) phenoxy]thieno[3,2-b]pyridin-2- yl}carbonyl)amino]pentanedioate
50
Figure US09340555-20160517-C00064
610 1-{3-[({7-[3-fluoro-4-({[(2-fluoro-5- methylphenyl)amino]carbonyl}amino) phenoxy]thieno[3,2-b]pyridin-2- yl}carbonyl)amino]propyl}pyrrolidine-3- carboxylic acid
51
Figure US09340555-20160517-C00065
666 tert-butyl 1-{3-[({7-[3-fluoro-4-({[(2-fluoro- 5- methylphenyl)amino]carbonyl}amino) phenoxy]thieno[3,2-b]pyridin-2- yl}carbonyl)amino]propyl}pyrrolidine-3- carboxylate
52
Figure US09340555-20160517-C00066
511 7-[3-fluoro-4-({[(2-fluoro-5- methylphenyl)amino]carbonyl}amino) phenoxy]-N-(3-oxopropyl)thieno[3,2-b] pyridine-2-carboxamide
53
Figure US09340555-20160517-C00067
513 7-[3-fluoro-4-({[(2-fluoro-5- methylphenyl)amino]carbonyl}amino) phenoxy]-N-(3-hydroxypropyl)thieno[3,2- b]pyridine-2-carboxamide
54
Figure US09340555-20160517-C00068
613 dimethyl (2S)-2-[({7-[3-fluoro-4-({[(2- fluoro-5- methylphenyl)amino]carbonyl}amino) phenoxy]thieno[3,2-b]pyridin-2- yl}carbonyl)amino]pentanedioate
55
Figure US09340555-20160517-C00069
582 7-[3-fluoro-4-({[(2-fluoro-5- methylphenyl)amino]carbonyl}amino) phenoxy]-N-(3-morpholin-4-ylpropyl) thieno[3,2-b]pyridine-2-carboxamide
56
Figure US09340555-20160517-C00070
551 ethyl 4-[({7-[4-({[(2-fluoro-5- methylphenyl)amino]carbonyl}amino) phenoxy]thieno[3,2-b]pyridin-2- yl}carbonyl)amino]butanoate
57
Figure US09340555-20160517-C00071
569 ethyl 4-[({7-[3-fluoro-4-({[(2-fluoro-5- methylphenyl)amino]carbonyl}amino) phenoxy]thieno[3,2-b]pyridin-2- yl}carbonyl)amino]butanoate
58
Figure US09340555-20160517-C00072
531 N-[dimethyl(oxido)-λ-4-sulfanylidene]-7-[3- fluoro-4-({[(2-fluoro-5- methylphenyl)amino]carbonyl}amino) phenoxy]thieno[3,2-b]pyridine-2-carboxamide
59
Figure US09340555-20160517-C00073
603 4-[N-({7-[3-fluoro-4-({[(2-fluoro-5- methylphenyl)amino]carbonyl}amino) phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)- S-methylsulfonimidoyl]butanoic acid
60
Figure US09340555-20160517-C00074
585 4-[N-({7-[4-({[(2-fluoro-5- methylphenyl)amino]carbonyl}amino) phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)- S-methylsulfonimidoyl]butanoic acid
61
Figure US09340555-20160517-C00075
513 N-[dimethyl(oxido)-lambda~4~- sulfanylidene]-7-[4-({[(2-fluoro-5- methylphenyl)amino]carbonyl}amino) phenoxy]thieno[3,2-b]pyridine-2-carboxamide
62
Figure US09340555-20160517-C00076
512 [({7-[3-fluoro-4-({[(2-fluoro-5- methylphenyl)amino]carbonyl}amino) phenoxy]thieno[3,2-b]pyridin-2- yl}carbonyl)amino]acetic acid
63
Figure US09340555-20160517-C00077
495 [({7-[4-({[(2-fluoro-5- methylphenyl)amino]carbonyl}amino) phenoxy]thieno[3,2-b]pyridin-2- yl}carbonyl)amino]acetic acid
64
Figure US09340555-20160517-C00078
541 4-[({7-[3-fluoro-4-({[(2-fluoro-5- methylphenyl)amino]carbonyl}amino) phenoxy]thieno[3,2-b]pyridin-2- yl}carbonyl)amino]butanoic acid
65
Figure US09340555-20160517-C00079
523 4-[({7-[4-({[(2-fluoro-5- methylphenyl)amino]carbonyl}amino) phenoxy]thieno[3,2-b]pyridin-2- yl}carbonyl)amino]butanoic acid
66
Figure US09340555-20160517-C00080
561 7-[4-({[(2-fluoro-5- methylphenyl)amino]carbonyl}amino) phenoxy]-N-(3-piperidin-1-ylpropyl) thieno[3,2-b]pyridine-2-carboxamide
67
Figure US09340555-20160517-C00081
577 7-[4-({[(2-fluoro-5- methylphenyl)amino]carbonyl}amino) phenoxy]-N-[3-(4-methylpiperazin-1- yl)propyl]thieno[3,2-b]pyridine-2- carboxamide
68
Figure US09340555-20160517-C00082
547 7-[4-({[(2-fluoro-5- methylphenyl)amino]carbonyl}amino) phenoxy]-N-(3-pyrrolidin-1-ylpropyl) thieno[3,2-b]pyridine-2-carboxamide
69
Figure US09340555-20160517-C00083
535 N-[2-(diethylamino)ethyl]-7-[4-({[(2-fluoro- 5- methylphenyl)amino]carbonyl}amino) phenoxy]thieno[3,2-b]pyridine-2-carboxamide
70
Figure US09340555-20160517-C00084
549 N-[3-(diethylamino)propyl]-7-[4-({[(2- fluoro-5- methylphenyl)amino]carbonyl}amino) phenoxy]thieno[3,2-b]pyridine-2-carboxamide
71
Figure US09340555-20160517-C00085
408 Methyl 7-{3-[(3-methyl-2- furoyl)amino]phenoxy}thieno[3,2- b]pyridine-2-carboxylate
72
Figure US09340555-20160517-C00086
394 7-{3-[(3-methyl-2- furoyl)amino]phenoxy}thieno[3,2- b]pyridine-2-carboxylic acid
73
Figure US09340555-20160517-C00087
421 N-ethyl-7-{3-[(3-methyl-2- furoyl)amino]phenoxy}thieno[3,2- b]pyridine-2-carboxamide
74
Figure US09340555-20160517-C00088
449 N,N-diethyl-7-{3-[(3-methyl-2- furoyl)amino]phenoxy}thieno[3,2- b]pyridine-2-carboxamide
75
Figure US09340555-20160517-C00089
409 N-hydroxy-7-{3-[(3-methyl-2- furoyl)amino]phenoxy}thieno[3,2- b]pyridine-2-carboxamide
76
Figure US09340555-20160517-C00090
451 N-(3-hydroxypropyl)-7-{3-[(3-methyl-2- furoyl)amino]phenoxy}thieno[3,2- b]pyridine-2-carboxamide
77
Figure US09340555-20160517-C00091
437 N-(2-hydroxyethyl)-7-{3-[(3-methyl-2- furoyl)amino]phenoxy}thieno[3,2- b]pyridine-2-carboxamide
78
Figure US09340555-20160517-C00092
489 7-{3-[(3-methyl-2-furoyl)amino]phenoxy}- N-[2-(2H-tetrazol-5-yl)ethyl]thieno[3,2- b]pyridine-2-carboxamide
79
Figure US09340555-20160517-C00093
452 3-hydroxypropyl 7-{3-[(3-methyl-2- furoyl)amino]phenoxy}thieno[3,2- b]pyridine-2-carboxylate
80
Figure US09340555-20160517-C00094
438 2-hydroxyethyl 7-{3-[(3-methyl-2- furoyl)amino]phenoxy}thieno[3,2- b]pyridine-2-carboxylate
81
Figure US09340555-20160517-C00095
452 2-methoxyethyl 7-{3-[(3-methyl-2- furoyl)amino]phenoxy}thieno[3,2- b]pyridine-2-carboxylate
82
Figure US09340555-20160517-C00096
522 Methyl [(3-{[(7-{3-[(3-methyl-2- furoyl)amino]phenoxy}thieno[3,2-b]pyridin- 2-yl)carbonyl]amino}propyl)amino]acetate
83
Figure US09340555-20160517-C00097
436 Methyl 7-(3-((2-fluoro-5- methylphenyl)carbamoyl)phenoxy)thieno [3,2-b]pyridine-2-carboxylate
84
Figure US09340555-20160517-C00098
422 7-(3-{[(2-fluoro-5- methylphenyl)amino]carbonyl}phenoxy) thieno[3,2-b]pyridine-2-carboxylic acid
85
Figure US09340555-20160517-C00099
449 N-ethyl-7-(3-{[(2-fluoro-5- methylphenyl)amino]carbonyl}phenoxy) thieno[3,2-b]pyridine-2-carboxamide
86
Figure US09340555-20160517-C00100
477 N,N-diethyl-7-(3-{[(2-fluoro-5- methylphenyl)amino]carbonyl}phenoxy) thieno[3,2-b]pyridine-2-carboxamide
87
Figure US09340555-20160517-C00101
550 Methyl {[3-({[7-(3-{[(2-fluoro-5- methylphenyl)amino]carbonyl}phenoxy) thieno[3,2-b]pyridin-2- yl]carbonyl}amino)propyl]amino}acetate
3.1 Compound Synthesis and Characterization Compound F1 Methyl 7-[4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridine-2-carboxylate
Figure US09340555-20160517-C00102
To a stirred solution of methyl 7-bromothieno[3,2-b]pyridine-2-carboxylate (200 mg, 0.74 mmol) in 8 ml of DMSO, were added CuBr (10 mg, 0.074 mmol), ethyl 2-cyclohexanonecarboxylate (26 mg, 0.15 mmol), cesium carbonate (500 mg, 1.54 mmol) and 4-aminophenol (96 mg, 0.88 mmol). The mixture was purged with nitrogen for 10 minutes, and then heated at 70° C. under N2 for 3 hours. The reaction was cooled to room temperature and poured into 100 ml of water. The precipitates were filtered, washed with water and dried to give the crude aniline intermediate as a pale green solid (˜140 mg). This crude material was dissolved in 10 ml of THF, and 2-fluoro-5-methylphenyl isocyanate (70 mg, 0.46 mmol) was added. The mixture was stirred at room temperature for 5 hours, and poured into 100 ml of water. The brown precipitates were filtered, washed with water and dried to give the crude product, which was purified by silica gel chromatography, eluting with 2-3% MeOH/CHCl3 to give methyl 7-[4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridine-2-carboxylate as light brown solid. Yield: 90 mg, 27%.
1H NMR (d6-DMSO) d: 9.25 (s, 1H), 8.61 (d, J=5.3 Hz, 1H), 8.50 (br. s., 1H), 8.21 (s, 1H), 7.96 (d, J=6.7 Hz, 1H), 7.58 (d, J=8.8 Hz, 2H), 7.25 (d, J=8.8 Hz, 2H), 7.09 (dd, J=11.4, 8.2 Hz, 1H), 6.71-6.85 (m, 2H), 3.91 (s, 3H), 2.26 (s, 3H)
LR MS (ES+): 452 (MH), 474 (M+Na+)
LR MS (ES−): 450 (M−H)
Compound F2 7-[4-({[(2-Fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridine-2-carboxylic acid
Figure US09340555-20160517-C00103
To a stirred suspension of methyl 7-[4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)-phenoxy]thieno[3,2-b]pyridine-2-carboxylate (50 mg, 0.11 mmol) in MeOH (3 ml), was added 0.4M LiOH/MeOH solution (10 ml, 4.0 mmol). The mixture was heated at 50° C. for 7 hours, and poured into 100 ml of water. 1M HCl was added until pH=4. The resulting precipitates were filtered, washed with water and dried in vacuo to give 7-[4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridine-2-carboxylic acid as light grey solid. Yield: 40 mg, 83%.
1H NMR (DMSO-d6) δ: 13.88 (br. s., 1H), 9.19 (s, 1H), 8.58 (d, J=5.3 Hz, 1H), 8.47 (d, J=2.6 Hz, 1H), 8.10 (s, 1H), 7.96 (dd, J=7.9, 1.8 Hz, 1H), 7.53-7.59 (m, 2H), 7.22-7.27 (m, 2H), 7.08 (dd, 1H), 6.77-6.80 (m, 1H), 6.73 (d, J=5.6 Hz, 1H), 2.25 (s, 3H)
LR MS (ES−): 436 (M−H)
Compound F3 Methyl 7-[3-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridine-2-carboxylate
Figure US09340555-20160517-C00104
prepared using procedures similar to Compound F1.
1H NMR (DMSO-d6) δ: 9.51 (s, 1H), 8.64 (d, J=5.3 Hz, 1H), 8.60 (s, 1H), 8.21 (s, 1H), 7.87 (dd, J=7.8, 1.6 Hz, 1H), 7.58 (t, J=2.1 Hz, 1H), 7.41 (t, J=8.1 Hz, 1H), 7.23 (dd, J=8.2, 1.2 Hz, 1H), 7.06 (dd, J=11.3, 8.4 Hz, 1H), 6.91 (dd, J=7.9, 1.8 Hz, 1H), 6.85 (d, J=5.3 Hz, 1H), 6.77 (td, J=5.2, 2.2 Hz, 1H), 3.91 (s, 3H), 2.21 (s, 3H)
LR MS (ES+): 452 (MH), 474 (M+Na+)
LR MS (ES−): 450 (M−H)
Compound F4 Methyl 7-[4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenyl]thieno[3,2-b]pyridine-2-carboxylate
Figure US09340555-20160517-C00105
To a mixture of methyl 7-bromothieno[3,2-b]pyridine-2-carboxylate (68 mg, 0.25 mmol) and 1-(2-fluoro-5-methylphenyl)-3-[4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]urea (102 mg, 0.28 mmol) in 8 ml of 1,4-dioxane, was added PdCl2(PPh3)2 (10 mg, 0.014 mmol) and 1M Na2CO3 aqueous solution (0.25 ml, 0.5 mmol). The mixture was heated at 70° C. under N2 for 1 hour, cooled to room temperature and poured into 100 ml of water. The brown precipitates were filtered, washed with water and dried to give the crude product, which was purified by silica gel chromatography, eluting with 2-3% MeOH/CHCl3 to give methyl 7-[4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenyl]thieno[3,2-b]pyridine-2-carboxylate as light yellow solid. Yield: 30 mg, 28%.
1H NMR (d6-DMSO) d: 9.38 (s, 1H), 8.84 (d, J=4.7 Hz, 1H), 8.58 (d, J=2.1 Hz, 1H), 8.28 (s, 1H), 7.60-8.06 (m, 6H), 7.06-7.19 (m, 1H), 6.82 (br. s., 1H), 3.93 (s, 3H), 2.28 (s, 3H)
LR MS (ES−): 434 (M−H)
Compound F5 7-[4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenyl]thieno[3,2-b]pyridine-2-carboxylic acid
Figure US09340555-20160517-C00106
To a stirred solution of methyl 7-[4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenyl]thieno[3,2-b]pyridine-2-carboxylate (20 mg, 0.046 mmol) in THF/MeOH (5 ml/5 ml) was added 1M NaOH (2.0 ml, 2.0 mmol). The mixture was heated at 70° C. for 30 minutes, cooled to room temperature and poured into 50 ml of water. 1M HCl was added until pH=4 and the resulting precipitates were filtered, washed with water and dried in vacuo to give 7-[4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenyl]thieno[3,2-b]pyridine-2-carboxylic acid.
Yield: 20 mg, 100%.
LR MS (ES−): 420 (M−H)
Preparation of 7-chlorothieno[3,2-b]pyridine
Figure US09340555-20160517-C00107
Thieno[3,2-b]pyridin-7-ol (20 g, 0.132 mol) was suspended in phosphorous oxy chloride (80.9 g, 0.528 mol) and stirred at 100 C for 2 hours. The solution was cooled to room temperature and was poured over ice. The aqueous solution was neutralized with sodium hydroxide and the resulting precipitate was collected by filtration and washed with water. The filter cake was taken up in dichloromethane and dried over magnesium sulfate. The solution was filtered and the filtrate was concentrated to dryness to give 7-chlorothieno[3,2-b]pyridine as a brown liquid which solidified to a beige solid under high vacuum. Yield: 20.4 g (91%); MS [M+H]+ 169.9; 1HNMR (CDCl3) δ: 8.7 (d, 1H), 7.8 (d, 1H), 7.6 (d, 1H), 7.3 (d, 1H) ppm.
Preparation of methyl 7-chlorothieno[3,2-b]pyridine-2-carboxylate
Figure US09340555-20160517-C00108
7-chlorothieno[3,2-b]pyridine (19.7 g, 0.116 mol) was taken up in THF (400 mL) and cooled to approximately −70 C. The n-butyllithium (1.6M, 80 mL, 0.128 mol) was added dropwise with stirring under an atmosphere of nitrogen. The solution was stirred at −70 C for 1 hour at which time neat methyl chloroformate was added via dropwise addition. The reaction mixture gradually warmed to room temperature and was stirred for over the weekend. The reaction mixture was treated with 25 mL of methanol and then concentrated to dryness leaving a maroon residue. The crude solid was taken up in dichloromethane and passed through a silica gel column eluting with 1:1 hexane/ethyl acetate. Fractions containing the product were combined and concentrated to give a red solid. Trituration with 9:1 hexane/diethyl ether afforded methyl 7-chlorothieno[3,2-b]pyridine-2-carboxylate as a pink solid after filtration. Yield: 14.5 g (55%); MS [M+H]+ 227.9; 1HNMR (CDCl3) δ: 8.7 (d, 1H), 8.3 (s, 1H), 7.4 (d, 1H) ppm.
Preparation of methyl 7-(4-amino-3-fluorophenoxy)thieno[3,2-b]pyridine-2-carboxylate
Figure US09340555-20160517-C00109
Methyl 7-chlorothieno[3,2-b]pyridine-2-carboxylate (5 g, 0.022 mol) and the 4-amino-3-fluorophenol (3.3 g, 0.026 mol) were added to a round bottom flask containing cesium carbonate (14.8 g, 0.045 mol), ethyl-2-cyclohexanone carboxylate (0.73 g, 0.004 mol), and copper (I) chloride (0.22 g, 0.002 mol). The mixture was diluted with DMSO (250 mL) and stirred at 70 C under an atmosphere of nitrogen for 2 hours. The dark reaction mixture was cooled to room temperature and poured into ethyl acetate (500 mL)/water (1 L) with vigorous stirring. The mixture was filtered through celite and the organic portion of the filtrate was separated and dried over magnesium sulfate. The solution was filtered and the filtrate was concentrated to give a purple viscous liquid. The crude product was taken up in dichloromethane and passed through a silica gel column eluting with 1:1 hexane/ethyl acetate. Fractions containing the product were combined and concentrated to afford methyl 7-(4-amino-3-fluorophenoxy)thieno[3,2-b]pyridine-2-carboxylate as red solid. Yield: 1.62 g (23%); MS [M+H]+ 319.1
Compound F9 methyl 7-(3-fluoro-4-(3-(2-fluoro-5-methylphenyl)ureido)phenoxy)thieno[3,2-b]pyridine-2-carboxylate
Figure US09340555-20160517-C00110
Methyl 7-(4-amino-3-fluorophenoxy)thieno[3,2-b]pyridine-2-carboxylate (1.62 g, 5.1 mmol) was taken up in 55 mL of ethyl acetate followed by the dropwise addition of 2-fluoro-5-methylphenyl isocyanate (0.85 g, 5.6 mmol) in 5 mL ethyl acetate. The solution afforded a lavender solid after stirring at room temperature for overnight. The solid was collected by filtration and washed with diethyl ether to give methyl 7-(3-fluoro-4-(3-(2-fluoro-5-methylphenyl)ureido)phenoxy)thieno[3,2-b]pyridine-2-carboxylate as an off white solid. Yield: 1.75 g (73%); MS [M+H]+ 470.1; 1HNMR (DMSO-d6) δ: 9.2 (s, 1H), 9.0 (s, 1H), 8.6 (d, 1H), 8.3 (t, 1H, 8.1 (s, 1H), 8.0 (d, 1H), 7.5 (d, 1H), 7.2 (m, 2H), 6.8 (m, 2H), 3.9 (s, 3H), 2.1 (s, 3H) ppm.
Compound F10 methyl 3-[({7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino) phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)amino]propanoate
Figure US09340555-20160517-C00111
1H NMR (DMSO-d6) δ: 9.10 (br. s., 1H), 9.03 (t, J=5.4 Hz, 1H), 8.96 (br. s., 1H), 8.56 (d, J=5.3 Hz, 1H), 8.26 (t, J=9.1 Hz, 1H), 8.21 (s, 1H), 7.98 (d, J=7.6 Hz, 1H), 7.40 (dd, J=11.6, 2.5 Hz, 1H), 7.06-7.16 (m, 2H), 6.74-6.84 (m, 2H), 3.60 (s, 3H), 3.48-3.55 (m, 2H), 2.62 (t, J=6.9 Hz, 2H), 2.25 (s, 3H)
LR MS (ES+): 563 (M+Na+)
LR MS (ES−): 539 (M−H)
Compound F11 methyl 3-[({7-[4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)amino]propanoate
Figure US09340555-20160517-C00112
A mixture of 7-[4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridine-2-carboxylic acid (120 mg, 0.27 mmol), HATU (122 mg, 0.32 mmol) and N,N-diisopropylethylamine (105 mg, 0.81 mmol) in anhydrous THF (10 ml) was stirred at room temperature for 10 minutes, followed by addition of (R)-3-pyrrolidinol (56 mg, 0.40 mmol). The mixture was heated and stirred at 60° C. for 30 minutes and poured into 100 ml of water. 2M HCl was added dropwise until pH=4. The precipitates were filtered, washed with water and dried in vacuo to give methyl 3-[({7-[4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)amino]propanoate as white solid. Yield: 128 mg, 90%.
1H NMR (DMSO-d6) δ: 9.18 (s, 1H), 9.01 (t, 1H), 8.54 (br. s., 1H), 8.47 (br. s., 1H), 8.20 (br. s., 1H), 7.95 (d, J=6.7 Hz, 1H), 7.55 (d, J=8.8 Hz, 2H), 7.22 (d, J=8.5 Hz, 2H), 7.08 (dd, J=11.0, 8.7 Hz, 1H), 6.78 (br. s., 1H), 6.69 (d, J=5.0 Hz, 1H), 3.60 (s, 3H), 3.46-3.55 (m, 2H), 2.62 (t, J=6.7 Hz, 2H), 2.25 (s, 3H)
LR MS (ES+): 545 (M+Na+)
LR MS (ES−): 521 (M−H)
Compound F6 3-[({7-[4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)amino]propanoic acid
Figure US09340555-20160517-C00113
To a stirred solution of methyl 3-[({7-[4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)amino]propanoate (98 mg, 0.19 mmol) in a mixture of solvents THF/MeOH (10 ml/10 ml) was added 2 ml of 1M NaOH (2 mmol) solution. The mixture was stirred at room temperature for 1 hour and poured into 100 ml of water. 2M HCl was added until pH=4. The resulting precipitates were filtered, washed with water, and dried in vacuo to give 3-[({7-[4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)amino]propanoic acid as off-white solid. Yield: 90 mg, 95%.
1H NMR (DMSO-d6) δ: 12.25 (br. s., 1H), 9.18 (s, 1H), 8.99 (t, J=5.1 Hz, 1H), 8.54 (d, J=5.6 Hz, 1H), 8.47 (br. s., 1H), 8.21 (s, 1H), 7.95 (d, J=6.5 Hz, 1H), 7.55 (d, J=8.8 Hz, 2H), 7.22 (d, J=8.8 Hz, 2H), 7.08 (dd, J=11.0, 8.4 Hz, 1H), 6.78 (br. s., 1H), 6.68 (d, J=5.3 Hz, 1H), 3.42-3.53 (m, 2H), 2.53 (t, J=6.9 Hz, 2H), 2.25 (s, 3H)
LR MS (ES−): 507 (M−H)
Compound F7 3-[({7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)amino]propanoic acid
Figure US09340555-20160517-C00114
1H NMR (DMSO-d6) δ: 12.26 (br. s., 1H), 9.09 (br. s., 1H), 9.00 (t, J=4.7 Hz, 1H), 8.96 (br. s., 1H), 8.56 (d, J=5.3 Hz, 1H), 8.25 (t, J=9.0 Hz, 1H), 8.22 (s, 1H), 7.98 (d, J=7.0 Hz, 1H), 7.35-7.44 (m, 1H), 7.05-7.16 (m, 2H), 6.71-6.85 (m, 2H), 3.42-3.54 (m, 2H), 2.53 (t, J=6.7 Hz, 2H), 2.25 (s, 3H)
LR MS (ES−): 525 (M−H)
Compound F8 7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridine-2-carboxylic acid
Figure US09340555-20160517-C00115
Methyl 7-(3-fluoro-4-(3-(2-fluoro-5-methylphenyl)ureido)phenoxy)thieno[3,2-b]pyridine-2-carboxylate (1.84 g, 3.92 mmol) was taken up in 100 mL THF followed by the dropwise addition of 1N sodium hydroxide (4.8 mL, 4.8 mmol). The solution was stirred at room temperature for 3 hours, at which time an additional 2.4 mL of 1N sodium hydroxide was added. The solution was stirred at room temperature for overnight and the resulting mixture was diluted with 75 mL of water and acidified using 1N HCl. The insoluble material was separated by filtration and the filter cake was suspended in ethyl acetate and stirred for several minutes before filtering. The filter cake was washed several times with ethyl acetate and dried under high vacuum to give 7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridine-2-carboxylic acid as an off white solid. Yield: 1.6 g (90%); MS [M+H]+ 456.1; 1HNMR (DMSO-d6) δ: 13.9 (bs, 1H), 9.2 (s, 1H), 9.0 (s, 1H), 8.6 (d, 1H), 8.3 (t, 1H), 8.1 (s, 1H), 8.0 (d, 1H), 7.5 (d, 1H), 7.2 (m, 2H), 6.8 (m, 2H), 2.1 (s, 3H) ppm.
Other compounds which may be made according to the teachings of the present application include:
Figure US09340555-20160517-C00116
Figure US09340555-20160517-C00117
Synthesis and Characterization of the additional compounds is listed below.
Example 12
Figure US09340555-20160517-C00118
7-[4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]-N-[3-(2H-tetrazol-5-yl)propyl]thieno[3,2-b]pyridine-2-carboxamide
To a stirred suspension of 7-[4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridine-2-carboxylic acid (Compound F1) (100 mg, 0.23 mmol) in 10 ml of anhydrous acetonitrile were added HATU (95 mg, 0.25 mmol) and N,N-diisopropylethylamine (89 mg, 0.69 mmol). The mixture was stirred at room temperature for 20 minutes, followed by addition of 3-(1H-tetrazol-5-yl)propan-1-amine hydrochloride (57 mg, 0.35 mmol). The mixture was stirred at room temperature for another 40 minutes and poured into 100 ml of water with vigorous stirring. 1M HCl was added dropwise until pH=5. The precipitates were filtered, washed with water and dried in vacuo to give the crude, which was purified by silica gel chromatography eluting with 8˜12% methanol in chloroform containing 0.5% of triethylamine to give 7-[4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]-N-[3-(2H-tetrazol-5-yl)propyl]thieno[3,2-b]pyridine-2-carboxamide as white solid. Yield: 50 mg, 40%.
1H NMR (DMSO-d6): 9.28 (s, 1H), 9.18 (t, J=5.6 Hz, 1H), 8.57 (d, J=5.6 Hz, 1H), 8.54 (d, J=2.6 Hz, 1H), 8.26 (s, 1H), 7.98 (dd, J=7.9, 2.3 Hz, 1H), 7.57-7.60 (m, 2H), 7.24-7.27 (m, 2H), 7.11 (dd, J=11.3, 8.4 Hz, 1H), 6.80-6.82 (m, 1H), 6.71 (d, J=5.6 Hz, 1H), 3.37-3.40 (m, 2H), 2.87-2.91 (m, 2H), 2.27 (s, 3H), 1.98 (quin, J=7.3 Hz, 2H)
LR MS (ES−): 545 (M−H)
The following Example 13 was prepared using the experiment procedure described in Example 12, but with the appropriate reagent, reaction conditions and reactant substitutions that will be readily realized by those of ordinary skill in this art without the exercise of undue experimentation.
Example 13
Figure US09340555-20160517-C00119
7-[4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]-N-[2-(2H-tetrazol-5-yl)ethyl]thieno[3,2-b]pyridine-2-carboxamide
1H NMR (DMSO-d6): 9.22 (s, 1H), 9.12 (t, J=5.9 Hz, 1H), 8.57 (d, J=5.6 Hz, 1H), 8.51 (d, J=2.9 Hz, 1H), 8.18 (s, 1H), 7.98 (dd, J=8.4, 1.9 Hz, 1H), 7.57-7.60 (m, 1H), 7.58 (d, J=9.1 Hz, 1H), 7.24-7.27 (m, 1H), 7.25 (d, J=9.1 Hz, 1H), 7.11 (dd, J=11.3, 8.4 Hz, 1H), 6.80-6.83 (m, 1H), 6.72 (d, J=5.6 Hz, 1H), 3.66-3.69 (m, 2H), 3.20 (t, J=7.0 Hz, 2H), 2.28 (s, 3H)
LR MS (ES−): 531 (M−H)
Example 14
Figure US09340555-20160517-C00120
ethyl (4-{3-[({7-[4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)amino]propyl}piperazin-1-yl)acetate
To a stirred solution of 7-[4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]-N-(3-oxopropyl)thieno[3,2-b]pyridine-2-carboxamide (180 mg, 0.36 mmol) and 1-(ethoxycarbonylmethyl)piperazine (124 mg, 0.72 mmol) in anhydrous DMF was added 2 drops of acetic acid. The solution was stirred at room temperature for 30 minutes, followed by addition of 1M NaCNBH3 solution in THF (0.72 ml, 0.72 mmol). Stirring was continued for another hour, and the mixture was poured into 100 ml of water. The precipitates were filtered to give the crude, which was purified by silica gel chromatography eluting with 8-12% of methanol in chloroform to give ethyl (4-{3-[{7-[4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)amino]propyl}piperazin-1-yl)acetate as light yellow solid. Yield: 70 mg, 30%.
1H NMR (DMSO-d6): 9.20 (s, 1H), 8.90 (t, J=5.7 Hz, 1H), 8.53 (d, J=5.3 Hz, 1H), 8.48 (dd, J=2.3, 0.6 Hz, 1H), 8.19 (s, 1H), 7.93-7.98 (m, 1H), 7.53-7.58 (m, 2H), 7.20-7.24 (m, 2H), 7.08 (dd, J=11.4, 8.5 Hz, 1H), 6.75-6.81 (m, 1H), 6.68 (d, J=5.6 Hz, 1H), 4.04 (q, J=7.0 Hz, 2H), 3.25-3.33 (m, 2H), 3.15 (s, 2H), 2.27-2.43 (m, 10H), 2.25 (s, 3H), 1.68 (quin, J=7.1 Hz, 2H), 1.15 (t, J=7.0 Hz, 3H)
LR MS (ES+): 671 (M+Na+)
LR MS (ES−): 647 (M−H)
The following Examples 15 through 17 were prepared using the experiment procedure described in Example 14, but with the appropriate reagent, reaction conditions and reactant substitutions that will be readily realized by those of ordinary skill in this art without the exercise of undue experimentation.
Example 15
Figure US09340555-20160517-C00121
7-[4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]-N-{3-[3-(hydroxymethyl)piperidin-1-yl]propyl}thieno[3,2-b]pyridine-2-carboxamide
LR MS (ES+): 592 (MH+)
Example 16
Figure US09340555-20160517-C00122
7-[4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]-N-{3-[2-(hydroxymethyl)morpholin-4-yl]propyl}thieno[3,2-b]pyridine-2-carboxamide
LR MS (ES+): 616 (M+Na+)
LR MS (ES−): 592 (M−H)
Example 17
Figure US09340555-20160517-C00123
methyl rel-(2R,4S)-1-{3-[({7-[4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)amino]propyl}-4-hydroxypyrrolidine-2-carboxylate
1H NMR (DMSO-d6): 9.22 (s, 1H), 8.92 (t, J=5.6 Hz, 1H), 8.56 (d, J=5.6 Hz, 1H), 8.50 (d, J=2.3 Hz, 1H), 8.20 (s, 1H), 7.98 (dd, J=7.6, 2.1 Hz, 1H), 7.57-7.60 (m, 2H), 7.24-7.27 (m, 2H), 7.11 (dd, J=11.3, 8.4 Hz, 1H), 6.80-6.83 (m, 1H), 6.71 (d, J=5.6 Hz, 1H), 4.89 (d, J=4.4 Hz, 1H), 4.20-4.26 (m, 1H), 3.61 (s, 3H), 3.40 (t, J=7.8 Hz, 1H), 3.32-3.36 (m, 2H), 3.25-3.28 (m, 1H), 2.70 (dt, J=12.0, 7.5 Hz, 1H), 2.49-2.52 (m, 1H), 2.28 (s, 3H), 2.26-2.29 (m, 1H), 1.96-2.01 (m, 1H), 1.89 (td, J=8.4, 4.0 Hz, 1H), 1.63-1.71 (m, 2H)
LR MS (ES+): 622 (MH+)
LR MS (ES−): 620 (M−H)
The following Example 18 was prepared using the experiment procedure described in Example 25, but with the appropriate reagent, reaction conditions and reactant substitutions that will be readily realized by those of ordinary skill in this art without the exercise of undue experimentation.
Example 18
Figure US09340555-20160517-C00124
methyl ({3-[({7-[4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)amino]propyl}amino)acetate
1H NMR (DMSO-d6): 9.22 (s, 1H), 8.95 (t, J=5.7 Hz, 1H), 8.56 (d, J=5.3 Hz, 1H), 8.51 (d, J=2.6 Hz, 1H), 8.22 (s, 1H), 7.98 (dd, J=7.8, 2.2 Hz, 1H), 7.57-7.60 (m, 2H), 7.24-7.27 (m, 2H), 7.11 (dd, J=11.3, 8.4 Hz, 1H), 6.80-6.83 (m, 1H), 6.72 (s, 1H), 3.63 (s, 3H), 3.38 (s, 2H), 3.32-3.36 (m, 2H), 2.61 (t, J=6.9 Hz, 2H), 2.28 (s, 3H), 1.69 (quin, J=7.0 Hz, 2H)
LR MS (ES−): 564 (M−H)
The following Example 19 was prepared using the experiment procedure described in Example 26, but with the appropriate reagent, reaction conditions and reactant substitutions that will be readily realized by those of ordinary skill in this art without the exercise of undue experimentation.
Example 19
Figure US09340555-20160517-C00125
dimethyl 2,2′-({3-[({7-[4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)amino]propyl}imino)diacetate
1H NMR (DMSO-d6): 9.21 (s, 1H), 8.88 (t, J=5.7 Hz, 1H), 8.57 (d, J=5.3 Hz, 1H), 8.50 (d, J=2.6 Hz, 1H), 8.21 (s, 1H), 7.98 (dd, J=7.9, 2.3 Hz, 1H), 7.57-7.60 (m, 2H), 7.24-7.27 (m, 2H), 7.11 (dd, J=11.3, 8.4 Hz, 1H), 6.80-6.83 (m, 1H), 6.71 (d, J=5.6 Hz, 1H), 3.60 (s, 6H), 3.54 (s, 4H), 3.32-3.35 (m, 2H), 2.72 (t, J=6.9 Hz, 2H), 2.28 (s, 3H), 1.67 (quin, J=6.9 Hz, 2H)
LR MS (ES+): 660 (M+Na+)
LR MS (ES−): 636 (M−H)
Example 20
Figure US09340555-20160517-C00126
N-(3-aminopropyl)-7-[4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridine-2-carboxamide
To a stirred suspension of tert-butyl {3-[({7-[4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)amino]propyl}carbamate (380 mg, 0.64 mmol) in 10 ml of methylene chloride was added 5 ml of trifluoroacetic acid. The mixture was stirred at room temperature for 30 minutes and evaporated to dryness under reduced pressure. The residue was re-dissolved in MeOH (5 ml) and poured into 100 ml of water with vigorous stirring. Saturated NaHCO3 solution was added until pH=8˜9. The precipitates were filtered, washed with water and dried in vacuo to give N-(3-aminopropyl)-7-[4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridine-2-carboxamide as yellow solid. Yield: 270 mg, 85%.
LR MS (ES+): 516 (M+Na+)
LR MS (ES−): 492 (M−H)
Example 21
Figure US09340555-20160517-C00127
tert-butyl {3-[({7-[4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)amino]propyl}carbamate
A mixture of 7-[4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridine-2-carboxylic acid (300 mg, 0.69 mmol), HATU (288 mg, 0.76 mmol) and N,N-diisopropylethylamine (196 mg, 1.52 mmol) in anhydrous acetonitrile (10 ml) was stirred at room temperature for 30 minutes, followed by addition of N-Boc-1,3-propanediamine (180 mg, 1.03 mmol). The mixture was stirred for another 30 minutes and poured into 100 ml of water with vigorous stirring. 2M HCl was added dropwise until pH=6. The precipitates were filtered, washed with water and dried in vacuo to give tert-butyl {3-[({7-[4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)amino]propyl}carbamate as brown solid. Yield: 380 mg, 93%.
1H NMR (DMSO-d6): 9.25 (s, 1H), 8.89 (t, J=5.7 Hz, 1H), 8.57 (d, J=5.3 Hz, 1H), 8.53 (d, J=2.6 Hz, 1H), 8.22 (s, 1H), 7.98 (dd, J=7.6, 2.1 Hz, 1H), 7.57-7.60 (m, 2H), 7.24-7.26 (m, 2H), 7.11 (dd, J=11.3, 8.4 Hz, 1H), 6.81 (ddd, J=10.9, 5.4, 2.8 Hz, 1H), 6.71 (d, J=5.6 Hz, 1H), 6.70-6.72 (m, 1H), 3.27-3.30 (m, 2H), 3.00 (q, J=6.7 Hz, 2H), 2.28 (s, 3H), 1.67 (quin, J=7.1 Hz, 2H), 1.38 (s, 9H)
LR MS (ES+): 616 (M+Na+)
LR MS (ES−): 592 (M−H)
Example 21A Preparation of N-(3,3-diethoxypropyl)-7-[4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridine-2-carboxamide
Figure US09340555-20160517-C00128
To a stirred suspension of 7-[4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridine-2-carboxylic acid (600 mg, 1.37 mmol) in 10 ml of anhydrous acetonitrile were added HATU (608 mg, 1.6 mmol) and N,N-diisopropylethylamine (388 mg, 3.0 mmol). The mixture was stirred at room temperature for 30 minutes, followed by addition of 1-amino-3,3-diethoxypropane (294 mg, 2.0 mmol). The mixture was stirred for another 10 minutes and poured into 100 ml of water with vigorous stirring. 1M HCl was added until pH=5. The precipitates were filtered, washed with water and dried in vacuo to give N-(3,3-diethoxypropyl)-7-[4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridine-2-carboxamide as yellow solid. Yield: 680 mg, 88%.
1H NMR (DMSO-d6) δ: 9.21 (s, 1H), 8.90 (t, J=5.7 Hz, 1H), 8.57 (d, J=5.6 Hz, 1H), 8.50 (d, J=2.6 Hz, 1H), 8.22 (s, 1H), 7.98 (dd, J=7.9, 2.1 Hz, 1H), 7.57-7.60 (m, 2H), 7.24-7.28 (m, 2H), 7.11 (dd, J=11.3, 8.4 Hz, 1H), 6.80-6.83 (m, 1H), 6.71 (d, J=5.3 Hz, 1H), 4.59 (t, J=5.6 Hz, 1H), 3.60 (dq, J=9.4, 7.0 Hz, 2H), 3.46 (dq, J=9.4, 7.0 Hz, 2H), 3.32-3.36 (m, 2H), 2.28 (s, 3H), 1.81-1.85 (m, 2H), 1.12 (t, J=7.0 Hz, 6H)
LR MS (ES+): 589 (M+Na+)
LR MS (ES−): 565 (M−H)
Example 22
Figure US09340555-20160517-C00129
7-[4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]-N-(3-oxopropyl)thieno[3,2-b]pyridine-2-carboxamide
To a stirred solution of N-(3,3-diethoxypropyl)-7-[4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridine-2-carboxamide (680 mg, 1.20 mmol) in 10 ml of THF was added 1 ml of 2M HCl. The mixture was stirred at room temperature for 3 hours, and poured into 100 ml of water with vigorous stirring. Saturated NaHCO3 solution was added until pH=9. The precipitates were filtered, washed with water and dried in vacuo to give 7-[4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]-N-(3-oxopropyl)thieno[3,2-b]pyridine-2-carboxamide as brown solid. Yield: 550 mg, 93%.
LR MS (ES+): 515 (M+Na+)
LR MS (ES−): 491 (M−H)
Example 23
Figure US09340555-20160517-C00130
ethyl 4-{2-[({7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)amino]ethyl}piperazine-1-carboxylate
1H NMR (DMSO-d6) d: 9.13 (d, J=2.6 Hz, 1H), 8.99 (d, J=2.6 Hz, 1H), 8.92 (t, J=5.9 Hz, 1H), 8.59 (d, J=5.6 Hz, 1H), 8.29 (t, J=9.1 Hz, 1H), 8.24 (s, 1H), 8.01 (dd, J=7.8, 2.2 Hz, 1H), 7.42 (dd, J=11.7, 2.6 Hz, 1H), 7.12-7.16 (m, 1H), 7.12 (dd, J=11.4, 8.5 Hz, 1H), 6.80-6.85 (m, 1H), 6.80 (d, J=5.6 Hz, 1H), 4.03 (q, J=7.0 Hz, 2H), 3.43 (q, J=6.5 Hz, 2H), 3.36 (t, J=5.0 Hz, 4H), 2.51-2.56 (m, 2H), 2.39-2.44 (m, 4H), 2.28 (s, 3H), 1.17 (t, J=7.0 Hz, 3H)
LR MS (ES+): 639 (MH+)
LR MS (ES−): 637 (M−H)
The following Example 24 was prepared using the experiment procedure described in Example 38, but with the appropriate reagent, reaction conditions and reactant substitutions that will be readily realized by those of ordinary skill in this art without the exercise of undue experimentation.
Example 24
Figure US09340555-20160517-C00131
ethyl 4-{3-[({7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)amino]propyl}piperazine-1-carboxylate
1H NMR (DMSO-d6) d: 9.13 (d, J=2.6 Hz, 1H), 8.99 (d, J=2.6 Hz, 1H), 8.94 (t, J=5.6 Hz, 1H), 8.59 (d, J=5.3 Hz, 1H), 8.29 (t, J=9.2 Hz, 1H), 8.24 (s, 1H), 8.01 (dd, J=7.9, 2.3 Hz, 1H), 7.42 (dd, J=11.7, 2.6 Hz, 1H), 7.09-7.16 (m, 2H), 6.79-6.85 (m, 1H), 6.80 (d, J=5.3 Hz, 1H), 4.02 (q, J=7.0 Hz, 2H), 3.32-3.38 (m, 6H), 2.31-2.40 (m, 6H), 2.28 (s, 3H), 1.73 (quin, J=6.9 Hz, 2H), 1.17 (t, J=7.2 Hz, 3H)
LR MS (ES+): 653 (MH+)
LR MS (ES−): 651 (M−H)
Example 25
Figure US09340555-20160517-C00132
methyl ({3-[({7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)amino]propyl}amino)acetate
To a stirred solution of N-(3-aminopropyl)-7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridine-2-carboxamide (125 mg, 0.24 mmol) and N,N-diisopropylethylamine (46 mg, 0.36 mmol) in 10 ml of anhydrous DMF was added methyl bromoacetate (36 mg, 0.24 mmol). The mixture was stirred at room temperature for 50 minutes and poured into 100 ml of water with vigorous stirring. The precipitates were filtered and dried in vacuo to give the crude, which was purified by silica gel chromatography eluting with 5˜8% of MeOH in CHCl3 to afford methyl ({3-[({7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)amino]propyl}amino)acetate as light beige solid. Yield: 54 mg, 38%.
1H NMR (DMSO-d6): 9.10 (d, J=1.8 Hz, 1H), 8.96 (d, J=2.6 Hz, 1H), 8.93 (t, J=5.6 Hz, 1H), 8.56 (d, J=5.6 Hz, 1H), 8.26 (t, J=9.1 Hz, 1H), 8.20 (s, 1H), 7.98 (dd, J=7.9, 2.1 Hz, 1H), 7.39 (dd, J=11.7, 2.9 Hz, 1H), 7.11 (dd, J=9.0, 2.5 Hz, 1H), 7.09 (dd, J=11.4, 8.2 Hz, 1H), 6.78-6.81 (m, 1H), 6.77 (d, J=5.3 Hz, 1H), 3.59 (s, 3H), 3.32 (s, 2H), 3.29-3.34 (m, 2H), 2.56 (t, J=6.7 Hz, 2H), 2.25 (s, 3H), 1.65 (quin, J=7.0 Hz, 2H)
LR MS (ES+): 584 (MH+)
LR MS (ES−): 582 (M−H)
Example 26
Figure US09340555-20160517-C00133
dimethyl 2,2′-({3-[({7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)amino]propyl}imino)diacetate
To a stirred solution of N-(3-aminopropyl)-7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridine-2-carboxamide (125 mg, 0.24 mmol) and N,N-diisopropylethylamine (77 mg, 0.60 mmol) in 10 ml of anhydrous DMF was added methyl bromoacetate (92 mg, 0.60 mmol). The mixture was heated at 60° C. for 1 hour and poured into 100 ml of water with vigorous stirring. The precipitates were filtered and dried in vacuo to give the crude, which was purified by silica gel chromatography eluting with 3˜4% of MeOH in CHCl3 to afford dimethyl 2,2′-({3-[({7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)amino]propyl}imino)diacetate as white solid. Yield: 140 mg, 88%.
1H NMR (DMSO-d6): 9.10 (d, J=2.1 Hz, 1H), 8.96 (d, J=2.1 Hz, 1H), 8.86 (t, J=5.6 Hz, 1H), 8.56 (d, J=5.3 Hz, 1H), 8.26 (t, J=9.1 Hz, 1H), 8.20 (s, 1H), 7.98 (dd, J=7.8, 2.5 Hz, 1H), 7.39 (dd, J=11.6, 2.8 Hz, 1H), 7.11 (dd, J=9.2, 2.8 Hz, 1H), 7.09 (dd, J=11.3, 8.4 Hz, 1H), 6.78-6.82 (m, 1H), 6.77 (d, J=5.6 Hz, 1H), 3.58 (s, 6H), 3.51 (s, 4H), 3.29-3.33 (m, 2H), 2.69 (t, J=6.9 Hz, 2H), 2.25 (s, 3H), 1.64 (quin, J=7.0 Hz, 2H)
LR MS (ES+): 677 (MNa+)
LR MS (ES−): 654 (M−H)
The following Example 27 was prepared using the experiment procedure described in Example 26, but with the appropriate reagent, reaction conditions and reactant substitutions that will be readily realized by those of ordinary skill in this art without the exercise of undue experimentation.
Example 27
Figure US09340555-20160517-C00134
dimethyl 2,2′-({2-[({7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)amino]ethyl}imino)diacetate
1H NMR (acetone) d: 8.59 (d, J=5.3 Hz, 1H), 8.56 (br. s., 1H), 8.46 (t, J=9.1 Hz, 1H), 8.42 (d, J=2.9 Hz, 1H), 8.40 (t, J=5.0 Hz, 1H), 8.15-8.18 (m, 1H), 8.15 (s, 1H), 7.25 (dd, J=11.6, 2.8 Hz, 1H), 7.13-7.17 (m, 1H), 7.02 (dd, J=11.3, 8.4 Hz, 1H), 6.81-6.86 (m, 1H), 6.78 (d, J=5.3 Hz, 1H), 3.69 (s, 6H), 3.68 (s, 4H), 3.42-3.48 (m, 2H), 3.00 (t, J=5.9 Hz, 2H), 2.32 (s, 3H)
LR MS (ES+): 642 (MH+)
LR MS (ES−): 640 (M−H)
The following Example 28 was prepared using the experiment procedure described in Example 30, but with the appropriate reagent, reaction conditions and reactant substitutions that will be readily realized by those of ordinary skill in this art without the exercise of undue experimentation.
Example 28
Figure US09340555-20160517-C00135
methyl 1-({7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)pyrrolidine-3-carboxylate
LR MS (ES+): 567 (MH+)
LR MS (ES−): 565 (M−H)
Example 29
Figure US09340555-20160517-C00136
ethyl (4-{[4-({7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)piperazin-1-yl]acetyl}piperazin-1-yl)acetate
The title compound was isolated as a side product in the preparation of ethyl [4-({7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)piperazin-1-yl]acetate.
LR MS (ES+): 736 (MH+)
LR MS (ES−): 734 (M−H)
Example 30
Figure US09340555-20160517-C00137
ethyl [4-({7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)piperazin-1-yl]acetate
A mixture of 7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridine-2-carboxylic acid (100 mg, 0.22 mmol), HATU (91 mg, 0.24 mmol) and N,N-diisopropylethylamine (62 mg, 0.48 mmol) in anhydrous tetrahydrofuran (10 ml) was heated at 60° C. for 10 minutes, followed by addition of ethyl piperazinoacetate (57 mg, 0.33 mmol). Heating was continued at 60° C. for 30 minutes and the mixture was poured into 100 ml of water. The precipitates were filtered, washed with water and dried in vacuo to give the crude, which was purified by silica gel chromatography eluting with 3˜5% methanol in chloroform to give ethyl [4-({7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)piperazin-1-yl]acetate as white solid. Yield: 73 mg, 54%.
1H NMR (DMSO-d6) d: 9.11 (br. s., 1H), 8.97 (br. s., 1H), 8.56 (d, J=5.6 Hz, 1H), 8.26 (t, J=9.1 Hz, 1H), 7.98 (d, J=8.5 Hz, 1H), 7.80 (s, 1H), 7.39 (dd, J=11.7, 2.3 Hz, 1H), 7.06-7.13 (m, 2H), 6.78-6.81 (m, 1H), 6.77 (d, J=5.3 Hz, 1H), 4.06 (q, J=7.0 Hz, 2H), 3.66 (br. s., 4H), 3.27 (s, 2H), 2.58 (br. s., 4H), 2.25 (s, 3H), 1.16 (t, J=7.2 Hz, 3H)
LR MS (ES+): 610 (MH+)
LR MS (ES−): 608 (M−H)
The following Example 31 was prepared using the experiment procedure described in Example 25, but with the appropriate reagent, reaction conditions and reactant substitutions that will be readily realized by those of ordinary skill in this art without the exercise of undue experimentation.
Example 31
Figure US09340555-20160517-C00138
methyl ({2-[({7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)amino]ethyl}amino)acetate
1H NMR (DMSO-d6): 9.10 (s, 1H), 8.96 (s, 1H), 8.89 (t, J=5.7 Hz, 1H), 8.56 (d, J=5.6 Hz, 1H), 8.25 (t, J=9.1 Hz, 1H), 8.22 (s, 1H), 7.98 (d, J=8.2 Hz, 1H), 7.39 (dd, J=11.7, 2.3 Hz, 1H), 7.10-7.13 (m, 1H), 7.09 (dd, J=11.3, 8.4 Hz, 1H), 6.78-6.82 (m, 1H), 6.77 (d, J=5.3 Hz, 1H), 3.59 (s, 3H), 3.36 (s, 2H), 3.31-3.35 (m, 2H), 2.70 (t, J=6.5 Hz, 2H), 2.25 (s, 3H)
LR MS (ES+): 570 (MH+)
Example 32
Figure US09340555-20160517-C00139
N-(2-aminoethyl)-7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridine-2-carboxamide
To a stirred suspension of tert-butyl {2-[({7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)amino]ethyl}carbamate (488 mg, 0.82 mmol) in 10 ml of dichloromethane was added 5 ml of trifluoroacetic acid. The mixture was stirred at room temperature for one hour and evaporated to dryness under reduced pressure. The residue was re-dissolved in MeOH (5 ml) and poured into 100 ml of water with vigorous stirring. Saturated NaHCO3 solution was added until pH=8˜9. The precipitates were filtered, washed with water and dried in vacuo to give N-(2-aminoethyl)-7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridine-2-carboxamide as brown solid. Yield: 400 mg, 99%.
LR MS (ES+): 498 (MH+)
LR MS (ES−): 496 (M−H)
Example 33
Figure US09340555-20160517-C00140
tert-butyl {2-[{7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)amino]ethyl}carbamate
A mixture of 7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridine-2-carboxylic acid (400 mg, 0.88 mmol), HATU (400 mg, 1.05 mmol) and N,N-diisopropylethylamine (250 mg, 1.94 mmol) in anhydrous THF (10 ml) was heated at 60° C. for 15 minutes, followed by addition of N-Boc-ethylenediamine (210 mg, 1.32 mmol). The mixture was stirred at 60° C. for another 5 minutes, cooled to room temperature and poured into 100 ml of water with vigorous stirring. 2M HCl was added dropwise until pH=5. The precipitates were filtered, washed with water and dried in vacuo to give tert-butyl {2-[{7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)amino]ethyl}carbamate as off-white solid. Yield: 518 mg, 99%.
1H NMR (DMSO-d6) δ: 9.12 (d, J=1.8 Hz, 1H), 8.99 (d, J=2.1 Hz, 1H), 8.95 (t, J=5.9 Hz, 1H), 8.59 (d, J=5.3 Hz, 1H), 8.28 (t, J=9.1 Hz, 1H), 8.22 (s, 1H), 8.01 (dd, J=7.8, 2.2 Hz, 1H), 7.42 (dd, J=11.7, 2.6 Hz, 1H), 7.10-7.15 (m, 2H), 6.95 (t, J=6.0 Hz, 1H), 6.81-6.84 (m, 1H), 6.80 (d, J=5.6 Hz, 1H), 3.31-3.34 (m, 2H), 3.14 (q, J=6.6 Hz, 2H), 2.28 (s, 3H), 1.37 (s, 9H)
LR MS (ES+): 598 (MH+)
LR MS (ES−): 596 (M−H)
Example 34
Figure US09340555-20160517-C00141
7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]-N-[3-(4-methylpiperazin-1-yl)propyl]thieno[3,2-b]pyridine-2-carboxamide
A mixture of 7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridine-2-carboxylic acid (100 mg, 0.22 mmol), HATU (90 mg, 0.24 mmol) and N,N-diisopropylethylamine (55 mg, 0.43 mmol) in anhydrous acetonitrile (10 ml) was stirred at room temperature for 30 minutes, followed by addition of 3-(4-methylpiperazin-1-yl)propan-1-amine (40 mg, 0.25 mmol). The mixture was stirred for another 10 minutes and poured into 100 ml of water. The precipitates were filtered, washed with water and dried in vacuo to give 7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]-N-[3-(4-methylpiperazin-1-yl)propyl]thieno[3,2-b]pyridine-2-carboxamide as brown solid. Yield: 110 mg, 84%.
1H NMR (acetone): 8.56-8.60 (m, 2H), 8.42-8.49 (m, 3H), 8.14-8.18 (m, 1H), 8.06 (s, 1H), 7.24 (dd, J=11.6, 2.8 Hz, 1H), 7.14 (dt, J=8.9, 2.0 Hz, 1H), 7.02 (dd, J=11.3, 8.4 Hz, 1H), 6.81-6.86 (m, 1H), 6.78 (d, J=5.3 Hz, 1H), 3.49 (q, J=6.5 Hz, 2H), 2.48 (t, J=6.5 Hz, 2H), 2.39 (br. s., 8H), 2.32 (s, 3H), 2.18 (s, 3H), 1.80 (quin, J=6.6 Hz, 2H)
LR MS (ES+): 595 (MH+)
LR MS (ES−): 593 (M−H)
Example 35
Figure US09340555-20160517-C00142
N-(2,2-diethoxyethyl)-7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridine-2-carboxamide
The following Examples 36 and 37 were prepared using the experiment procedure described in Example 38, but with the appropriate reagent, reaction conditions and reactant substitutions that will be readily realized by those of ordinary skill in this art without the exercise of undue experimentation.
Example 36
Figure US09340555-20160517-C00143
7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]-N-{3-[3-(hydroxymethyl)piperidin-1-yl]propyl}thieno[3,2-b]pyridine-2-carboxamide
LR MS (ES+): 610 (MH+)
LR MS (ES−): 608 (M−H)
Example 37
Figure US09340555-20160517-C00144
7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]-N-{3-[2-(hydroxymethyl)morpholin-4-yl]propyl}thieno[3,2-b]pyridine-2-carboxamide
LR MS (ES+): 612 (MH+)
LR MS (ES−): 610 (M−H)
Example 38
Figure US09340555-20160517-C00145
7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]-N-[3-(4-hydroxypiperidin-1-yl)propyl]thieno[3,2-b]pyridine-2-carboxamide
To a stirred solution of 7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]-N-(3-oxopropyl)thieno[3,2-b]pyridine-2-carboxamide (150 mg, 0.29 mmol) in 10 ml of anhydrous DMF were added 4-hydroxypiperidine (59 mg, 0.58 mmol) and acetic acid (10 mg, 0.17 mmol). The mixture was stirred at room temperature for 40 minutes, followed by addition of 1M sodium cyanoborohydride solution in THF (0.60 ml, 0.60 mmol) and stirring was continued for another 30 minutes. The mixture was poured into 100 ml of water. The precipitates were filtered, washed with water and dried to give the crude, which was purified by silica gel flash chromatography eluting with 10-20% of MeOH in CHCl3 to give 7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]-N-[3-(4-hydroxypiperidin-1-yl)propyl]thieno[3,2-b]pyridine-2-carboxamide as white solid. Yield: 70 mg, 40%.
1H NMR (DMSO-d6): 9.11 (s, 1H), 8.97 (s, 1H), 8.94 (br. s., 1H), 8.56 (d, J=5.3 Hz, 1H), 8.25 (t, J=9.1 Hz, 1H), 8.21 (s, 1H), 7.98 (d, J=7.6 Hz, 1H), 7.39 (dd, J=11.7, 2.6 Hz, 1H), 7.06-7.14 (m, 2H), 6.79 (td, J=5.3, 2.3 Hz, 1H), 6.77 (d, J=5.3 Hz, 1H), 4.56 (br. s., 1H), 3.44 (br. s., 1H), 3.36 (br. s., 2H), 2.76 (br. s., 2H), 2.28-2.45 (m, 2H), 2.25 (s, 3H), 2.05 (br. s., 2H), 1.71 (br. s., 4H), 1.39 (br. s., 2H)
LR MS (ES+): 596 (MH+)
LR MS (ES−): 594 (M−H)
The following Example 39 was prepared using the experiment procedure described in Example 42, but with the appropriate reagent, reaction conditions and reactant substitutions that will be readily realized by those of ordinary skill in this art without the exercise of undue experimentation.
Example 39
Figure US09340555-20160517-C00146
methyl (2S,4R)-1-{3-[({7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)amino]propyl}-4-hydroxypyrrolidine-2-carboxylate
1H NMR (acetone): 8.66 (t, J=6.2 Hz, 1H), 8.57 (d, J=5.3 Hz, 1H), 8.56 (d, J=2.1 Hz, 1H), 8.45 (t, J=9.1 Hz, 1H), 8.42 (d, J=2.3 Hz, 1H), 8.14-8.17 (m, 1H), 8.08 (s, 1H), 7.24 (dd, J=11.6, 2.8 Hz, 1H), 7.14 (dt, J=9.1, 1.6 Hz, 1H), 7.02 (dd, J=11.3, 8.4 Hz, 1H), 6.81-6.85 (m, 1H), 6.78 (d, J=5.3 Hz, 1H), 4.35-4.44 (m, 1H), 4.05 (d, J=4.1 Hz, 1H), 3.72 (s, 3H), 3.59-3.67 (m, 1H), 3.56 (t, J=8.2 Hz, 1H), 3.39-3.52 (m, 2H), 2.87-2.94 (m, 1H), 2.66 (dt, J=12.5, 4.7 Hz, 1H), 2.38 (dd, J=10.0, 4.1 Hz, 1H), 2.32 (s, 3H), 2.07-2.14 (m, 2H), 1.74-1.83 (m, 1H), 1.65-1.74 (m, 1H)
LR MS (ES+): 640 (MH+)
LR MS (ES−): 638 (M−H)
Example 40
Figure US09340555-20160517-C00147
N-(3,3-diethoxypropyl)-7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridine-2-carboxamide
To a stirred suspension of 7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridine-2-carboxylic acid (1.0 g, 2.2 mmol) in 20 ml of anhydrous tetrahydrofuran were added HATU (1.0 g, 2.6 mmol) and N,N-diisopropylethylamine (620 mg, 4.8 mmol). The mixture was heated at 60° C. for 20 minutes, followed by addition of 1-amino-3,3-diethoxypropane (388 mg, 2.6 mmol). The mixture was heated at 60° C. for another 30 minutes, cooled to room temperature and poured into 100 ml of water with vigorous stirring. The precipitates were filtered, washed with water and dried in vacuo to give N-(3,3-diethoxypropyl)-7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridine-2-carboxamide as off-white solid. Yield: 1.23 g, 95%.
1H NMR (DMSO-d6): 9.10 (d, J=2.6 Hz, 1H), 8.96 (d, J=2.6 Hz, 1H), 8.89 (t, J=5.6 Hz, 1H), 8.56 (d, J=5.3 Hz, 1H), 8.26 (t, J=9.1 Hz, 1H), 8.20 (s, 1H), 7.98 (dd, J=7.9, 2.3 Hz, 1H), 7.39 (dd, J=11.7, 2.6 Hz, 1H), 7.10-7.13 (m, 1H), 7.09 (dd, J=11.3, 8.4 Hz, 1H), 6.78-6.82 (m, 1H), 6.77 (d, J=5.6 Hz, 1H), 4.56 (t, J=5.6 Hz, 1H), 3.57 (dq, J=9.4, 7.0 Hz, 2H), 3.43 (dq, J=9.7, 7.0 Hz, 2H), 3.29-3.34 (m, 2H), 2.25 (s, 3H), 1.75-1.85 (m, 2H), 1.09 (t, J=7.0 Hz, 6H)
LR MS (ES+): 607 (MNa+)
LR MS (ES−): 583 (M−H)
Example 41
Figure US09340555-20160517-C00148
7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]-N-(2-oxoethyl)thieno[3,2-b]pyridine-2-carboxamide
To a stirred solution of N-(2,2-diethoxyethyl)-7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridine-2-carboxamide (300 mg, 0.53 mmol) in 10 ml of THF was added 2 ml of 2M HCl. The mixture was heated under nitrogen at 60° C. for 4 hours, cooled to room temperature, and poured into 100 ml of water with vigorous stirring. Saturated NaHCO3 solution was added until pH=7. The precipitates were filtered, washed with water and dried in vacuo to give 7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]-N-(2-oxoethyl)thieno[3,2-b]pyridine-2-carboxamide as white solid. Yield: 250 mg, 96%.
LR MS (ES+): 497 (MH+)
LR MS (ES−): 495 (M−H)
Example 42
Figure US09340555-20160517-C00149
methyl 1-{3-[({7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)amino]propyl}pyrrolidine-2-carboxylate
To a stirred solution of 7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]-N-(3-oxopropyl)thieno[3,2-b]pyridine-2-carboxamide (150 mg, 0.29 mmol) in 10 ml of anhydrous DMF was added L-proline methyl ester hydrochloride (96 mg, 0.58 mmol) and triethylamine (58 mg, 0.58 mmol). The mixture was stirred at room temperature under nitrogen for one hour, and 1M solution of sodium cyanoborohydride in THF (0.60 ml, 0.60 mmol) was added. The mixture was stirred for another hour, and poured into 100 ml of water. The precipitates were filtered, washed with water and dried in vacuo to give the crude product, which was purified by silica gel chromatography eluting with 2˜3% of methanol in chloroform to afford methyl 1-{3-[({7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)amino]propyl}pyrrolidine-2-carboxylate as white solid. Yield: 90 mg, 50%.
1H NMR (DMSO-d6): 9.10 (s, 1H), 8.96 (s, 1H), 8.92 (t, J=5.7 Hz, 1H), 8.56 (d, J=5.3 Hz, 1H), 8.26 (t, J=9.1 Hz, 1H), 8.18 (s, 1H), 7.95-8.01 (m, 1H), 7.39 (dd, J=11.7, 2.6 Hz, 1H), 7.06-7.13 (m, 2H), 6.78-6.82 (m, 1H), 6.77 (d, J=5.9 Hz, 1H), 3.58 (s, 3H), 3.29-3.34 (m, 2H), 3.15-3.21 (m, 1H), 2.97-3.05 (m, 1H), 2.67 (dt, J=11.9, 7.6 Hz, 1H), 2.40-2.45 (m, 1H), 2.29-2.38 (m, 1H), 2.25 (s, 3H), 2.02 (dq, J=12.0, 8.2 Hz, 1H), 1.76-1.81 (m, 1H), 1.70-1.76 (m, 2H), 1.60-1.70 (m, 2H)
LR MS (ES+): 624 (MH+)
LR MS (ES−): 622 (M−H)
The following Example 43 was prepared using the experiment procedure described in Example 34, but with the appropriate reagent, reaction conditions and reactant substitutions that will be readily realized by those of ordinary skill in this art without the exercise of undue experimentation.
Example 43
Figure US09340555-20160517-C00150
7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]-N-(3-pyrrolidin-1-ylpropyl)thieno[3,2-b]pyridine-2-carboxamide
1H NMR (DMSO-d6): 9.10 (dd, J=2.1, 0.6 Hz, 1H), 8.93-8.98 (m, 2H), 8.56 (d, J=5.3 Hz, 1H), 8.26 (t, J=9.1 Hz, 1H), 8.19 (s, 1H), 7.98 (dd, J=7.9, 2.3 Hz, 1H), 7.39 (dd, J=11.6, 2.8 Hz, 1H), 7.10-7.13 (m, 1H), 7.09 (dd, J=11.3, 8.4 Hz, 1H), 6.78-6.82 (m, 1H), 6.77 (d, J=5.3 Hz, 1H), 3.29-3.34 (m, 2H), 2.37-2.45 (m, 6H), 2.25 (s, 3H), 1.70 (quin, J=7.0 Hz, 2H), 1.63-1.67 (m, 4H)
LR MS (ES+): 566 (MH+)
LR MS (ES−): 564 (M−H)
Example 44
Figure US09340555-20160517-C00151
tert-butyl {3-[({7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)amino]propyl}carbamate
A mixture of 7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridine-2-carboxylic acid (300 mg, 0.66 mmol), HATU (277 mg, 0.73 mmol) and N,N-diisopropylethylamine (187 mg, 1.45 mmol) in anhydrous acetonitrile (10 ml) was stirred at room temperature for 30 minutes, followed by addition of N-Boc-1,3-propanediamine (172 mg, 0.99 mmol). The mixture was stirred for another 10 minutes and poured into 100 ml of water with vigorous stirring. 2M HCl was added dropwise until pH=5. The precipitates were filtered, washed with water and dried in vacuo to give tert-butyl {3-[({7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)amino]propyl}carbamate as light yellow solid. Yield: 345 mg, 85%.
1H NMR (DMSO-d6): 9.10 (d, J=2.6 Hz, 1H), 8.96 (d, J=2.6 Hz, 1H), 8.87 (t, J=5.7 Hz, 1H), 8.56 (d, J=5.3 Hz, 1H), 8.26 (t, J=9.1 Hz, 1H), 8.21 (s, 1H), 7.98 (dd, J=7.9, 2.1 Hz, 1H), 7.39 (dd, J=11.7, 2.9 Hz, 1H), 7.11 (ddd, J=9.0, 2.9, 1.0 Hz, 1H), 7.09 (dd, J=11.3, 8.4 Hz, 1H), 6.78-6.83 (m, 2H), 6.77 (d, J=5.3 Hz, 1H), 3.24-3.28 (m, 2H), 2.97 (q, J=6.7 Hz, 2H), 2.25 (s, 3H), 1.64 (quin, J=7.0 Hz, 2H), 1.35 (s, 9H)
LR MS (ES+): 634 (MNa+)
LR MS (ES−): 610 (M−H)
Example 45
Figure US09340555-20160517-C00152
N-(3-aminopropyl)-7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridine-2-carboxamide
To a stirred suspension of tert-butyl {3-[({7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)amino]propyl}carbamate (300 mg, 0.49 mmol) in 10 ml of methylene chloride was added 3 ml of trifluoroacetic acid. The mixture was stirred at room temperature for 10 minutes and evaporated to dryness under reduced pressure. The residue was re-dissolved in MeOH (5 ml) and poured into 100 ml of water with vigorous stirring. Saturated NaHCO3 solution was added until pH=8˜9. The precipitates were filtered, washed with water and dried in vacuo to give N-(3-aminopropyl)-7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridine-2-carboxamide as yellow solid. Yield: 250 mg, 100%.
LR MS (ES+): 512 (MNa+)
LR MS (ES−): 510 (M−H)
Example 46
Figure US09340555-20160517-C00153
(4S)-5-(ethylamino)-4-[({7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)amino]-5-oxopentanoic acid
To a stirred suspension of tert-butyl (4S)-5-(ethylamino)-4-[({7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)amino]-5-oxopentanoate (70 mg, 0.10 mmol) in 5 ml of methylene chloride was added 2 ml of trifluoroacetic acid. The mixture was stirred at room temperature for 2 hours and evaporated to dryness under reduced pressure. The residue was re-dissolved in MeOH (5 ml) and poured into 100 ml of water with vigorous stirring. The precipitates were filtered, washed with water and dried in vacuo to give (4S)-5-(ethylamino)-4-[({7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)amino]-5-oxopentanoic acid as light yellow solid. Yield: 53 mg, 83%.
1H NMR (DMSO-d6): 12.12 (br. s., 1H), 9.10 (d, J=2.3 Hz, 1H), 8.94-8.98 (m, 2H), 8.59 (d, J=5.6 Hz, 1H), 8.42 (s, 1H), 8.26 (t, J=9.1 Hz, 1H), 8.04 (t, J=5.6 Hz, 1H), 7.98 (dd, J=7.8, 1.9 Hz, 1H), 7.40 (dd, J=11.7, 2.6 Hz, 1H), 7.07-7.13 (m, 2H), 6.79-6.81 (m, 1H), 6.77-6.81 (m, 1H), 4.34-4.42 (m, 1H), 3.02-3.13 (m, 2H), 2.29 (td, J=9.4, 6.2 Hz, 2H), 2.25 (s, 3H), 1.97-2.09 (m, 1H), 1.84-1.95 (m, 1H), 1.00 (t, J=7.2 Hz, 3H)
LR MS (ES−): 610 (M−H)
Example 47
Figure US09340555-20160517-C00154
tert-butyl (4S)-5-(ethylamino)-4-[({7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)amino]-5-oxopentanoate
To a stirred suspension of (2S)-5-tert-butoxy-2-[({7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)amino]-5-oxopentanoic acid (100 mg, 0.16 mmol) in 10 ml of anhydrous tetrahydrofuran were added HATU (73 mg, 0.19 mmol) and N,N-diisopropylethylamine (62 mg, 0.48 mmol). The mixture was heated at 60° C. for 10 minutes, followed by addition of 2M ethylamine solution in THF (0.25 ml, 0.50 mmol). The mixture was heated at 60° C. for another 5 minutes, cooled to room temperature and poured into 100 ml of water with vigorous stirring. 1M HCl was added dropwise until pH=4. The precipitates were filtered, washed with water and dried in vacuo to give the crude, which was purified by silica gel chromatography eluting with 3˜5% methanol in chloroform to give tert-butyl (4S)-5-(ethylamino)-4-[({7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)amino]-5-oxopentanoate as white solid. Yield: 73 mg, 70%.
1H NMR (DMSO-d6): 9.10 (d, J=2.3 Hz, 1H), 8.96 (d, J=2.3 Hz, 1H), 8.93 (d, J=7.9 Hz, 1H), 8.58 (d, J=5.6 Hz, 1H), 8.42 (s, 1H), 8.26 (t, J=9.1 Hz, 1H), 8.02 (t, J=5.6 Hz, 1H), 7.98 (dd, J=7.8, 1.9 Hz, 1H), 7.39 (dd, J=11.7, 2.6 Hz, 1H), 7.11 (ddd, J=9.0, 2.7, 1.2 Hz, 1H), 7.09 (dd, 1H), 6.79 (d, J=5.6 Hz, 1H), 6.78-6.81 (m, 1H), 4.32-4.43 (m, 1H), 3.02-3.14 (m, 2H), 2.26-2.30 (m, 2H), 2.25 (s, 3H), 1.97-2.05 (m, 1H), 1.83-1.92 (m, 1H), 1.36 (s, 9H), 1.00 (t, J=7.2 Hz, 3H)
LR MS (ES+): 690 (MNa+)
LR MS (ES−): 666 (M−H)
Example 48
Figure US09340555-20160517-C00155
(2S)-5-tert-butoxy-2-[({7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)amino]-5-oxopentanoic acid
To a stirred solution of 5-tert-butyl 1-methyl (2S)-2-[({7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)amino]pentanedioate (260 mg, 0.40 mmol) in a mixture of THF/MeOH (10 ml/10 ml) was added 1M NaOH solution (2 ml, 2 mmol). The mixture was stirred at room temperature for 1 hour and poured into 100 ml of water. 1M HCl was added with stirring until pH=4. The precipitates were filtered, washed with water and dried in vacuo to give (2S)-5-tert-butoxy-2-[({7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)amino]-5-oxopentanoic acid as off-white solid. Yield: 230 mg, 91%.
1H NMR (DMSO-d6): 12.81 (br. s., 1H), 9.11 (d, J=2.3 Hz, 1H), 9.07 (d, J=7.9 Hz, 1H), 8.97 (d, J=2.3 Hz, 1H), 8.58 (d, J=5.3 Hz, 1H), 8.38 (s, 1H), 8.26 (t, J=9.1 Hz, 1H), 7.98 (dd, J=7.9, 2.1 Hz, 1H), 7.40 (dd, J=11.6, 2.8 Hz, 1H), 7.11-7.13 (m, 1H), 7.09 (dd, J=11.3, 8.4 Hz, 1H), 6.79 (d, J=5.3 Hz, 1H), 6.78-6.82 (m, 1H), 4.40 (ddd, J=9.8, 7.7, 4.8 Hz, 1H), 2.33-2.37 (m, 2H), 2.25 (s, 3H), 2.04-2.13 (m, 1H), 1.89-2.00 (m, 1H), 1.36 (s, 9H)
LR MS (ES−): 639 (M−H)
The following Example 49 was prepared using the experiment procedure described in Example 54, but with the appropriate reagent, reaction conditions and reactant substitutions that will be readily realized by those of ordinary skill in this art without the exercise of undue experimentation.
Example 49
Figure US09340555-20160517-C00156
5-tert-butyl 1-methyl (2S)-2-[({7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)amino]pentanedioate
1H NMR (DMSO-d6): 9.18 (d, J=7.6 Hz, 1H), 9.10 (d, J=2.3 Hz, 1H), 8.96 (d, J=2.3 Hz, 1H), 8.59 (d, J=5.6 Hz, 1H), 8.38 (s, 1H), 8.26 (t, J=9.1 Hz, 1H), 7.98 (dd, J=7.9, 1.8 Hz, 1H), 7.40 (dd, J=11.6, 2.8 Hz, 1H), 7.10-7.13 (m, 1H), 7.09 (dd, J=11.2, 8.2 Hz, 1H), 6.80 (d, J=5.6 Hz, 1H), 6.78-6.81 (m, 1H), 4.48 (ddd, J=9.4, 7.3, 5.3 Hz, 1H), 3.65 (s, 3H), 2.36 (t, J=7.5 Hz, 2H), 2.25 (s, 3H), 2.03-2.12 (m, 1H), 1.92-2.01 (m, 1H), 1.37 (s, 9H)
LR MS (ES+): 677 (MNa+)
LR MS (ES−): 653 (M−H)
Example 50
Figure US09340555-20160517-C00157
1-{3-[({7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)amino]propyl}pyrrolidine-3-carboxylic acid
To a stirred solution of tert-butyl 1-{3-[({7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)amino]propyl}pyrrolidine-3-carboxylate (40 mg, 0.060 mmol) in 5 ml of methylene chloride was added 2 ml of trifluoroacetic acid. The mixture was stirred at room temperature for 2 hours, and evaporated to dryness under reduced pressure. 5 ml of water was added to the residue, and the mixture was neutralized to pH=7 with saturated NaHCO3 solution with vigorous stirring. The precipitates were filtered, washed with 5 ml of water, and dried in vacuo to give 1-{3-[({7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)amino]propyl}pyrrolidine-3-carboxylic acid as light brown solid. Yield: 37 mg, 100%.
LR MS (ES+): 610 (MH+)
LR MS (ES−): 608 (M−H)
The following Example 51 was prepared using the experiment procedure described in Example 42, but with the appropriate reagent, reaction conditions and reactant substitutions that will be readily realized by those of ordinary skill in this art without the exercise of undue experimentation.
Example 51
Figure US09340555-20160517-C00158
tert-butyl 1-{3-[({7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)amino]propyl}pyrrolidine-3-carboxylate
LR MS (ES+): 688 (MNa+)
LR MS (ES−): 664 (M−H)
Example 52
Figure US09340555-20160517-C00159
7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]-N-(3-oxopropyl)thieno[3,2-b]pyridine-2-carboxamide
To a stirred solution of N-(3,3-diethoxypropyl)-7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridine-2-carboxamide (1.23 g, 2.11 mmol) in 20 ml of tetrahydrofuran was added 2 ml of 2M HCl (4.0 mmol). The mixture was stirred at room temperature for 5 hours and poured into 100 ml of water. 1M NaOH solution was added slowly until pH=7˜8. The precipitates were filtered, washed with water and dried in vacuo to give 7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]-N-(3-oxopropyl)thieno[3,2-b]pyridine-2-carboxamide as brown solid. Yield: 1.07 g, 100%.
1H NMR (DMSO-d6): 9.69 (t, J=1.6 Hz, 1H), 9.10 (d, J=2.3 Hz, 1H), 9.00-9.04 (m, 1H), 8.97 (d, J=2.6 Hz, 1H), 8.56 (d, J=5.3 Hz, 1H), 8.26 (t, J=9.1 Hz, 1H), 8.20 (s, 1H), 7.98 (dd, J=7.9, 2.3 Hz, 1H), 7.39 (dd, J=11.6, 2.8 Hz, 1H), 7.07-7.13 (m, 2H), 6.78-6.81 (m, 1H), 6.77 (d, J=5.6 Hz, 1H), 3.52-3.60 (m, 2H), 2.73 (td, J=6.7, 1.6 Hz, 2H), 2.25 (s, 3H).
LR MS (ES+): 533 (MNa+)
LR MS (ES−): 509 (M−H)
Example 53
Figure US09340555-20160517-C00160
7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]-N-(3-hydroxypropyl)thieno[3,2-b]pyridine-2-carboxamide
To a stirred suspension of 7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridine-2-carboxylic acid (1.00 g, 2.20 mmol) in 20 ml of anhydrous THF were added HATU (1.04 g, 2.74 mmol) and N,N-diisopropylethylamine (636 mg, 4.93 mmol). The mixture was heated at 60° C. for 15 minutes, followed by addition of 3-aminopropanol (248 mg, 3.3 mmol). The mixture was stirred for another 10 minutes, cooled to room temperature and poured into 100 ml of water with vigorous stirring. 2M HCl was added dropwise until pH=4. The precipitates were filtered, washed with water and dried in vacuo to give 7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]-N-(3-hydroxypropyl)thieno[3,2-b]pyridine-2-carboxamide as white solid. Yield: 1.12 g, 100%.
1H NMR (DMSO-d6): 9.10 (s, 1H), 8.96 (d, J=1.8 Hz, 1H), 8.91 (t, J=5.4 Hz, 1H), 8.57 (d, J=5.6 Hz, 1H), 8.26 (t, J=9.0 Hz, 1H), 8.22 (s, 1H), 7.98 (dd, J=7.9, 2.3 Hz, 1H), 7.40 (dd, J=11.4, 2.6 Hz, 1H), 7.06-7.14 (m, 2H), 6.79-6.82 (m, 1H), 6.78 (d, J=5.6 Hz, 1H), 3.46 (t, J=6.2 Hz, 2H), 3.33 (q, J=6.6 Hz, 2H), 2.25 (s, 3H), 1.69 (quin, J=6.7 Hz, 2H)
LR MS (ES+): 535 (MNa+)
LR MS (ES−): 511 (M−H)
Example 54
Figure US09340555-20160517-C00161
dimethyl (2S)-2-[({7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)amino]pentanedioate
To a stirred suspension of 7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridine-2-carboxylic acid (100 mg, 0.22 mmol) in 10 ml of anhydrous tetrahydrofuran were added HATU (100 mg, 0.26 mmol) and N,N-diisopropylethylamine (85 mg, 0.66 mmol). The mixture was heated at 60° C. for 10 minutes, followed by addition of L-glutamic acid dimethyl ester hydrochloride (55 mg, 0.26 mmol). The mixture was heated at 60° C. for another 20 minutes, cooled to room temperature and poured into 100 ml of water with vigorous stirring. 1M HCl was added dropwise until pH=4. The precipitates were filtered, washed with water and dried in vacuo to give dimethyl (2S)-2-[({7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)amino]pentanedioate as white solid. Yield: 126 mg, 94%.
1H NMR (DMSO-d6): 9.21 (d, J=7.3 Hz, 1H), 9.10 (d, J=2.1 Hz, 1H), 8.96 (d, J=2.3 Hz, 1H), 8.59 (d, J=5.3 Hz, 1H), 8.37 (s, 1H), 8.26 (t, J=9.1 Hz, 1H), 7.98 (dd, J=7.8, 1.9 Hz, 1H), 7.40 (dd, J=11.6, 2.8 Hz, 1H), 7.06-7.15 (m, 2H), 6.77-6.82 (m, 2H), 4.48 (ddd, J=9.4, 7.3, 5.3 Hz, 1H), 3.65 (s, 3H), 3.57 (s, 3H), 2.45-2.49 (m, 2H), 2.25 (s, 3H), 2.09-2.18 (m, 1H), 1.97-2.07 (m, 1H)
LR MS (ES+): 635 (MNa+)
LR MS (ES−): 611 (M−H)
The following Example 55 was prepared using the experiment procedure described in Example 34, but with the appropriate reagent, reaction conditions and reactant substitutions that will be readily realized by those of ordinary skill in this art without the exercise of undue experimentation.
Example 55
Figure US09340555-20160517-C00162
7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]-N-(3-morpholin-4-ylpropyl)thieno[3,2-b]pyridine-2-carboxamide
1H NMR (DMSO-d6): 9.12 (d, J=1.8 Hz, 1H), 8.98 (d, J=2.3 Hz, 1H), 8.93 (t, J=5.7 Hz, 1H), 8.56 (d, J=5.3 Hz, 1H), 8.25 (t, J=9.1 Hz, 1H), 8.22 (s, 1H), 7.98 (dd, J=7.9, 2.1 Hz, 1H), 7.39 (dd, J=11.7, 2.6 Hz, 1H), 7.06-7.13 (m, 2H), 6.78-6.82 (m, 1H), 6.77 (d, J=5.3 Hz, 1H), 3.54 (t, J=4.5 Hz, 4H), 3.31 (q, J=6.75 Hz, 2H), 2.29-2.37 (m, 6H), 2.25 (s, 3H), 1.69 (quin, J=7.0 Hz, 2H)
LR MS (ES+): 582 (MH+)
LR MS (ES−): 580 (M−H)
Example 56
Figure US09340555-20160517-C00163
ethyl 4-[({7-[4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)amino]butanoate
To a stirred suspension of 7-[4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridine-2-carboxylic acid (120 mg, 0.27 mmol) in 10 ml of anhydrous THF were added HATU (122 mg, 0.32 mmol) and N,N-diisopropylethylamine (104 mg, 0.81 mmol). The mixture was heated at 60° C. for 5 minutes, followed by addition of ethyl 4-aminobutyrate hydrochloride (67 mg, 0.40 mmol). The mixture was stirred for another 10 minutes, cooled to room temperature and poured into 100 ml of water with vigorous stirring. 1M HCl was added dropwise until pH=5. The precipitates were filtered, washed with water and dried in vacuo to give ethyl 4-[({7-[4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)amino]butanoate as white solid. Yield: 150 mg, 99%.
1H NMR (DMSO-d6): 9.19 (s, 1H), 8.92 (t, J=5.7 Hz, 1H), 8.54 (d, J=5.3 Hz, 1H), 8.47 (d, J=2.6 Hz, 1H), 8.21 (s, 1H), 7.94-7.98 (m, 1H), 7.53-7.58 (m, 2H), 7.20-7.25 (m, 2H), 7.08 (dd, J=11.3, 8.4 Hz, 1H), 6.76-6.81 (m, 1H), 6.69 (d, J=5.6 Hz, 1H), 4.03 (q, J=7.0 Hz, 2H), 3.28-3.32 (m, 2H), 2.36 (t, J=7.5 Hz, 2H), 2.25 (s, 3H), 1.79 (quin, J=7.2 Hz, 2H), 1.15 (t, J=7.2 Hz, 3H)
LR MS (ES+): 573 (MNa+)
LR MS (ES−): 549 (M−H)
Example 57
Figure US09340555-20160517-C00164
ethyl 4-[({7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)amino]butanoate
To a stirred suspension of 7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridine-2-carboxylic acid (120 mg, 0.26 mmol) in 10 ml of anhydrous THF were added HATU (118 mg, 0.31 mmol) and N,N-diisopropylethylamine (100 mg, 0.78 mmol). The mixture was heated at 60° C. for 5 minutes, followed by addition of ethyl 4-aminobutyrate hydrochloride (67 mg, 0.40 mmol). The mixture was stirred for another 10 minutes, cooled to room temperature and poured into 100 ml of water with vigorous stirring. 1M HCl was added dropwise until pH=5. The precipitates were filtered, washed with water and dried in vacuo to give ethyl 4-[({7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)amino]butanoate as white solid. Yield: 150 mg, 100%.
1H NMR (DMSO-d6): 9.10 (d, 1H), 8.96 (d, J=2.6 Hz, 1H), 8.93 (t, J=5.7 Hz, 1H), 8.56 (d, J=5.3 Hz, 1H), 8.26 (t, J=9.1 Hz, 1H), 8.22 (s, 1H), 7.98 (dd, J=8.2, 2.1 Hz, 1H), 7.39 (dd, J=11.7, 2.9 Hz, 1H), 7.10-7.13 (m, 1H), 7.09 (dd, J=11.2, 8.2 Hz, 1H), 6.78-6.81 (m, 1H), 6.78 (d, J=5.6 Hz, 1H), 4.03 (q, J=7.2 Hz, 2H), 3.27-3.32 (m, 2H), 2.36 (t, J=7.3 Hz, 2H), 2.25 (s, 3H), 1.79 (quin, J=7.2 Hz, 2H), 1.15 (t, J=7.2 Hz, 3H)
LR MS (ES+): 591 (MNa+)
LR MS (ES−): 567 (M−H)
Example 58
Figure US09340555-20160517-C00165
N-[dimethyl(oxido)-lambda˜4˜-sulfanylidene]-7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridine-2-carboxamide Example 59
Figure US09340555-20160517-C00166
4-[N-({7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)-S-methylsulfonimidoyl]butanoic acid Example 60
Figure US09340555-20160517-C00167
4-[N-({7-[4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)-S-methylsulfonimidoyl]butanoic acid Example 61
Figure US09340555-20160517-C00168
N-[dimethyl(oxido)-lambda˜4˜-sulfanylidene]-7-[4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridine-2-carboxamide Example 62
Figure US09340555-20160517-C00169
[({7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)amino]acetic acid Example 63
Figure US09340555-20160517-C00170
[({7-[4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)amino]acetic acid Example 64
Figure US09340555-20160517-C00171
4-[({7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)amino]butanoic acid
To a stirred solution of ethyl 4-[({7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)amino]butanoate (110 mg, 0.19 mmol) in 10 ml of THF was added 1M NaOH (2.0 ml, 2.0 mmol). The mixture was heated at 60° C. for 2 hours, cooled to room temperature and poured into 100 ml of water with vigorous stirring. 2M HCl was added dropwise until pH=4. The precipitates were filtered, washed with water and dried in vacuo to give 4-[({7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)amino]butanoic acid as white solid. Yield: 95 mg, 90%.
1H NMR (DMSO-d6): 12.07 (br. s., 1H), 9.11 (d, J=2.3 Hz, 1H), 8.97 (d, J=2.3 Hz, 1H), 8.94 (t, J=5.6 Hz, 1H), 8.57 (d, J=5.3 Hz, 1H), 8.26 (t, J=9.1 Hz, 1H), 8.23 (s, 1H), 7.98 (dd, J=7.9, 2.3 Hz, 1H), 7.40 (dd, J=11.6, 2.8 Hz, 1H), 7.11-7.13 (m, 1H), 7.09 (dd, J=11.3, 8.4 Hz, 1H), 6.79-6.81 (m, 1H), 6.78 (d, J=5.3 Hz, 1H), 3.26-3.33 (m, 2H), 2.29 (t, J=7.3 Hz, 2H), 2.25 (s, 3H), 1.77 (quin, J=7.1 Hz, 2H)
LR MS (ES+): 541 (MH+)
LR MS (ES−): 539 (M−H)
Example 65
Figure US09340555-20160517-C00172
4-[({7-[4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)amino]butanoic acid
To a stirred solution of ethyl 4-[({7-[4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)amino]butanoate (110 mg, 0.20 mmol) in 10 ml of THF was added 1M NaOH (2.0 ml, 2.0 mmol). The mixture was heated at 60° C. for 3 hours, cooled to room temperature and poured into 100 ml of water with vigorous stirring. 2M HCl was added dropwise until pH=4. The precipitates were filtered, washed with water and dried in vacuo to give 4-[({7-[4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)amino]butanoic acid as white solid. Yield: 100 mg, 96%.
1H NMR (DMSO-d6): 12.06 (s, 1H), 9.19 (s, 1H), 8.91 (t, J=5.7 Hz, 1H), 8.54 (d, J=5.3 Hz, 1H), 8.47 (d, J=2.9 Hz, 1H), 8.21 (s, 1H), 7.96 (dd, J=7.9, 2.3 Hz, 1H), 7.54-7.58 (m, 2H), 7.20-7.24 (m, 2H), 7.08 (dd, J=11.3, 8.4 Hz, 1H), 6.76-6.81 (m, 1H), 6.68 (d, J=5.3 Hz, 1H), 3.27-3.31 (m, 2H), 2.29 (t, J=7.3 Hz, 2H), 2.25 (s, 3H), 1.76 (quin, J=7.2 Hz, 2H)
LR MS (ES+): 545 (MNa+)
LR MS (ES−): 521 (M−H)
Example 66
Figure US09340555-20160517-C00173
7-[4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]-N-(3-piperidin-1-ylpropyl)thieno[3,2-b]pyridine-2-carboxamide
To a stirred, cooled (0° C.) solution of 7-[4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridine-2-carboxylic acid (120 mg, 0.27 mmol) in anhydrous DMF (10 ml) were added PyBOP (156 mg, 0.30 mmol) and N,N-diisopropylethylamine (70 mg, 0.54 mmol). The mixture was stirred at 0° C. for 5 minutes, followed by addition of N-(3-aminopropyl)piperidine (58 mg, 0.41 mmol). Stirring was continued at 0° C. for another 30 minutes. The mixture was poured into 100 ml of water with vigorous stirring. The precipitates were filtered, washed with water and dried to give 7-[4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]-N-(3-piperidin-1-ylpropyl)thieno[3,2-b]pyridine-2-carboxamide as beige solid. Yield: 151 mg, 98%. 1H NMR (600 MHz, DMSO-d6) δ ppm 9.21 (s, 1H) 8.94 (t, J=5.58 Hz, 1H) 8.56 (d, J=5.28 Hz, 1H) 8.50 (d, J=2.64 Hz, 1H) 8.22 (s, 1H) 7.98 (dd, J=7.63, 2.05 Hz, 1H) 7.57-7.60 (m, 2H) 7.23-7.27 (m, 2H) 7.11 (dd, J=11.30, 8.36 Hz, 1H) 6.80-6.83 (m, 1H) 6.71 (d, J=5.28 Hz, 1H) 3.30-3.35 (m, 2H) 2.31 (br. s., 6H) 2.28 (s, 3H) 1.69-1.75 (m, 2H) 1.47-1.52 (m, 4H) 1.38 (br. s., 2H)
LR MS (ES+): 584 (M+Na+)
LR MS (ES−): 560 (M−H)
Example 67
Figure US09340555-20160517-C00174
7-[4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]-N-[3-(4-methylpiperazin-1-yl)propyl]thieno[3,2-b]pyridine-2-carboxamide
The above compound was prepared using procedures similar to that used to prepare the compound of Example 66 above.
1H NMR (600 MHz, DMSO-d6) δ ppm 9.47 (s, 1H) 8.97 (t, J=5.58 Hz, 1H) 8.62 (d, J=2.35 Hz, 1H) 8.56 (d, J=5.28 Hz, 1H) 8.24 (s, 1H) 7.97 (dd, J=7.78, 1.91 Hz, 1H) 7.58-7.61 (m, 2H) 7.23-7.26 (m, 2H) 7.10 (dd, J=11.30, 8.36 Hz, 1H) 6.79-6.82 (m, 1H) 6.71 (d, J=5.28 Hz, 1H) 3.32-3.34 (m, 2H) 2.34-2.47 (m, 10H) 2.27 (s, 3H) 2.21 (s, 3H) 1.72 (quin, J=6.97 Hz, 2H).
LR MS (ES+): 577 (MH+)
Example 68
Figure US09340555-20160517-C00175
7-[4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]-N-(3-pyrrolidin-1-ylpropyl)thieno[3,2-b]pyridine-2-carboxamide
The above compound was prepared using procedures similar to that used to prepare the compound of Example 66 above.
1H NMR (300 MHz, DMSO-d6) δ ppm 9.23 (s, 1H) 8.99 (t, J=5.27 Hz, 1H) 8.57 (d, J=5.27 Hz, 1H) 8.51 (d, J=2.05 Hz, 1H) 8.21 (s, 1H) 7.98 (dd, J=7.77, 1.90 Hz, 1H) 7.55-7.61 (m, 2H) 7.22-7.28 (m, 2H) 7.11 (dd, J=11.43, 8.20 Hz, 1H) 6.78-6.85 (m, 1H) 6.72 (d, J=5.27 Hz, 1H) 3.32-3.39 (m, 2H) 2.56 (br. s., 6H) 2.28 (s, 3H) 1.76 (m, J=8.79 Hz, 6H)
LR MS (ES+): 548 (MH+)
LR MS (ES−): 546 (M−H)
Example 69
Figure US09340555-20160517-C00176
N-[2-(diethylamino)ethyl]-7-[4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridine-2-carboxamide
The above compound was prepared using procedures similar to that used to prepare the compound of Example 66 above.
1H NMR (600 MHz, DMSO-d6) δ ppm 9.21 (s, 1H) 8.88 (t, J=5.13 Hz, 1H) 8.56 (d, J=5.28 Hz, 1H) 8.50 (d, J=2.64 Hz, 1H) 8.21 (s, 1H) 7.98 (dd, J=7.92, 2.05 Hz, 1H) 7.56-7.60 (m, 2H) 7.23-7.27 (m, 2H) 7.11 (dd, J=11.30, 8.36 Hz, 1H) 6.79-6.82 (m, 1H) 6.71 (d, J=5.28 Hz, 1H) 3.33-3.37 (m, 2H) 2.58 (t, J=7.04 Hz, 2H) 2.50-2.54 (m, 4H) 2.27 (s, 3H) 0.97 (t, J=7.04 Hz, 6H)
LR MS (ES+): 536 (MH+)
LR MS (ES−): 534 (M−H)
Example 70
Figure US09340555-20160517-C00177
N-[3-(diethylamino)propyl]-7-[4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridine-2-carboxamide
The above compound was prepared using procedures similar to that used to prepare the compound of Example 66 above.
1H NMR (600 MHz, DMSO-d6) δ ppm 9.25 (s, 1H) 8.96 (br. s., 1H) 8.57 (d, J=5.28 Hz, 1H) 8.53 (d, J=2.35 Hz, 1H) 8.21 (s, 1H) 7.98 (dd, J=7.48, 1.91 Hz, 1H) 7.57-7.61 (m, 2H) 7.23-7.26 (m, 2H) 7.11 (dd, J=11.30, 8.36 Hz, 1H) 6.80-6.83 (m, 1H) 6.72 (d, J=5.28 Hz, 1H) 3.32-3.35 (m, 2H) 2.38-2.49 (m, 6H) 2.28 (s, 3H) 1.70 (br. s., 2H) 0.97 (br. s., 6H)
LR MS (ES+): 550 (MH+)
LR MS (ES−): 548 (M−H)
Example 71
Figure US09340555-20160517-C00178
Methyl 7-{3-[(3-methyl-2-furoyl)amino]phenoxy}thieno[3,2-b]pyridine-2-carboxylate
Step 1: A mixture of methyl 7-chlorothieno[3,2-b]pyridine-2-carboxylate (500 mg, 2.20 mmol), 3-aminophenol (330 mg, 3.0 mmol), ethyl 2-cyclohexanonecarboxylate (73 mg, 0.43 mmol), copper(I) chloride (22 mg, 0.22 mmol) and cesium carbonate (1.48 g, 4.55 mmol) in 20 ml of anhydrous DMSO was placed in a 50 ml pressure tube, flushed with nitrogen, sealed and heated at 70° C. for 3 hours. The mixture was cooled to room temperature and poured into 100 ml of water. The precipitates were filtered, washed with water and dried to give crude methyl 7-(3-aminophenoxy)thieno[3,2-b]pyridine-2-carboxylate as brown solid. Yield: 330 mg.
Step 2: To a stirred solution of 3-methyl-2-furoic acid (166 mg, 1.32 mmol) in anhydrous DMF (10 ml) were added HATU (552 mg, 1.45 mmol) and DIPEA (341 mg, 2.64 mmol). The mixture was stirred at room temperature for 10 minutes, and 330 mg of crude methyl 7-(3-aminophenoxy)thieno[3,2-b]pyridine-2-carboxylate from step 1 was added. The mixture was then heated at 65° C. for 2 hours, cooled to room temperature, and poured into 100 ml of water. 2M HCl was added until pH=4. The precipitates were filtered, washed with water and dried to give the crude, which was purified by silica gel chromatography eluting with 2˜3% of MeOH in chloroform to afford methyl 7-{3-[(3-methyl-2-furoyl)amino]phenoxy}thieno[3,2-b]pyridine-2-carboxylate as off-white solid. Yield: 230 mg, 26% for 2 steps.
1H NMR (300 MHz, DMSO-d6) δ ppm 10.27 (s, 1H) 8.67 (d, J=5.27 Hz, 1H) 8.25 (s, 1H) 7.82 (t, J=2.05 Hz, 1H) 7.80 (dd, J=1.76, 0.59 Hz, 1H) 7.76 (ddd, J=8.21, 2.05, 0.88 Hz, 1H) 7.48 (t, J=8.06 Hz, 1H) 7.05 (ddd, J=8.06, 2.49, 0.88 Hz, 1H) 6.90 (d, J=5.27 Hz, 1H) 6.60 (d, J=2.05 Hz, 1H) 3.93 (s, 3H) 2.32 (s, 3H)
LR MS (ES+): 431 (M+Na+)
LR MS (ES−): 407 (M−H)
Example 72
Figure US09340555-20160517-C00179
7-{3-[(3-methyl-2-furoyl)amino]phenoxy}thieno[3,2-b]pyridine-2-carboxylic acid To a stirred solution of methyl 7-{3-[(3-methyl-2-furoyl)amino]phenoxy}thieno[3,2-b]pyridine-2-carboxylate (180 mg, 0.44 mmol) in MeOH (10 ml) was added 1M NaOH (1.5 ml, 1.5 mmol). The mixture was stirred at room temperature for 1 hour, and poured into 100 ml of water. 2M HCl was added until pH=4. The precipitates was filtered, washed with water and dried to give 7-{3-[(3-methyl-2-furoyl)amino]phenoxy}thieno[3,2-b]pyridine-2-carboxylic acid as off-white solid. Yield: 160 mg, —92%.
1H NMR (300 MHz, DMSO-d6) δ ppm 10.26 (s, 1H) 8.65 (d, J=5.27 Hz, 1H) 8.14 (s, 1H) 7.81 (t, J=2.20 Hz, 1H) 7.80 (d, J=1.47 Hz, 1H) 7.76 (ddd, J=8.21, 2.05, 0.88 Hz, 1H) 7.47 (t, J=8.20 Hz, 1H) 7.04 (ddd, J=8.21, 2.34, 0.88 Hz, 1H) 6.87 (d, J=5.57 Hz, 1H) 6.59 (d, J=1.76 Hz, 1H) 2.32 (s, 3H).
Example 73
Figure US09340555-20160517-C00180
N-ethyl-7-{3-[(3-methyl-2-furoyl)amino]phenoxy}thieno[3,2-b]pyridine-2-carboxamide
To a stirred, cooled (0° C.) solution of 7-{3-[(3-methyl-2-furoyl)amino]phenoxy}thieno[3,2-b]pyridine-2-carboxylic acid (120 mg, 0.30 mmol) in anhydrous DMF (10 ml) were added PyBOP (171 mg, 0.33 mmol) and N,N-diisopropylethylamine (85 mg, 0.66 mmol). The mixture was stirred at 0° C. for 5 minutes, followed by addition of 2M ethylamine solution in THF (0.18 ml, 0.36 mmol). Stirring was continued at 0° C. for another 40 minutes. The mixture was poured into 100 ml of water with vigorous stirring. 2M HCl was added dropwise until pH=5. The precipitates were filtered, washed with water and dried to give N-ethyl-7-{3-[(3-methyl-2-furoyl)amino]phenoxy}thieno[3,2-b]pyridine-2-carboxamide as light yellow solid. Yield: 115 mg, 90%.
1H NMR (600 MHz, DMSO-d6) δ ppm 10.25 (s, 1H) 8.94 (t, J=5.43 Hz, 1H) 8.60 (d, J=5.28 Hz, 1H) 8.24 (s, 1H) 7.79-7.80 (m, 2H) 7.75 (ddd, J=8.22, 2.05, 0.88 Hz, 1H) 7.46 (t, J=8.22 Hz, 1H) 7.02 (ddd, J=8.14, 2.42, 0.88 Hz, 1H) 6.82 (d, J=5.28 Hz, 1H) 6.59 (dd, J=1.76, 0.59 Hz, 1H) 3.32-3.36 (m, 2H) 2.32 (s, 3H) 1.17 (t, J=7.34 Hz, 3H)
LR MS (ES+): 444 (M+Na+)
LR MS (ES−): 420 (M−H)
The compounds of Examples 74-78 below were prepared using procedures similar to those of Example 73.
Example 74
Figure US09340555-20160517-C00181
N,N-diethyl-7-{3-[(3-methyl-2-furoyl)amino]phenoxy}thieno[3,2-b]pyridine-2-carboxamide
1H NMR (600 MHz, DMSO-d6) δ ppm 10.26 (s, 1H) 8.61 (d, J=5.58 Hz, 1H) 7.81 (t, J=2.20 Hz, 1H) 7.79-7.80 (m, 2H) 7.75 (ddd, J=8.22, 2.05, 0.88 Hz, 1H) 7.46 (t, J=8.22 Hz, 1H) 7.03 (ddd, J=8.07, 2.49, 0.88 Hz, 1H) 6.82 (d, J=5.28 Hz, 1H) 6.59 (d, J=1.76 Hz, 1H) 3.51 (br. s., 4H) 2.32 (s, 3H) 1.20 (br. s., 6H)
LR MS (ES+): 472 (M+Na+)
LR MS (ES−): 448 (M−H)
Example 75
Figure US09340555-20160517-C00182
N-hydroxy-7-{3-[(3-methyl-2-furoyl)amino]phenoxy}thieno[3,2-b]pyridine-2-carboxamide
1H NMR (600 MHz, DMSO-d6) δ ppm 11.70 (s, 1H) 10.26 (s, 1H) 9.45 (s, 1H) 8.60 (d, J=5.28 Hz, 1H) 8.09 (s, 1H) 7.79-7.81 (m, 2H) 7.75 (ddd, J=8.29, 1.98, 0.88 Hz, 1H) 7.46 (t, J=8.22 Hz, 1H) 7.02 (ddd, J=8.07, 2.49, 0.88 Hz, 1H) 6.82 (d, J=5.58 Hz, 1H) 6.59 (dd, J=1.76, 0.59 Hz, 1H) 2.32 (s, 3H)
LR MS (ES+): 431 (M+Na+)
LR MS (ES−): 408 (M−H)
Example 76
Figure US09340555-20160517-C00183
N-(3-hydroxypropyl)-7-{3-[(3-methyl-2-furoyl)amino]phenoxy}thieno[3,2-b]pyridine-2-carboxamide
1H NMR (600 MHz, DMSO-d6) δ ppm 10.25 (s, 1H) 8.92 (t, J=5.58 Hz, 1H) 8.60 (d, J=5.28 Hz, 1H) 8.25 (s, 1H) 7.79-7.81 (m, 2H) 7.75 (ddd, J=8.22, 2.05, 0.88 Hz, 1H) 7.46 (t, J=8.22 Hz, 1H) 7.02 (ddd, J=8.14, 2.42, 0.88 Hz, 1H) 6.82 (d, J=5.28 Hz, 1H) 6.59 (d, J=1.76 Hz, 1H) 4.50 (t, J=5.28 Hz, 1H) 3.46-3.51 (m, 2H) 3.33-3.38 (m, 2H) 2.32 (s, 3H) 1.68-1.76 (m, 2H)
LR MS (ES+): 474 (M+Na+)
LR MS (ES−): 450 (M−H)
Example 77
Figure US09340555-20160517-C00184
N-(2-hydroxyethyl)-7-{3-[(3-methyl-2-furoyl)amino]phenoxy}thieno[3,2-b]pyridine-2-carboxamide
1H NMR (600 MHz, DMSO-d6) δ ppm 10.25 (s, 1H) 8.97 (t, J=5.72 Hz, 1H) 8.60 (d, J=5.28 Hz, 1H) 8.28 (s, 1H) 7.79-7.81 (m, 2H) 7.75 (ddd, J=8.22, 2.05, 0.88 Hz, 1H) 7.46 (t, J=8.22 Hz, 1H) 7.02 (ddd, J=8.22, 2.35, 0.88 Hz, 1H) 6.82 (d, J=5.28 Hz, 1H) 6.59 (d, J=1.47 Hz, 1H) 4.81 (t, J=5.58 Hz, 1H) 3.55 (q, J=5.97 Hz, 2H) 3.37 (q, J=6.06 Hz, 2H) 2.32 (s, 3H)
LR MS (ES+): 460 (M+Na+)
LR MS (ES−): 436 (M−H)
Example 78
Figure US09340555-20160517-C00185
7-{3-[(3-methyl-2-furoyl)amino]phenoxy}-N-[2-(2H-tetrazol-5-yl)ethyl]thieno[3,2-b]pyridine-2-carboxamide
1H NMR (300 MHz, DMSO-d6) δ ppm 10.25 (s, 1H) 9.13 (t, J=5.57 Hz, 1H) 8.61 (d, J=5.57 Hz, 1H) 8.20 (s, 1H) 7.78-7.81 (m, 2H) 7.75 (d, J=8.20 Hz, 1H) 7.46 (t, J=8.06 Hz, 1H) 7.02 (ddd, J=8.13, 2.42, 0.88 Hz, 1H) 6.83 (d, J=5.27 Hz, 1H) 6.59 (d, J=1.47 Hz, 1H) 3.63-3.70 (m, 2H) 3.17 (t, J=7.03 Hz, 2H) 2.32 (s, 3H)
LR MS (ES+): 490 (MH+)
LR MS (ES−): 488 (M−H)
Example 79
Figure US09340555-20160517-C00186
3-hydroxypropyl 7-{3-[(3-methyl-2-furoyl)amino]phenoxy}thieno[3,2-b]pyridine-2-carboxylate
To a stirred solution of 7-{3-[(3-methyl-2-furoyl)amino]phenoxy}thieno[3,2-b]pyridine-2-carboxylic acid (120 mg, 0.30 mmol) in anhydrous DMF (10 ml) were added 3-bromo-1-propanol (63 mg, 0.45 mmol) and potassium carbonate (83 mg, 0.60 mmol). The mixture was heated at 50° C. for 5 hours and poured into 100 ml of water. The precipitates were filtered, washed with water and dried to give the crude, which was purified by silica gel chromatography eluting with 3˜5% of methanol in chloroform to give 3-hydroxypropyl 7-{3-[(3-methyl-2-furoyl)amino]phenoxy}thieno[3,2-b]pyridine-2-carboxylate as white solid. Yield: 25 mg, 18%.
1H NMR (600 MHz, DMSO-d6) δ ppm 10.27 (s, 1H) 8.67 (d, J=5.28 Hz, 1H) 8.24 (s, 1H) 7.82 (t, J=2.20 Hz, 1H) 7.80 (d, J=1.47 Hz, 1H) 7.76 (dt, J=9.24, 0.95 Hz, 1H) 7.48 (t, J=8.22 Hz, 1H) 7.04 (ddd, J=8.07, 2.49, 0.88 Hz, 1H) 6.89 (d, J=5.28 Hz, 1H) 6.60 (d, J=1.47 Hz, 1H) 4.61 (t, J=5.14 Hz, 1H) 4.42 (t, J=6.60 Hz, 2H) 3.55-3.59 (m, 2H) 2.32 (s, 3H) 1.88 (quin, J=6.31 Hz, 2H)
LR MS (ES+): 475 (M+Na+)
LR MS (ES−): 451 (M−H)
The compounds of Examples 80-81 below were prepared using procedures similar to those of Example 79.
Example 80
Figure US09340555-20160517-C00187
2-hydroxyethyl 7-{3-[(3-methyl-2-furoyl)amino]phenoxy}thieno[3,2-b]pyridine-2-carboxylate
1H NMR (600 MHz, DMSO-d6) δ ppm 10.27 (s, 1H) 8.68 (d, J=5.58 Hz, 1H) 8.29 (s, 1H) 7.82 (t, J=2.20 Hz, 1H) 7.80 (d, J=1.17 Hz, 1H) 7.76 (ddd, J=8.36, 1.91, 0.88 Hz, 1H) 7.48 (t, J=8.22 Hz, 1H) 7.05 (ddd, J=8.22, 2.35, 0.88 Hz, 1H) 6.89 (d, J=5.58 Hz, 1H) 6.59-6.60 (m, 1H) 4.99 (t, J=5.72 Hz, 1H) 4.36 (dd, J=5.43, 4.55 Hz, 2H) 3.71-3.75 (m, 2H) 2.32 (s, 3H)
LR MS (ES+): 461 (M+Na+)
LR MS (ES−): 437 (M−H)
Example 81
Figure US09340555-20160517-C00188
2-methoxyethyl 7-{3-[(3-methyl-2-furoyl)amino]phenoxy}thieno[3,2-b]pyridine-2-carboxylate
1H NMR (300 MHz, DMSO-d6) δ ppm 10.27 (s, 1H) 8.68 (d, J=5.27 Hz, 1H) 8.24 (s, 1H) 7.82 (t, J=2.20 Hz, 1H) 7.80 (d, J=1.17 Hz, 1H) 7.76 (ddd, J=8.20, 2.05, 0.88 Hz, 1H) 7.47 (t, J=8.20 Hz, 1H) 7.05 (ddd, J=8.13, 2.42, 0.88 Hz, 1H) 6.90 (d, J=5.27 Hz, 1H) 6.60 (d, J=1.47 Hz, 1H) 4.46-4.50 (m, 2H) 3.66-3.71 (m, 2H) 3.33 (s, 3H) 2.32 (s, 3H)
LR MS (ES+): 453 (MH+)
LR MS (ES−): 451 (M−H)
Example 82
Figure US09340555-20160517-C00189
Methyl [(3-{[(7-{3-[(3-methyl-2-furoyl)amino]phenoxy}thieno[3,2-b]pyridin-2-yl)carbonyl]amino}propyl)amino]acetate
To a stirred, cooled (0° C.) solution of 7-{3-[(3-methyl-2-furoyl)amino]phenoxy}thieno[3,2-b]pyridine-2-carboxylic acid (150 mg, 0.38 mmol) in anhydrous DMF (10 ml) were added PyBOP (218 mg, 0.42 mmol) and N,N-diisopropylethylamine (245 mg, 1.9 mmol). The mixture was stirred at 0° C. for 10 minutes, followed by addition of methyl [(3-aminopropyl)amino]acetate dihydrochloride (100 mg, 0.46 mmol). Stirring was continued at 0° C. for another 40 minutes. The mixture was diluted with ethyl acetate (100 ml), washed with brine (4×100 ml), dried over Na2SO4, and concentrated to give the crude, which was purified by silica gel chromatography eluting with 5-8% methanol in chloroform to give methyl [(3-{[(7-{3-[(3-methyl-2-furoyl)amino]phenoxy}thieno[3,2-b]pyridin-2-yl)carbonyl]amino}propyl)amino]acetate as light beige solid. Yield: 98 mg, 49%.
1H NMR (600 MHz, DMSO-d6) δ ppm 10.25 (s, 1H) 8.95 (t, J=5.58 Hz, 1H) 8.60 (d, J=5.58 Hz, 1H) 8.23 (s, 1H) 7.79-7.80 (m, 2H) 7.73-7.76 (m, 1H) 7.46 (t, J=8.22 Hz, 1H) 7.02 (ddd, J=8.14, 2.42, 0.88 Hz, 1H) 6.82 (d, J=5.58 Hz, 1H) 6.59 (d, J=1.17 Hz, 1H) 3.62 (s, 3H) 3.32-3.36 (m, 4H) 2.58 (t, J=6.75 Hz, 2H) 2.32 (s, 3H) 2.05 (br. s., 1H) 1.68 (quin, J=6.90 Hz, 2H)
LR MS (ES+): 545 (M+Na+)
LR MS (ES−): 521 (M−H)
Example 82A
Figure US09340555-20160517-C00190
N-(2-fluoro-5-methylphenyl)-3-hydroxybenzamide
Step 1: To a stirred solution of 3-benzyloxy benzoic acid (1.00 g, 4.38 mmol) in 20 ml of anhydrous DMF were added HATU (1.83 g, 4.82 mmol) and DIPEA (1.7 ml, 9.6 mmol). The mixture was stirred at room temperature for 10 minutes, followed by addition of 2-fluoro-5-methylaniline (657 mg, 5.25 mmol). The mixture was heated at 66° C. for 16 hours, cooled to room temperature, and partitioned between EtOAc (100 ml) and 0.5M HCl (200 ml). The organic phase was washed with 0.5M HCl (2×50 ml), saturated NaHCO3 (50 ml) and brine (50 ml), dried over Na2SO4, and evaporated to dryness to afford 3-(benzyloxy)-N-(2-fluoro-5-methylphenyl)benzamide as light brown solid. Yield: 1.5 g, 100%.
Step 2: A solution of 3-(benzyloxy)-N-(2-fluoro-5-methylphenyl)benzamide (1.5 g, 4.48 mmol from Step 1) in 20 ml of MeOH containing 10% Pd/C (150 mg) was stirred under a hydrogen balloon at room temperature for 2 hours. The catalyst was removed by filtration. The filtrate solution was evaporated to dryness under reduced pressure to give N-(2-fluoro-5-methylphenyl)-3-hydroxybenzamide as light-beige solid. Yield: 1.1 g, 100%.
1H NMR (600 MHz, DMSO-d6) δ ppm 9.92 (s, 1H) 9.75 (br. s., 1H) 7.37-7.40 (m, 2H) 7.33 (t, J=2.05 Hz, 1H) 7.31 (t, J=7.78 Hz, 1H) 7.15 (dd, J=10.56, 8.51 Hz, 1H) 7.03-7.07 (m, 1H) 6.96-6.99 (m, 1H) 2.30 (s, 3H)
LR MS (ES+): 268 (M+Na+)
LR MS (ES−): 244 (M−H)
Example 83
Figure US09340555-20160517-C00191
Methyl 7-(3-((2-fluoro-5-methylphenyl)carbamoyl)phenoxy)thieno[3,2-b]pyridine-2-carboxylate
A mixture of N-(2-fluoro-5-methylphenyl)-3-hydroxybenzamide (270 mg, 1.1 mmol), methyl 7-chlorothieno[3,2-b]pyridine-2-carboxylate (300 mg, 1.3 mmol) and cesium carbonate (1.0 g, 3.07 mmol) in 10 ml of anhydrous DMSO was heated at 68° C. for 16 hours, cooled to room temperature and partitioned between water (100 ml) and EtOAc (100 ml). The aqueous layer was extracted with more EtOAc (2×50 ml). All the organic layers were combined, washed with brine (50 ml), dried over Na2SO4, and evaporated to dryness to give the crude, which was purified by silica gel chromatography eluted with 1˜2% of MeOH in CHCl3 to give methyl 7-(3-((2-fluoro-5-methylphenyl)carbamoyl)phenoxy)thieno[3,2-b]pyridine-2-carboxylate as light brown oil. Yield: 170 mg, 37%.
Example 84
Figure US09340555-20160517-C00192
7-(3-{[(2-fluoro-5-methylphenyl)amino]carbonyl}phenoxy)thieno[3,2-b]pyridine-2-carboxylic acid
To a stirred solution of methyl 7-(3-((2-fluoro-5-methylphenyl)carbamoyl)phenoxy)thieno[3,2-b]pyridine-2-carboxylate (170 mg, 0.39 mmol) in 15 ml of MeOH was added 1 ml of 1M NaOH. Reaction was complete within 2.5 hours. The mixture was poured into 100 ml of water and acidified with 2M HCl to pH=5 with vigorous stirring. The precipitates were filtered, washed with water and dried in vacuo to give 7-(3-{[(2-fluoro-5-methylphenyl)amino]carbonyl}phenoxy)thieno[3,2-b]pyridine-2-carboxylic acid as white solid. Yield: 150 mg, 91%.
1H NMR (600 MHz, DMSO-d6) δ ppm 13.96 (br. s., 1H) 10.15 (s, 1H) 8.66 (d, J=4.40 Hz, 1H) 8.15 (s, 1H) 7.97 (d, J=7.92 Hz, 1H) 7.90 (s, 1H) 7.70 (t, J=7.92 Hz, 1H) 7.60 (dd, J=8.07, 1.61 Hz, 1H) 7.38 (dd, J=7.34, 1.76 Hz, 1H) 7.16 (dd, J=10.42, 8.36 Hz, 1H) 7.04-7.09 (m, 1H) 6.87 (d, J=5.28 Hz, 1H) 2.29 (s, 3H)
LR MS (ES+): 423 (MH+)
LR MS (ES−): 421 (M−H)
Example 85
Figure US09340555-20160517-C00193
N-ethyl-7-(3-{[(2-fluoro-5-methylphenyl)amino]carbonyl}phenoxy)thieno[3,2-b]pyridine-2-carboxamide
To a stirred, cooled (0° C.) solution of 7-(3-{[(2-fluoro-5-methylphenyl)amino]carbonyl}phenoxy)thieno[3,2-b]pyridine-2-carboxylic acid (120 mg, 0.28 mmol) in anhydrous DMF (10 ml) were added PyBOP (161 mg, 0.31 mmol) and N,N-diisopropylethylamine (72 mg, 0.56 mmol). The mixture was stirred at 0° C. for 5 minutes, followed by addition of 2M ethylamine solution in THF (0.2 ml, 0.4 mmol). Stirring was continued at 0° C. for another 30 minutes. The mixture was poured into 100 ml of water with vigorous stirring. 2M HCl was added dropwise until pH=4. The precipitates were filtered, washed with water and dried to give N-ethyl-7-(3-{[(2-fluoro-5-methylphenyl)amino]carbonyl}phenoxy)thieno[3,2-b]pyridine-2-carboxamide as yellow solid. Yield: 112 mg, 88%.
1H NMR (600 MHz, DMSO-d6) δ ppm 10.15 (s, 1H) 8.96 (t, J=5.58 Hz, 1H) 8.62 (d, J=5.58 Hz, 1H) 8.26 (s, 1H) 7.96 (dd, J=7.78, 1.03 Hz, 1H) 7.87-7.89 (m, 1H) 7.69 (t, J=7.92 Hz, 1H) 7.58 (ddd, J=8.14, 2.57, 1.03 Hz, 1H) 7.38 (dd, J=7.34, 1.76 Hz, 1H) 7.16 (dd, J=10.42, 8.36 Hz, 1H) 7.05-7.09 (m, 1H) 6.83 (d, J=5.58 Hz, 1H) 3.34 (qd, J=7.24, 5.58 Hz, 2H) 2.29 (s, 3H) 1.17 (t, J=7.34 Hz, 3H)
LR MS (ES+): 472 (M+Na+)
LR MS (ES−): 448 (M−H)
The compound of Examples 86 below was prepared using procedures similar to those used to prepare the compound of Example 85.
Example 86
Figure US09340555-20160517-C00194
N,N-diethyl-7-(3-{[(2-fluoro-5-methylphenyl)amino]carbonyl}phenoxy)thieno[3,2-b]pyridine-2-carboxamide
1H NMR (600 MHz, DMSO-d6) δ ppm 10.15 (s, 1H) 8.62 (d, J=5.28 Hz, 1H) 7.97 (d, J=7.92 Hz, 1H) 7.89-7.90 (m, 1H) 7.82 (s, 1H) 7.69 (t, J=7.92 Hz, 1H) 7.58 (ddd, J=8.07, 2.49, 1.17 Hz, 1H) 7.38 (dd, J=7.19, 1.91 Hz, 1H) 7.16 (dd, J=10.42, 8.36 Hz, 1H) 7.07 (td, J=5.21, 2.49 Hz, 1H) 6.83 (d, J=5.58 Hz, 1H) 3.52 (br. s., 4H) 2.29 (s, 3H) 1.21 (br. s., 6H)
LR MS (ES+): 500 (M+Na+)
LR MS (ES−): 476 (M−H)
Example 87
Figure US09340555-20160517-C00195
Methyl {[3-({[7-(3-{[(2-fluoro-5-methylphenyl)amino]carbonyl}phenoxy)thieno[3,2-b]pyridin-2-yl]carbonyl}amino)propyl]amino}acetate
To a stirred, cooled (0° C.) solution of 7-(3-{[(2-fluoro-5-methylphenyl)amino]carbonyl}phenoxy)thieno[3,2-b]pyridine-2-carboxylic acid (80 mg, 0.19 mmol) in anhydrous DMF (10 ml) were added PyBOP (109 mg, 0.21 mmol) and N,N-diisopropylethylamine (123 mg, 0.95 mmol). The mixture was stirred at 0° C. for 10 minutes, followed by addition of methyl [(3-aminopropyl)amino]acetate dihydrochloride (50 mg, 0.23 mmol). Stirring was continued at 0° C. for 10 minutes then room temperature for 2 hours. The mixture was poured into 100 ml of water with vigorous stirring. The precipitates were filtered, washed with water and dried to give the crude, which was purified by silica gel chromatography eluting with 5-8% methanol in chloroform to give methyl {[3-({[7-(3-{[(2-fluoro-5-methylphenyl)amino]carbonyl}phenoxy)thieno[3,2-b]pyridin-2-yl]carbonyl}amino)propyl]amino}acetate as light beige solid. Yield: 40 mg, 38%.
1H NMR (600 MHz, DMSO-d6) δ ppm 10.15 (s, 1H) 8.97 (t, J=5.58 Hz, 1H) 8.62 (d, J=5.28 Hz, 1H) 8.25 (s, 1H) 7.96 (dt, J=7.70, 1.28 Hz, 1H) 7.87-7.89 (m, 1H) 7.69 (t, J=7.92 Hz, 1H) 7.58 (ddd, J=8.14, 2.42, 0.88 Hz, 1H) 7.38 (dd, J=7.19, 1.91 Hz, 1H) 7.16 (dd, J=10.56, 8.51 Hz, 1H) 7.05-7.08 (m, 1H) 6.83 (d, J=5.28 Hz, 1H) 3.62 (s, 3H) 3.34-3.37 (m, 4H) 2.59 (t, J=6.90 Hz, 2H) 2.29 (s, 3H) 1.68 (quin, J=6.97 Hz, 2H)
LR MS (ES+): 551 (MH+)
4. Biological Testing
Biological data for the compounds of the present invention was generated by the use of one or more of the following assays.
VEGF Stimulated Ca.Sup.++ Signal In Vitro
Automated FLIPR (Fluorometric Imaging Plate Reader) technology was used to screen for inhibitors of VEGF induced increases in intracellular calcium levels in fluorescent dye loaded endothelial cells. HUVEC (human umbilical vein endothelial cells) (Clonetics) were seeded in 96-well fibronectin coated black-walled plates overnight at 37.degree. C./5% CO.sub.2. Cells were loaded with calcium indicator Fluo-4 for 45 minutes at 37.degree. C. Cells were washed 4 times (Original Cell Wash, Labsystems) to remove extracellular dye. Test compounds were reconstituted in 100% DMSO and added to the cells to give a final DMSO concentration of 0.1%. For screening, cells were pre-incubated with test agents for 30 minutes, at a single concentration (10 .mu.M) or at concentrations ranging from 0.01 to 10.0 .mu.M followed by VEGF stimulation (5 ng/mL). Changes in fluorescence at 516 nm were measured simultaneously in all 96 wells using a cooled CCD camera. Data were generated by determining max-min fluorescence levels for unstimulated, stimulated, and drug treated samples. IC.sub.50 values for test compounds were calculated from % inhibition of VEGF stimulated responses in the absence of inhibitor.
VEGFR2 Kinase Assay
The cytoplasmic domain of the human VEGF receptor (VEGFR-2) was expressed as a Histidine-tagged fusion protein following infection of insect cells using an His engineered baculovirus. His-VEGFR-2 was purified to homogeneity, as determined by SDS-PAGE, using nickel resin chromatography. Kinase assays were performed in 96 well microtiter plates that were coated overnight with 30 .mu.g of poly-Glu-Tyr (4:1) in 10 mM Phosphate Buffered Saline (PBS), pH 7.2-7.4. The plates were incubated with 1% BSA and then washed four times with PBS prior to starting the reaction. Reactions were carried out in 120 .mu.L reaction volumes containing 3.6 .mu.M ATP in kinase buffer (50 mM Hepes buffer pH 7.4, 20 mM MgCl.sub.2, 0.1 mM MnCl.sub.2 and 0.2 mM Na.sub.3 VO.sub.4). Test compounds were reconstituted in 100% DMSO and added to the reaction to give a final DMSO concentration of 5%. Reactions were initiated by the addition 0.5 ng of purified protein. Following a ten minute incubation at 25.degree. C., the reactions were washed four times with PBS containing 0.05% Tween-20. 100 .mu.l of a monoclonal anti-phosphotyrosine antibody-peroxidase conjugate was diluted 1:10000 in PBS-Tween-20 and added to the wells for 30 minutes. Following four washes with PBS-Tween-20, 100 .mu.l of 0-phenylenediamine Dihydrochloride in Phosphate-citrate buffer, containing urea hydrogen peroxide, was added to the wells for 7 minutes as a colorimetric substrate for the peroxidase. The reaction was terminated by the addition of 100 .mu.l of 2.5N H.sub.2 SO.sub.4 to each well and read using a microplate ELISA reader set at 492 nm. IC.sub.50 values for compound inhibition were calculated directly from graphs of optical density (arbitrary units) versus compound concentration following subtraction of blank values.
VEGF-Induced Dermal Extravasation in Guinea Pig (Miles Assay)
Male Hartley guinea pigs (300-600 g) were anesthetized with isofluorane, sheared, and given a single dose of drug or the respective vehicle. The guinea pigs were dosed orally unless indicated otherwise in Table 3. Ten minutes prior to the end of drug treatment, guinea pigs were anesthetized with isofluorane, and 0.5% Evans blue dye (EBD) in PBS (13-15 mg/kg dose of EBD) was injected intravenously. After 5 minutes, triplicate intradermal injections of 100 ng rhVEGF.sub.165 in 100 .mu.l PBS and of 100 .mu.l PBS alone were administered on the flank. After 20 minutes, each animal was cuthanized with Pentosol, and the skin containing the intradermal injection sites was removed for image analysis. Using an analog video camera coupled to a PC, an image of each trans-illuminated skin sample was captured, and the integrated optical density of each injection site was measured using ImagePro 4. For each skin sample, the difference between the mean optical density of the VEGF sites and mean optical density of the PBS sites is the measure of VEGF-induced EBD extravasation in that animal. These measured values were averaged per study group to determine the mean VEGF-induced EBD extravasation for each experimental condition, and the group means were then compared to assess inhibition of VEGF-induced EBD extravasation in the drug-treated groups relative to the vehicle-treated controls. To determine the dose required for 50% inhibition (ID.sub.50), the percent inhibition data was plotted as a function of oral dose, using the ‘best-fit’ analysis within MicroSoft Excel software. The ID.sub.50 value was verified visually by using the plotted data (horizontal line from 50% y value, at intersection with best-fit line drop vertical line to x axis (dose).
Laser-Induced Choroidal Neovascularization (CNV) in Rat (CNV Assay)
CNV was induced and quantified in this model as previously described (Edelman and Castro. Exp. Eye Res. 2000; 71:523-533). On day 0, male Brown Norway rats (200-300 g) were anesthetized with 100 mg/kg Ketamine and 10 mg/kg Xylazine, and pupils were dilated with 1% Tropicamide. Using the blue-green setting of a Coherent Novus Argon Laser, 3 laser bus (90 mW for 0.1 s; 100 .mu.m diameter) were given to each eye between the retinal vessels around the optic nerve head. Rats were dosed with test compounds in their indicated vehicles orally once daily.
On day 10, rats were sacrificed with 100% CO.sub.2, and blood vessels were labeled by vascular perfusion with 10 mg/ml FITC-dextran (MW 2.times.10.sup.6). Using an epifluorescence microscope (20.times.) coupled to a spot digital camera and a PC, images were obtained from the flat mounts of the RPE-choroid-sclera from each eye, and the area occupied by hyperfluorescent neovessels within each laser lesion was measured using ImagePro 4 software.
To determine the dose required for 50% inhibition (ID.sub.50), the percent inhibition data was plotted as a function of oral dose, using the ‘best-fit’ analysis within MicroSoft Excel software. The ID.sub.50 value was verified visually by using the plotted data (horizontal line from 50% y value, at intersection with best-fit line drop vertical line to x axis (dose).
Rabbit Eye VEGF Permeability Model
Assay used was detailed by Jeffrey Edelman, etc in Exp. Eye. Res. 80 (2005), Pg 249-258.
PDGF Stimulated Ca2+ Signal In Vitro
Automated FLIPR (Fluorometric Imaging Plate Reader) technology was used to screen for inhibitors of PDGF induced increases in intracellular calcium levels in fluorescent dye loaded endothelial cells. NHDF-Ad (Normal human dermal fibroblasts) (Lonza) were seeded in 384-well fibronectin coated black-walled plates overnight at 37° C./5% CO2. Cells were loaded with calcium indicator Fluo-4 for 45 minutes at 37° C. Cells were washed 4 times (ELx405-CW, Bio-Tek) to remove extracellular dye. Test compounds were reconstituted in 100% DMSO and added to the cells to give a final DMSO concentration of 0.1%. For screening, cells were pre-incubated with test agents for 30 minutes, at a single concentration (10 μM) or at concentrations ranging from 0.001 nM to 10 μM followed by PDGF stimulation (10 ng/mL). Changes in fluorescence at 515 nm were measured simultaneously in all 384 wells using a cooled CCD camera. Data were generated by determining max-min fluorescence levels for unstimulated, stimulated, and drug treated samples. IC50 values for test compounds were calculated from % inhibition of PDGF stimulated responses in the absence of inhibitor.
TABLE II
Biological Activities of Compounds of the Present Invention
In Vivo
Cellular Enzymic Enzymic Rabbit Eye
VEGFR2 VEGFR2 VEGFR1 VEGF
Compound IC50 (nM) IC50 (nM) IC50 (nM) Permeability
F1  2 18
F2 29 20 16 efficacious
F3 35 21
F4 104 104
F5 104 104
F6 11
F7 10
F8 11
In Vivo
Cellular Enzymic Enzymic Enzymic Rabbit Eye
VEGFR2 VEGFR2 VEGFR1 PDGFRβ VEGF
Example IC50 (nM) IC50 (nM) IC50 (nM) IC50 (nM) Permeability
12 126 3 4 20
13 97 6 10 19
14 34 4 5 13
15 39 3 3 10
16 7 10 15
17 4 10 15
18 0.8 3 6 11 Efficacious
19 0.3 4 9 14
23 9 7 13 14
24 14 10 9 14
25 5 8 11
26 5 10 12
27 16 11 17
28 5 8 17
29 5 10 13
30 7 112 17
31 9 9 13
32 4 11 15
33 24 60 69
34 3 6 11
36 7 8
37 1 7 9
38 14 7 8
39 2 5 8
42 4 6
43 6 3
44 16 11
45 10 7
46 328 19 Efficacious
48 7
50 80 16 18
53 12
54 4 34
55 7 11 7 Efficacious
56 20 16
57 1 14 15
58 3
61 2
64 13 7
65 2 12 7
66 16 4 16
67 2 2 9
68 20 6 16
69 11 4 5 13
70 9 3 3 12
71 24 169
72 162 39 920
73 9 191
74 27 424
75 16 11 277
76 11 146
77 17 392
78 14 323
79 9 146
80 17 212
81 19 273
82 11 238
84 87 20 223
85 16 10 74
86 64 7 206
87 9 16 59

Claims (3)

What is claimed is:
1. A compound selected from the group consisting of:
methyl ({3-[({7-[4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino) phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)amino]propyl}amino)acetate;
(4S)-5-(ethylamino)-4-[({7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl) amino]carbonyl}amino)phenoxy]thieno[3,2-b]pyridin-2-yl}carbonyl)amino]-5-oxopentanoic acid;
7-[3-fluoro-4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino) phenoxy]-N-(3-morpholin-4-ylpropyl)thieno[3,2-b]pyridine-2-carboxamide; and
7-[4-({[(2-fluoro-5-methylphenyl)amino]carbonyl}amino)phenoxy]-N-(3-piperidin-1-ylpropyl)thieno[3,2-b]pyridine-2-carboxamide; or a pharmaceutically acceptable salt thereof.
2. A pharmaceutical composition comprising a therapeutic effective amount of at least one compound of claim 1, or a pharmaceutically acceptable salt thereof and at least one pharmaceutically acceptable carrier.
3. The composition of claim 2, wherein the composition comprises of tablets, capsules, intravenous injections, intramuscular injections, local injections, topical creams, gels and ointments, eye drops, eye ointments, eye sprays, ophthalmic suspensions, ophthalmic emulsions, intravitreal injections, subtenon injections, ophthalmic bioerodible implant, and non-bioerodible ophthalmic inserts and depots.
US14/444,161 2009-09-03 2014-07-28 Compounds as tyrosine kinase modulators Active US9340555B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/444,161 US9340555B2 (en) 2009-09-03 2014-07-28 Compounds as tyrosine kinase modulators
US14/989,943 US20160355527A1 (en) 2009-09-03 2016-01-07 Compounds as tyrosine kinase modulators
US15/599,333 US10221192B2 (en) 2009-09-03 2017-05-18 Compounds as tyrosine kinase modulators

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US23960309P 2009-09-03 2009-09-03
US30661610P 2010-02-22 2010-02-22
US35669910P 2010-06-21 2010-06-21
US36053110P 2010-07-01 2010-07-01
US12/875,223 US8809534B2 (en) 2009-09-03 2010-09-03 Compounds as tyrosine kinase modulators
US14/444,161 US9340555B2 (en) 2009-09-03 2014-07-28 Compounds as tyrosine kinase modulators

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/875,223 Continuation-In-Part US8809534B2 (en) 2009-09-03 2010-09-03 Compounds as tyrosine kinase modulators

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/989,943 Continuation US20160355527A1 (en) 2009-09-03 2016-01-07 Compounds as tyrosine kinase modulators

Publications (2)

Publication Number Publication Date
US20140336108A1 US20140336108A1 (en) 2014-11-13
US9340555B2 true US9340555B2 (en) 2016-05-17

Family

ID=51865223

Family Applications (3)

Application Number Title Priority Date Filing Date
US14/444,161 Active US9340555B2 (en) 2009-09-03 2014-07-28 Compounds as tyrosine kinase modulators
US14/989,943 Abandoned US20160355527A1 (en) 2009-09-03 2016-01-07 Compounds as tyrosine kinase modulators
US15/599,333 Active US10221192B2 (en) 2009-09-03 2017-05-18 Compounds as tyrosine kinase modulators

Family Applications After (2)

Application Number Title Priority Date Filing Date
US14/989,943 Abandoned US20160355527A1 (en) 2009-09-03 2016-01-07 Compounds as tyrosine kinase modulators
US15/599,333 Active US10221192B2 (en) 2009-09-03 2017-05-18 Compounds as tyrosine kinase modulators

Country Status (1)

Country Link
US (3) US9340555B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10221192B2 (en) 2009-09-03 2019-03-05 Allergan, Inc. Compounds as tyrosine kinase modulators

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10206813B2 (en) 2009-05-18 2019-02-19 Dose Medical Corporation Implants with controlled drug delivery features and methods of using same
CN104955806B (en) * 2013-02-06 2018-09-14 默克专利股份公司 The substituted carboxylic acid derivative as polyprotein xylanase inhibitor for treating osteoarthritis
CN110770210A (en) * 2017-05-18 2020-02-07 Pi工业有限公司 Novel amidine compounds
CN113490668A (en) 2018-10-05 2021-10-08 安娜普尔纳生物股份有限公司 Compounds and compositions for treating diseases associated with APJ receptor activity
US11466027B2 (en) 2019-07-03 2022-10-11 H. Lundbeck A/S Modulators of the NMDA receptor
US11358971B2 (en) 2019-07-03 2022-06-14 H. Lundbeck A/S Prodrugs of modulators of the NMDA receptor

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0039051A2 (en) 1980-04-24 1981-11-04 Merck & Co. Inc. Mannich-base hydroxamic acid prodrugs for the improved bioavailability of non-steroidal anti-inflammatory agents, a process for preparing and a pharmaceutical composition containing them
US4966849A (en) 1985-09-20 1990-10-30 President And Fellows Of Harvard College CDNA and genes for human angiogenin (angiogenesis factor) and methods of expression
WO1991015495A1 (en) 1990-04-02 1991-10-17 Pfizer Inc. Benzylphosphonic acid tyrosine kinase inhibitors
WO1992020642A1 (en) 1991-05-10 1992-11-26 Rhone-Poulenc Rorer International (Holdings) Inc. Bis mono-and bicyclic aryl and heteroaryl compounds which inhibit egf and/or pdgf receptor tyrosine kinase
WO1992021660A1 (en) 1991-05-29 1992-12-10 Pfizer, Inc. Tricyclic polyhydroxylic tyrosine kinase inhibitors
US5217999A (en) 1987-12-24 1993-06-08 Yissum Research Development Company Of The Hebrew University Of Jerusalem Styryl compounds which inhibit EGF receptor protein tyrosine kinase
WO1994003427A1 (en) 1992-08-06 1994-02-17 Warner-Lambert Company 2-thioindoles (selenoindoles) and related disulfides (selenides) which inhibit protein tyrosine kinases and which have antitumor properties
US5302606A (en) 1990-04-16 1994-04-12 Rhone-Poulenc Rorer Pharmaceuticals Inc. Styryl-substituted pyridyl compounds which inhibit EGF receptor tyrosine kinase
WO1994014808A1 (en) 1992-12-23 1994-07-07 Farmitalia Carlo Erba Srl Vinylene-azaindole derivatives and process for their preparation
US5330992A (en) 1992-10-23 1994-07-19 Sterling Winthrop Inc. 1-cyclopropyl-4-pyridyl-quinolinones
US5792783A (en) 1995-06-07 1998-08-11 Sugen, Inc. 3-heteroaryl-2-indolinone compounds for the treatment of disease
US6541504B1 (en) 2002-04-03 2003-04-01 Allergan Sales, Llc (3Z)-3-(2,3-dihydro-1H-inden-1-ylidene)-1,3-dihydro-2H-indol-2-ones as kinase inhibitors
WO2003106462A1 (en) 2002-06-14 2003-12-24 Pfizer Inc. Benzofused heteroaryl amide derivatives of thienopyridines useful as therapeutic agents, pharmaceutical compositions including the same, and methods for their use
US6747025B1 (en) 2002-11-27 2004-06-08 Allergan, Inc. Kinase inhibitors for the treatment of disease
US6765012B2 (en) 2001-09-27 2004-07-20 Allergan, Inc. 3-(Arylamino)methylene-1,3-dihydro-2H-indol-2-ones as kinase inhibitors
WO2008063202A2 (en) 2006-01-30 2008-05-29 Array Biopharma Inc. Heterobicyclic thiophene compounds for the treatment of cancer
WO2009026717A1 (en) 2007-08-29 2009-03-05 Methylgene Inc. Inhibitors of protein tyrosine kinase activity
US20090118276A1 (en) 2007-11-02 2009-05-07 Wyeth Thienopyrimidines, thienopyridines, and pyrrolopyrimidines as b-raf inhibitors
WO2009070328A1 (en) 2007-11-26 2009-06-04 The Regents Of The University Of California Modulators of the epidermal growth factor receptor (egfr) pathway for use in the treatment or prevention of substance abuse
WO2009109035A1 (en) 2008-03-05 2009-09-11 Methylgene Inc. Inhibitors of protein tyrosine kinase activity
US20100081675A1 (en) 2008-09-26 2010-04-01 National Health Research Institutes Fused multicyclic compounds as protein kinase inhibitors
US8809534B2 (en) * 2009-09-03 2014-08-19 Allergan, Inc. Compounds as tyrosine kinase modulators

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999020617A1 (en) 1997-10-21 1999-04-29 Active Biotech Ab Antiinflammatory thiadiazolyl ureas which act as lfa-1 and mac-1 inhibitors
US20040254185A1 (en) 2001-05-08 2004-12-16 Alexander Ernst Selective anthranilamide pyridine amides as inhibitors of vegfr-2 and vegfr-3
TWI319387B (en) 2002-04-05 2010-01-11 Astrazeneca Ab Benzamide derivatives
GB0229022D0 (en) 2002-12-12 2003-01-15 Novartis Ag Organic Compounds
EP1660504B1 (en) 2003-08-29 2008-10-29 Pfizer Inc. Thienopyridine-phenylacet amides and their derivatives useful as new anti-angiogenic agents
EP1753428A4 (en) 2004-05-14 2010-09-15 Abbott Lab Kinase inhibitors as therapeutic agents
US20060116713A1 (en) 2004-11-26 2006-06-01 Ivan Sepetka Aneurysm treatment devices and methods
JP2006170893A (en) 2004-12-17 2006-06-29 Alps Electric Co Ltd Electrostatic capacitive pressure sensor
KR20070091675A (en) 2004-12-22 2007-09-11 아스트라제네카 아베 Pyridine carboxamide derivatives for use as anticancer agents
EP1846388A4 (en) 2005-01-25 2011-12-07 Synta Pharmaceuticals Corp Thiophene compounds for inflammation and immune-related uses
PL1848435T3 (en) 2005-01-25 2016-08-31 Synta Pharmaceuticals Corp Compounds against inflammations and immune-related uses
CA2600570C (en) 2005-03-14 2011-12-06 Transtech Pharma, Inc. Benzazole derivatives, compositions, and methods of use as .beta.-secretase inhibitors
JO2787B1 (en) 2005-04-27 2014-03-15 امجين إنك, Substituted Amid derivatives & methods of use
CA2608726C (en) 2005-05-20 2013-07-09 Methylgene Inc. Inhibitors of vegf receptor and hgf receptor signaling
JP2006332370A (en) 2005-05-26 2006-12-07 Sumitomo Electric Ind Ltd Nitride semiconductor light emitting device
CA2610509A1 (en) 2005-06-03 2006-12-14 Bayer Healthcare Ag 1-methyl-1h-pyrazole-4-carboxamides useful as cancer chemotherapeutic agents
DE102005062742A1 (en) 2005-12-22 2007-06-28 Bayer Schering Pharma Ag New sulfoximine-substituted pyrimidines useful for treating e.g. diseases caused by inflammatory, allergic or proliferative processes, oncological diseases, cancer, eye, autoimmune and neurodegerative diseases
WO2007107005A1 (en) 2006-03-22 2007-09-27 Methylgene, Inc. Inhibitors of protein tyrosine kinase activity
DE102006038515A1 (en) 2006-08-17 2008-02-21 Karl Storz Gmbh & Co. Kg Medical tubular shaft instrument
JP4474393B2 (en) 2006-08-31 2010-06-02 日立オートモティブシステムズ株式会社 Brake control system
US7790756B2 (en) 2006-10-11 2010-09-07 Deciphera Pharmaceuticals, Llc Kinase inhibitors useful for the treatment of myleoproliferative diseases and other proliferative diseases
WO2009026720A1 (en) 2007-08-29 2009-03-05 Methylgene Inc. Processes and intermediates for preparing fused heterocyclic kinase inhibitors
US20100324086A1 (en) 2008-02-19 2010-12-23 Novasaid Ab Compounds and methods
US9340555B2 (en) 2009-09-03 2016-05-17 Allergan, Inc. Compounds as tyrosine kinase modulators
US8906944B2 (en) 2009-09-03 2014-12-09 Allergan, Inc. Compounds as tyrosine kinase modulators

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0039051A2 (en) 1980-04-24 1981-11-04 Merck & Co. Inc. Mannich-base hydroxamic acid prodrugs for the improved bioavailability of non-steroidal anti-inflammatory agents, a process for preparing and a pharmaceutical composition containing them
US4966849A (en) 1985-09-20 1990-10-30 President And Fellows Of Harvard College CDNA and genes for human angiogenin (angiogenesis factor) and methods of expression
US5217999A (en) 1987-12-24 1993-06-08 Yissum Research Development Company Of The Hebrew University Of Jerusalem Styryl compounds which inhibit EGF receptor protein tyrosine kinase
WO1991015495A1 (en) 1990-04-02 1991-10-17 Pfizer Inc. Benzylphosphonic acid tyrosine kinase inhibitors
US5302606A (en) 1990-04-16 1994-04-12 Rhone-Poulenc Rorer Pharmaceuticals Inc. Styryl-substituted pyridyl compounds which inhibit EGF receptor tyrosine kinase
WO1992020642A1 (en) 1991-05-10 1992-11-26 Rhone-Poulenc Rorer International (Holdings) Inc. Bis mono-and bicyclic aryl and heteroaryl compounds which inhibit egf and/or pdgf receptor tyrosine kinase
WO1992021660A1 (en) 1991-05-29 1992-12-10 Pfizer, Inc. Tricyclic polyhydroxylic tyrosine kinase inhibitors
WO1994003427A1 (en) 1992-08-06 1994-02-17 Warner-Lambert Company 2-thioindoles (selenoindoles) and related disulfides (selenides) which inhibit protein tyrosine kinases and which have antitumor properties
US5330992A (en) 1992-10-23 1994-07-19 Sterling Winthrop Inc. 1-cyclopropyl-4-pyridyl-quinolinones
WO1994014808A1 (en) 1992-12-23 1994-07-07 Farmitalia Carlo Erba Srl Vinylene-azaindole derivatives and process for their preparation
US5883116A (en) 1995-06-07 1999-03-16 Sugen, Inc. 3-(2'-alkoxybenzylidenyl)-2-indolinone and analogues thereof for the treatment of disease
US5792783A (en) 1995-06-07 1998-08-11 Sugen, Inc. 3-heteroaryl-2-indolinone compounds for the treatment of disease
US5883113A (en) 1995-06-07 1999-03-16 Sugen, Inc. 3-(4'-Bromobenzylindenyl)-2-indolinone and analogues thereof for the treatment of disease
US5886020A (en) 1995-06-07 1999-03-23 Sugen, Inc. 3-(4'-dimethylaminobenzylidenyl)-2-indolinone and analogues thereof for the treatment of disease
US5834504A (en) 1995-06-07 1998-11-10 Sugen, Inc. 3-(2'-halobenzylidenyl)-2-indolinone compounds for the treatment of disease
US6765012B2 (en) 2001-09-27 2004-07-20 Allergan, Inc. 3-(Arylamino)methylene-1,3-dihydro-2H-indol-2-ones as kinase inhibitors
US6541504B1 (en) 2002-04-03 2003-04-01 Allergan Sales, Llc (3Z)-3-(2,3-dihydro-1H-inden-1-ylidene)-1,3-dihydro-2H-indol-2-ones as kinase inhibitors
WO2003106462A1 (en) 2002-06-14 2003-12-24 Pfizer Inc. Benzofused heteroaryl amide derivatives of thienopyridines useful as therapeutic agents, pharmaceutical compositions including the same, and methods for their use
US6747025B1 (en) 2002-11-27 2004-06-08 Allergan, Inc. Kinase inhibitors for the treatment of disease
WO2008063202A2 (en) 2006-01-30 2008-05-29 Array Biopharma Inc. Heterobicyclic thiophene compounds for the treatment of cancer
WO2009026717A1 (en) 2007-08-29 2009-03-05 Methylgene Inc. Inhibitors of protein tyrosine kinase activity
US20090118276A1 (en) 2007-11-02 2009-05-07 Wyeth Thienopyrimidines, thienopyridines, and pyrrolopyrimidines as b-raf inhibitors
WO2009070328A1 (en) 2007-11-26 2009-06-04 The Regents Of The University Of California Modulators of the epidermal growth factor receptor (egfr) pathway for use in the treatment or prevention of substance abuse
WO2009109035A1 (en) 2008-03-05 2009-09-11 Methylgene Inc. Inhibitors of protein tyrosine kinase activity
US20100081675A1 (en) 2008-09-26 2010-04-01 National Health Research Institutes Fused multicyclic compounds as protein kinase inhibitors
US8809534B2 (en) * 2009-09-03 2014-08-19 Allergan, Inc. Compounds as tyrosine kinase modulators

Non-Patent Citations (21)

* Cited by examiner, † Cited by third party
Title
Auerbach "Angiogenesis Assays: A Critical Overview" Clinical Chemistry 2003, 49, 32-40. *
Bolen, Joseph, Nonreceptor Tyrosine Protein Kinases, Oncogene, 1993, 2025-2031, 8.
Bundgaard, Communications to the Editor, A Novel Solution-Stable. Water-Soluble Prodrug Type for Drugs Containing a Hydroxyl or an NH-Acidic Group, Journal of Medicinal Chemistry, Dec. 1989, 2503-2507, 32 (12).
Campochiaro "The Complexity of Animal Model Generation for Complex Diseases" JAMA, Feb. 17, 2010-vol. 303, No. 7 657-658. *
Edelman "Corticosteroids inhibit VEGF-induced vascular leakage in a rabbit model of blood-retinal and blood-aqueous barrier breakdown" Exp. Eye. Res. 2005, 80, 249-258. *
Edwards et. al. Molecular genetics of AMD and current animal models. Angiogenesis 2007 10:119-132. *
International Search Report, 12/0312010, PCT/US2010/047816.
Jellinek, Derek et al, Inhibition of Receptor Binding by High-Affinity RNA Ligands to Vascular Endothelial Growth Factor, Biochemistry, 1994, 10450-10456, 33.
Johnson, et. al. "Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials." British Journal of Cancer 2001, 84, 1424-1431. *
Kendall, Richard et al, Inhibition of Vascular Endothelial Cell Growth Factor Activity by an Endogenously Encoded Soluble Receptor, Proc. Natl. Acad. Sci., Nov. 1993, 10705-10709, 90.
Kim, Jin et al, Inhibition of Vascular Endothelial Growth Factor-Induced Angiogenesis Suppresses Tumour Growth in Vivo, Nature, Apr. 29, 1993, 841-844, 362(6423).
Kinsella, J.L. et al, Protein Kinase C Regulates Endothelial Cell Tube Formation on Basement Membrane Matrix, Matrigel, Experimental Cell Research, 1992, 56-62, 199.
Kuenen "Efficacy and Toxicity of the Angiogenesis Inhibitor SU5416 as a Single Agent in Patients with Advanced Renal Cell Carcinoma, Melanoma, and Soft Tissue Sarcoma" Clinical Cancer Research vol. 9, 1648-1655, May 2003. *
Marian!, M. et al., Inhibition of Angiogenesis by FCE 26806, A Potent Tyrosine Kinase Inhibitor, Proceedings of the American Association for Cancer Research, Mar. 1994, Abstract 2268, 35.
Plowman, Gregory et al, Receptor Tyrosine Kinases as Targets for Drug Intervention, Drug News & Perspectives, Aug. 1994, 334-339, 7(6).
Raeppel S et al., Identification of a novel series of potent RON receptor tyrosine kinase inhibitors, Bioorganic & Medicinal Chemistry Letters, May 1, 2010, pp. 2745-2749, XP027012825, vol. 20, No. 9, Elsevier Ltd.
Silverman, Richard B., Prodrugs and Delivery Systems (Chapter 8), The Organic Chemistry of Drug Delivery and Drug Design and Drug Action Second Edition, 2004, 496-557.
Simone, Oncology: Introduction, Cecil Textbook of Medicine, 20th Edition, 1996 vol. 1, pp. 1004-1010. *
Takano, S. et al, Inhibition of Angiogenesis by a Novel Diaminoanthraquinone that Inhibits Protein Kinase C, Protein Kinases, Wednesday 1993, 2072-2077, Abstract 2 pages, 358a, 2076.
Trisha Gura "Cancer Models: Systems for Identifying New Drugs Are Often Faulty" Science Nov. 7, 1997: vol. 278. No. 5340, pp. 1041-1042. *
Wright, Paul et al, Inhibition of Angiogenesis in Vitro and in Ovo with an inhibitor of Cellular Protein Kinases, MDL 27032, Journal of Cellular Physiology, Sep. 1992, 448-457, 152(3).

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10221192B2 (en) 2009-09-03 2019-03-05 Allergan, Inc. Compounds as tyrosine kinase modulators

Also Published As

Publication number Publication date
US20160355527A1 (en) 2016-12-08
US20140336108A1 (en) 2014-11-13
US20180086774A1 (en) 2018-03-29
US10221192B2 (en) 2019-03-05

Similar Documents

Publication Publication Date Title
US8809534B2 (en) Compounds as tyrosine kinase modulators
US10221192B2 (en) Compounds as tyrosine kinase modulators
US11787802B2 (en) Dihydrobenzimidazolones for medical treatment
JP5188988B2 (en) Benzazole derivatives, compositions, and methods of use as Aurora kinase inhibitors
CA2760061C (en) Diamino heterocyclic carboxamide compound
US6747025B1 (en) Kinase inhibitors for the treatment of disease
US6699863B1 (en) Kinase inhibitors for the treatment of disease
US20060004084A1 (en) (3Z)-3-(2,3-dihydro-1H-inden-1-ylidene)-1,3-dihydro-2H-indol-2-ones as kinase inhibitors
US8906944B2 (en) Compounds as tyrosine kinase modulators
EP2733144B1 (en) Novel compound having parp inhibitory activity
US20240101552A1 (en) Carbonyl heterocyclic compound and application thereof
WO2004050621A2 (en) Indol derivatives and their use as kinase inhibitors

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8