Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS7153306 B2
Publication typeGrant
Application numberUS 10/001,937
Publication date26 Dec 2006
Filing date25 Oct 2001
Priority date25 Oct 2000
Fee statusPaid
Also published asCA2426688A1, CA2426688C, CN1627921A, CN100522091C, CN101589964A, DE60140558D1, EP1328203A2, EP1328203B1, US7927339, US8454620, US20020099385, US20070118143, US20080065020, US20110137319, WO2002034148A2, WO2002034148A3
Publication number001937, 10001937, US 7153306 B2, US 7153306B2, US-B2-7153306, US7153306 B2, US7153306B2
InventorsChristopher R Ralph, Richard W Layne, Paul M Sand, Robert M Scribner, Mark A Reiley
Original AssigneeKyphon Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Systems and methods for reducing fractured bone using a fracture reduction cannula
US 7153306 B2
Abstract
Systems and methods provide for the fixation of osteoporotic and non-osteoporotic long bones, especially Colles' fractures. A cannula having a circumferential opening is inserted into cancellous bone and directed such that the circumferential opening faces the fracture. The cannula is further adapted to receive an expandable structure, the expandable structure being inserted through the cannula until it is in registration with the circumferential opening. The expandable structure is expanded through the circumferential opening into cancellous bone and toward the fracture. The expansion of the expandable structure through the circumferential opening toward the fracture causes compression of cancellous bone and moves fractured cortical bone, thus creating a cavity proximal to the fracture. The cavity is then filled with a flowable bone filling material and the material allowed to harden.
Images(19)
Previous page
Next page
Claims(10)
1. A method comprising:
selecting a bone for treatment having cortical bone enclosing a cancellous bone volume;
providing a cannula including a side wall defining an internal bore aligned along an axis, a distal region, an opening in the side wall, the opening extending partially about the side wall and being elongated along the axis and having a distal terminus, and a bone engaging structure on the distal region of the cannula spaced, at least in part, distally of the distal terminus of the opening to anchor the distal region in cortical bone;
introducing the cannula distal region first into the bone;
placing the bone engaging structure into engagement with an interior surface of the cortical bone to anchor the distal region in cortical bone;
inserting an expandable structure through the internal bore of the cannula into registration with the opening; and
expanding the expandable structure from within the internal bore through the opening in the side wall into contact with cancellous bone.
2. A method according to claim 1, wherein expanding the expandable structure compacts cancellous bone.
3. A method according to claim 1, wherein expanding the expandable structure forms a cavity in cancellous bone.
4. A method according to claim 3 and further including flowing a volume of filling material into the cavity.
5. A method comprising:
selecting a bone for treatment having cortical bone enclosing a cancellous bone volume;
providing a cannula including a side wall defining an internal bore aligned along an axis, a distal region, a distal opening in the distal region communicating with the internal bore to accommodate passage of a guide pin, and an opening in the side wall extending partially about the side wall and being elongated along the axis;
introducing a guide pin into the bone;
introducing the cannula distal region first into the bone by passing the guide pin through the distal opening and the bore;
withdrawing the guide pin;
inserting an expandable structure through the internal bore of the cannula into registration with the opening in the side wall; and
expanding the expandable structure from within the internal bore through the opening in the side wall into contact with cancellous bone.
6. A method according to claim 5, wherein expanding the expandable structure compacts cancellous bone.
7. A method according to claim 5, wherein expanding the expandable structure forms a cavity in cancellous bone.
8. A method according to claim 7, and further including flowing a volume of filling material into the cavity.
9. A method comprising:
selecting a bone for treatment having cortical bone enclosing a cancellous bone volume;
providing a cannula including a side wall defining an internal bore aligned along an axis, a distal end, and an opening in the side wall, the opening extending partially about the side wall and being elongated along the axis and including a distal terminus, the internal bore terminating at the distal terminus;
introducing the cannula distal region first into the bone;
inserting an expandable structure through the internal bore of the cannula into registration with the opening;
expanding the expandable structure from within the internal bore through the opening in the side wall into contact with cancellous bone to form a cavity in cancellous bone; and
flowing a volume of filling material into the cavity.
10. A method according to claim 9, wherein expanding the expandable structure compacts cancellous bone.
Description
RELATED APPLICATION

This application is a continuation-in-part of U.S. application Ser. No. 10/617,976, filed Jul. 11, 2003, entitled “Systems and Methods for Placing Materials into Bone,” which is a divisional of U.S. application Ser. No. 09/804,107, filed Mar. 12, 2001, now U.S. Pat. No. 6,613,054, which is divisional of U.S. application Ser. No. 09/134,323, filed Aug. 14, 1998, now U.S. Pat. No. 6,241,734. This application also claims the benefit of U.S. provisional application Ser. No. 60/243,194 filed 25 Oct. 2000.

FIELD OF THE INVENTION

This invention relates to the treatment of bone conditions of the human and other animal body systems and, more particularly, to systems and methods for correcting such conditions.

BACKGROUND OF THE INVENTION

Bone fractures, particularly osteoporotic bone fractures, are common in older adults. Due to the nature of osteoporotic bone, standard methods of fracture fixation yield unsatisfactory results. Such methods cannot adequately place the broken fragments back to their pre-fracture state. For instance, with a non-osteoporotic bone fracture, common practice includes inserting rods, pins and/or screws into the bone in order to reduce the fracture and/or fix the fracture fragments to plates. Osteoporotic bone generally cannot support such a method. Another common method for non-osteoporotic bone fractures involves maintaining the bone in a cast for several weeks. Osteoporotic bone that has suffered a crush fracture, such as a Colles' fracture of the distal radius, will not heal properly if placed in a cast; the bone mechanics are altered such that the bone is shortened and/or subsides. Yet another non-osteoporotic fracture reduction method involves using an external fixation device. However, when used in elderly patients, the fixation pins may not remain within the weakened bone. Moreover, such a device typically increases the likelihood of infection at the treatment site. Further, because casts and/or an external fixation devices must be left in place for several weeks in order for the bone to heal, the lack of joint movement in the affected area often results in painful arthritis in the immobilized joints of the elderly patient.

Even where osteoporosis is not present, it is typically necessary to immobilize a fractured bone to allow the bone to properly heal. This often requires immobilization of the joints adjacent to the fractured bone—often for extended periods of time. However, such immobilization often causes the joints to degenerate over time. Often, such treatment can result in temporary or permanent loss of joint motion. At the very least, such immobilization of the joints requires extensive and often painful rehabilitation for an individual to recover the full range of their joint motion.

SUMMARY OF THE INVENTION

Because of the problems associated with treating distal radius fractures such as Colles' fractures, and other bone fractures similar thereto, there is a need for a method and apparatus that will improve the existing protocol for treating such fractures such as reducing the pain resulting from the fracture fixation method used, reducing the chance that an infection will occur at the site, improving the likelihood that the fracture will heal properly and minimizing degeneration of the adjacent joints and allows for sooner resumption of activity. The present invention provides apparatus and a method of fracture reduction which satisfies this need.

This invention provides a system that fixes or reduces osteoporotic and non-osteoporotic fractures in human and other animal body systems. Moreover, by immediately reducing and/or reinforcing the fractured bone, thereby rendering the bone capable of bearing limited loads, the present system promotes healing of the fractured bone while minimizing degeneration of the adjacent joints. It is particularly well suited for fractures of long bones such as the human distal radius.

One aspect of the invention provides a tool for establishing a percutaneous path into bone. The tool is a cannula having a side wall defining an internal bore aligned along an axis. The cannula has a distal end. A circumferential opening is defined in the side wall. The circumferential opening has a distal terminus. The circumferential opening extends partially about the side wall and is elongated along the axis. The circumferential opening is adapted to accommodate passage of an expandable structure from within the bore. In one embodiment, the bore is solid between the distal terminus of the circumferential opening and the distal end of the cannula.

In an alternate embodiment of the above described tool, the bore is open between the distal terminus of the circumferential opening and the distal end of the cannula. The cannula has a distal opening in the distal end communicating with the bore. The opening in the distal end can accommodate passage of a guide pin.

In an alternate embodiment of the above described tool, the cannula desirably has a surface on its distal end to anchor the distal end in bone.

Another aspect of the invention provides an assembly for treating bone, including a cannula as described above. The cannula has a distal opening in the distal end communicating with the bore. The opening in the distal end can accommodate passage of a guide pin. The assembly also includes an expandable structure. The expandable structure is adapted for insertion through bone into the cannula and expansion through the circumferential opening.

Another aspect of the invention provides an assembly for treating bone, including a cannula as described above. Desirably, the bore is solid between the distal terminus of the circumferential opening and the distal end of the cannula. The assembly also includes an expandable structure. The expandable structure is adapted for insertion through bone into the cannula and expansion through the circumferential opening.

Another aspect of the invention provides an assembly for treating bone, including a cannula as described above. Desirably, the cannula has a surface on its distal end to anchor the distal end in bone. The assembly also includes an expandable structure. The expandable structure is adapted for insertion through bone into the cannula and expansion through the circumferential opening.

Another aspect of the invention provides an assembly as described above. Desirably, the expandable structure has radio opaque markers. The markers allow one to locate the expandable structure within a circumferential opening in a cannula.

Another aspect of the invention provides a method for treating bone. The method includes providing a cannula and inserting the cannula into cancellous bone. The method also includes inserting an expandable structure through the cannula until the structure is in registration with a circumferential opening in the cannula. The method further includes expanding the expandable structure through the circumferential opening into contact with cancellous bone.

Another aspect of the invention provides a method for treating bone, including a step of expanding an expandable structure. The expansion compacts cancellous bone.

Another aspect of the invention provides a method for treating bone, including a step of compacting cancellous bone. The compaction of cancellous bone forms a cavity.

Another aspect of the invention provides a method for treating bone, including a step of conveying a material into a cavity.

Another aspect of the invention provides a method for treating bone, including a step of expanding an expandable structure such that the expansion moves fractured cortical bone.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an anatomic view that shows bones of a human forearm;

FIG. 2 is an anatomic view that shows bones of the forearm including an ulna and a fractured distal radius;

FIG. 3 is an enlarged section view of the distal radius showing cancellous bone and cortical bone in a fractured condition;

FIG. 4 is a plane view showing a kit containing a system of instruments used to treat bones and that embodies features of the invention;

FIG. 5 is a perspective view of an obturator instrument that is contained in the kit shown in FIG. 4;

FIG. 6 is a perspective view of a percutaneous cannula that is contained in the kit shown in FIG. 4;

FIG. 7 is a perspective view of a drill bit instrument that is contained in the kit shown in FIG. 4;

FIG. 8 is a perspective view of a fracture reduction cannula that is contained in the kit shown in FIG. 4, showing a distal end, a proximal end, and a circumferential opening;

FIG. 8A is a perspective view of an alternate embodiment of a fracture reduction cannula constructed in accordance with the teachings of the present invention;

FIG. 8B is a perspective view of another alternate embodiment of a fracture reduction cannula constructed in accordance with the teachings of the present invention;

FIG. 9 is a side view of the fracture reduction cannula of FIG. 8 showing an end interior bore therethrough;

FIG. 10 a is an enlarged view of the distal end of the fracture reduction cannula, the distal end being solid;

FIG. 10 b is an enlarged view of the distal end of the fracture reduction cannula of FIG. 8, the distal end being open to accommodate passage of a guide pin;

FIG. 11 is a perspective view of an instrument carrying an expandable structure, the instrument being contained in the kit shown in FIG. 4;

FIG. 12 is an enlarged perspective view of an instrument, showing the expandable structure in an unexpanded state and, in broken lines, the expandable structure in an expanded state;

FIG. 13 is a perspective view of a tamp that is contained in the kit shown in FIG. 4;

FIG. 14 is a perspective view of a handle that is contained in the kit shown in FIG. 4; showing recesses therein;

FIG. 15 is a perspective view showing the obturator instrument inserted into the handle, the handle being grasped by a hand;

FIG. 15 a is a side section view showing the obturator instrument inserted into the handle and advanced to the distal radius;

FIG. 16 is a side section view showing the percutaneous cannula inserted over the obturator instrument and advanced to the distal radius;

FIG. 17 is a side section view showing the drill bit instrument within the percutaneous cannula and advanced to the distal radius, and further showing the distal radius fracture and cancellous bone;

FIG. 18 is a side section view showing the fracture reduction cannula within the percutaneous cannula and advanced into the cancellous bone of the distal radius, and further showing the circumferential opening facing the fracture;

FIG. 19 is an enlarged view showing the fracture reduction cannula seated within cortical bone;

FIG. 20 is an enlarged view showing the fracture reduction cannula seated within cortical bone and containing the unexpanded expandable structure;

FIG. 21 is an enlarged view showing the fracture reduction cannula seated within cortical bone, containing the expanded expandable structure, and compressing cancellous bone and/or moving cortical bone;

FIG. 21A is an enlarged view showing a fracture reduction cannula seated within cortical bone, with the expanded expandable structure compressing cancellous bone and/or moving cortical bone and creating a cavity which extends across a fracture line in the targeted bone;

FIG. 22 is an enlarged view showing the fracture reduction cannula seated within cortical bone and containing the expanded expandable structure, showing compressed cancellous bone, displaced cortical bone, and a reduced fracture, and further showing a pin placed through the distal radius and into the ulna;

FIG. 22A is an enlarged view showing a fracture reduction cannula seated within cortical bone and containing the expanded expandable structure, showing compressed cancellous bone, displaced cortical bone, a reduced fracture, and a cavity extending across a fracture line in the cortical bone, and further showing a pin placed through the distal radius and into the ulna;

FIG. 23 is a top view showing a patient's forearm on a rolled towel, with horizontal finger traps on the patient's fingers, the instrument inserted through the handle and into the percutaneous cannula, with the fraction reduction cannula hidden from view, and the pin inserted into the patient's wrist;

FIG. 24 is an enlarged view showing a cavity created by expansion of the expandable structure in the distal radius, the pin in place, the fracture reduction cannula, and the cavity ready to receive a bone filling material;

FIG. 25 is an enlarged view showing the filling material beginning to fill the cavity;

FIG. 26 is an enlarged view showing the tamp urging the filling material fully into the cavity;

FIG. 27 is an enlarged view showing the filled cavity with the fracture reduction cannula and tamp removed; and

FIG. 28 is an enlarged view showing an alternate embodiment of the fracture reduction cannula with a guide pin placed therethrough.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The invention may be embodied in several forms without departing from its spirit or essential characteristics. The scope of the invention is defined in the appended claims, rather than in the specific description preceding them. All embodiments that fall within the meaning and range of equivalency of the claims are therefore intended to be embraced by the claims.

The preferred embodiment describes improved systems and methods that embody features of the invention in the context of treating bones. This is because the new systems and methods are advantageous when used for this purpose. However, aspects of the invention can be advantageously applied for diagnostic or therapeutic purposes in other areas of the body.

The new systems and methods will be more specifically described in the context of the treatment of long bones such as the human distal radius. Of course, other human or animal bone types can be treated in the same or equivalent fashion.

I. Anatomy of the Radius

The human forearm consists of two bones, the radius and the ulna. As shown in FIGS. 1 and 2, the radius 20 is a long bone that is situated on the thumb side of the forearm, while the ulna 26 is located at the little finger side. The radius 20 lies side by side with the ulna 26, and it exceeds the ulna 26 both in length and in size.

The upper, or proximal end 22 of the radius 20 is small and articulates with a part of the elbow joint, including the proximal ulna 28. The distal end 24 of the radius 20 is large and articulates with two bones of the wrist, or carpus, known as the lunate 21 and scaphoid 27 bones. The inner, or medial side 25 of the distal radius 24 contains an ulnar notch 32 that articulates with the ulna 26.

II. Bone Fractures

The systems and methods of the present invention are especially suited for treating fractures of long bones. One type of bone fracture that may be so treated is known as a Colles' fracture or transverse wrist fracture. As shown in FIG. 2, such a fracture 34 generally occurs less than one inch from the distal end 24 of the radius 20. Colles' fractures are commonly noted in children and the elderly where the person tries to break or stop a fall by using his or her hands and arms. Colles' fractures in children are often associated with sports such as skateboarding and in-line skating. In the elderly, Colles' fractures are commonly caused by osteoporosis and/or in connection with a fall.

Osteoporosis is a disease of the bone that is most commonly found in the middle-aged and elderly, particularly women. It is characterized by a gradual loss of a type of bone tissue known as cancellous bone 36. As shown in FIG. 3, cancellous bone 36, also referred to as trabecular bone, is a spongy bone tissue located within the harder outer or cortical bone. Cancellous bone 36 comprises most of the bone tissue of the extremities of long bones such as the radius 20.

In contrast to cancellous bone 36, cortical bone 38 tissue is much harder and denser. Cortical bone 38 is layered over cancellous bone 36, and provides a protective layer and support for long bones such as the radius 20, as shown in FIGS. 1 and 2. At the ends of such bones, however, the cortical bone 38 layer becomes thinner. Where osteoporosis has significantly weakened the cancellous bone 36, such regions at the ends of long bones become especially prone to fracture and/or collapse.

It may be indicated, due to disease or trauma, to reduce fractured cortical bone 38 and/or compress cancellous bone 36 within long bones such as the radius 20. The compression, for example, can be used to form an interior cavity 35, which receives a filling material 99, e.g., a flowable material that sets to a hardened condition, such as poly(methylmethacrylate), as well as a medication, or combinations thereof, to provide improved interior support for cortical bone 38 or other therapeutic functions, or both. The compaction of cancellous bone 36 also exerts interior force upon cortical bone 38, making it possible to elevate or push broken and compressed bone back to or near its original pre-fracture, or other desired, condition.

III. The Instruments

FIG. 4 shows instruments, arranged as a kit 200, which are usable in association with each other to reduce fractured bone. The number and type of instruments can vary. FIG. 4 shows seven representative instruments, each having a different size and function.

In FIG. 4, the kit 200 includes an obturator instrument 12 for penetrating soft tissue and bone; a percutaneous cannula 14 that functions as a guide sheath; a drill bit instrument 16 that is used for drilling into bone; a fracture reduction cannula 18 used in reducing fractures and that is inserted into bone and designed to receive an expandable structure; a bone compaction instrument 80 that functions to deliver a filling material 99 into a cavity 35 in bone and that carries an expandable structure 86 that may be expanded in bone; a tamp 81 functions to urge residual bone filling material into bone; and a handle 13 with recesses that receives instruments 12, 14, 16 and 18.

Instruments 12, 14, 16, and 18 share some common features, although they are intended, in use, to perform different functions. Instruments 12, 14, 16, and 18 each comprise an elongated, cylindrical body 40 having a proximal end 42 and a distal end 44. Instruments 12, 14, 16, and 18 are each made of a rigid, surgical grade plastic or metal material.

A. The Obturator Instrument

The first instrument 12 functions as an obturator. As shown in FIG. 5, its distal end 44 is tapered to present a penetrating surface 50. In use, the surface 50 is intended to penetrate soft tissue and/or bone in response to pushing or twisting forces applied by the physician at the proximal end 42. In a preferred embodiment, the proximal end 42 of the obturator instrument 12 mates with a handle 13, to be described in detail later.

The proximal end 42 of the obturator instrument 12 presents a flanged surface 52. The flanged surface 52 is designed to fit securely into a recess in the handle 13, such that pushing or twisting forces applied to the proximal end 42 of the obturator 12 instrument will not displace the obturator instrument 12. The flanged surface 52 tapers from a larger outer diameter to a smaller outer diameter in the direction of the proximal end 42. The flanged surface 52 includes an array of circumferentially spaced teeth 54 with intermediate flutes 56.

An interior bore 60 extends through the obturator instrument 12 from the distal end 44 to the proximal end 42. Desirably, the interior bore 60 is sized to accommodate a conventional surgical guide pin 108 component to aid in its deployment, as will be described in greater detail later.

The obturator instrument 12 has an outer surface 142 that is sized such that one may slide a percutaneous cannula 14 over the obturator instrument 12 as described below.

B. The Percutaneous Cannula

The second instrument 14 functions as a percutaneous cannula or guide sheath. It also serves to protect soft tissue and nerves, ligaments, muscle and vasculature from the use of a drill bit instrument 16, which will be described in greater detail later.

As shown in FIG. 6, the percutaneous cannula 14 is somewhat larger in diameter than, and is not as long as, the obturator instrument 12. In one embodiment, the cannula 14 is approximately 2 inches long, although it could be various other lengths, depending upon the thickness of the patient's soft tissue at the surgical site. Desirably, the percutaneous cannula 14 is made of metal, and contains markings 120 along its outer surface 142 to indicate the depth at which it is placed into a patient's distal radius 24.

The proximal end 42 of the percutaneous cannula 14 presents a tapered flange 52, as FIG. 6 shows. The flanged surface 52 is designed to fit securely into a recess in the handle 13, such that forces applied to the proximal end 42 of the percutaneous cannula 14 will not displace the percutaneous cannula 14. The tapered flange 52 changes from a larger diameter to a smaller diameter in the direction of the proximal end 42. The tapered flange 52 of the percutaneous cannula 14 also includes an array of circumferentially spaced teeth 54 with intermediate flutes 56. The form and orientation of the teeth 54 and flutes 56 on the percutaneous cannula 14 correspond to the form and orientation of teeth 54 and flutes 56 on the fracture reduction cannula 18.

As shown in FIG. 6, the percutaneous cannula 14 includes an interior bore 60 that extends from its distal end 44 to its proximal end 42. Desirably, the interior bore 60 is sized to accept the obturator instrument 12. The size of the interior bore 60 permits a physician to slide and rotate the percutaneous cannula 14 relative to the obturator instrument 12, and vice versa, as will be described in greater detail later.

The distal end 44 of the percutaneous cannula 14 presents an end surface 62. Desirably, the surface of the distal end 44 is designed to penetrate soft tissue. In use, the end surface 62 of the percutaneous cannula 14 is intended to penetrate soft tissue surrounding the obturator instrument 12, in response to pushing or twisting forces applied at the proximal end 42. If desired, the end surface 62 can incorporate one or more teeth (not shown) which anchor the cannula 14 to the surface of the targeted bone.

C. The Drill Bit Instrument

The third instrument functions as a drill bit. As shown in FIG. 7, The drill bit instrument 16 has generally the same physical dimensions as the obturator instrument 12. Like the obturator instrument 12, the drill bit instrument 16 is intended, in use, to fit for sliding and rotational movement within the interior bore 60 of the percutaneous cannula 14.

The distal end 44 of the drill bit instrument 16 includes machined cutting edges 64, as shown in FIG. 7. In use, the cutting edges 64 are intended to penetrate hard tissue in response to rotation and longitudinal load forces applied at the proximal end 42 of the drill bit instrument 16.

As further shown in FIG. 7, the proximal end 42 presents a tapered flange 52, substantially identical to the flange 52 on the obturator instrument 12, as FIG. 5 shows. The flanged surface 52 is designed to fit securely into a recess in the handle 13, such that forces applied to the proximal end 42 of the drill bit instrument 14 will not displace the drill bit instrument 14. Like the obturator instrument 12, the tapered flange 52 changes from a larger diameter to a smaller diameter in the direction of the proximal end 42. The tapered flange 52 of the drill bit instrument 16 also includes an array of circumferentially spaced teeth 54 with intermediate flutes 56. The form and orientation of the teeth 54 and flutes 56 on the drill bit instrument 16 correspond to the form and orientation of the teeth 54 and flutes 56 on the obturator instrument 12.

D. The Fracture Reduction Cannula

The fourth instrument functions as a fracture reduction cannula 18. As shown in FIG. 8, the fracture reduction cannula 18 is somewhat smaller in diameter than, and is longer than, the percutaneous cannula 14. In one embodiment, the fracture reduction cannula 18 is approximately 3˝ inches in length, although it could be various other lengths depending on the size of the patient and the desired location within the targeted bone. Like both the obturator instrument 12 and the drill bit instrument 16, the fracture reduction cannula 18 is intended, in use, to fit for sliding and rotational movement within the interior bore 60 of the percutaneous cannula 14.

The proximal end 42 of the fracture reduction cannula 18 presents a flanged surface 52. The flanged surface 52 is designed to fit securely into a recess in the handle 13, such that pushing or twisting forces applied to the proximal end 42 of the obturator 12 instrument will not displace the fracture reduction cannula 18. Like the percutaneous cannula 14, the flanged surface 52 of the fracture reduction cannula 18 tapers from a larger outer diameter to a smaller outer diameter in the direction of the proximal end 42. The flanged surface 52 includes an array of circumferentially spaced teeth 54 with intermediate flutes 56.

The fracture reduction cannula 18 is sized to fit within the interior bore 60 of the percutaneous cannula 14. The size of the interior bore 60 permits a physician to slide and rotate the fraction reduction cannula relative to percutaneous cannula 14, and vice versa, as will be described in greater detail later.

As further shown in FIG. 8, the fracture reduction cannula 18 includes a side wall 66 that defines an interior bore 68 that extends from the distal end 44 of the fracture reduction cannula 18 to its proximal end 42. The interior bore 68 is adapted to allow passage of, among other things, an expandable structure 86. In a preferred embodiment, the distal end 44 of the interior bore 68 is solid, as shown in FIG. 10 a. In an alternate embodiment, the distal end 44 of the bore 68 is not solid, but rather, it is open to accommodate passage of an instrument such as a guide pin 108, as shown in FIG. 10 b. As another alternative, the distal end of the bore 68 could be hollow, such that a portion of the expandable structure could extend into the distal end 44 of the cannula 18.

The fracture reduction cannula 18 further includes a circumferential opening 70 in the side wall 66. In one embodiment, the circumferential opening 70 extends approximately one-half inch in length along its longitudinal axis, although the size of this opening could vary depending upon the dimensions of the targeted bone and the size of the expandable structure. The circumferential opening 70 is sized to accommodate an expandable structure 86. The circumferential opening 70 desirably also allows a filling material 99 to be placed near and/or into the fracture site.

FIG. 8A depicts one alternate embodiment of a fracture reduction cannula 18A constructed in accordance with the teachings of the present invention. Because many of the disclosed components are similar to those previously described, like reference numerals will be used to denote similar components. In this embodiment, the distal end 44A of the cannula 18A is not solid, but rather extends along the side wall 66A, with one or more longitudinally extending teeth 120 disposed at the distal end 44A.

E. The Handle

The handle 13, which can be made from a molded or cast rigid plastic or metal material, is more fully described in U.S. application Ser. No. 09/014,229, filed on Jan. 27, 1998, the disclosure of which is incorporated herein by reference. As shown in FIG. 14, the handle has a smooth upper side 17. Its lower side 29 contains recesses 15 and 19. The flanged surfaces of the obturator instrument 12, the drill bit instrument 16, the percutaneous cannula 14, and the fracture reduction cannula 18 mate with the handle 13. Recess 15 is adapted to accept the obturator 12 and the drill bit instrument 16 while recess 19 is adapted to accept the fracture reduction cannula 18. If desired, another recess can be provided (not shown) sized to accept the percutaneous cannula 14 in a similar manner.

F. The Bone Compaction and/or Displacement Instrument

FIG. 11 shows an instrument 80 for accessing bone for the purpose of compacting cancellous bone 36 and/or displacing cortical bone 38. The instrument 80, and instructions for assembling same, are more fully set out in U.S. application Ser. No. 09/420,529, filed on Oct. 19, 1999, incorporated herein by reference.

The instrument 80 includes a catheter tube assembly 82, as shown in FIG. 11. The distal end 84 of the catheter tube assembly 82 carries an expandable structure 86. In use, the expandable structure 86 is deployed and expanded inside bone, e.g., in the radius 20 as shown in FIGS. 20, 21, and 22, to compact cancellous bone 36 and/or displace cortical bone 38, as will be described later.

As further shown in FIG. 11, the instrument 80 includes an outer catheter body 88, and an inner catheter body 90 which extends through the outer catheter body 88. The proximal ends 92 of the outer 88 and inner 90 catheter bodies are coupled to a y-shaped adaptor/handle 94. The y-shaped adaptor/handle 94 carries a first port 96 and a second port 98 at its proximal end 92. The first port 96 is adapted to be coupled with an inflation syringe 101, the syringe 101 in the present case being used to deliver a pressurized liquid into the expandable structure 86. The second port 98 is adapted for insertion of a stiffening stylet (not shown) to facilitate insertion of the distal end 84 of the instrument 80.

As FIG. 11 shows, the expandable structure 86 is coupled at its proximal end 95 to the distal end 93 of the outer catheter body 88. Likewise, the expandable structure 86 is coupled at its distal end 87 to the distal end 84 of the inner catheter body 90.

The outer catheter body 88 defines an interior bore, through which the inner catheter body 90 extends. The interior bore, in use, conveys a pressurized liquid, e.g., a radio-opaque solution such as CONRAY® solution, or another fluid into the expandable structure 86 to expand it.

The material from which the expandable structure 86 is made should possess various physical and mechanical properties to optimize its functional capabilities to compact cancellous bone 36, and to move cortical bone 38. Desirably, the expandable structure 86 has the capability to move cortical bone 38 from a fractured condition to a pre-fractured or other desired condition, or both. The three most important properties of expandable structure 86 are the ability to expand its volume; the ability to deform in a desired way when expanding and assume a desired shape inside bone; and the ability to withstand abrasion, tearing, and puncture when in contact with cancellous bone 36.

The desired properties for the structure material, and the description for creating a pre-formed structure, are more fully set out in U.S. application Ser. No. 09/420,529, filed on Oct. 19, 1999.

As shown in FIG. 11, the expandable structure 86 carries radio-opaque markers 91 located at a distal end 102 and at a proximal end 104 of segmented shaped regions 100 of the expandable structure 86. The radio opaque markers 91 function to indicate, under fluoroscopic or other real-time monitoring, the location of the segmented shaped regions 100 in relation to the circumferential opening 70 of the fracture reduction cannula 18.

FIG. 12 illustrates the expandable structure in a collapsed state (solid lines) and an expanded state (broken lines).

G. The Pin

One or more conventional smooth Steinman pins 130 or Kirschner (“K”) wires may be provided to assist in aligning and/or stabilizing fracture fragments, as will be described in greater detail later.

H. The Filling Material Instruments

The filling material 99 instruments include a tamp 81 as shown in FIG. 13, and a standard syringe. The filling material 99 is introduced through the syringe and into the fracture reduction cannula 18. Residual filling material 99 may be urged through the fracture reduction cannula 18 by employing the tamp 81, as will be described in greater detail later.

I. The Kit

As shown in FIG. 4, a kit 200 is provided, including instruments 12, 13, 14, 16, 18, 80, and 81. The kit 200 and the instruments contained therein are sterile and are sealed until an instance of use.

IV. Illustrative Use of the System

The size and shape of the access tools and/or expandable structure(s) 86 to be used, and the amount of bone to be moved, are desirably selected by the physician, taking into account the morphology and geometry of the site to be treated. The shape of the joint, the bones and soft tissues involved, and the local structures that could be harmed if moved inappropriately, are generally understood by medical professionals using textbooks of human anatomy along with their knowledge of the site and its disease and/or injury. The physician is also desirably able to select the desired shape and size of the expandable structure 86, the cavity 35 and their placement based upon prior analysis of the morphology of the targeted bone and joint using, for example, plain film x-ray, fluoroscopic x-ray, or MRI or CT scanning. The shape, size and placement are desirably selected to optimize the strength and ultimate bonding of the fracture relative to the surrounding bone and/or tissue of the joint.

In a typical procedure, a patient is placed under local anesthesia, although general anesthesia may instead be employed. Where a fracture 34 is that of a distal radius 24, a physician makes an incision of approximately one (1) centimeter on the radial aspect of the distal radius 24. In an alternate embodiment, one may access the distal radius 24 by an approach through the ulna 26. The distance between the incision and the fracture 34 is approximately 0.5 centimeter. Of course, while the present procedure is described in the context of a minimally invasive surgery, various other surgical approaches, including percutaneous, subcutaneous, non-open, partially open and/or completely open surgical approaches may be utilized in accordance with the teachings of the present invention.

After making the incision, the physician spreads the soft tissue by using a small clamp designed to avoid injury to nearby nerves, muscles, and vasculature. The physician then acquires the obturator instrument 12 and the handle 13. The obturator instrument 12 may have at its proximal end 42 a flanged surface 52 that mates with a recess 15 within the handle 13. Use of the handle 13 with the obturator instrument 12 will produce axial as well as radial movement, as shown in U.S. application Ser. No. 09/014,229, filed on Jan. 27, 1998. The physician then fits the proximal end 42 of the obturator instrument 12 into recess 15 in the handle 13, as shown in FIG. 15.

The physician next twists the handle 13 while applying longitudinal force to the handle 13. In response, the tapered surface of the obturator instrument 12 rotates and penetrates soft tissue through the incision, as shown in FIG. 15 a. The physician may also tap the handle 13, or otherwise apply appropriate additional longitudinal force to the handle 13, to advance the obturator instrument 12 through soft tissue.

Under fluoroscopic monitoring or other real-time monitoring, the physician advances the obturator instrument 12 through soft tissue down to the distal radius 24, as FIG. 15 a shows. The obturator instrument 12 is inserted distal to proximal from the radial side of the radius 20 to the ulnar side of the radius 20. The obturator instrument 12 is introduced into the radius 20. Desirably, the obturator instrument 12 is introduced at an angle between minus 10 degrees and 45 degrees to the radio-carpal joint. More desirably, the obturator instrument 12 is introduced at an angle between zero degrees and 30 degrees to the radio-carpal joint. Most desirably, the obturator instrument 12 is introduced at an angle equal to the angle of the radiocarpal joint, i.e., approximately 23 degrees. Of course, if desired, the physician may utilize various other approach paths to access the bone, including a dorsal approach.

The physician next removes the handle 13 from the obturator instrument 12 and places the proximal end 42 of the percutaneous cannula 14 in a recess 19 in the handle 13. The physician slides the percutaneous cannula 14 over the obturator instrument 12, distal end 44 first. The physician then twists the handle 13 while applying longitudinal force to the handle 13, in order to seat the percutaneous cannula 14 against and/or into the external cortical bone 38, as shown in FIG. 16. Once the percutaneous cannula 14 is seated in the cortical bone 38, the obturator instrument 12 is removed, proximal end 42 first.

In an alternate embodiment, instead of using the obturator instrument 12 to access external cortical bone 38, the physician may instead insert a conventional spinal needle, the needle having an outer sheath and a stylus, into the bone. Upon puncturing the bone, the physician removes the stylus and inserts a guide pin 108 through the outer sheath. The sheath is then removed and the fracture reduction cannula 18 is deployed over the guide pin 108. The physician then fits the proximal end 42 of the percutaneous cannula 14 into a recess 19 in the handle 13 and slides the assembly, distal end 44 first, over the fracture reduction cannula 18, as shown in FIG. 28. Subsequently, the guide pin 108 is removed, proximal end first.

After removing the obturator instrument 12, or the guide pin 108 as in the case of the alternate embodiment described above, the handle 13 is removed from the percutaneous cannula 14. As shown in FIG. 15, the proximal end 42 of a drill bit instrument 16 is then placed in a recess in the handle 13. The preferred size of the drill bit 16 is 3.2 millimeters. The physician slides the drill bit assembly distal end 44 first through the bore 60 of the percutaneous cannula 14. Using manual pressure, the drill bit instrument 16 is advanced down to and into the distal radius 24. As an alternate embodiment, instead of using manual pressure, the physician could connect the proximal end 42 of the drill bit instrument 16 to a conventional motor-driven drill. The physician directs the drill bit instrument 16 to penetrate the cortical bone 38 and the cancellous bone 36 of the distal radius 24, as shown in FIG. 17.

After drilling through cortical bone 38 and into cancellous bone 36, the physician removes the drill bit instrument 16 from the handle 13. The fracture reduction cannula 18 is then inserted, distal end 44 first, into the bore of the percutaneous cannula 14, as shown in FIG. 18. The distal end 44 of the fracture reduction cannula 18 extends beyond the distal end 44 of the percutaneous cannula 14. In an alternate embodiment, the physician may at this point remove the percutaneous cannula 14, leaving only the fracture reduction cannula 18 in place. In one embodiment, it is preferred to employ a fracture reduction cannula 18 that has screw threads 71 on its distal end 44 as shown in FIG. 9, thereby enabling the fracture reduction cannula 18 to be anchored to an interior surface of cortical bone 38 in response to rotation of the fracture reduction cannula 18, e.g., by using the handle 13. In an alternative embodiment (see FIG. 8B), the physician may employ a fracture reduction cannula 18 that has a blunt, tapered distal end 44 instead of screw threads 71 on the distal end 44. If such a fracture reduction cannula 18 is employed, the physician may choose to drill a hole in cortical bone 38 in which to seat the blunt, tapered distal end 44. Desirably, if the distal end 44 is blunt and tapered, the fracture reduction cannula 18 may be adapted to rotate independently from the distal end 44. As another alternative, a cannula 18A as depicted in FIG. 8A could be inserted into the targeted bone as previously described, with the teeth 120 anchoring the distal end 44A of the cannula 18A to the cortical wall (not shown) of the targeted bone region. With this embodiment, it would not be necessary to drill a hole through the cortical wall to anchor the distal end 44 a of the cannula 18A.

In another embodiment, the access path can be made directly through the one or more fracture lines in the targeted bone. Such an arrangement minimizes trauma to the fractured bone (by reducing additional damage to healthier sections of the bone) and permits the creation of a cavity 35 which extends to each side of the fracture line.

The fracture reduction cannula 18 is placed into the cancellous bone 36 of the distal radius 24 such that the circumferential opening 70 is facing towards the fracture, as shown in FIG. 18. The fracture reduction cannula 18 is checked radiologically to ensure that the circumferential opening 70 is contained entirely within the cancellous bone 38 of the radius 20. In one embodiment, one or more markings (not shown) can be provided on the proximal end 42 of the cannula 18, allowing the physician to visually gauge the orientation of the cannula 18. In one embodiment, the fracture reduction cannula 18 is approximately 3 to 4 inches in length.

The physician can now acquire the catheter tube assembly 82 for placement into the bore 68 of the fracture reduction cannula 18. In one embodiment, the uninflated expandable structure 86 carried by the catheter tube measures 12 millimeters in length from its proximal end to its distal end, although structures 86 of varying lengths could be used, including expandable structures 86 of 15 mm or 20 mm, depending upon the size of the patient, the size and location of the fracture 34, the size of the opening 70 and the cavity 35 size and shape and/or displacement of bone desired. The catheter tube assembly 82 is now introduced into the bore 68 of the fracture reduction cannula 18.

The physician guides the catheter tube assembly 82 through the fracture reduction cannula 18 until the expandable structure 86 enters and lies adjacent to the circumferential opening 70 of the fracture reduction cannula 18, as shown in FIG. 20. In one embodiment, the distal end 44 of the fracture reduction cannula 18 is solid, as shown in FIG. 9, thus preventing an expandable structure 86 from emerging from the distal end 44 of the fracture reduction cannula 18. The placement of the expandable structure 86 within the circumferential opening 70 can be determined by radio opaque markers 91 located on the expandable structure 86, as shown in FIG. 11. The expandable structure 86 is passed into bone through the fracture reduction cannula 18 in a normally collapsed and non-inflated condition. The expandable structure 86 is now aligned with cancellous bone 36.

The physician, after verifying that the expandable structure 86 is adjacent the circumferential opening 70, conveys a pressurized fluid, such as a radio opaque fluid, through the catheter tube assembly 82 and into the expandable structure 86. The expandable structure 86 now expands into cancellous bone 36, as shown in FIG. 21. The fracture reduction cannula 18 desirably directs the expanding structure 86 towards the fracture 34. Progress of the expandable structure 86 is evaluated both on A-P, or anterior-posterior, and lateral x-rays. Preferably, the A-P x-ray is used until the distal end 24 of the radius 20 begins to move, at which point both A-P and lateral views are obtained. The pressurized fluid is used to inflate the expandable structure 86 and expand it through the circumferential opening 70 in order to compress cancellous bone 36 and/or displace cortical bone 38. The expandable structure 86 will desirably form an interior cavity 35 in the cancellous bone 36, as shown in FIG. 24. Desirably, the compressed cancellous bone 36 will seal any fractures 34 and/or cracks in the targeted bone through which the filling material 99, to be described later, can flow out of the targeted treatment area.

The compression of cancellous bone 36, as shown in FIG. 22, can also exert an interior force upon the surrounding cortical bone 38. The interior force will elevate or push broken and compressed bone back to or near its original prefracture, or other desired, condition. Once the fracture 34 is well aligned, it is preferred to introduce one or more smooth “Steinman” pins 130 or K-wires proximal to the joint surface of the radius 20 and distal to the inflated expandable structure 86. The pins 130 can be placed across the distal end 24 of the radius 20 and into the distal ulna 30, as shown in FIGS. 22 and 2427. Alternatively, the pin(s) 130 can be secured into the radius 20 without penetrating the ulna 26. The pin 130 desirably prevents the fracture 34 from displacing upon further manipulation of the wrist and/or contraction of the expandable structure 86. If desired, additional pins 130 can be used to manipulate and/or secure other cortical bone fragments, or can be used to further secure a single bone fragment.

In one or more alternate embodiments, the pins 130 can be introduced once a bone fragment has been displaced to a prior position, but prior to completion of the inflation steps. For example, where inflation of the balloon displaces a fragment to a desired position, but addition cavity creation is desired, the fragment may be secured in position using one or more pins 130, and then the balloon can be further inflated to create a larger cavity 35 and/or compress additional cancellous bone 36.

As shown in FIG. 23, in one preferred embodiment, the patient's fingers of the affected arm can be placed in horizontal finger traps 132, with the patient's palm facing the treatment table. A rolled towel 133 may be placed under the patient's wrist. By grasping the finger traps 132 and gently pulling on them, the physician can extend the patient's arm and thus reduce any pressure that may be exerted at the fracture site. This approach potentially allows for an improved correction of the volar tilt (15 degrees) of the distal radius 24. If desired, this can be accomplished prior to, during or after fracture reduction has been accomplished.

Once the interior cavity 35 is formed and any desired pins 130 set in place, the expandable structure 86 is collapsed and the catheter tube assembly 82, with the collapsed expandable structure 86, is removed,. As shown in FIG. 27, the cavity 35 is now in a condition to receive a filling material 99 through the fracture reduction cannula 18. The filling material 99 can be any of a number of available bone filling materials, which include, but are not limited to, resorbable and/or remodelable bone cements, calcium phosphates, allograft tissue, autograft tissue, poly(methylmethacrylate) or Norian SRS® bone matrix. The filling material may be introduced into the fracture reduction cannula by means of a syringe (not shown). The filling material 99 progresses through the fracture reduction cannula 18 and into the circumferential opening 70 of the fracture reduction cannula 18. The filling material 99 desirably provides improved interior structural support for cortical bone 38. Desirably, the filling material 99 extends proximal to any cortical defects created by the drill bit instrument 16 and by the fracture reduction cannula 18. In one embodiment, approximately two (2) to seven (7) cubic centimeters of filling material 99 can be injected into the cavity 35.

After the filling material 99 is introduced, a tamp 81 may be inserted into the fracture reduction cannula 18 as shown in FIG. 26, for the purpose of urging residual filling material 99 into the interior cavity 35. Tamping of the filling material 99 may also cause the material to interdigitate into the surrounding cancellous bone 36, further supporting the cancellous 36 and cortical bone 38. The fracture reduction cannula 18 and (if still present) the percutaneous cannula 14 are removed. If desired, any void remaining subsequent to removal of the cannula 18 can be filled with filling material 99. The patient should be kept immobile for ten to fifteen minutes. After the immobilization, the pin(s) 130 and finger traps 132 can be removed and the hand of the patient is checked for motion. The entry site is covered with appropriate antibiotics and an adhesive strip is applied.

FIGS. 21A and 22A depict an alternate embodiment in which the expandable structure 86 is expanded within the fractured bone to create a cavity 35 which extends across at least one fracture line in the bone. In this embodiment, the filling material 99 ultimately introduced into the cavity 35 can extend across the fracture line and desirably interdigitate into the cancellous bone of the fragmented section(s). This will desirably anchor the fractured sections to the bone, thereby permitting the bone to undergo significant distractive and/or torsional loading without slippage along the fracture line(s) and/or subsequent refracture of the treated bone.

If desired, the disclosed systems and methods could be used with equal utility in reducing and/or reinforcing fractures in bones of younger individuals and/or individuals not having osteoporosis. In such patients, the present systems and methods would allow for an immediate resumption of activity, reducing the opportunity for degradation of adjacent joints and promoting healing of the fracture.

The features of the invention are set forth in the following claims.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US420568317 Mar 19783 Jun 1980Victory Engineering CorporationAdapter for inflating balloon catheter
US4313434 *17 Oct 19802 Feb 1982David SegalFracture fixation
US4357716 *22 Dec 19809 Nov 1982Brown Byron LDevice and method for cementing a hip prosthesis in a femoral canal
US4494535 *24 Jun 198122 Jan 1985Haig Armen CHip nail
US4842585 *7 Dec 198727 Jun 1989B. Braun Melsungen AgSteel cannula for spinal and peridural anaesthesia
US49698889 Feb 198913 Nov 1990Arie ScholtenSurgical protocol for fixation of osteoporotic bone using inflatable device
US510039022 Oct 199031 Mar 1992Norma A. LubeckLubeck spinal catheter needle
US510241314 Nov 19907 Apr 1992Poddar Satish BInflatable bone fixation device
US510840415 Aug 199028 Apr 1992Arie ScholtenSurgical protocol for fixation of bone using inflatable device
US511630523 Oct 199126 May 1992Abiomed, Inc.Curved intra aortic balloon with non-folding inflated balloon membrane
US517668322 Apr 19915 Jan 1993Kimsey Timothy PProsthesis press and method of using the same
US5359995 *5 Feb 19921 Nov 1994Sewell Jr FrankMethod of using an inflatable laparoscopic retractor
US5380290 *16 Apr 199210 Jan 1995Pfizer Hospital Products Group, Inc.Body access device
US5423850 *17 Nov 199313 Jun 1995Berger; J. LeeBalloon compressor for internal fixation of bone fractures
US5456267 *18 Mar 199410 Oct 1995Stark; John G.Bone marrow harvesting systems and methods and bone biopsy systems and methods
US5467786 *16 May 199421 Nov 1995William C. AllenMethod for repairing tears and incisions in soft tissue
US5480400 *1 Oct 19932 Jan 1996Berger; J. LeeMethod and device for internal fixation of bone fractures
US5514137 *6 Dec 19937 May 1996Coutts; Richard D.Fixation of orthopedic devices
US55451365 Jan 199513 Aug 1996Berger; J. LeeGrooved catheter director apparatus
US56015904 Apr 199511 Feb 1997General Surgical Innovations, Inc.Expandable cannulas
US5658310 *5 Jun 199519 Aug 1997Berger; J. LeeBalloon compressor for internal fixation of bone fractures
US57887032 Jan 19964 Aug 1998Allo Pro AgApparatus for the placement of a medullary space blocker
US579204422 Mar 199611 Aug 1998Danek Medical, Inc.Devices and methods for percutaneous surgery
US5807329 *7 May 199615 Sep 1998Gelman; Martin L.Displaceable catheter device
US5817074 *20 Oct 19976 Oct 1998Racz; Gabor J.Stellate block needle
US58272895 Jun 199627 Oct 1998Reiley; Mark A.Inflatable device for use in surgical protocols relating to treatment of fractured or diseased bones
US584901420 Mar 199715 Dec 1998Johnson & Johnson Professional, Inc.Cement restrictor system and method of forming a cement plug within the medullary canal of a bone
US586572821 Nov 19952 Feb 1999Origin Medsystems, Inc.Method of using an endoscopic inflatable lifting apparatus to create an anatomic working space
US5928162 *31 Mar 199727 Jul 1999Symbiosis CorporationTissue core biopsy cannula
US59614996 Jun 19955 Oct 1999Peter M. BonuttiExpandable cannula
US597201515 Aug 199726 Oct 1999Kyphon Inc.Expandable, asymetric structures for deployment in interior body regions
US59761055 Mar 19972 Nov 1999Marcove; Ralph C.Intra annular ultrasound disc apparatus and method
US6036682 *2 Dec 199714 Mar 2000Scimed Life Systems, Inc.Catheter having a plurality of integral radiopaque bands
US603671118 Feb 199814 Mar 2000United States Surgical CorporationReusable cannula
US604834613 Aug 199711 Apr 2000Kyphon Inc.Systems and methods for injecting flowable materials into bones
US6066122 *9 Jun 199923 May 2000Fisher; JohnNeedle apparatus and method for marking lesions
US6066154 *22 Jan 199723 May 2000Kyphon Inc.Inflatable device for use in surgical protocol relating to fixation of bone
US6127597 *6 Mar 19983 Oct 2000Discotech N.V.Systems for percutaneous bone and spinal stabilization, fixation and repair
US6241734 *14 Aug 19985 Jun 2001Kyphon, Inc.Systems and methods for placing materials into bone
US62481109 Jun 199719 Jun 2001Kyphon, Inc.Systems and methods for treating fractured or diseased bone using expandable bodies
US628045623 Sep 199928 Aug 2001Kyphon IncMethods for treating bone
US64401386 Apr 199827 Aug 2002Kyphon Inc.Structures and methods for creating cavities in interior body regions
US6468279 *27 Jan 199822 Oct 2002Kyphon Inc.Slip-fit handle for hand-held instruments that access interior body regions
US6488653 *11 Aug 20003 Dec 2002Wilson-Cook Medical IncorporatedDilation balloon having multiple diameters
US658244628 Apr 200024 Jun 2003J. Alexander MarchoskyMethod and apparatus for percutaneous osteoplasty
US660754419 Oct 199919 Aug 2003Kyphon Inc.Expandable preformed structures for deployment in interior body regions
US6726691 *5 Apr 200127 Apr 2004Kyphon Inc.Methods for treating fractured and/or diseased bone
US2002001047215 Dec 200024 Jan 2002Kuslich Stephen D.Tool to direct bone replacement material
US2002003244728 Aug 200114 Mar 2002Stuart WeikelTools and methods for creating cavities in bone
US2002009938525 Oct 200125 Jul 2002Kyphon Inc.Systems and methods for reducing fractured bone using a fracture reduction cannula
US20020173796 *18 Apr 200221 Nov 2002Cragg Andrew H.Method and apparatus for spinal augmentation
US2003005070213 Sep 200113 Mar 2003J - Lee BergerSpinal grooved director with built in balloon and method of using same
US2003013066417 Jan 200310 Jul 2003Kyphon Inc.Systems and methods for treating vertebral bodies
WO1997028840A112 Feb 199614 Aug 1997Mentor Urology, Inc.Prostatic tissue expander
WO1998056301A11 Jun 199817 Dec 1998Kyphon Inc.Systems for treating fractured or diseased bone using expandable bodies
WO1999002214A19 Jul 199821 Jan 1999Tegementa, L.L.C.Interbody device and method for treatment of osteoporotic vertebral collapse
WO1999037212A121 Jan 199929 Jul 1999Kyphon Inc.A slip-fit handle for hand-held instruments that access interior body regions
WO1999062416A11 Jun 19999 Dec 1999Kyphon Inc.Expandable preformed structures for deployment in interior body regions
WO2000009024A126 Jul 199924 Feb 2000Kyphon Inc.Systems and methods for placing materials into bone
WO2001076492A16 Apr 200118 Oct 2001Kyphon Inc.Insertion devices and method of use
WO2001076514A2 *5 Apr 200118 Oct 2001Kyphon Inc.Methods and devices for treating fractured and/or diseased bone
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US746531814 Apr 200516 Dec 2008Soteira, Inc.Cement-directing orthopedic implants
US755993224 Jun 200514 Jul 2009Dfine, Inc.Bone treatment systems and methods
US76219527 Jun 200524 Nov 2009Dfine, Inc.Implants and methods for treating bone
US766622615 Aug 200623 Feb 2010Benvenue Medical, Inc.Spinal tissue distraction devices
US766622715 Aug 200623 Feb 2010Benvenue Medical, Inc.Devices for limiting the movement of material introduced between layers of spinal tissue
US767037415 Aug 20062 Mar 2010Benvenue Medical, Inc.Methods of distracting tissue layers of the human spine
US767037515 Aug 20062 Mar 2010Benvenue Medical, Inc.Methods for limiting the movement of material introduced between layers of spinal tissue
US767811624 Jun 200516 Mar 2010Dfine, Inc.Bone treatment systems and methods
US768237810 Nov 200523 Mar 2010Dfine, Inc.Bone treatment systems and methods for introducing an abrading structure to abrade bone
US771791820 Aug 200518 May 2010Dfine, Inc.Bone treatment systems and methods
US772262022 Aug 200525 May 2010Dfine, Inc.Bone treatment systems and methods
US77492302 Sep 20056 Jul 2010Crosstrees Medical, Inc.Device and method for distraction of the spinal disc space
US778536815 Aug 200631 Aug 2010Benvenue Medical, Inc.Spinal tissue distraction devices
US781129130 Oct 200812 Oct 2010Osseon Therapeutics, Inc.Closed vertebroplasty bone cement injection system
US784204130 Oct 200830 Nov 2010Osseon Therapeutics, Inc.Steerable vertebroplasty system
US78462069 Jun 20057 Dec 2010Vexim SasMethods and apparatuses for bone restoration
US790987314 Dec 200722 Mar 2011Soteira, Inc.Delivery apparatus and methods for vertebrostenting
US7955339 *23 May 20067 Jun 2011Kyphon SarlLow-compliance expandable medical device
US795539115 Feb 20107 Jun 2011Benvenue Medical, Inc.Methods for limiting the movement of material introduced between layers of spinal tissue
US796399315 Feb 201021 Jun 2011Benvenue Medical, Inc.Methods of distracting tissue layers of the human spine
US796786415 Feb 201028 Jun 2011Benvenue Medical, Inc.Spinal tissue distraction devices
US796786515 Feb 201028 Jun 2011Benvenue Medical, Inc.Devices for limiting the movement of material introduced between layers of spinal tissue
US799334312 Feb 20079 Aug 2011Crosstrees Medical, Inc.Extractable filler for inserting medicine into vertebral body
US79933452 Jul 20109 Aug 2011Crosstress Medical, Inc.Device and method for distraction of the spinal disc space
US800750012 Feb 200730 Aug 2011Crosstrees Medical, Inc.Extractable filler for inserting medicine into animal tissue
US8034088 *20 Jan 200611 Oct 2011Warsaw Orthopedic, Inc.Surgical instrumentation and method for treatment of a spinal structure
US80480834 Nov 20051 Nov 2011Dfine, Inc.Bone treatment systems and methods
US805754415 Aug 200615 Nov 2011Benvenue Medical, Inc.Methods of distracting tissue layers of the human spine
US80667121 Sep 200629 Nov 2011Dfine, Inc.Systems for delivering bone fill material
US80707532 Aug 20056 Dec 2011Dfine, Inc.Bone treatment systems and methods
US810097330 Sep 200824 Jan 2012Soteira, Inc.Cement-directing orthopedic implants
US81099333 Apr 20087 Feb 2012Dfine, Inc.Bone treatment systems and methods
US819244213 Jul 20095 Jun 2012Dfine, Inc.Bone treatment systems and methods
US822665710 Nov 200924 Jul 2012Carefusion 207, Inc.Systems and methods for vertebral or other bone structure height restoration and stabilization
US824133522 Mar 201014 Aug 2012Dfine, Inc.Bone treatment systems and methods for introducing an abrading structure to abrade bone
US834895524 May 20108 Jan 2013Dfine, Inc.Bone treatment systems and methods
US836677325 Jan 20085 Feb 2013Benvenue Medical, Inc.Apparatus and method for treating bone
US840928923 Nov 20092 Apr 2013Dfine, Inc.Implants and methods for treating bone
US843088730 Apr 200830 Apr 2013Dfine, Inc.Bone treatment systems and methods
US845461721 Feb 20084 Jun 2013Benvenue Medical, Inc.Devices for treating the spine
US848702127 Feb 200916 Jul 2013Dfine, Inc.Bone treatment systems and methods
US85238713 Apr 20083 Sep 2013Dfine, Inc.Bone treatment systems and methods
US853532716 Mar 201017 Sep 2013Benvenue Medical, Inc.Delivery apparatus for use with implantable medical devices
US85569103 Apr 200815 Oct 2013Dfine, Inc.Bone treatment systems and methods
US8556949 *13 Nov 200815 Oct 2013DePuy Synthes Products, LLCHybrid bone fixation element and methods of using the same
US855697815 Nov 201115 Oct 2013Benvenue Medical, Inc.Devices and methods for treating the vertebral body
US856260719 Nov 200522 Oct 2013Dfine, Inc.Bone treatment systems and methods
US859158321 Feb 200826 Nov 2013Benvenue Medical, Inc.Devices for treating the spine
US86227399 Jun 20107 Jan 2014Ben-Zion KarmonMethod for enlarging a jaw bone using a hollow dental implant having a side perforation
US862302515 Jan 20107 Jan 2014Gmedelaware 2 LlcDelivery apparatus and methods for vertebrostenting
US86521837 Jul 201018 Feb 2014Mari S TrumanMulti-angle orthopedic expansion head fastener
US869667910 Dec 200715 Apr 2014Dfine, Inc.Bone treatment systems and methods
US87089552 Jun 200929 Apr 2014Loma Vista Medical, Inc.Inflatable medical devices
US875333921 Feb 201317 Jun 2014Ulthera, Inc.Dissection handpiece and method for reducing the appearance of cellulite
US87647618 Apr 20131 Jul 2014Dfine, Inc.Bone treatment systems and methods
US87712761 Dec 20108 Jul 2014Carefusion 2200, Inc.Systems and methods for forming a cavity in, and delivering curable material into, bone
US877127812 Jul 20128 Jul 2014Carefusion 2200, Inc.Systems and methods for vertebral or other bone structure height restoration and stabilization
US879536918 Jul 20115 Aug 2014Nuvasive, Inc.Fracture reduction device and methods
US880178716 Jun 201112 Aug 2014Benvenue Medical, Inc.Methods of distracting tissue layers of the human spine
US880180019 Nov 201012 Aug 2014Zimmer Knee Creations, Inc.Bone-derived implantable devices and tool for subchondral treatment of joint pain
US880837625 Mar 200919 Aug 2014Benvenue Medical, Inc.Intravertebral implants
US881487322 Jun 201226 Aug 2014Benvenue Medical, Inc.Devices and methods for treating bone tissue
US8821504 *19 Nov 20102 Sep 2014Zimmer Knee Creations, Inc.Method for treating joint pain and associated instruments
US882798120 Apr 20129 Sep 2014Osseon LlcSteerable vertebroplasty system with cavity creation element
US886476819 Nov 201021 Oct 2014Zimmer Knee Creations, Inc.Coordinate mapping system for joint treatment
US888283618 Dec 201211 Nov 2014Benvenue Medical, Inc.Apparatus and method for treating bone
US889465830 May 201225 Nov 2014Carefusion 2200, Inc.Apparatus and method for stylet-guided vertebral augmentation
US889467829 May 201425 Nov 2014Ulthera, Inc.Cellulite treatment methods
US890026129 May 20142 Dec 2014Ulthera, Inc.Tissue treatment system for reducing the appearance of cellulite
US890026229 May 20142 Dec 2014Ulthera, Inc.Device for dissection of subcutaneous tissue
US890062012 Oct 20062 Dec 2014DePuy Synthes Products, LLCDrug-impregnated encasement
US890603219 Nov 20109 Dec 2014Zimmer Knee Creations, Inc.Instruments for a variable angle approach to a joint
US890605429 May 20149 Dec 2014Ulthera, Inc.Apparatus for reducing the appearance of cellulite
US892045229 May 201430 Dec 2014Ulthera, Inc.Methods of tissue release to reduce the appearance of cellulite
US893230027 Oct 201113 Jan 2015Dfine, Inc.Bone treatment systems and methods
US895126119 Nov 201010 Feb 2015Zimmer Knee Creations, Inc.Subchondral treatment of joint pain
US896155315 Sep 200824 Feb 2015Crosstrees Medical, Inc.Material control device for inserting material into a targeted anatomical region
US896160926 Sep 201324 Feb 2015Benvenue Medical, Inc.Devices for distracting tissue layers of the human spine
US896840824 Apr 20133 Mar 2015Benvenue Medical, Inc.Devices for treating the spine
US897988129 May 201417 Mar 2015Ulthera, Inc.Methods and handpiece for use in tissue dissection
US897992916 Jun 201117 Mar 2015Benvenue Medical, Inc.Spinal tissue distraction devices
US898638612 Mar 200924 Mar 2015Vexim SasApparatus for bone restoration of the spine and methods of use
US89989232 Jun 20097 Apr 2015Spinealign Medical, Inc.Threaded bone filling material plunger
US90052104 Jan 201314 Apr 2015Dfine, Inc.Bone treatment systems and methods
US900522912 Dec 201214 Apr 2015Ulthera, Inc.Dissection handpiece and method for reducing the appearance of cellulite
US901147312 Dec 201221 Apr 2015Ulthera, Inc.Dissection handpiece and method for reducing the appearance of cellulite
US903398730 Dec 201319 May 2015Zimmer Knee Creations, Inc.Navigation and positioning instruments for joint repair
US903972227 Feb 201326 May 2015Ulthera, Inc.Dissection handpiece with aspiration means for reducing the appearance of cellulite
US904425922 Dec 20142 Jun 2015Ulthera, Inc.Methods for dissection of subcutaneous tissue
US904433812 Mar 20132 Jun 2015Benvenue Medical, Inc.Spinal tissue distraction devices
US906680820 Feb 200930 Jun 2015Benvenue Medical, Inc.Method of interdigitating flowable material with bone tissue
US907868822 Dec 201414 Jul 2015Ulthera, Inc.Handpiece for use in tissue dissection
US90953939 Oct 20134 Aug 2015Carefusion 2200, Inc.Method for balloon-aided vertebral augmentation
US911398812 Feb 200725 Aug 2015Crosstrees Medical, Inc.Method for inserting medicine into animal tissue
US91196399 Aug 20111 Sep 2015DePuy Synthes Products, Inc.Articulated cavity creator
US91197217 Aug 20141 Sep 2015Zimmer Knee Creations, Inc.Method for treating joint pain and associated instruments
US914450118 Jul 201129 Sep 2015Nuvasive, Inc.Fracture reduction device and methods
US915557828 Feb 201213 Oct 2015DePuy Synthes Products, Inc.Expandable fastener
US916179713 Jun 201420 Oct 2015Dfine, Inc.Bone treatment systems and methods
US916179819 Mar 201020 Oct 2015Dfine, Inc.Bone treatment systems and methods
US91864882 Jun 200917 Nov 2015Loma Vista Medical, Inc.Method of making inflatable medical devices
US919239717 Jun 200924 Nov 2015Gmedelaware 2 LlcDevices and methods for fracture reduction
US921619519 Jun 201322 Dec 2015Dfine, Inc.Bone treatment systems and methods
US922055418 Feb 201029 Dec 2015Globus Medical, Inc.Methods and apparatus for treating vertebral fractures
US923791614 Dec 200719 Jan 2016Gmedeleware 2 LlcDevices and methods for vertebrostenting
US924831729 Jun 20072 Feb 2016Ulthera, Inc.Devices and methods for selectively lysing cells
US925925719 Nov 201016 Feb 2016Zimmer Knee Creations, Inc.Instruments for targeting a joint defect
US925932621 Nov 201416 Feb 2016Benvenue Medical, Inc.Spinal tissue distraction devices
US927183517 Dec 20131 Mar 2016Zimmer Knee Creations, Inc.Implantable devices for subchondral treatment of joint pain
US92721247 Nov 20141 Mar 2016Ulthera, Inc.Systems and devices for selective cell lysis and methods of using same
US931425215 Aug 201419 Apr 2016Benvenue Medical, Inc.Devices and methods for treating bone tissue
US932680622 Nov 20063 May 2016Crosstrees Medical, Inc.Devices and methods for the treatment of bone fracture
US93268668 Nov 20133 May 2016Benvenue Medical, Inc.Devices for treating the spine
US93517467 Oct 201431 May 2016Zimmer Knee Creations, Inc.Coordinate mapping system for joint treatment
US935183528 May 201531 May 2016Zimmer Knee Creations, Inc.Method for treating joint pain and associated instruments
US935803325 May 20107 Jun 2016Ulthera, Inc.Fluid-jet dissection system and method for reducing the appearance of cellulite
US935806422 Oct 20137 Jun 2016Ulthera, Inc.Handpiece and methods for performing subcutaneous surgery
US936424626 Jun 201214 Jun 2016Ulthera, Inc.Dissection handpiece and method for reducing the appearance of cellulite
US938168327 Dec 20125 Jul 2016DePuy Synthes Products, Inc.Films and methods of manufacture
US938699624 Apr 201512 Jul 2016Zimmer Knee Creations, Inc.Navigation and positioning instruments for joint repair
US94087073 Nov 20109 Aug 2016Vexim SaMethods and apparatuses for bone restoration
US94149337 Apr 201116 Aug 2016Vexim SaExpandable orthopedic device
US94396931 Feb 201313 Sep 2016DePuy Synthes Products, Inc.Steerable needle assembly for use in vertebral body augmentation
US94397656 Aug 201413 Sep 2016Zimmer Knee Creations, Inc.Method for subchondral treatment of joint pain using implantable devices
US944585427 Feb 200920 Sep 2016Dfine, Inc.Bone treatment systems and methods
US948048523 Mar 20101 Nov 2016Globus Medical, Inc.Devices and methods for vertebrostenting
US95048112 Jun 200929 Nov 2016Loma Vista Medical, Inc.Inflatable medical devices
US95108494 Jun 20146 Dec 2016Ulthera, Inc.Devices and methods for performing subcutaneous surgery
US95108772 Oct 20136 Dec 2016DePuy Synthes Products, Inc.Hybrid bone fixation element and methods of using the same
US95108858 Jan 20136 Dec 2016Osseon LlcSteerable and curvable cavity creation system
US957261319 Oct 201521 Feb 2017Dfine, Inc.Bone treatment systems and methods
US95791302 Apr 200928 Feb 2017Vexim SasApparatus for restoration of the spine and methods of use thereof
US95792601 Oct 201428 Feb 2017DePuy Synthes Products, Inc.Drug-impregnated encasement
US959211913 Jul 201114 Mar 2017C.R. Bard, Inc.Inflatable medical devices
US959231731 Jul 201314 Mar 2017Dfine, Inc.Medical system and method of use
US95971186 Jan 201021 Mar 2017Dfine, Inc.Bone anchor apparatus and method
US961008331 Aug 20154 Apr 2017DePuy Synthes Products, Inc.Articulated cavity creator
US961011010 Apr 20154 Apr 2017Dfine, Inc.Bone treatment systems and methods
US96427124 Feb 20159 May 2017Benvenue Medical, Inc.Methods for treating the spine
US968725513 Oct 201527 Jun 2017Globus Medical, Inc.Device and methods for fracture reduction
US97175449 Feb 20151 Aug 2017Zimmer Knee Creations, Inc.Subchondral treatment of joint pain
US973074427 May 201615 Aug 2017Zimmer Knee Creations, Inc.Method for treating joint pain and associated instruments
US974405719 Apr 201029 Aug 2017Ben-Zion KarmonDevice to deliver flowable material to the sinus
US975714523 May 201612 Sep 2017Ulthera, Inc.Dissection handpiece and method for reducing the appearance of cellulite
US978896319 Oct 201517 Oct 2017DePuy Synthes Products, Inc.In-situ formed intervertebral fusion device and method
US978897411 Jan 201617 Oct 2017Benvenue Medical, Inc.Spinal tissue distraction devices
US980172925 Mar 201531 Oct 2017DePuy Synthes Products, Inc.In-situ formed intervertebral fusion device and method
US98083516 Oct 20157 Nov 2017DePuy Synthes Products, Inc.In-situ formed intervertebral fusion device and method
US981458917 Sep 201514 Nov 2017DePuy Synthes Products, Inc.In-situ formed intervertebral fusion device and method
US981459019 Oct 201514 Nov 2017DePuy Synthes Products, Inc.In-situ formed intervertebral fusion device and method
US20040220672 *3 May 20044 Nov 2004Shadduck John H.Orthopedic implants, methods of use and methods of fabrication
US20060004455 *9 Jun 20055 Jan 2006Alain LeonardMethods and apparatuses for bone restoration
US20060085009 *8 Aug 200520 Apr 2006Csaba TruckaiImplants and methods for treating bone
US20060089715 *7 Jun 200527 Apr 2006Csaba TruckaiImplants and methods for treating bone
US20060116690 *20 Jan 20061 Jun 2006Pagano Paul JSurgical instrumentation and method for treatment of a spinal structure
US20060122621 *20 Aug 20058 Jun 2006Csaba TruckaiBone treatment systems and methods
US20060229625 *10 Nov 200512 Oct 2006Csaba TruckaiBone treatment systems and methods
US20060241673 *11 Jul 200526 Oct 2006Zadini Filiberto PSubcision device
US20070050035 *23 May 20061 Mar 2007Schwardt Jeffrey DLow-compliance expandable medical device
US20070129669 *12 Feb 20077 Jun 2007Crosstrees Medical, Inc.Extractable filler for inserting medicine into animal tissue
US20070129670 *12 Feb 20077 Jun 2007Crosstrees Medical, Inc.Extractable filler for inserting medicine into vertebral body
US20070142765 *12 Feb 200721 Jun 2007Crosstrees Medical, Inc.Extractable filler for inserting medicine into animal tissue
US20070156242 *22 Nov 20065 Jul 2007Lin Kwan KDevices and methods for the treatment of bone fracture
US20070233249 *7 Feb 20074 Oct 2007Shadduck John HMethods for treating bone
US20080027456 *19 Jul 200731 Jan 2008Csaba TruckaiBone treatment systems and methods
US20080091207 *15 Oct 200717 Apr 2008Csaba TruckaiBone treatment systems and methods
US20080103518 *29 Oct 20071 May 2008Ben-Zion KarmonBioresorbable Inflatable Devices, Incision Tool And Methods For Tissue Expansion And Tissue Regeneration
US20080132899 *17 May 20055 Jun 2008Shadduck John HComposite implant and method for treating bone abnormalities
US20080243122 *29 Mar 20072 Oct 2008Kohm Andrew CApparatuses and methods for bone screw augmentation
US20090125028 *13 Nov 200814 May 2009Jacques TeisenHybrid bone fixation element and methods of using the same
US20090157085 *18 Dec 200718 Jun 2009Cook IncorporatedDevice and method for introducing a bone cement mixture into a damaged bone
US20090254132 *7 Jul 20068 Oct 2009Scribner Robert MDevices and methods for the treatment of bone fracture
US20090299327 *2 Jun 20093 Dec 2009Lorna Vista Medical, Inc.Inflatable medical devices
US20100160921 *19 Dec 200824 Jun 2010Arthrocare CorporationCancellous bone displacement system and methods of use
US20100174320 *6 Jan 20108 Jul 2010Dfine, Inc.Bone anchor apparatus and method
US20100249793 *19 Mar 201030 Sep 2010Dfine, Inc.Bone treatment systems and methods
US20110004312 *2 Jul 20106 Jan 2011Crosstrees Medical, Inc.Device and Method for Distraction of the Spinal Disc Space
US20110046739 *3 Nov 201024 Feb 2011VeximMethods and Apparatuses for Bone Restoration
US20110054416 *15 Sep 20083 Mar 2011Hollowell Daniel RMaterial control device for inserting material into a targeted anatomical region
US20110112507 *10 Nov 200912 May 2011Carefusion 207, Inc.Curable material delivery systems and methods
US20110125156 *19 Nov 201026 May 2011Sharkey Peter FMethod for treating joint pain and associated instruments
US20130072941 *30 Jul 201221 Mar 2013Francisca Tan-MaleckiCement Injector and Cement Injector Connectors, and Bone Cement Injector Assembly
Classifications
U.S. Classification606/92
International ClassificationA61B19/02, A61F2/00, A61B17/16, A61B17/34, A61B17/58, A61B17/12, A61B17/00, A61B19/00, A61F2/46, A61B17/88
Cooperative ClassificationA61B17/1686, A61F2002/4602, A61B17/8855, A61F2/4601, A61B17/8805, A61B2017/00557, A61B17/3472, A61B17/8866, A61B50/33, A61B17/3468, A61B90/39
European ClassificationA61B17/88C2B, A61B17/16S16, A61B17/34L
Legal Events
DateCodeEventDescription
15 Mar 2002ASAssignment
Owner name: KYPHON INC., CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RALPH, CHRISTOPHER R.;LAYNE, RICHARD W.;SAND, PAUL M.;AND OTHERS;REEL/FRAME:012696/0876;SIGNING DATES FROM 20020220 TO 20020228
5 Feb 2007ASAssignment
Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT, WA
Free format text: SECURITY AGREEMENT;ASSIGNOR:KYPHON INC.;REEL/FRAME:018875/0574
Effective date: 20070118
Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT,WAS
Free format text: SECURITY AGREEMENT;ASSIGNOR:KYPHON INC.;REEL/FRAME:018875/0574
Effective date: 20070118
14 Mar 2008ASAssignment
Owner name: KYPHON, INC., CALIFORNIA
Free format text: TERMINATION/RELEASE OF SECURITY INTEREST;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:020666/0869
Effective date: 20071101
Owner name: KYPHON, INC.,CALIFORNIA
Free format text: TERMINATION/RELEASE OF SECURITY INTEREST;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:020666/0869
Effective date: 20071101
9 May 2008ASAssignment
Owner name: MEDTRONIC SPINE LLC, CALIFORNIA
Free format text: CHANGE OF NAME;ASSIGNOR:KYPHON INC;REEL/FRAME:020993/0042
Effective date: 20080118
Owner name: MEDTRONIC SPINE LLC,CALIFORNIA
Free format text: CHANGE OF NAME;ASSIGNOR:KYPHON INC;REEL/FRAME:020993/0042
Effective date: 20080118
9 Jun 2008ASAssignment
Owner name: KYPHON SARL, SWITZERLAND
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MEDTRONIC SPINE LLC;REEL/FRAME:021070/0278
Effective date: 20080325
Owner name: KYPHON SARL,SWITZERLAND
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MEDTRONIC SPINE LLC;REEL/FRAME:021070/0278
Effective date: 20080325
21 May 2010FPAYFee payment
Year of fee payment: 4
23 Jun 2014FPAYFee payment
Year of fee payment: 8
26 Mar 2015ASAssignment
Owner name: ORTHOPHOENIX, LLC, TEXAS
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KYPHON SARL;REEL/FRAME:035307/0018
Effective date: 20130425
11 Jan 2017ASAssignment
Owner name: DBD CREDIT FUNDING LLC, AS COLLATERAL AGENT, NEW Y
Free format text: SECURITY INTEREST;ASSIGNORS:MOTHEYE TECHNOLOGIES, LLC;SYNCHRONICITY IP LLC;TRAVERSE TECHNOLOGIES CORP.;AND OTHERS;REEL/FRAME:041333/0001
Effective date: 20170110