US7083858B1 - Thermally activated adhesive films for the collation of wire staples - Google Patents

Thermally activated adhesive films for the collation of wire staples Download PDF

Info

Publication number
US7083858B1
US7083858B1 US10/184,704 US18470402A US7083858B1 US 7083858 B1 US7083858 B1 US 7083858B1 US 18470402 A US18470402 A US 18470402A US 7083858 B1 US7083858 B1 US 7083858B1
Authority
US
United States
Prior art keywords
band wire
adhesive
adhesive film
wire
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime, expires
Application number
US10/184,704
Inventor
Robert Mahoney
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Worthen Industries Inc
Original Assignee
Worthen Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Worthen Industries Inc filed Critical Worthen Industries Inc
Priority to US10/184,704 priority Critical patent/US7083858B1/en
Application granted granted Critical
Publication of US7083858B1 publication Critical patent/US7083858B1/en
Adjusted expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21FWORKING OR PROCESSING OF METAL WIRE
    • B21F45/00Wire-working in the manufacture of other particular articles
    • B21F45/16Wire-working in the manufacture of other particular articles of devices for fastening or securing purposes
    • B21F45/24Wire-working in the manufacture of other particular articles of devices for fastening or securing purposes of staples; of belt-fastening elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31692Next to addition polymer from unsaturated monomers

Definitions

  • a currently preferred method for collating fine wire staple sticks is to use a liquid adhesive system that is applied to a multi-end band wire. The adhesive is then dried by heat and air leaving a solid film coating on the band of wire for pressing staple sticks in line or wound up onto spools for subsequent staple pressing.
  • liquid adhesive systems must dry quickly to produce a high strength film to hold the strips of the band together through wind up.
  • the adhesive must also have sufficient tensile strength and impact resistance to pass the pressing step and ultimate end use, discharge from a fastening gun.
  • liquid adhesive systems Additional problems with the liquid systems include the use of solvents that are regulated requiring special handling equipment, process equipment and disposal equipment. For some liquid adhesive systems, expensive drying equipment must be used utilizing high energy to remove up to 80% by weight of the supplied liquid adhesive system.
  • Wire end machines have utilized thermally activated film tapes which are applied after the staples have been pressed. These tapes, however, are not designed to cover the total surface of the staple stick and can only be applied to the outer surface limiting stiffness and impact resistance. This production method is primarily used for lower volume specialty staples where high speed volume is not critical.
  • thermally activated adhesive films which can set quickly and can have consistent physical properties, such as tensile strength, impact resistance, and high adhesion to metal surfaces.
  • the invention comprises a 100% solid thermally activated adhesive film, instead of a liquid adhesive, to coat and hold together a multi-strip band of wire together through a high volume, high speed banding line. Heat is used for film activation.
  • the adhesive film reduces the amount of energy needed to process staples, reduces capital equipment needs and also offers an alternative adhesive system for improved physical properties, e.g. tensile strength, impact resistance and adhesion.
  • the adhesive system comprises a three-part, polyethylene based polymer.
  • the modified polyethylene is 100% solids, activates in a temperature range of 200° F. to 450° F., is acid modified for polarity sites for bonding, and embodies a rubber polymer or elastomeric phase to minimize adhesive surface fracture and ensures high adhesion to the metal surface.
  • the FIGURE is a process flow diagram embodying the invention.
  • Thermoplastic resins are used for both cast and blown film adhesives and include the polyolefins, polyethylene and polypropylene and copolymers of the same. Also within the scope of the invention are urethanes, nylons and polyesters.
  • Films are extruded with a gauge range of 0.001–0.005 inches with 0.001 inch preferred. Films are laminated to the wire band, typically between 3–12 inches in width and 1–5,000 yards in length and rolled on spools for further processing.
  • a wire band shown at 10 passes through rollers 12 which flatten the wire band 10 .
  • the band 10 then passes through a heat source 14, such as infrared, induction or convention where the surface is heated to a temperature of between 200° F.–500° F.
  • An adhesive film 16 is then wound from a supply roll 18 and passes through laminating rolls 20 .
  • the adhesive film can be activated in a temperature range of 200° F. to 500° F., preferably 300° F. to 450° F. It is laminated onto the pre-heated band of wire 10 with roll pressure, e.g. 0–100 PLI, and immediately cooled in a cooling tunnel 22 to ambient temperature 72° F. The cooling eliminates any tack and ensures sufficient bond to the metal wire.
  • the coated band 24 is wound on a spool 26 .
  • a preferred adhesive is set forth in the following non-limiting example.
  • Low density polyethylene (0.870–0.920) 2 to 98% by weight.
  • Synthetic rubber 1 to 20% by weight e.g. EPDM.
  • the materials were blended in an extruder and extruded as pellets.
  • pellets were further extruded as a film at a gauge of 0.001–0.005′′.
  • the tensile strength was between 1,500 to 10,000 psi as determine by ASTM D638-96 and peel strength was between 5 to 10 PLI as determined by ASTM D903-93. These physical properties establish the suitability of the adhesive system for use in a high volume, high speed banding line. Typical volumes and speeds would be 500–1,000 lbs/hr @ 25–100 fpm.
  • acids to provide polarity and chemical bonding to metal include carboxylic derivatives, e.g. acrylic acid, methacrylic acid.

Abstract

A thermally activated adhesive for coating and holding a multi-end band wire together through a high volume, high speed banding line which comprises a polyolefin in an amount of 2 to 98% by weight based upon the total weight of the adhesive, an acid in an amount of 1 to 20% by weight based upon the total weight of the adhesive and a rubber polymer in an amount of 1 to 20% by weight based upon the total weight of the adhesive. The adhesive activates in a temperature range of between 200° F. to 500° F. and is characterized in that it has a tensile strength of between 1,500 to 10,000 psi as determined by ASTM D638-96 and a peel strength of between 5 to 10 PLI as determined by ASTM D903-93.

Description

PRIORITY INFORMATION
This application is a Continuation Application of U.S. application Ser. No. 09/908,228, filed on Jul. 18, 2001, now abandoned, claiming priority to U.S. Provisional Application Ser. No. 60/220,733, filed on Jul. 26, 2000.
BACKGROUND AND BRIEF SUMMARY OF THE INVENTION
A currently preferred method for collating fine wire staple sticks is to use a liquid adhesive system that is applied to a multi-end band wire. The adhesive is then dried by heat and air leaving a solid film coating on the band of wire for pressing staple sticks in line or wound up onto spools for subsequent staple pressing.
These liquid adhesive systems must dry quickly to produce a high strength film to hold the strips of the band together through wind up. The adhesive must also have sufficient tensile strength and impact resistance to pass the pressing step and ultimate end use, discharge from a fastening gun.
Additional problems with the liquid systems include the use of solvents that are regulated requiring special handling equipment, process equipment and disposal equipment. For some liquid adhesive systems, expensive drying equipment must be used utilizing high energy to remove up to 80% by weight of the supplied liquid adhesive system.
More efficient, lower cost drying systems have been designed and utilized through the years with significant improvement but the use of solvents and their associated costs have not changed.
Wire end machines have utilized thermally activated film tapes which are applied after the staples have been pressed. These tapes, however, are not designed to cover the total surface of the staple stick and can only be applied to the outer surface limiting stiffness and impact resistance. This production method is primarily used for lower volume specialty staples where high speed volume is not critical.
It would desirable to have thermally activated adhesive films which can set quickly and can have consistent physical properties, such as tensile strength, impact resistance, and high adhesion to metal surfaces.
Broadly the invention comprises a 100% solid thermally activated adhesive film, instead of a liquid adhesive, to coat and hold together a multi-strip band of wire together through a high volume, high speed banding line. Heat is used for film activation. The adhesive film reduces the amount of energy needed to process staples, reduces capital equipment needs and also offers an alternative adhesive system for improved physical properties, e.g. tensile strength, impact resistance and adhesion.
In the preferred embodiment, the adhesive system comprises a three-part, polyethylene based polymer. The modified polyethylene is 100% solids, activates in a temperature range of 200° F. to 450° F., is acid modified for polarity sites for bonding, and embodies a rubber polymer or elastomeric phase to minimize adhesive surface fracture and ensures high adhesion to the metal surface.
BRIEF DESCRIPTION OF THE DRAWINGS
The FIGURE is a process flow diagram embodying the invention.
DESCRIPTION OF THE PREFERRED EMBODIMENT(S)
Extrusion techniques, or other manufacturing processes, for mixing resins and extruding the same as films, pellets, etc. are well known in the art and need not be described in detail.
Thermoplastic resins are used for both cast and blown film adhesives and include the polyolefins, polyethylene and polypropylene and copolymers of the same. Also within the scope of the invention are urethanes, nylons and polyesters.
Films are extruded with a gauge range of 0.001–0.005 inches with 0.001 inch preferred. Films are laminated to the wire band, typically between 3–12 inches in width and 1–5,000 yards in length and rolled on spools for further processing.
Referring to the drawing, a wire band shown at 10 passes through rollers 12 which flatten the wire band 10. The band 10 then passes through a heat source 14, such as infrared, induction or convention where the surface is heated to a temperature of between 200° F.–500° F. An adhesive film 16 is then wound from a supply roll 18 and passes through laminating rolls 20. The adhesive film can be activated in a temperature range of 200° F. to 500° F., preferably 300° F. to 450° F. It is laminated onto the pre-heated band of wire 10 with roll pressure, e.g. 0–100 PLI, and immediately cooled in a cooling tunnel 22 to ambient temperature 72° F. The cooling eliminates any tack and ensures sufficient bond to the metal wire. The coated band 24 is wound on a spool 26.
A preferred adhesive is set forth in the following non-limiting example.
Example 1
Materials
Low density polyethylene (0.870–0.920) 2 to 98% by weight.
Maleic anhydride acid 1 to 20% by weight; and
Synthetic rubber 1 to 20% by weight, e.g. EPDM.
The materials were blended in an extruder and extruded as pellets.
The pellets were further extruded as a film at a gauge of 0.001–0.005″.
To determine the suitability of the adhesive for its intended purpose, tensile properties and metal adhesion tests were performed.
The tensile strength was between 1,500 to 10,000 psi as determine by ASTM D638-96 and peel strength was between 5 to 10 PLI as determined by ASTM D903-93. These physical properties establish the suitability of the adhesive system for use in a high volume, high speed banding line. Typical volumes and speeds would be 500–1,000 lbs/hr @ 25–100 fpm.
Other acids to provide polarity and chemical bonding to metal include carboxylic derivatives, e.g. acrylic acid, methacrylic acid.
Other polymers/copolymers that may be utilized for the backbone include high, medium and low density polyethylenes, propylene and propylene ethylene copolymers.
The foregoing description has been limited to a specific embodiment of the invention. It will be apparent, however, that variations and modifications can be made to the invention, with the attainment of some or all of the advantages of the invention. Therefore, it is the object of the appended claims to cover all such variations and modifications as come within the true spirit and scope of the invention.

Claims (12)

1. A method of coating a multi-end band wire which comprises:
flattening the band wire;
heating the band wire to form a pre-heated band wire;
contacting an adhesive film to the pre-heated band wire;
activating the adhesive film to form a coated band wire; and
cooling the coated band wire.
2. The method of claim 1 wherein the heating step comprises passing the band wire through a heat source having a temperature range of between 200° F. to 500° F.
3. The method of claim 2 wherein the contacting step comprises:
unwinding the adhesive film from a supply roll and laminating the adhesive film onto the pre-heated band wire.
4. The method of claim 3 wherein the laminating step is accomplished with a roll pressure within the range of about 0–100 PLI.
5. The method of claim 1 wherein the adhesive film has a gauge of about 0.001–0.005 inches.
6. The method of claim 1 wherein the band wire has a width of about 3–12 inches.
7. The method of claim 1 wherein the band wire has a length of about 5,000 yards.
8. The method of claim 1 which further comprises:
winding the coated band wire.
9. The method of claim 4 wherein the adhesive film comprises:
a thermoplastic.
10. The method of claim 9 wherein the thermoplastic is selected from the group consisting of polyolefins, polyethylenes, polypropylenes and copolymers of polyethylene and polypropylene.
11. The method of claim 9 wherein the adhesive film is has a tensile strength of about 1,500 to 10,000 psi as determined by ASTM D638-96.
12. A method of coating a multi-end band wire which comprises:
heating the band wire to a temperature within the range of about 200° F.–500° F. to form a pre-heated band wire;
laminating an adhesive thermoplastic film selected from the group consisting of polyolefins, polyethylene, polypropylene and copolymers of polyethylene and polypropylene to the pre-heated band wire to form a laminated band wire; and
cooling the laminated band wire.
US10/184,704 2000-07-26 2002-06-28 Thermally activated adhesive films for the collation of wire staples Expired - Lifetime US7083858B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/184,704 US7083858B1 (en) 2000-07-26 2002-06-28 Thermally activated adhesive films for the collation of wire staples

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US22073300P 2000-07-26 2000-07-26
US90822801A 2001-07-18 2001-07-18
US10/184,704 US7083858B1 (en) 2000-07-26 2002-06-28 Thermally activated adhesive films for the collation of wire staples

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US90822801A Continuation 2000-07-26 2001-07-18

Publications (1)

Publication Number Publication Date
US7083858B1 true US7083858B1 (en) 2006-08-01

Family

ID=36710487

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/184,704 Expired - Lifetime US7083858B1 (en) 2000-07-26 2002-06-28 Thermally activated adhesive films for the collation of wire staples
US12/760,024 Expired - Fee Related US7871629B1 (en) 2000-07-26 2010-04-14 Delivery of DNA vaccines into fish by immersion

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/760,024 Expired - Fee Related US7871629B1 (en) 2000-07-26 2010-04-14 Delivery of DNA vaccines into fish by immersion

Country Status (1)

Country Link
US (2) US7083858B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150007930A1 (en) * 2013-07-04 2015-01-08 Patek Pneumatics Co., Ltd. Process for manufacturing roll staple with wire strip

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103330934B (en) * 2013-05-07 2015-04-15 中国水产科学研究院黄海水产研究所 Vibrio anguillarum 01 serotype inactivated vaccine, preparation method and use method thereof
CN114992808B (en) * 2022-06-15 2023-06-02 山东大学 Heat pump air conditioner thermal management control method and system based on combined intelligent algorithm

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2125211A (en) * 1937-10-09 1938-07-26 Vogel Max Method of producing a staple strip
DE1101338B (en) * 1957-07-29 1961-03-09 Dieter Haubold Method for producing a stack of unified staples for stapling machines or the like.
US3267660A (en) * 1963-08-30 1966-08-23 Swingfast Inc Method of securing fasteners in stick form
US3339720A (en) * 1965-12-28 1967-09-05 Barnes Fayette Herbert Metal fastener strip
US4000763A (en) * 1974-05-24 1977-01-04 Clama Industri Aktiebolag Method for the production of clips
US4018333A (en) * 1975-05-22 1977-04-19 Stepan Chemical Company Metal fastener sticks and process of preparing same by curing polymeric binder for said under conditions of U.V. irradiation
US4066165A (en) * 1976-06-10 1978-01-03 Henry Ruskin Staples and production methods
US4275813A (en) * 1979-06-04 1981-06-30 United States Surgical Corporation Coherent surgical staple array
JPS5772741A (en) * 1980-10-24 1982-05-07 Mitsubishi Heavy Ind Ltd Manufacture of staple
US4664733A (en) * 1984-11-21 1987-05-12 Max Company, Ltd. Method of manufacturing cohered fasteners
US5303539A (en) * 1993-01-29 1994-04-19 The Gillette Company Staple forming
US5360305A (en) * 1993-03-19 1994-11-01 Duo-Fast Corporation Clinch staples and method of manufacturing and applying clinch staples
US5414991A (en) * 1992-12-28 1995-05-16 Promor Ltd. Paper staples and a process for the production thereof
US5795121A (en) * 1994-02-18 1998-08-18 Utility Composites, Inc. Impact-driven plastic fasteners
US5803396A (en) * 1995-02-27 1998-09-08 N.V. Bekaert S.A. Method for spooling a strip of wires, and a spooled strip of wires
US5875538A (en) * 1993-09-17 1999-03-02 Illinois Tool Works Inc. Method and apparatus for coating fasteners
CA2306356A1 (en) * 2000-04-19 2001-10-19 Bhp Steel (Awi) Pty Limited A fastener having a protective coating and a method of providing same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5877159A (en) 1995-05-03 1999-03-02 University Of Maryland At Baltimore Method for introducing and expressing genes in animal cells and live invasive bacterial vectors for use in the same
US6150170A (en) 1998-05-03 2000-11-21 University Of Maryland At Baltimore Method for introducing and expressing genes in animal cells, and live invasive bacterial vectors for use in the same
US5780448A (en) 1995-11-07 1998-07-14 Ottawa Civic Hospital Loeb Research DNA-based vaccination of fish
US6913757B1 (en) 2000-07-26 2005-07-05 The Board Of Governors For Higher Education, State Of Rhode Island And Providence Plantations Live, avirulent strain of V. anguillarum that protects fish against infection by virulent V. anguillarum and method of making the same

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2125211A (en) * 1937-10-09 1938-07-26 Vogel Max Method of producing a staple strip
DE1101338B (en) * 1957-07-29 1961-03-09 Dieter Haubold Method for producing a stack of unified staples for stapling machines or the like.
US3267660A (en) * 1963-08-30 1966-08-23 Swingfast Inc Method of securing fasteners in stick form
US3339720A (en) * 1965-12-28 1967-09-05 Barnes Fayette Herbert Metal fastener strip
US4000763A (en) * 1974-05-24 1977-01-04 Clama Industri Aktiebolag Method for the production of clips
US4018333A (en) * 1975-05-22 1977-04-19 Stepan Chemical Company Metal fastener sticks and process of preparing same by curing polymeric binder for said under conditions of U.V. irradiation
US4066165A (en) * 1976-06-10 1978-01-03 Henry Ruskin Staples and production methods
US4275813A (en) * 1979-06-04 1981-06-30 United States Surgical Corporation Coherent surgical staple array
JPS5772741A (en) * 1980-10-24 1982-05-07 Mitsubishi Heavy Ind Ltd Manufacture of staple
US4664733A (en) * 1984-11-21 1987-05-12 Max Company, Ltd. Method of manufacturing cohered fasteners
US5414991A (en) * 1992-12-28 1995-05-16 Promor Ltd. Paper staples and a process for the production thereof
US5303539A (en) * 1993-01-29 1994-04-19 The Gillette Company Staple forming
US5360305A (en) * 1993-03-19 1994-11-01 Duo-Fast Corporation Clinch staples and method of manufacturing and applying clinch staples
US5875538A (en) * 1993-09-17 1999-03-02 Illinois Tool Works Inc. Method and apparatus for coating fasteners
US5795121A (en) * 1994-02-18 1998-08-18 Utility Composites, Inc. Impact-driven plastic fasteners
US5803396A (en) * 1995-02-27 1998-09-08 N.V. Bekaert S.A. Method for spooling a strip of wires, and a spooled strip of wires
CA2306356A1 (en) * 2000-04-19 2001-10-19 Bhp Steel (Awi) Pty Limited A fastener having a protective coating and a method of providing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150007930A1 (en) * 2013-07-04 2015-01-08 Patek Pneumatics Co., Ltd. Process for manufacturing roll staple with wire strip

Also Published As

Publication number Publication date
US7871629B1 (en) 2011-01-18

Similar Documents

Publication Publication Date Title
US5494745A (en) Laminated film and method for making a laminated film
US6403190B1 (en) Release liners for pressure sensitive adhesive labels
JP2001525481A (en) Rubber product that can be bonded to pressure-sensitive adhesive and manufacturing method
SE445581B (en) PROCEDURE FOR COATING ROADS WITH A PROTECTIVE LAYER ABOVE A CORROSION PROTECTIVE LAYER
IT8222682A1 (en) ADHESIVE TAPE AND PROCEDURE FOR ITS PRODUCTION
US4921556A (en) Wrinkle free lamination method for releasably laminated, stretched webs
JPH04303646A (en) Nonskid sheet product and manufacture thereof
JPH01195015A (en) Coating of base material
AU621129B2 (en) Fibrillated tape and method of making same
JP3832603B2 (en) Adhesive tape
US6447899B1 (en) Heatsealable multi-layer polymer films
AU615241B2 (en) Production of polymeric films
US7083858B1 (en) Thermally activated adhesive films for the collation of wire staples
WO1995020633A1 (en) Tear-resistant adhesive tape based on monoaxially oriented polyethylene
JPH0249084A (en) New masking tape
JP6359097B2 (en) Roll of adhesive tape having an adhesive layer containing a structural adhesive and method for producing the same
JP6703934B2 (en) Masker tape
RU2233304C2 (en) Method of manufacture of multilayer combination material and combination material manufactured using this method
JP4339811B2 (en) Laminated molded body
AU632998B2 (en) Self-release wrapping paper
WO2007109490A1 (en) Thermal laminating film and method of manufacture
JPS6156085B2 (en)
US20030008138A1 (en) Protective foil for protective vehicles to be transported
AU646135B2 (en) Multiple-layer polyolefin films
WO2015056031A1 (en) Polyvinylidene chloride coated substrates

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2553)

Year of fee payment: 12