US6713755B1 - Semiconductor device including a light-receiving element and an optical transfer device - Google Patents

Semiconductor device including a light-receiving element and an optical transfer device Download PDF

Info

Publication number
US6713755B1
US6713755B1 US09/654,550 US65455000A US6713755B1 US 6713755 B1 US6713755 B1 US 6713755B1 US 65455000 A US65455000 A US 65455000A US 6713755 B1 US6713755 B1 US 6713755B1
Authority
US
United States
Prior art keywords
light
optical signal
semiconductor chip
receiving element
transfer device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US09/654,550
Inventor
Yoshiro Iwasa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Assigned to SEIKO EPSON CORPORATION reassignment SEIKO EPSON CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: IWASA, YOSHIRO
Application granted granted Critical
Publication of US6713755B1 publication Critical patent/US6713755B1/en
Adjusted expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • G01J1/0425Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings using optical fibers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/0204Compact construction
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/421Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical component consisting of a short length of fibre, e.g. fibre stub
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4236Fixing or mounting methods of the aligned elements
    • G02B6/424Mounting of the optical light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4251Sealed packages
    • G02B6/4253Sealed packages by embedding housing components in an adhesive or a polymer material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • G02B6/428Electrical aspects containing printed circuit boards [PCB]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements

Definitions

  • the present invention relates to a semiconductor device, and more particularly to a semiconductor device that is capable of correctly transferring signals at high speed.
  • a wiring pattern of printed conductor lines and the like is formed an a product system substrate.
  • a plurality of semiconductor chips are mounted an the system substrate, and electrode pads are formed on the semiconductor chips for transferring electric signals.
  • the electrode pads are electrically connected to lead frames by bonding wires.
  • the semiconductor chip, the bonding wires and one end of the lead frames are sealed with resin.
  • the other end of the lead frames is connected to the wiring pattern by soldering or pressure bonding. Electrical signals are transferred (inputted and outputted) between the semiconductor chips through the wiring pattern and the lead frames.
  • digital signals are generated by turning ON and OFF of electrical signals, and such signals are transferred.
  • portions of the lead sections that protrude from the mold resin i.e., the semiconductor package
  • portions of the lead sections that protrude from the mold resin are connected to the wiring pattern on the system substrate by soldering or pressure bonding, and electrical signals that are transferred by the wiring pattern are inputted in or outputted from the semiconductor chips.
  • the electrical signals are substantially influenced by physical properties of transfer elements (physical properties of copper or the like) of the wiring pattern. Therefore, there is a problem in that it is difficult to continuously maintain the original characteristics of the signals. In other words, harmful effects may be created by the influences of the physical properties of adjacent wirings, such as wiring capacitance and the like. As a result, for example propagating signals may be blunted, their amplitudes may become unstable, and devices in succeeding stages may malfunction.
  • circuits for clock signals that are inputted in and outputted from the semiconductor device must be designed in consideration of the harmful effects. Also, since electrical influences among adjacent signal lines cannot be ignored. Malfunction protection circuits and other signal controls may need to be implemented.
  • the leads that protrude from the semiconductor package have a limited degree of freedom with respect to their length and positions, and therefore, the leads can only be connected to limited areas on the system substrate.
  • a semiconductor device includes a semiconductor chip, a light-receiving element formed on the semiconductor chip for receiving optical signal, and an optical signal transfer device connected to the light-receiving element for transferring the optical signal into the semiconductor chip.
  • the optical signal transfer device is connected to the semiconductor chip through the light-receiving element, such that optical signals are used as signals that are inputted in the semiconductor chip.
  • Optical signals have a smaller attenuation of signal amplitude and have a higher transfer speed compared to electrical signals. Therefore, correct signal transfer becomes possible, and thus signals can be correctly transferred at high speed.
  • the optical signal transfer device may be formed from an optical fiber, such as, for example, a glass fiber.
  • the semiconductor device may further include a package that seals the semiconductor chip and a portion of the optical fiber.
  • the semiconductor chip may be mounted on a mounting substrate.
  • a semiconductor device includes a mounting substrate, an optical signal transfer device disposed in the mounting substrate for transferring optical signals, a plurality of semiconductor chips mounted on the mounting substrate, and a light-receiving element connected to the optical signal transfer device for receiving optical signals, wherein signals are transferred among the plurality of semiconductor chips by the optical signal transfer device.
  • a semiconductor device includes a semiconductor chip, a light-receiving element formed on the semiconductor chip for receiving optical signals, and an optical signal transfer device connected to the light-receiving element for transferring signals from an arithmetic processing apparatus as optical signals into the semiconductor chip.
  • the optical signal transfer device is connected to the semiconductor chip through the light-receiving element, such that optical signals are used as signals that are inputted from the arithmetic processing apparatus in the semiconductor chip.
  • Optical signals have a smaller attenuation of signal amplitude and have a higher transfer speed compared to electrical signals. Therefore, correct signal transfer becomes possible, and thus signals can be correctly transferred at high speed.
  • clock signals are used as signals that are inputted from the arithmetic processing apparatus in the semiconductor chip, phase shift in the clock signals can be avoided, and highly accurate clock signals can be transferred to the semiconductor chip.
  • the optical signal transfer device may be provided in a mounting substrate on which the semiconductor chip is mounted.
  • the optical signal transfer device may be embedded in the mounting substrate.
  • a light-emitting element surface that is formed on the mounting substrate or within the mounting substrate may, be used as the optical signal transfer device.
  • the light-emitting element surface is formed on the mounting substrate, such that the entire surface of the mounting substrate may irradiate light in response to inputted optical signals.
  • the optical signal transfer device can be disposed anywhere in the mounting substrate without regard to the mounting location of the semiconductor chip within the mounting substrate.
  • the optical signal transfer device may be formed in a lattice configuration, and disposed in the mounting substrate.
  • the light-receiving element in a convex shape may be formed on the semiconductor chip on a side thereof that is opposite to the mounting substrate.
  • the light-receiving element may be inserted in the optical signal transfer device that is disposed in a plane configuration or a lattice configuration to thereby connect the light-receiving element to the optical signal transfer device.
  • the light-receiving element and the optical signal transfer device can be readily and securely connected to each other.
  • FIG. 1 is a cross-sectional view in part of a semiconductor device in accordance with a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view in part of a semiconductor device in accords with a second embodiment of the present invention.
  • FIG. 3 schematically shows a plan view of a semiconductor device in accordance with a third embodiment of the present invention.
  • FIG. 4 schematically shows a plan view of a semiconductor device in accordance with a fourth embodiment of the present invention.
  • FIG. 5 is a view for illustrating a method for connecting a light-emitting element or a light-receiving element with a glass fiber.
  • FIG. 6 schematically shows a plan view of a semiconductor device in accordance with a fifth embodiment of the present invention.
  • FIG. 1 is a cross-sectional view in part of a semiconductor device in accordance with a first embodiment of the present invention.
  • the semiconductor device has a semiconductor chip 11 .
  • a light-receiving element (not shown) is formed on the semiconductor chip 11 for receiving optical signals carried on a laser beam (infrared light) or the like.
  • the light-receiving element is connected to one end of an optical signal transfer device, such as, for example, a glass fiber 15 that is a directional element by a light-transmissive type adhesive.
  • the optical signal transfer device transfers optical signals into the semiconductor chip 11 .
  • the semiconductor chip 11 , the light-receiving element and one end of the glass fiber 15 are sealed by molding resin 13 .
  • optical signals are guided from the glass fiber 15 through the light-receiving element into the semiconductor chip 11 .
  • the optical signals are handed over by the light-receiving element and introduced in the semiconductor chip 11 .
  • the glass fiber 15 is connected to the semiconductor chip 11 through the light-receiving element, and optical signals carried by laser are used as signals that are inputted in the semiconductor chip 11 .
  • Optical signals have a smaller attenuation of signal amplitude and have a higher transfer speed compared to electrical signals. Therefore, accurate signal transfer becomes possible, and thus signals can be correctly transferred at high speed with substantially no effects by the physical property (transmission property) of the glass fiber 15 that is an optical signal transfer devise.
  • optical signals are difficult to be affected by noises than electrical signals, and therefore malfunctions that may be cause by voltage fluctuations are also difficult to occur. Furthermore, optical signals are not affected by the physical properties of a transfer element such as the glass fiber 15 , and can continuously maintain the original characteristics of the signal.
  • optical signals do not become blunt due to the influences of the physical properties existing among the adjacent glass fibers, and their amplitudes do not become unstable.
  • one end of the glass fiber 15 and the light-receiving element are connected by a light transmissive type adhesive.
  • one end of the glass fiber 15 and the light-receiving element can be connected by pressure bonding by molding.
  • FIG. 2 is a cross-sectional view in part of a semiconductor device in accordance with a second embodiment of the present invention, in which the semiconductor chip 11 shown in FIG. 1 is mounted on a system substrate that is a mounting substrate.
  • a plurality of electrode pads 23 are formed on a surface of the semiconductor chip 11 . Part of the electrode pads 23 are electrically connected to leads 26 through 30 by bonding wires. Another part of the electrode pads 23 is connected to one end of the glass fiber 15 as an optical signal transfer device through the light-receiving element.
  • the semiconductor chip 11 , the bonding wires 25 , a part of the leads and one end of the glass fiber 15 are sealed by the molding resin 13 .
  • Wiring patterns 36 - 39 of conductive lines are printed on the system substrate 21 . Also, a semiconductor package 13 is mounted on the system substrate 21 . Portions of the leads 26 - 30 that protrude from the semiconductor package 13 are connected to the wiring patterns 36 - 39 by soldering or pressure bonding.
  • optical signals are inputted through the glass fiber 15 , and the optical signals are changed into electrical signals within the semiconductor chip 11 .
  • a power supply potential V DD is supplied from a power source to a signal line that supplies electrical signals that have been converted from optical signals in response to an optical signal ON, and a ground potential is supplied to the signal line in response to an optical signal OFF.
  • the second embodiment can produce effects similar to those of the first embodiment.
  • the glass fiber 15 is connected to the semiconductor chip 11 .
  • the degree of freedom in disposing the circuit elements is improved compared with a device using only leads. More specifically, portions of the leads that protrude from the semiconductor package 13 have fixed length and are disposed at fixed locations, such that the loads can be connected to the wiring patterns at limited locations on the system substrate 21 . Also, a gap L between the wiring patterns 36 and 37 on the system substrate 21 needs to be greater than a specified amount. Accordingly, the circuit structure is restricted when only the leads and the wiring patterns are used. However, when the glass fiber 15 is additionally used as a means to supply signals to the semiconductor chip 11 , the degree of freedom in disposing the circuit components is improved.
  • a gap between the adjacent leads (pins) needs to be greater than a specified amount. Since the number of the pins cannot limitlessly be increased, the circuit structure is restricted. However, the additional use of the glass fiber 15 as a means to supply signals to the semiconductor chip 11 improves the degree of freedom in disposing the circuit components.
  • one glass fiber 15 is connected to the semiconductor chip 11 .
  • a plurality of class fibers may be connected to the semiconductor chip, and the glass fibers can be disposed at any locations.
  • FIG. 3 schematically shows a plan view of a semiconductor device in accordance with a third embodiment of the present invention.
  • Directional elements such as glass fibers 45 - 47 are disposed in a system substrate 41 as a means to transfer optical signals.
  • a plurality of semiconductor chips 42 said 43 are mounted on the system substrate 41 .
  • Light-receiving elements for receiving optical signals carried on a laser beam (infrared light) or the like and light-emitting elements for emitting optical signals 51 - 56 are formed on the semiconductor chips 42 and 43 .
  • the semiconductor chips 42 and 43 are connected to each other by the glass fibers 45 - 47 through the light-receiving elements and light-emitting elements 51 - 56 .
  • the glass fibers are used in the same manner as wirings such as conduction wirings.
  • one end of the glass fiber 47 is connected to the semiconductor chip 42 through the light-receiving element 51 , and the other end of the glass fiber 47 is connected to the semiconductor chip 43 through the light-emitting element 52 , such that signals are outputted from the semiconductor chip 43 to the light source semiconductor chip 42 .
  • One end of the glass fiber 45 is connected to the semiconductor chip 42 through the light-emitting element 55 , and the other end of the glass fiber 45 is connected to the semiconductor chip 43 through the light-receiving element 56 , such that signals are outputted from the semiconductor chip 42 to the semiconductor chip 43 .
  • optical signals are transferred between the semiconductor chips 42 and 43 through the glass fibers 45 - 47 and the light-receiving elements 51 - 56 .
  • optical signals are handed over and introduced in the semiconductor chips 42 and 43 by the light-receiving elements 51 - 56 .
  • the third embodiment provides effects similar to those provided by the first embodiment.
  • the embodiment when clock signals are transferred between an arithmetic processor apparatus and a memory apparatus, the embodiment provides favorable effects because a phase shift does not occur in the clock signal.
  • wirings with a directional material such as glass fibers 45 - 47 as a wiring material for connecting semiconductor products, are pre-installed within the system substrate 41 . Therefore, lead sections that are typically used in a conventional semiconductor device are not required. Accordingly, malfunctions of the device that may be caused by defective soldering can be prevented.
  • FIG. 4 shows a semiconductor device in accordance with a fourth embodiment of the present invention.
  • a system substrate 61 is formed from a film substrate, for example.
  • Glass fibers 62 as an optical signal transfer device are connected in a lattice structure and embedded in the system substrate 61 .
  • the signal can be propagated through the entire area of the glass fibers 62 .
  • the system substrate 61 is formed, the glass fibers 62 are embedded in the system substrate 61 .
  • An arithmetic processor apparatus 63 is mounted on the system substrate 61 .
  • a light-emitting element 67 to transferring a clock signal is formed on the arithmetic processor apparatus 63 .
  • semiconductor chips such as storage apparatuses 64 and 65 that receive clock signals from the arithmetic process apparatus 63 .
  • Light-receiving elements 68 and 69 are formed on the storage apparatuses 64 and 65 for receiving optical signals carried on laser beam (infrared light) or the like.
  • Contact holes 61 a are formed in the system substrate 61 that is formed with the glass fibers 62 described above at locations where the semiconductor chips 63 - 65 are mounted and in a manner that the contact holes 61 a are located opposite to the light-receiving elements or the light-emitting elements 67 - 69 . Then, the light-receiving elements and light-emitting elements 67 - 69 are inserted in the contact holes 61 a , and the light-receiving elements and light-emitting elements 67 - 69 are pressure bonded to the glass fibers 62 , as shown in FIG. 5, to thereby connect the light-receiving elements and light-emitting elements 67 - 69 to the glass fibers 62 .
  • the semiconductor chips 63 - 65 are connected to the glass fibers 62 through the light-receiving elements and light-emitting elements 67 - 69 .
  • Clock signals from the semiconductor chip 63 that is an arithmetic processor apparatus are transferred through the light-emitting element 67 to the glass fibers 62 , and the semiconductor chips 64 and 65 receive the signals transmitted through the glass fibers 62 at their respective light-receiving elements 68 and 69 .
  • the clock signals are taken into the storage apparatuses 64 and 65 from the glass fibers 62 .
  • Signals other than the clock signals may be transferred by wiring patterns that may be formed on the system substrate 61 , for example.
  • this embodiment also provides effects similar to those provided by the embodiments described above.
  • the glass fiber 62 in a lattice configuration are formed in the system substrate 61 . Therefore, when the system substrate 61 is formed, glass fibers 62 do not need to be embedded in consideration of factors such as locations of semiconductor chip to be mounted on the system substrate 61 . As a result, the system substrate 61 can be readily manufactured.
  • the system substrate 61 is formed by a film substrate, the system substrate 61 can be bent to a degree, and the cost can be lowered.
  • the fourth embodiment is described with reference to a structure in which the glass fibers 62 are formed through the entire area of the system substrate 61 .
  • the present invention is not limited to this embodiment.
  • the glass fibers 62 may be formed in a limited area in the system substrate 61 , for example, in an area where the semiconductor chip is mounted.
  • the lattice gap may be determined depending on separations among the semiconductors chips that are mounted on the substrate.
  • FIG. 6 shows a semiconductor device in accordance with a fifth embodiment of the present invention.
  • a system substrate 71 is used instead of the system substrate 61 used in the apparatus of the fourth embodiment.
  • the system substrate 71 of the fifth embodiment is formed from a film substrate, and a light-emitting surface 72 composed of light-emitting elements such as light-emitting diodes formed on the system substrate 71 .
  • a light prevention film is formed on the light-emitting surface 72 for preventing external light from entering into the light-emitting surface 72 .
  • the light-emitting surface 72 may be formed within the system substrate 71 .
  • the system substrate 71 may be formed from light-emitting elements, and the system substrate 71 may be used as the light-emitting surface 72 .
  • the light-receiving elements and light-emitting elements 67 - 69 are inserted in the contact holes 71 a , and the light-receiving elements and light-emitting elements 67 - 69 are pressure bonded to the light-emitting surface 72 to thereby connect the light-receiving elements and light-emitting elements 67 - 69 to the light-emitting surface 72 .
  • the semiconductor chips 63 - 65 on connected to the light-emitting surface 72 through the light-receiving elements and light-emitting elements 67 - 69 .
  • Clock signals from the semiconductor chip 63 that is an arithmetic processor apparatus are transferred through the light-emitting element 67 to the light-emitting surface 72 , and the semiconductor chips 64 and 66 receive the signals transmitted from the light-emitting surface 72 at their respective light-receiving elements 68 and 69 .
  • the clock signals are taken into the storage apparatuses 64 and 65 from the light-emitting surface 72 .
  • Signals other than the clock signals may be transferred by wiring patterns that may be formed on the system substrate 71 , or on the light-emitting surface 72 if such a film is formed on the system substrate 71 , for example.
  • this embodiment also provides effects similar to those provided by the fourth embodiment.
  • the light-emitting surface 72 is formed on the entire area of the system substrate 71 . Therefore, when semiconductor chips are mounted on the system substrate 71 , mounting locations of the semiconductor chips do not need particular consideration. In contrast, particular consideration is required when glass fibers are disposed.
  • the fifth embodiment is described with reference to the case where the light-emitting surface 72 is formed over the entire area of the system substrate 71 .
  • the present invention is not limited to such an embodiment.
  • the light-emitting surface 72 may be formed only in a limited area in the system substrate 71 , for example, in an area where the semiconductor chips are formed.
  • a plurality of light-emitting surfaces 72 may be formed in layers, and signals are allocated to each of the layers, such that not only the clock signals but also other signals, such as, for example, enable signals may be transferred.
  • a light prevention film may be formed between the adjacent light-emitting surfaces not only to prevent external light from coming into the light-emitting surfaces but also to prevent optical signals of one light-emitting surface from coming into the other light-emitting surface.
  • the light-receiving elements and the light-emitting elements may be formed in such a manner that signals are transmitted only to the corresponding light-emitting surface or signals are received only from the corresponding light-emitting surface, and that optical signals are not transferred to the non-corresponding light-emitting surface and optical signals are not received from the non-corresponding light-emitting surface.

Abstract

A semiconductor device that is capable of correctly transferring signals at high speed. The semiconductor device includes a semiconductor chip, a light-receiving element formed in the semiconductor chip for receiving an optical signal, and a glass fiber as an optical signal transfer device connected to the light-receiving element for transferring the optical signal into the semiconductor chip. Optical signals have a smaller attenuation of signal amplitude and have a higher transfer speed compared to electrical signals. Therefore, by transferring signals in the form of optical signals, the semiconductor device that can correctly transfer signals at high speed is obtained.

Description

BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor device, and more particularly to a semiconductor device that is capable of correctly transferring signals at high speed.
Conventionally, a wiring pattern of printed conductor lines and the like is formed an a product system substrate. A plurality of semiconductor chips are mounted an the system substrate, and electrode pads are formed on the semiconductor chips for transferring electric signals. The electrode pads are electrically connected to lead frames by bonding wires. The semiconductor chip, the bonding wires and one end of the lead frames are sealed with resin. On the other hand, the other end of the lead frames is connected to the wiring pattern by soldering or pressure bonding. Electrical signals are transferred (inputted and outputted) between the semiconductor chips through the wiring pattern and the lead frames.
In the conventional semiconductor device described above, digital signals are generated by turning ON and OFF of electrical signals, and such signals are transferred.
As a result, there an problems in that the semiconductor device is likely to be affected by noises that may result from factors such as higher frequency, higher operation speed and lower voltage (2V) operation. Also, malfunctions may possibly occur due to other factors such as voltage fluctuations.
Furthermore, in the conventional semiconductor device described above, portions of the lead sections that protrude from the mold resin (i.e., the semiconductor package) are connected to the wiring pattern on the system substrate by soldering or pressure bonding, and electrical signals that are transferred by the wiring pattern are inputted in or outputted from the semiconductor chips.
As a result, the electrical signals are substantially influenced by physical properties of transfer elements (physical properties of copper or the like) of the wiring pattern. Therefore, there is a problem in that it is difficult to continuously maintain the original characteristics of the signals. In other words, harmful effects may be created by the influences of the physical properties of adjacent wirings, such as wiring capacitance and the like. As a result, for example propagating signals may be blunted, their amplitudes may become unstable, and devices in succeeding stages may malfunction.
In particular, circuits for clock signals that are inputted in and outputted from the semiconductor device must be designed in consideration of the harmful effects. Also, since electrical influences among adjacent signal lines cannot be ignored. Malfunction protection circuits and other signal controls may need to be implemented. Moreover, the leads that protrude from the semiconductor package have a limited degree of freedom with respect to their length and positions, and therefore, the leads can only be connected to limited areas on the system substrate.
SUMMARY OF THE PREFERRED EMBODIMENTS
Therefore, it is an object of the present invention to provide a semiconductor device that can accurately transmit signals at high speed.
In accordance with one embodiment of the present invention, a semiconductor device includes a semiconductor chip, a light-receiving element formed on the semiconductor chip for receiving optical signal, and an optical signal transfer device connected to the light-receiving element for transferring the optical signal into the semiconductor chip.
In accordance with this embodiment, the optical signal transfer device is connected to the semiconductor chip through the light-receiving element, such that optical signals are used as signals that are inputted in the semiconductor chip. Optical signals have a smaller attenuation of signal amplitude and have a higher transfer speed compared to electrical signals. Therefore, correct signal transfer becomes possible, and thus signals can be correctly transferred at high speed.
The optical signal transfer device may be formed from an optical fiber, such as, for example, a glass fiber.
Also, the semiconductor device may further include a package that seals the semiconductor chip and a portion of the optical fiber.
Also, the semiconductor chip may be mounted on a mounting substrate.
Also, in accordance with another embodiment of the present invention, a semiconductor device includes a mounting substrate, an optical signal transfer device disposed in the mounting substrate for transferring optical signals, a plurality of semiconductor chips mounted on the mounting substrate, and a light-receiving element connected to the optical signal transfer device for receiving optical signals, wherein signals are transferred among the plurality of semiconductor chips by the optical signal transfer device.
Furthermore, in accordance with another embodiment of the present invention, a semiconductor device includes a semiconductor chip, a light-receiving element formed on the semiconductor chip for receiving optical signals, and an optical signal transfer device connected to the light-receiving element for transferring signals from an arithmetic processing apparatus as optical signals into the semiconductor chip.
In accordance with this embodiment, the optical signal transfer device is connected to the semiconductor chip through the light-receiving element, such that optical signals are used as signals that are inputted from the arithmetic processing apparatus in the semiconductor chip. Optical signals have a smaller attenuation of signal amplitude and have a higher transfer speed compared to electrical signals. Therefore, correct signal transfer becomes possible, and thus signals can be correctly transferred at high speed.
In particular, when clock signals are used as signals that are inputted from the arithmetic processing apparatus in the semiconductor chip, phase shift in the clock signals can be avoided, and highly accurate clock signals can be transferred to the semiconductor chip.
Also, the optical signal transfer device may be provided in a mounting substrate on which the semiconductor chip is mounted. For example, the optical signal transfer device may be embedded in the mounting substrate.
Also, a light-emitting element surface that is formed on the mounting substrate or within the mounting substrate may, be used as the optical signal transfer device. In other words, for example, the light-emitting element surface is formed on the mounting substrate, such that the entire surface of the mounting substrate may irradiate light in response to inputted optical signals. As a result, the optical signal transfer device can be disposed anywhere in the mounting substrate without regard to the mounting location of the semiconductor chip within the mounting substrate.
Alternatively, instead of forming a light-emitting element surface over the entire surface of the mounting substrate, the optical signal transfer device may be formed in a lattice configuration, and disposed in the mounting substrate.
In this instance, the light-receiving element in a convex shape may be formed on the semiconductor chip on a side thereof that is opposite to the mounting substrate. The light-receiving element may be inserted in the optical signal transfer device that is disposed in a plane configuration or a lattice configuration to thereby connect the light-receiving element to the optical signal transfer device. As a result, the light-receiving element and the optical signal transfer device can be readily and securely connected to each other.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a cross-sectional view in part of a semiconductor device in accordance with a first embodiment of the present invention.
FIG. 2 is a cross-sectional view in part of a semiconductor device in accords with a second embodiment of the present invention.
FIG. 3 schematically shows a plan view of a semiconductor device in accordance with a third embodiment of the present invention.
FIG. 4 schematically shows a plan view of a semiconductor device in accordance with a fourth embodiment of the present invention.
FIG. 5 is a view for illustrating a method for connecting a light-emitting element or a light-receiving element with a glass fiber.
FIG. 6 schematically shows a plan view of a semiconductor device in accordance with a fifth embodiment of the present invention.
DESCRIPTION OF PREFERRED EMBODIMENTS
Embodiments of the present invention are described below with reference to the accompanying drawings.
FIG. 1 is a cross-sectional view in part of a semiconductor device in accordance with a first embodiment of the present invention.
The semiconductor device has a semiconductor chip 11. A light-receiving element (not shown) is formed on the semiconductor chip 11 for receiving optical signals carried on a laser beam (infrared light) or the like. The light-receiving element is connected to one end of an optical signal transfer device, such as, for example, a glass fiber 15 that is a directional element by a light-transmissive type adhesive. The optical signal transfer device transfers optical signals into the semiconductor chip 11. The semiconductor chip 11, the light-receiving element and one end of the glass fiber 15 are sealed by molding resin 13.
In the semiconductor device described above, optical signals are guided from the glass fiber 15 through the light-receiving element into the semiconductor chip 11. In other words, the optical signals are handed over by the light-receiving element and introduced in the semiconductor chip 11.
In accordance with the first embodiment of the present invention, the glass fiber 15 is connected to the semiconductor chip 11 through the light-receiving element, and optical signals carried by laser are used as signals that are inputted in the semiconductor chip 11. Optical signals have a smaller attenuation of signal amplitude and have a higher transfer speed compared to electrical signals. Therefore, accurate signal transfer becomes possible, and thus signals can be correctly transferred at high speed with substantially no effects by the physical property (transmission property) of the glass fiber 15 that is an optical signal transfer devise.
Also, optical signals are difficult to be affected by noises than electrical signals, and therefore malfunctions that may be cause by voltage fluctuations are also difficult to occur. Furthermore, optical signals are not affected by the physical properties of a transfer element such as the glass fiber 15, and can continuously maintain the original characteristics of the signal.
Also, optical signals do not become blunt due to the influences of the physical properties existing among the adjacent glass fibers, and their amplitudes do not become unstable.
In the first embodiment described above, one end of the glass fiber 15 and the light-receiving element are connected by a light transmissive type adhesive. However, one end of the glass fiber 15 and the light-receiving element can be connected by pressure bonding by molding.
FIG. 2 is a cross-sectional view in part of a semiconductor device in accordance with a second embodiment of the present invention, in which the semiconductor chip 11 shown in FIG. 1 is mounted on a system substrate that is a mounting substrate.
A plurality of electrode pads 23 are formed on a surface of the semiconductor chip 11. Part of the electrode pads 23 are electrically connected to leads 26 through 30 by bonding wires. Another part of the electrode pads 23 is connected to one end of the glass fiber 15 as an optical signal transfer device through the light-receiving element. The semiconductor chip 11, the bonding wires 25, a part of the leads and one end of the glass fiber 15 are sealed by the molding resin 13.
Wiring patterns 36-39 of conductive lines are printed on the system substrate 21. Also, a semiconductor package 13 is mounted on the system substrate 21. Portions of the leads 26-30 that protrude from the semiconductor package 13 are connected to the wiring patterns 36-39 by soldering or pressure bonding.
In the semiconductor device described above, optical signals are inputted through the glass fiber 15, and the optical signals are changed into electrical signals within the semiconductor chip 11. For example, it is possible to set such that a power supply potential VDD is supplied from a power source to a signal line that supplies electrical signals that have been converted from optical signals in response to an optical signal ON, and a ground potential is supplied to the signal line in response to an optical signal OFF.
The second embodiment can produce effects similar to those of the first embodiment.
Also, in the second embodiment, the glass fiber 15 is connected to the semiconductor chip 11. As a result, the degree of freedom in disposing the circuit elements is improved compared with a device using only leads. More specifically, portions of the leads that protrude from the semiconductor package 13 have fixed length and are disposed at fixed locations, such that the loads can be connected to the wiring patterns at limited locations on the system substrate 21. Also, a gap L between the wiring patterns 36 and 37 on the system substrate 21 needs to be greater than a specified amount. Accordingly, the circuit structure is restricted when only the leads and the wiring patterns are used. However, when the glass fiber 15 is additionally used as a means to supply signals to the semiconductor chip 11, the degree of freedom in disposing the circuit components is improved.
Also, a gap between the adjacent leads (pins) needs to be greater than a specified amount. Since the number of the pins cannot limitlessly be increased, the circuit structure is restricted. However, the additional use of the glass fiber 15 as a means to supply signals to the semiconductor chip 11 improves the degree of freedom in disposing the circuit components.
It is noted that, in the second embodiment, one glass fiber 15 is connected to the semiconductor chip 11. However, a plurality of class fibers may be connected to the semiconductor chip, and the glass fibers can be disposed at any locations.
FIG. 3 schematically shows a plan view of a semiconductor device in accordance with a third embodiment of the present invention.
Directional elements such as glass fibers 45-47 are disposed in a system substrate 41 as a means to transfer optical signals. A plurality of semiconductor chips 42 said 43 are mounted on the system substrate 41. Light-receiving elements for receiving optical signals carried on a laser beam (infrared light) or the like and light-emitting elements for emitting optical signals 51-56 are formed on the semiconductor chips 42 and 43.
The semiconductor chips 42 and 43 are connected to each other by the glass fibers 45-47 through the light-receiving elements and light-emitting elements 51-56. The glass fibers are used in the same manner as wirings such as conduction wirings.
More specifically, one end of the glass fiber 47 is connected to the semiconductor chip 42 through the light-receiving element 51, and the other end of the glass fiber 47 is connected to the semiconductor chip 43 through the light-emitting element 52, such that signals are outputted from the semiconductor chip 43 to the light source semiconductor chip 42. Also, one end of the glass fiber 46 in connected to the semiconductor chip 42 through the light-receiving element 53, and the other end of the glass fiber 46 is connected to the semiconductor chip 43 through the light-emitting element 54. One end of the glass fiber 45 is connected to the semiconductor chip 42 through the light-emitting element 55, and the other end of the glass fiber 45 is connected to the semiconductor chip 43 through the light-receiving element 56, such that signals are outputted from the semiconductor chip 42 to the semiconductor chip 43.
In the semiconductor device described above, optical signals are transferred between the semiconductor chips 42 and 43 through the glass fibers 45-47 and the light-receiving elements 51-56. In other words, optical signals are handed over and introduced in the semiconductor chips 42 and 43 by the light-receiving elements 51-56.
Therefore, the third embodiment provides effects similar to those provided by the first embodiment.
In particular, when clock signals are transferred between an arithmetic processor apparatus and a memory apparatus, the embodiment provides favorable effects because a phase shift does not occur in the clock signal.
Also, in accordance with the third embodiment, wirings with a directional material such as glass fibers 45-47, as a wiring material for connecting semiconductor products, are pre-installed within the system substrate 41. Therefore, lead sections that are typically used in a conventional semiconductor device are not required. Accordingly, malfunctions of the device that may be caused by defective soldering can be prevented.
FIG. 4 shows a semiconductor device in accordance with a fourth embodiment of the present invention.
In the fourth embodiment, a system substrate 61 is formed from a film substrate, for example. Glass fibers 62 as an optical signal transfer device are connected in a lattice structure and embedded in the system substrate 61. When a signal is generated at any location of the glass fibers 62, the signal can be propagated through the entire area of the glass fibers 62. When the system substrate 61 is formed, the glass fibers 62 are embedded in the system substrate 61.
An arithmetic processor apparatus 63 is mounted on the system substrate 61. A light-emitting element 67 to transferring a clock signal is formed on the arithmetic processor apparatus 63. There are provided semiconductor chips such as storage apparatuses 64 and 65 that receive clock signals from the arithmetic process apparatus 63. Light-receiving elements 68 and 69 are formed on the storage apparatuses 64 and 65 for receiving optical signals carried on laser beam (infrared light) or the like. Contact holes 61 a are formed in the system substrate 61 that is formed with the glass fibers 62 described above at locations where the semiconductor chips 63-65 are mounted and in a manner that the contact holes 61 a are located opposite to the light-receiving elements or the light-emitting elements 67-69. Then, the light-receiving elements and light-emitting elements 67-69 are inserted in the contact holes 61 a, and the light-receiving elements and light-emitting elements 67-69 are pressure bonded to the glass fibers 62, as shown in FIG. 5, to thereby connect the light-receiving elements and light-emitting elements 67-69 to the glass fibers 62.
As a result, the semiconductor chips 63-65 are connected to the glass fibers 62 through the light-receiving elements and light-emitting elements 67-69. Clock signals from the semiconductor chip 63 that is an arithmetic processor apparatus are transferred through the light-emitting element 67 to the glass fibers 62, and the semiconductor chips 64 and 65 receive the signals transmitted through the glass fibers 62 at their respective light-receiving elements 68 and 69. As a result, the clock signals are taken into the storage apparatuses 64 and 65 from the glass fibers 62.
Signals other than the clock signals may be transferred by wiring patterns that may be formed on the system substrate 61, for example.
Accordingly, this embodiment also provides effects similar to those provided by the embodiments described above. Also, in the semiconductor device of the present embodiment, the glass fiber 62 in a lattice configuration are formed in the system substrate 61. Therefore, when the system substrate 61 is formed, glass fibers 62 do not need to be embedded in consideration of factors such as locations of semiconductor chip to be mounted on the system substrate 61. As a result, the system substrate 61 can be readily manufactured.
Also, since the system substrate 61 is formed by a film substrate, the system substrate 61 can be bent to a degree, and the cost can be lowered.
It is noted that the fourth embodiment is described with reference to a structure in which the glass fibers 62 are formed through the entire area of the system substrate 61. However, the present invention is not limited to this embodiment. For example, the glass fibers 62 may be formed in a limited area in the system substrate 61, for example, in an area where the semiconductor chip is mounted.
Also, the smaller the gap of the lattice becomes, the less the position of the glass fibers needs to be considered when the semiconductor chip is mounted. However, the lattice gap may be determined depending on separations among the semiconductors chips that are mounted on the substrate.
FIG. 6 shows a semiconductor device in accordance with a fifth embodiment of the present invention.
In accordance with the fifth embodiment of the present invention, a system substrate 71 is used instead of the system substrate 61 used in the apparatus of the fourth embodiment.
The system substrate 71 of the fifth embodiment is formed from a film substrate, and a light-emitting surface 72 composed of light-emitting elements such as light-emitting diodes formed on the system substrate 71. A light prevention film is formed on the light-emitting surface 72 for preventing external light from entering into the light-emitting surface 72.
It is noted that the light-emitting surface 72 may be formed within the system substrate 71. Alternatively, the system substrate 71 may be formed from light-emitting elements, and the system substrate 71 may be used as the light-emitting surface 72.
Contact holes 71 a an formed in the system substrate 71 at locations where the semiconductor chips 63-65 are mounted in a manner that the contact holes 71 a are disposed opposite to the light-receiving elements or light-emitting elements 67-69. The light-receiving elements and light-emitting elements 67-69 are inserted in the contact holes 71 a, and the light-receiving elements and light-emitting elements 67-69 are pressure bonded to the light-emitting surface 72 to thereby connect the light-receiving elements and light-emitting elements 67-69 to the light-emitting surface 72.
As a result, the semiconductor chips 63-65 on connected to the light-emitting surface 72 through the light-receiving elements and light-emitting elements 67-69. Clock signals from the semiconductor chip 63 that is an arithmetic processor apparatus are transferred through the light-emitting element 67 to the light-emitting surface 72, and the semiconductor chips 64 and 66 receive the signals transmitted from the light-emitting surface 72 at their respective light-receiving elements 68 and 69. As a result, the clock signals are taken into the storage apparatuses 64 and 65 from the light-emitting surface 72.
Signals other than the clock signals may be transferred by wiring patterns that may be formed on the system substrate 71, or on the light-emitting surface 72 if such a film is formed on the system substrate 71, for example.
Accordingly, this embodiment also provides effects similar to those provided by the fourth embodiment. Also, in the semiconductor device of the present embodiment, the light-emitting surface 72 is formed on the entire area of the system substrate 71. Therefore, when semiconductor chips are mounted on the system substrate 71, mounting locations of the semiconductor chips do not need particular consideration. In contrast, particular consideration is required when glass fibers are disposed.
It is noted that the fifth embodiment is described with reference to the case where the light-emitting surface 72 is formed over the entire area of the system substrate 71. However, the present invention is not limited to such an embodiment. The light-emitting surface 72 may be formed only in a limited area in the system substrate 71, for example, in an area where the semiconductor chips are formed.
Also, a plurality of light-emitting surfaces 72 may be formed in layers, and signals are allocated to each of the layers, such that not only the clock signals but also other signals, such as, for example, enable signals may be transferred. In this case, for example, a light prevention film may be formed between the adjacent light-emitting surfaces not only to prevent external light from coming into the light-emitting surfaces but also to prevent optical signals of one light-emitting surface from coming into the other light-emitting surface. Also, the light-receiving elements and the light-emitting elements may be formed in such a manner that signals are transmitted only to the corresponding light-emitting surface or signals are received only from the corresponding light-emitting surface, and that optical signals are not transferred to the non-corresponding light-emitting surface and optical signals are not received from the non-corresponding light-emitting surface.
It is noted that the present invention is not limited to the embodiments described above, and a variety of modifications can be implemented.

Claims (3)

What is claimed is:
1. A semiconductor device, comprising:
a semiconductor chip and a light-receiving element formed on the semiconductor chip for receiving an optical signal, wherein the semiconductor chip is disposed in a first plane; and
an optical signal transfer device that directly contacts the light-receiving element for transferring the optical signal from an arithmetic processing apparatus into the semiconductor chip, wherein the optical signal transfer device is disposed in a second plane that is spaced apart from the first plane,
wherein the optical signal transfer device is embedded in a mounting substrate on which the semiconductor chip is mounted, wherein the light-receiving element is formed in a cylindrical shape on the semiconductor chip on a side thereof that is opposite to the mounting substrate, and the light-receiving element is inserted in contact holes and bonded to the optical signal transfer device to thereby connect the light-receiving element to the optical signal transfer device.
2. A semiconductor device, comprising:
a semiconductor chip and a light-receiving element formed on the semiconductor chip for receiving an optical signal; and
an optical signal transfer device connected to the light-receiving element for transferring an electrical signal from an arithmetic processing apparatus as an optical signal into the semiconductor chip, wherein the optical signal transfer device is a light-emitting surface that is formed in a mounting substrate,
wherein the light-receiving element is formed in a cylindrical shape on the semiconductor chip on a side thereof that is opposite to the mounting substrate, and the light-receiving element is inserted in contact holes and bonded to the optical signal transfer device to thereby connect the light-receiving element to the optical signal transfer device.
3. A semiconductor device, comprising:
a mounting substrate;
at least one optical signal transfer device embedded in the mounting substrate, wherein the at least one optical signal transfer device is adapted to transfer an optical signal;
a plurality of semiconductor chips mounted on the mounting substrate; and
a light-receiving element formed in at least one of the semiconductor chips and that is connected to the optical signal transfer device for receiving the optical signal,
wherein the optical signal is transferred among the plurality of semiconductor chips through the optical signal transfer device, wherein the optical signal transfer device is formed in a lattice configuration and embedded in the mounting substrate, wherein the light-receiving element is formed in a cylindrical shape on the semiconductor chip on a side thereof that is opposite to the mounting substrate, and the light-receiving element is inserted in contact holes and bonded to the optical signal transfer device to thereby connect the light-receiving element to the optical signal transfer device.
US09/654,550 1999-09-06 2000-09-01 Semiconductor device including a light-receiving element and an optical transfer device Expired - Fee Related US6713755B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP25225299 1999-09-06
JP11-252252 1999-09-06
JP2000243735A JP2001148485A (en) 1999-09-06 2000-08-11 Semiconductor device
JP2000-243735 2000-08-11

Publications (1)

Publication Number Publication Date
US6713755B1 true US6713755B1 (en) 2004-03-30

Family

ID=26540627

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/654,550 Expired - Fee Related US6713755B1 (en) 1999-09-06 2000-09-01 Semiconductor device including a light-receiving element and an optical transfer device

Country Status (2)

Country Link
US (1) US6713755B1 (en)
JP (1) JP2001148485A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10084727B2 (en) 2014-07-29 2018-09-25 Mellanox Technologies, Ltd. Cable backplane
US10116074B1 (en) 2017-04-30 2018-10-30 Mellanox Technologies, Ltd. Graded midplane
US10365445B2 (en) 2017-04-24 2019-07-30 Mellanox Technologies, Ltd. Optical modules integrated into an IC package of a network switch having electrical connections extend on different planes

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2903583C (en) 2013-03-15 2021-12-28 Corium International, Inc. Microarray for delivery of therapeutic agent, methods of use, and methods of making

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63237486A (en) 1987-03-25 1988-10-03 Nec Corp Semiconductor device
JPS649667A (en) 1987-07-01 1989-01-12 Mitsubishi Electric Corp Semiconductor device
US5009476A (en) * 1984-01-16 1991-04-23 Texas Instruments Incorporated Semiconductor layer with optical communication between chips disposed therein
JPH03142866A (en) 1989-10-27 1991-06-18 Nec Ic Microcomput Syst Ltd Semiconductor integrated circuit device
US5119451A (en) * 1990-12-31 1992-06-02 Texas Instruments Incorporated Optical waveguides as interconnects from integrated circuit to integrated circuit and packaging method using same
US5159700A (en) * 1984-01-16 1992-10-27 Texas Instruments Incorporated Substrate with optical communication systems between chips mounted thereon and monolithic integration of optical I/O on silicon substrates
US5199087A (en) * 1991-12-31 1993-03-30 Texas Instruments Incorporated Optoelectronic integrated circuit for transmitting optical and electrical signals and method of forming same
US5250816A (en) * 1991-04-08 1993-10-05 Mitsubishi Denki Kabushiki Kaisha Multichip system and method of supplying clock signal therefor
US5371822A (en) * 1992-06-09 1994-12-06 Digital Equipment Corporation Method of packaging and assembling opto-electronic integrated circuits
JPH07131063A (en) 1993-11-01 1995-05-19 Nec Corp Multichip module
US5442475A (en) * 1991-07-15 1995-08-15 Cray Research, Inc. Optical clock distribution method and apparatus
US5757989A (en) * 1992-09-10 1998-05-26 Fujitsu Limited Optical circuit system capable of producing optical signal having a small fluctuation and components of same
US5834841A (en) * 1990-09-28 1998-11-10 Kabushiki Kaisha Toshiba Semiconductor device enabling temperature control in the chip thereof
US6259840B1 (en) * 1999-03-31 2001-07-10 International Business Machines Corporation Printed circuit board having fluid-linked optical pathways for coupling surface mounted optoelectric semiconductor devices

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5009476A (en) * 1984-01-16 1991-04-23 Texas Instruments Incorporated Semiconductor layer with optical communication between chips disposed therein
US5159700A (en) * 1984-01-16 1992-10-27 Texas Instruments Incorporated Substrate with optical communication systems between chips mounted thereon and monolithic integration of optical I/O on silicon substrates
JPS63237486A (en) 1987-03-25 1988-10-03 Nec Corp Semiconductor device
JPS649667A (en) 1987-07-01 1989-01-12 Mitsubishi Electric Corp Semiconductor device
JPH03142866A (en) 1989-10-27 1991-06-18 Nec Ic Microcomput Syst Ltd Semiconductor integrated circuit device
US5834841A (en) * 1990-09-28 1998-11-10 Kabushiki Kaisha Toshiba Semiconductor device enabling temperature control in the chip thereof
US5119451A (en) * 1990-12-31 1992-06-02 Texas Instruments Incorporated Optical waveguides as interconnects from integrated circuit to integrated circuit and packaging method using same
US5250816A (en) * 1991-04-08 1993-10-05 Mitsubishi Denki Kabushiki Kaisha Multichip system and method of supplying clock signal therefor
US5442475A (en) * 1991-07-15 1995-08-15 Cray Research, Inc. Optical clock distribution method and apparatus
US5199087A (en) * 1991-12-31 1993-03-30 Texas Instruments Incorporated Optoelectronic integrated circuit for transmitting optical and electrical signals and method of forming same
US5371822A (en) * 1992-06-09 1994-12-06 Digital Equipment Corporation Method of packaging and assembling opto-electronic integrated circuits
US5757989A (en) * 1992-09-10 1998-05-26 Fujitsu Limited Optical circuit system capable of producing optical signal having a small fluctuation and components of same
JPH07131063A (en) 1993-11-01 1995-05-19 Nec Corp Multichip module
US6259840B1 (en) * 1999-03-31 2001-07-10 International Business Machines Corporation Printed circuit board having fluid-linked optical pathways for coupling surface mounted optoelectric semiconductor devices

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10084727B2 (en) 2014-07-29 2018-09-25 Mellanox Technologies, Ltd. Cable backplane
US10365445B2 (en) 2017-04-24 2019-07-30 Mellanox Technologies, Ltd. Optical modules integrated into an IC package of a network switch having electrical connections extend on different planes
US10116074B1 (en) 2017-04-30 2018-10-30 Mellanox Technologies, Ltd. Graded midplane

Also Published As

Publication number Publication date
JP2001148485A (en) 2001-05-29

Similar Documents

Publication Publication Date Title
US7717628B2 (en) System package using flexible optical and electrical wiring and signal processing method thereof
US7474814B2 (en) Optical device, optical connector, electronic device, and electronic equipment
EP0996154A4 (en) Semiconductor device and method for manufacturing the same, circuit substrate, and electronic device
US6940155B2 (en) IC package, optical transmitter, and optical receiver
KR19980064367A (en) Differential Pair Configurations for Integrated Circuit Chip Packages
EP1150355A4 (en) Integrated circuit chip, integrated circuit, printed-circuit board and electronic device
US6483175B2 (en) Wiring board and semiconductor device using the same
US20030222342A1 (en) Multi-chip package
US9252132B2 (en) Semiconductor device and semiconductor module
US7313331B2 (en) Optical communication device, optical transmitter, optical transmitter-receiver, and optical transmission system
US6713755B1 (en) Semiconductor device including a light-receiving element and an optical transfer device
US6396967B1 (en) Optoelectronic integrated circuit device
JPH0667044A (en) Optical circuit and electric circuit mixed substrate
JP2000277814A (en) Optical communication module
KR100208501B1 (en) Semiconductor device and pin array
US7226216B2 (en) Optoelectronic transmission and/or reception arrangement
KR19990016915A (en) Chip-on-glass package structure of a liquid crystal driving chip having a dummy protrusion pad and a pad forming method thereof
JP6206919B2 (en) High frequency module
KR100270496B1 (en) Semiconductor device having lead terminal on only one side of a package
US8389978B2 (en) Two-shelf interconnect
KR940003599B1 (en) Image sensor
KR0176112B1 (en) Semiconductor chip package for reduced noise
US20080128874A1 (en) Semiconductor device
JP2001015793A (en) Optical transmission/reception module
KR20050030114A (en) Circuit device

Legal Events

Date Code Title Description
AS Assignment

Owner name: SEIKO EPSON CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:IWASA, YOSHIRO;REEL/FRAME:011445/0097

Effective date: 20001215

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20160330