Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS6385742 B1
Publication typeGrant
Application numberUS 09/262,816
Publication date7 May 2002
Filing date5 Mar 1999
Priority date6 Mar 1998
Fee statusPaid
Also published asUS6473727
Publication number09262816, 262816, US 6385742 B1, US 6385742B1, US-B1-6385742, US6385742 B1, US6385742B1
InventorsGraham Kirsch, Simon Martin Kershaw
Original AssigneeLsi Logic Corporation
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Microprocessor debugging mechanism employing scan interface
US 6385742 B1
Abstract
In order to smooth the entry into a debugging operation using a scan chain of registers in a microprocessor, a method for carrying out debugging procedures. The method comprises providing a processor with a chain of scan registers, a scan interface for interfacing with an external scan controller, a breakpoint interrupt mechanism for executing an interrupt instruction, and a processor clock control mechanism. The method includes detecting or generating a breakpoint in the operation of the processor. The breakpoint interrupt mechanism executes an interrupt instruction as a result of which the processor completes its current instruction, and signals the same to the scan interface. The scan interface asserts a Start Scan signal to the clock signal control mechanism, which whereupon stops the processor clock or clocks. The external scan controller is alerted to start a scan sequence.
Images(7)
Previous page
Next page
Claims(11)
What is claimed is:
1. Apparatus for carrying out debugging procedures on a processor, the processor including a chain of scan registers, scan interface means for interfacing with a scan controller means external of the processor, a breakpoint interrupt means for executing an interrupt instruction, and a processor clock control means wherein, when, in the operation of the microprocessor a breakpoint is detected or generated, the breakpoint interrupt means executes an interrupt, the microprocessor completes its current instruction and then branches to an Interrupt Service Vector, the completion of which is signalled to the scan interface means which provides a Start Scan signal to the clock control means, following which the scan interface means signals the external scan controller to begin a scanning operation.
2. Apparatus according to claim 1, wherein the processor includes a pipeline, and the breakpoint interrupt means includes means for filling the pipeline with no operation (NOP) instructions.
3. Apparatus according to claim 1, wherein the processor comprises a DSP processor core.
4. Apparatus according to claim 1, wherein said scan interface means includes a finite state machine for controlling the logical state of the scan interface means.
5. Apparatus according to claim 1, including a signal line connecting the processor to the breakpoint interrupt means and scan interface means for asserting a breakpoint condition.
6. Apparatus according to claim 1, including a signal line connecting said scan interface means to said clock control means for asserting a Stop Scan signal.
7. Apparatus according to claim 5 or claim 6, wherein when the processor exits from the scanning mode, the stop scan signal is asserted while the processor returns to normal operation, at which time the breakpoint condition signal is cleared.
8. Apparatus according to claim 1, wherein one or more scan registers have a respective multiplexer coupled to the input whereby to permit use of the register in the normal operation of the processor or use in a debugging procedure.
9. A method for carrying out debugging procedures on a processor, the method comprising the following steps:
a. providing a processor with a chain of scan registers, a scan interface means for interfacing with an external scan controller means, a breakpoint interrupt means for executing an interrupt instruction, and a processor clock control means;
b. detecting or generating a breakpoint in the operation of the processor;
c. the breakpoint interrupt means executes an interrupt instruction as a result of which the processor completes its current instruction, and signals the same to the scan interface means;
d. the scan interface means asserts a Start Scan signal to the clock control means, which whereupon stops the processor clock or clocks; and
e. the external scan controller means is alerted to start a scan sequence.
10. A method according to claim 9, wherein in step c) following execution of the current instruction, a processor pipeline is filled with no operation (NOP) instructions.
11. A method according to claim 9, wherein when the scan sequence is to be terminated, a stop scan signal is asserted to the clock control means by the scan interface means, and a return from interrupt instruction is executed, the processor signalling return to normal operation to said scan interface means.
Description

The present invention relates to a method and apparatus for carrying out debugging procedures on a processor, for example a microprocessor or Digital Signal Processing (DSP) processor.

Software debugging is commonly carried out using In Circuit Emulation (ICE) wherein a monitor program located in the microprocessor provides information to an external host.

It has been recognised that software debugging using ICE techniques may be carried out more expeditiously using techniques adapted from production testing of microprocessors with production scan-chains. Such production scan chains are to be distinguished from boundary scan registers as in the known JTAG standards. In production scan chains, registers are provided throughout the processor so that the working of a software routine throughout the processor can be observed, i.e. it is “visible”. Such production scan chain of registers can be loaded with a random pattern of logic values. One or more machine cycles may then be executed, and the logic values are fed into the microprocessor logic. The resultant logic values in the registers may then be uploaded and examined to assess whether the microprocessor logic is working correctly.

Referring now to FIG. 1 of the drawings, this shows a block diagram of a previously proposed technique for using an existing production test scan-chain in a microprocessor for software debugging. As shown in FIG. 1, a pipelined microprocessor 2 is coupled via an Address Bus 4 and Data Bus 6 to a program RAM 8. The Address Bus 4 is also coupled to a Breakpoint Detect Unit 10. A clock controller 12 is provided and a Scan Controller 14 external to the microprocessor controls the operation of the scan mode.

A chain of internal scan registers 16 is such that the state of the microprocessor is completely described in the registers. Further the registers may be accessed during normal operation of the microprocessor.

The method of software debug using a production scan-chain is referred to herein as Scan In-Circuit Emulation (ScanICE). ScanICE mode is entered whenever access is required to the internal processor state, such as on reaching a software breakpoint. FIG. 1 illustrates a previous approach to entering ScanICE mode where only breakpoints on program addresses are considered. A register in the Breakpoint Detect Unit 10 is initialised to the required breakpoint address. When a match occurs between the Program Address Bus 4 and this register, an Enter ScanICE signal on a line 18 is asserted. This triggers the Clock Controller 12 to halt appropriate clocks so that the off-chip Scan Controller 14 can initiate scanning. The Scan Controller 14 uses the Scan Enable and Test signals to configure registers in the scan-chain 16 to shift serially when clocked and supplies the Scan Clock.

Using the scanned-but data for observability and scanned-in data for controllability the controller 14 can provide all required facilities for debugging software running on the microprocessor. When ScanICE functions are complete, Leave Scan is asserted on a line 20 forcing the Clock Controller to restart clocks and resume normal operation. The approach of FIG. 1 for entering ScanICE mode suffers from a number of problems:

1. To ease software development it is often required that the microprocessor's pipeline is hidden from the programmer. This means that all registers'contents refer to the same instruction. In a processor with, for example, a data pipeline, simply stopping the clock will result in several instructions being in varying states of execution. This is illustrated in FIG. 2 for a simple multiplier data path. The pipeline is used to separate the operation of reading from memory and actually multiplying so that they can be carried out in parallel using the X and Y registers 22,24 as a temporary store (which are part of the production scan chain). For successive single-cycle multiply instructions, two instructions are being executed at any one time; the result of one is loaded into the product register 26 on a particular clock-edge and the data operands of the next are loaded into the X and Y registers 22,24. By simply stopping the clock the Host debugger will have great difficulty in separating the instructions with just the knowledge of what is held in the X, Y and Product registers.

2. It is often required that a processor be able to access slow-memory without using a very slow clock. One way of achieving this is to provide a wait-state mechanism whereby the processor is halted during the memory access. This is illustrated in FIG. 3. Following an access to a slow memory 30, a Memory Interface Unit 32 asserts a Wait signal and Clock Controller 12 stops the clock to the Microprocessor 2. Following a defined number of clocks of the Memory Interface Unit 32 (as monitored by a counter 34) the Wait signal is released and the clock to the Microprocessor is started again and normal operation resumes. When a breakpoint is detected, the Clock Controller must detect the fact that an access to slow memory is occurring and continue clocking the Memory Interface Unit to complete the access before stopping all clocks. This is an undesirable complication.

Depending on the functionality of the microprocessor, there are many other scenarios when just stopping the main clock and entering ScanICE may cause problems. These problems get more numerous as pipelines get more complex and more elaborate schemes are implemented for improving microprocessor performance.

SUMMARY OF THE INVENTION

The present invention provides apparatus for carrying out debugging procedures on a processor, the processor including a production scan chain of scan registers, scan interface means for interfacing with a scan controller means external of the processor, a breakpoint interrupt means for executing an interrupt instruction and a processor clock control means, wherein, when in the operation of the processor a breakpoint is detected or generated, the breakpoint interrupt means executes an interrupt, the processor completes its current instruction and then branches to a Interrupt Service Vector, completion of which is signalled to the scan interface means which provides a Start Scan signal to the clock control means, following'which the scan interface means signals the external scan controller to begin a scanning operation.

In a further aspect, the present invention provides a method for carrying out debugging procedures on a processor, the method comprising the following steps:

1) providing a processor with a production scan chain of scan registers, a scan interface means for interfacing with an external scan controller means, a breakpoint interrupt means for executing an interrupt instruction, and a processor clock control means;

2) detecting or generating a breakpoint in the operation of the processor;

3) the breakpoint interrupt means executes an interrupt instruction as a result of which the processor completes its current instruction, and signals the same to the scan interface means;

4) the scan interface means asserts a Start Scan signal to the processor clock control means, which whereupon stops the processor clock or clocks; and

5) the external scan controller means is alerted to start a scan sequence.

In accordance with, the invention, an improved technique is provided for entering an In Circuit Emulation session which avoids problems experienced in stopping the microprocessor clock without upsetting current actions of the microprocessor, and in recovering information of pipelined instructions.

Preferably, in the operation of the invention, after the microprocessor has completed its current instructions, the microprocessor pipeline is filled with no operation (NOP) instructions.

The present invention is particularly applicable to pipelined processors, especially DSP processor cores.

BRIEF DESCRIPTION OF THE DRAWINGS

A preferred embodiment of the invention will now be described with reference to the accompanying drawings, wherein:

FIG. 1 is a block diagram of a prior approach for entering In Circuit Emulation mode;

FIG. 2 is a flow chart of a known method of operation of pipelined instructions;

FIG. 3 is an example of a known technique of accessing slow operation memory;

FIG. 4 is a block diagram of a preferred embodiment of the invention;

FIGS. 5 and 6 are timing diagrams of the operation of the embodiment of FIG. 4 for entering and leaving an ICE mode; and

FIG. 7 is a state diagram of a Finite State Machine in the Scan Interface Logic of FIG. 4.

DESCRIPTION OF THE PREFERRED EMBODIMENT

A preferred embodiment will now be described with reference to FIG. 4. In FIG. 4, a core 40 of a processor is shown, comprising a pipelined DSP processor and including a production scan chain of scan registers 16. In this embodiment, the scan registers are formed from existing registers in the processor by coupling a respective multiplexer to the input of the register to permit either the normal operation of the register or to use it in the scan mode wherein test logic values are loaded into the register. All processors, have a mechanism for “interrupting” the flow of instructions. The instigation of the interrupt can take numerous forms including processor input signals and software instructions. Typically, when an interrupt is received, the current instruction being executed is completed and the processor branches to an Interrupt Service Vector (ISV), a dedicated area of memory that determines the appropriate course of action. It is usual for a branch instruction to be located at, the ISV to an Interrupt Service Routine (ISR) that contains the interrupt handler. At the end of the ISR is some form of RETurn-from-Interrupt (RETI) instruction that indicates the end of the interrupt service routine and causes the program to resume operation from the point where the interrupt occurred. Processor 40 has one particular interrupt instruction suitable for breakpoint implementation, Breakpoint Interrupt BI/TRAP, that can be instigated via an external input (BI) or a software instruction (TRAP). The following actions occur on the Core when a BI/TRAP is received.

Stack Pointer→Stack Pointer -1

Program Counter→Stack

<ISV Address>00002>→Program Counter (forces branch to ISV)

Interrupt Acknowledge signal asserted

It is seen that the program counter is stored on the stack, for use at the end of the ISR.

The processor has a dedicated module 42 that performs a Breakpoint Detect function. This monitors the activity at core 40 and determines when program execution should be halted and the state of the core communicated to an off-chip debugger. The module 42 uses the BI/TRAP interrupt to stop the operation of the core 40.

The action of interrupting the processor using a Breakpoint with an appropriate ISV achieves two important goals:

1. The clock can be stopped during the execution of a known instruction (the Breakpoint ISV);

2. Following the ScanICE service, the state of the processor can be restored by executing a RETurn from Interrupt.

Good values for the ISV are clearly No-Operations (NOP). If the ISV is mapped to zero wait-stated program memory, these NOPs can be simply loaded into the appropriate memory locations otherwise they can be forced into the instruction pipeline using dedicated hardware inside or outside the core. By stopping the clock following the execution of a sufficient numbers of NOPs, the program pipeline is cleared and the state of the data pipeline is guaranteed to represent the last program instruction.

In FIG. 4, a scan interface logic 44 and a Clock Control Unit (CCU) 46 are provided. Logic 44 is coupled to the CCU 46 by various control lines, including a Start Scan signal line 48, and all Stop Scan signal on line 49. Scan Interface Logic 44 also provides control signals to an external scan controller (not shown), including a Scan Alert signal on line 56. The operation of Scan Interface 44 is determined by a Finite State Machine 60, the state diagram of which is shown in FIG. 7.

In operation, the sequence of events is as follows

1. When the module 42 either detects a breakpoint or is instructed to stop program execution by the Scan Interface 44, it asserts a Breakpoint Interrupt input on line 52 to the core 40.

2. The core completes its current instruction and then branches to the BI/TRAP ISV where NOPs are either read or forced into the instruction pipeline. BTI Service is asserted at this time by the Core on line 54 to module 42 and Scan Interface 44.

3. When the module 42 detects BTI Service being asserted (and is configured in ScanICE debug mode) it asserts module Scan Alert on line 50 to Scan Interface 44.

4. The Scan Interface 44 is triggered by the assertion of module Scan Alert to begin entry to ScanICE mode. A key part of this is the assertion of Start Scan on line 48.

5. The CCU 46 detects the assertion of Start Scan and cleanly stops the appropriate clocks (including the clock to the Core).

6. Finally, the Scan Interface 44 asserts one of the 6 Scan Interface signals, Scan Alert, on line 56 to indicate to the off-chip Scan Controller that the clocks have been stopped and it should take control. The Master clock is replaced by Ext Scan Clk (another of the signals in the 6 pin Scan Interface) as the source for the clock signals.

A timing diagram illustrating this protocol is included in FIG. 5. Scan Flag is used internally to indicate ScanICE servicing in progress.

In FIG. 5, Clr Interrupt Service refers to the core decoder detecting an interrupt request and having completed decoding the previous instruction, it drives the appropriate control signals to service an interrupt. To indicate this special decode function and thus signal the start of the interrupt service routine, Clr Interrupt Service is asserted for one cycle.

IAB Instruction address bus—to/from program RAM;

IDB: Instruction data bus—to/from program RAM;

It may be seen from FIG. 5 that 3 machine cycles following assertion of Breakpoint Interrupt on line 52, BTI Service on line 54 and module scan alert on line 50 are asserted. The data on!IDB bus is zero after 2 machine cycles, with a NOP instruction (0004) on the IAB after 4 cycles. The Scan Alert signal on line 56 is asserted one cycle after BTI Service.

Exit from ScanICE is instigated by serially-loading a RETI instruction into the microprocessor's instruction register during the final full-scan and an appropriate instruction into the Scan Interface Logic's control register. The Scan Interface Logic instigates restarting of the microprocessor's clock, thus executing the RETI instruction and returning to normal program operation. It is clearly important that during the final full-scan when the RETI instruction is loaded, the state of the core is updated correctly. This may simply involve reloading all registers with the values they held prior to entering ScanICE, or with new values as determined by the debugger.

One of the bits in the Scan Interface Logic instruction register is asserted to force exit from ScanICE mode. This “Ctl Stop Scan” bit causes the Stop Scan signal from the Scan Interface to be asserted, and triggers the CCU to restart the stopped clocks. The first instruction that must be executed is a RETurn-from-Interrupt that restores the state of the processor. This is forced into the instruction pipeline by asserting the appropriate bits (45c0) during the final full-scan. The instruction register is effectively loaded directly via the scan-chain. A second timing diagram illustrating the protocol for leaving ScanICE mode is depicted in FIG. 6. An important feature of the protocol for leaving ScanICE is the requirement that Stop Scan on line 49 is cleared before the clocks are restarted. This ensures clean operation if a breakpoint is required immediately after leaving scan (e.g. single-stepping). The extra Ext Scan Clk required during the assertion of Stop Scan is needed in the CCU to register the changing value of the Stop Scan. Following clearance of Stop Scan on line 49, BTI service on line 54 is cleared when the first instruction Instl is present on the core 40.

In the implementation of ScanICE, the protocols for entering and leaving scan are controlled by a Finite State Machine (FSM) 60 in the Scan Interface Logic 44. The state-diagram is illustrated in FIG. 7 and clarifies the operation discussed above.

A principal advantage of this method is to enable clean entry and exit to and from ScanICE mode. The alternative of simply stopping the clock leads to highly complex problems to correctly recover the programming model from the microprocessor's registers. The method also prevents the potentially destructive effects of halting access to off-core memories and peripherals.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US5838897 *27 Feb 199617 Nov 1998Cyrix CorporationDebugging a processor using data output during idle bus cycles
US6035422 *15 May 19977 Mar 2000Motorola, Inc.Data processing system for controlling execution of a debug function and method therefor
EP0849672A222 Dec 199724 Jun 1998Texas Instruments IncorporatedNon-intrusive software breakpoints in a processor instructions execution pipeline
EP0854422A222 Dec 199722 Jul 1998Texas Instruments IncorporatedA processor test port with scan chains and data streaming
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US6691258 *21 Jul 199910 Feb 2004Siemens AktiengesellschaftBus control unit for assisted program flow monitoring in star topologies, associated program flow monitoring system and method for program flow monitoring
US6820051 *14 Jan 200016 Nov 2004Texas Instruments IncorporatedSoftware emulation monitor employed with hardware suspend mode
US6957180 *15 Nov 200118 Oct 2005Cypress Semiconductor Corp.System and a method for communication between an ICE and a production microcontroller while in a halt state
US705511729 Dec 200330 May 2006Agere Systems, Inc.System and method for debugging system-on-chips using single or n-cycle stepping
US736011724 Oct 200215 Apr 2008Verisilicon Holdings (Cayman Islands) Co. Ltd.In-circuit emulation debugger and method of operation thereof
US752642213 Nov 200128 Apr 2009Cypress Semiconductor CorporationSystem and a method for checking lock-step consistency between an in circuit emulation and a microcontroller
US773772427 Dec 200715 Jun 2010Cypress Semiconductor CorporationUniversal digital block interconnection and channel routing
US77618459 Sep 200220 Jul 2010Cypress Semiconductor CorporationMethod for parameterizing a user module
US77650951 Nov 200127 Jul 2010Cypress Semiconductor CorporationConditional branching in an in-circuit emulation system
US777011319 Nov 20013 Aug 2010Cypress Semiconductor CorporationSystem and method for dynamically generating a configuration datasheet
US777419019 Nov 200110 Aug 2010Cypress Semiconductor CorporationSleep and stall in an in-circuit emulation system
US782568830 Apr 20072 Nov 2010Cypress Semiconductor CorporationProgrammable microcontroller architecture(mixed analog/digital)
US784443719 Nov 200130 Nov 2010Cypress Semiconductor CorporationSystem and method for performing next placements and pruning of disallowed placements for programming an integrated circuit
US789372413 Nov 200722 Feb 2011Cypress Semiconductor CorporationMethod and circuit for rapid alignment of signals
US802673927 Dec 200727 Sep 2011Cypress Semiconductor CorporationSystem level interconnect with programmable switching
US804026631 Mar 200818 Oct 2011Cypress Semiconductor CorporationProgrammable sigma-delta analog-to-digital converter
US80495695 Sep 20071 Nov 2011Cypress Semiconductor CorporationCircuit and method for improving the accuracy of a crystal-less oscillator having dual-frequency modes
US806794821 Feb 200729 Nov 2011Cypress Semiconductor CorporationInput/output multiplexer bus
US806940519 Nov 200129 Nov 2011Cypress Semiconductor CorporationUser interface for efficiently browsing an electronic document using data-driven tabs
US806942812 Jun 200729 Nov 2011Cypress Semiconductor CorporationTechniques for generating microcontroller configuration information
US806943610 Aug 200529 Nov 2011Cypress Semiconductor CorporationProviding hardware independence to automate code generation of processing device firmware
US807889427 Mar 200813 Dec 2011Cypress Semiconductor CorporationPower management architecture, method and configuration system
US80789709 Nov 200113 Dec 2011Cypress Semiconductor CorporationGraphical user interface with user-selectable list-box
US808506721 Dec 200627 Dec 2011Cypress Semiconductor CorporationDifferential-to-single ended signal converter circuit and method
US808510019 Feb 200827 Dec 2011Cypress Semiconductor CorporationPoly-phase frequency synthesis oscillator
US808946123 Jun 20053 Jan 2012Cypress Semiconductor CorporationTouch wake for electronic devices
US80920831 Oct 200710 Jan 2012Cypress Semiconductor CorporationTemperature sensor with digital bandgap
US81034961 Nov 200124 Jan 2012Cypress Semicondutor CorporationBreakpoint control in an in-circuit emulation system
US810349728 Mar 200224 Jan 2012Cypress Semiconductor CorporationExternal interface for event architecture
US812040814 Jul 200821 Feb 2012Cypress Semiconductor CorporationVoltage controlled oscillator delay cell and method
US813002517 Apr 20086 Mar 2012Cypress Semiconductor CorporationNumerical band gap
US814904829 Aug 20013 Apr 2012Cypress Semiconductor CorporationApparatus and method for programmable power management in a programmable analog circuit block
US81608641 Nov 200117 Apr 2012Cypress Semiconductor CorporationIn-circuit emulator and pod synchronized boot
US817629622 Oct 20018 May 2012Cypress Semiconductor CorporationProgrammable microcontroller architecture
US828612510 Aug 20059 Oct 2012Cypress Semiconductor CorporationModel for a hardware device-independent method of defining embedded firmware for programmable systems
US835815011 Oct 201022 Jan 2013Cypress Semiconductor CorporationProgrammable microcontroller architecture(mixed analog/digital)
US83707913 Jun 20085 Feb 2013Cypress Semiconductor CorporationSystem and method for performing next placements and pruning of disallowed placements for programming an integrated circuit
US840231320 Nov 200719 Mar 2013Cypress Semiconductor CorporationReconfigurable testing system and method
US84769283 Aug 20112 Jul 2013Cypress Semiconductor CorporationSystem level interconnect with programmable switching
US849927028 Jun 201130 Jul 2013Cypress Semiconductor CorporationConfiguration of programmable IC design elements
US851602516 Apr 200820 Aug 2013Cypress Semiconductor CorporationClock driven dynamic datapath chaining
US852207916 May 201127 Aug 2013Industrial Technology Research InstituteSystem and method for multi-core synchronous debugging of a multi-core platform
US852794913 Jul 20113 Sep 2013Cypress Semiconductor CorporationGraphical user interface for dynamically reconfiguring a programmable device
US853367727 Sep 200210 Sep 2013Cypress Semiconductor CorporationGraphical user interface for dynamically reconfiguring a programmable device
US853939827 May 201017 Sep 2013Cypress Semiconductor CorporationModel for a hardware device-independent method of defining embedded firmware for programmable systems
US855503227 Jun 20118 Oct 2013Cypress Semiconductor CorporationMicrocontroller programmable system on a chip with programmable interconnect
US871704229 Nov 20116 May 2014Cypress Semiconductor CorporationInput/output multiplexer bus
US873630316 Dec 201127 May 2014Cypress Semiconductor CorporationPSOC architecture
US879363528 Nov 201129 Jul 2014Cypress Semiconductor CorporationTechniques for generating microcontroller configuration information
US89099608 Jul 20119 Dec 2014Cypress Semiconductor CorporationPower management architecture, method and configuration system
US944896422 Apr 201020 Sep 2016Cypress Semiconductor CorporationAutonomous control in a programmable system
US956490231 Dec 20077 Feb 2017Cypress Semiconductor CorporationDynamically configurable and re-configurable data path
US972080528 Mar 20081 Aug 2017Cypress Semiconductor CorporationSystem and method for controlling a target device
US976665025 Sep 201519 Sep 2017Cypress Semiconductor CorporationMicrocontroller programmable system on a chip with programmable interconnect
US20050149892 *29 Dec 20037 Jul 2005Yee Oceager P.System and method for debugging system-on-chips using single or n-cycle stepping
Classifications
U.S. Classification714/39, 714/E11.168, 714/E11.166, 712/227
International ClassificationG01R31/317, G06F11/26, G06F11/267, G01R31/3185
Cooperative ClassificationG01R31/31705, G01R31/318555, G06F11/2236, G06F11/261
European ClassificationG06F11/26S, G06F11/22A12, G01R31/317F, G01R31/3185S5
Legal Events
DateCodeEventDescription
5 Oct 1999ASAssignment
Owner name: LSI LOGIC CORPORATION, CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KIRSCH, GRAHAM;KERSHAW, SIMON;REEL/FRAME:010284/0670
Effective date: 19990925
20 May 2005FPAYFee payment
Year of fee payment: 4
4 Nov 2009FPAYFee payment
Year of fee payment: 8
9 Oct 2013FPAYFee payment
Year of fee payment: 12
8 May 2014ASAssignment
Owner name: DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AG
Free format text: PATENT SECURITY AGREEMENT;ASSIGNORS:LSI CORPORATION;AGERE SYSTEMS LLC;REEL/FRAME:032856/0031
Effective date: 20140506
6 Jun 2014ASAssignment
Owner name: LSI CORPORATION, CALIFORNIA
Free format text: CHANGE OF NAME;ASSIGNOR:LSI LOGIC CORPORATION;REEL/FRAME:033102/0270
Effective date: 20070406
3 Apr 2015ASAssignment
Owner name: AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LSI CORPORATION;REEL/FRAME:035390/0388
Effective date: 20140814
2 Feb 2016ASAssignment
Owner name: AGERE SYSTEMS LLC, PENNSYLVANIA
Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENT RIGHTS (RELEASES RF 032856-0031);ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT;REEL/FRAME:037684/0039
Effective date: 20160201
Owner name: LSI CORPORATION, CALIFORNIA
Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENT RIGHTS (RELEASES RF 032856-0031);ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT;REEL/FRAME:037684/0039
Effective date: 20160201
11 Feb 2016ASAssignment
Owner name: BANK OF AMERICA, N.A., AS COLLATERAL AGENT, NORTH
Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD.;REEL/FRAME:037808/0001
Effective date: 20160201
3 Feb 2017ASAssignment
Owner name: AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD
Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A., AS COLLATERAL AGENT;REEL/FRAME:041710/0001
Effective date: 20170119