US6183474B1 - Surgical fastener assembly - Google Patents

Surgical fastener assembly Download PDF

Info

Publication number
US6183474B1
US6183474B1 US09/239,862 US23986299A US6183474B1 US 6183474 B1 US6183474 B1 US 6183474B1 US 23986299 A US23986299 A US 23986299A US 6183474 B1 US6183474 B1 US 6183474B1
Authority
US
United States
Prior art keywords
anchor
pin
assembly
guide
bone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US09/239,862
Inventor
Dale G. Bramlet
Peter Sterghos
John Sodeika
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orthopedic Designs North America Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/615,022 external-priority patent/US5984970A/en
Priority to US08/680,620 priority Critical patent/US5976139A/en
Priority to PCT/US1997/012232 priority patent/WO1998002105A1/en
Priority to EP97933436A priority patent/EP0925038A4/en
Priority to JP50622698A priority patent/JP3949725B2/en
Priority to AU36625/97A priority patent/AU3662597A/en
Application filed by Individual filed Critical Individual
Priority to US09/239,862 priority patent/US6183474B1/en
Assigned to ORTHOPEDIC DESIGNS, INC. reassignment ORTHOPEDIC DESIGNS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SODEIKA, JOHN, STERGHOS, PETER
Priority to DE60031766T priority patent/DE60031766T2/en
Priority to CA002360675A priority patent/CA2360675C/en
Priority to EP00909967A priority patent/EP1154725B1/en
Priority to JP2000595599A priority patent/JP2002535068A/en
Priority to AU32139/00A priority patent/AU757037B2/en
Priority to PCT/US2000/001709 priority patent/WO2000044293A1/en
Priority to AT00909967T priority patent/ATE344641T1/en
Assigned to BRAMLET, DALE G. reassignment BRAMLET, DALE G. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ORTHOPEDIC DESIGNS, INC.
Priority to US09/729,243 priority patent/US6695844B2/en
Application granted granted Critical
Publication of US6183474B1 publication Critical patent/US6183474B1/en
Assigned to ORTHOPEDIC DESIGNS, INC. reassignment ORTHOPEDIC DESIGNS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BRAMLET, DALE G.
Priority to JP2005282906A priority patent/JP2006081914A/en
Assigned to ASCENSION RESEARCH, INC. reassignment ASCENSION RESEARCH, INC. SECURITY AGREEMENT Assignors: ORTHOPEDIC DESIGN, INC.
Assigned to ORTHOPEDIC DESIGNS NORTH AMERICA, INC. reassignment ORTHOPEDIC DESIGNS NORTH AMERICA, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ORTHOPEDIC DESIGNS, INC.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/1659Surgical rasps, files, planes, or scrapers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/17Guides or aligning means for drills, mills, pins or wires
    • A61B17/1721Guides or aligning means for drills, mills, pins or wires for applying pins along or parallel to the axis of the femoral neck
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/74Devices for the head or neck or trochanter of the femur
    • A61B17/742Devices for the head or neck or trochanter of the femur having one or more longitudinal elements oriented along or parallel to the axis of the neck
    • A61B17/746Devices for the head or neck or trochanter of the femur having one or more longitudinal elements oriented along or parallel to the axis of the neck the longitudinal elements coupled to a plate opposite the femoral head
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/80Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
    • A61B17/8004Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates with means for distracting or compressing the bone or bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/80Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
    • A61B17/809Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates with bone-penetrating elements, e.g. blades or prongs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/84Fasteners therefor or fasteners being internal fixation devices
    • A61B17/86Pins or screws or threaded wires; nuts therefor
    • A61B17/864Pins or screws or threaded wires; nuts therefor hollow, e.g. with socket or cannulated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/42Joints for wrists or ankles; for hands, e.g. fingers; for feet, e.g. toes
    • A61F2/4241Joints for wrists or ankles; for hands, e.g. fingers; for feet, e.g. toes for hands, e.g. fingers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/80Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
    • A61B17/8061Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates specially adapted for particular bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/88Osteosynthesis instruments; Methods or means for implanting or extracting internal or external fixation devices
    • A61B17/8875Screwdrivers, spanners or wrenches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/0046Surgical instruments, devices or methods, e.g. tourniquets with a releasable handle; with handle and operating part separable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00862Material properties elastic or resilient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • A61B2017/0412Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors having anchoring barbs or pins extending outwardly from suture anchor body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • A61B2017/042Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors plastically deformed during insertion
    • A61B2017/0422Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors plastically deformed during insertion by insertion of a separate member into the body of the anchor
    • A61B2017/0425Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors plastically deformed during insertion by insertion of a separate member into the body of the anchor the anchor or the separate member comprising threads, e.g. a set screw in the anchor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • A61B2017/0427Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors having anchoring barbs or pins extending outwardly from the anchor body
    • A61B2017/0429Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors having anchoring barbs or pins extending outwardly from the anchor body the barbs being expanded by a mechanical mechanism which also locks them in the expanded state
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • A61B2017/0427Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors having anchoring barbs or pins extending outwardly from the anchor body
    • A61B2017/0429Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors having anchoring barbs or pins extending outwardly from the anchor body the barbs being expanded by a mechanical mechanism which also locks them in the expanded state
    • A61B2017/043Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors having anchoring barbs or pins extending outwardly from the anchor body the barbs being expanded by a mechanical mechanism which also locks them in the expanded state by insertion of a separate spreading member into the anchor
    • A61B2017/0433Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors having anchoring barbs or pins extending outwardly from the anchor body the barbs being expanded by a mechanical mechanism which also locks them in the expanded state by insertion of a separate spreading member into the anchor the anchor or the separate member comprising threads, e.g. a set screw or a worm gear for moving spreading members
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • A61B2017/044Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors with a threaded shaft, e.g. screws
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/84Fasteners therefor or fasteners being internal fixation devices
    • A61B17/86Pins or screws or threaded wires; nuts therefor
    • A61B2017/8655Pins or screws or threaded wires; nuts therefor with special features for locking in the bone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/36Femoral heads ; Femoral endoprostheses
    • A61F2/3601Femoral heads ; Femoral endoprostheses for replacing only the epiphyseal or metaphyseal parts of the femur, e.g. endoprosthetic femoral heads or necks directly fixed to the natural femur by internal fixation devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4603Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof
    • A61F2/4606Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof of wrists or ankles; of hands, e.g. fingers; of feet, e.g. toes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30112Rounded shapes, e.g. with rounded corners
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30112Rounded shapes, e.g. with rounded corners
    • A61F2002/30131Rounded shapes, e.g. with rounded corners horseshoe- or crescent- or C-shaped or U-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30138Convex polygonal shapes
    • A61F2002/30143Convex polygonal shapes hexagonal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30138Convex polygonal shapes
    • A61F2002/30153Convex polygonal shapes rectangular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30138Convex polygonal shapes
    • A61F2002/30154Convex polygonal shapes square
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/30205Three-dimensional shapes conical
    • A61F2002/3021Three-dimensional shapes conical frustoconical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/30205Three-dimensional shapes conical
    • A61F2002/30217Three-dimensional shapes conical hollow cones, e.g. tubular-like cones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/30224Three-dimensional shapes cylindrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/30224Three-dimensional shapes cylindrical
    • A61F2002/30235Three-dimensional shapes cylindrical tubular, e.g. sleeves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/30273Three-dimensional shapes pyramidal
    • A61F2002/30276Three-dimensional shapes pyramidal frustopyramidal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30331Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementarily-shaped recess, e.g. held by friction fit
    • A61F2002/30332Conically- or frustoconically-shaped protrusion and recess
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30331Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementarily-shaped recess, e.g. held by friction fit
    • A61F2002/30359Pyramidally- or frustopyramidally-shaped protrusion and recess
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30405Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by screwing complementary threads machined on the parts themselves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30433Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements using additional screws, bolts, dowels, rivets or washers e.g. connecting screws
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30476Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements locked by an additional locking mechanism
    • A61F2002/30487Circumferential cooperating grooves and beads on cooperating lateral surfaces of a mainly longitudinal connection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30476Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements locked by an additional locking mechanism
    • A61F2002/305Snap connection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30518Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements with possibility of relative movement between the prosthetic parts
    • A61F2002/30523Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements with possibility of relative movement between the prosthetic parts by means of meshing gear teeth
    • A61F2002/30525Worm gears
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30565Special structural features of bone or joint prostheses not otherwise provided for having spring elements
    • A61F2002/30571Leaf springs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30574Special structural features of bone or joint prostheses not otherwise provided for with an integral complete or partial collar or flange
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30579Special structural features of bone or joint prostheses not otherwise provided for with mechanically expandable devices, e.g. fixation devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30604Special structural features of bone or joint prostheses not otherwise provided for modular
    • A61F2002/30616Sets comprising a plurality of prosthetic parts of different sizes or orientations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30621Features concerning the anatomical functioning or articulation of the prosthetic joint
    • A61F2002/30624Hinged joint, e.g. with transverse axle restricting the movement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30621Features concerning the anatomical functioning or articulation of the prosthetic joint
    • A61F2002/30624Hinged joint, e.g. with transverse axle restricting the movement
    • A61F2002/30632Hinged joint, e.g. with transverse axle restricting the movement with rotation-limiting stops, e.g. projections or recesses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30772Apertures or holes, e.g. of circular cross section
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30772Apertures or holes, e.g. of circular cross section
    • A61F2002/30774Apertures or holes, e.g. of circular cross section internally-threaded
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30795Blind bores, e.g. of circular cross-section
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30795Blind bores, e.g. of circular cross-section
    • A61F2002/30805Recesses of comparatively large area with respect to their low depth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/3085Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves with a threaded, e.g. self-tapping, bone-engaging surface, e.g. external surface
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/42Joints for wrists or ankles; for hands, e.g. fingers; for feet, e.g. toes
    • A61F2/4241Joints for wrists or ankles; for hands, e.g. fingers; for feet, e.g. toes for hands, e.g. fingers
    • A61F2002/4243Joints for wrists or ankles; for hands, e.g. fingers; for feet, e.g. toes for hands, e.g. fingers for interphalangeal joints, i.e. IP joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/0033Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementary-shaped recess, e.g. held by friction fit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/0041Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements using additional screws, bolts, dowels or rivets, e.g. connecting screws
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0004Rounded shapes, e.g. with rounded corners
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0004Rounded shapes, e.g. with rounded corners
    • A61F2230/0013Horseshoe-shaped, e.g. crescent-shaped, C-shaped, U-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0017Angular shapes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0017Angular shapes
    • A61F2230/0019Angular shapes rectangular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0017Angular shapes
    • A61F2230/0021Angular shapes square
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0067Three-dimensional shapes conical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0069Three-dimensional shapes cylindrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0086Pyramidal, tetrahedral, or wedge-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00017Iron- or Fe-based alloys, e.g. stainless steel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00023Titanium or titanium-based alloys, e.g. Ti-Ni alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00029Cobalt-based alloys, e.g. Co-Cr alloys or Vitallium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00179Ceramics or ceramic-like structures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S606/00Surgery
    • Y10S606/902Cortical plate specifically adapted for a particular bone
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S606/00Surgery
    • Y10S606/907Composed of particular material or coated

Definitions

  • the present invention generally relates to a surgical fastener assembly for coupling first and second bone portions across a fracture therebetween and, more specifically, to a hip-pinning system for rigidly interconnecting a femoral head to the remaining portion of the femur and across a fracture in the area of the femur neck.
  • a hip joint is a heavily stressed, load-carrying bone joint in the human body. It is essentially a ball and socket joint formed by the top of the femur which pivots within a cup-shaped acetabulum at the base of the pelvis. When a break or fracture occurs adjacent to the top of the femur, the separated portions of the femur must be held together while healing occurs.
  • a number of nails have been introduced for a fracture fixation about the femur in its proximal end, including the Jewett nail and, in more recent years, dynamic compression devices that allow capture of the most proximal fragments of the femur, compression of intertrochanteric and subtrochanteric fracture fragments, rigid fixation of the most proximal and distal fragments, and a sliding lag screw or anchor which fits within a barreled side plate for allowing further compression of fragments as the patient ambulates and begins to bear weight on the fractured limb.
  • the side plate is typically secured to the bone fragment with a series of screws or fasteners.
  • a rigid, blade plate has been used both at the proximal end of the femur for fixation of subtrochanteric femur fractures, and at the distal end for fixation of supracondylar and intercondylar fractures about the knee. Because these fractures can be technically challenging to fix, a dynamic compression screw, similar in many respects to a dynamic hip compression screw, but with a side plate design and angle similar to a blade plate, have been utilized for several years.
  • the use of a dynamic compression screw in osteogenic patients may result in inadequate purchase of the lag screw threads within the bone.
  • compression forces are dissipated, and the implant device can fail, resulting in a nonunion or malunion of the fracture fragments.
  • Similar loss of fixation can occur about the supracondylar and intercondylar fractures of the distal femur with osteogenic patients.
  • Some hip pinning systems have been modified to prevent the inadvertent disassembly of the lag screw and side plate by constraining the degree to which the lag screw and side plate can dissociate and by increased modularity of the side plate and lag screw component, enabling perhaps a smaller incision on the patient.
  • This modularity introduces another theoretical variable of potential loss of fixation of the side plate in the lag screw portions of the devices.
  • the side plates can loosen their purchase from the distal fragments by biological resorption with resultant loss of purchase of fixation of the screws holding the side plate to the lateral side of the femur.
  • the screws or fasteners used to hold the side plate to the lateral femur often become loose as bone is resorbed about the external threading on the screws.
  • the side plate often becomes loose from the bone, resulting in failure of the implant and loss of fixation of the fracture.
  • Such a pinning system for fixation assembly should furthermore be designed to allow a compression screw to remain permanently in place after surgery thus maintaining the degree of compression between the lag screw and side plate. It is also desirable to prevent the screws used to maintain the side plate in fixed relation relative to the bone fragment from loosening thereby maintaining the side plate in secure relation relative to the bone to which it was initially secured.
  • the surgical fastener assembly includes an anchor that has a first externally threaded portion disposed in the first bone portion and a second portion which is at least partially disposed in the second bone portion.
  • At least one pin is operably associated with the first portion of the anchor such that when the pin is in a retracted position the pin is disposed within the anchor and when the pin is in an extended position at least a portion of the pin extends outward from the anchor.
  • An actuator is disposed within the anchor and is operably coupled with the at least one pin.
  • a guide is adapted to be fixedly secured to the second bone portion and includes a sleeve.
  • a fastener is provided that has a head portion and an externally threaded shank portion. The shank portion threadedly engages with the anchor and the head portion operably engages with the guide.
  • FIG. 1 is a view showing a surgical fastener assembly according to the present invention in operable association with and extending across a condylar fracture;
  • FIG. 2 is an enlarged view, partly in section, of the apparatus of the present invention shown in FIG. 1;
  • FIG. 3 is an assembled perspective view of the present invention
  • FIG. 4 is a disassembled side elevational view illustrating component parts of one form of the present invention.
  • FIG. 5 is a longitudinal sectional view through a fastener forming part of the present invention.
  • FIG. 6 is a sectional view similar to FIG. 5 but showing pins or barbs of the fastener in an extended position
  • FIG. 7 is a perspective view of the fastener illustrated in FIGS. 5 and 6;
  • FIG. 8 is an end view of the fastener as shown in FIG. 7;
  • FIG. 9 is a sectional view taken along line 9 — 9 of FIG. 8;
  • FIG. 10 is another end view of the present invention.
  • FIG. 11 is an enlarged perspective view of a pin or barb forming part of the first embodiment of the surgical fastener assembly according to the present invention.
  • FIG. 12 is a side elevational view of the pin illustrated in FIG. 11;
  • FIG. 13 is another side elevational view of the pin or barb illustrated in FIG. 11;
  • FIG. 14 is an end view of the pin or barb illustrated in FIG. 12;
  • FIG. 15 is a sectional view taken along line 15 — 15 of FIG. 12;
  • FIG. 16 is a perspective view of one form of a compression screw forming part of the present invention.
  • FIG. 17 is a side elevational view of the compression screw illustrated in FIG. 16;
  • FIG. 18 is a left end view of the compression screw illustrated in FIG. 17;
  • FIG. 19 is a right end view of the compression screw illustrated in FIG. 17;
  • FIG. 20 is a sectional view taken along line 20 — 20 of FIG. 18;
  • FIG. 21 is a perspective view of a retainer forming part of the anchor assembly illustrated in FIG. 9;
  • FIG. 22 is a side elevational view of the retainer illustrated in FIG. 21;
  • FIG. 23 is a left end view of the retainer illustrated in FIG. 22;
  • FIG. 24 is a right end view of the retainer shown in FIG. 22;
  • FIG. 25 is a sectional view taken along line 25 — 25 of FIG. 23;
  • FIG. 25A illustrates assembly of the surgical anchor assembly according to one form of the invention with the pins or barbs extended and a tool positioned to engage the retainer illustrated in FIGS. 21 through 25;
  • FIG. 25B is similar to FIG. 25A but illustrates further assembly of the surgical anchor assembly according to one form of the invention with the pins or barbs extended and a tool for moving the retainer illustrated in FIGS. 21 through 25 into operable engagement with the compressive cannulated fastener illustrated in FIGS. 16 through 20;
  • FIG. 26 is a perspective view of a driver forming part of the first embodiment of this surgical fastener assembly according to the present invention.
  • FIG. 27 is a fragmentary side elevational view of the driver illustrated in FIG. 26;
  • FIG. 28 is a left end view of the driver illustrated in FIG. 27;
  • FIG. 29 is a right end view of the driver illustrated in FIG. 27;
  • FIG. 30 is a longitudinal sectional view taken along line 30 — 30 of FIG. 28;
  • FIG. 31 is a perspective view of a limit stop forming part of the first embodiment of the present invention.
  • FIG. 32 is an enlarged side elevational view of the limit stop illustrated in FIG. 31;
  • FIG. 33 is a left end elevational view of the limit stop illustrated in FIG. 32;
  • FIG. 34 is a right end view of the limit stop illustrated in FIG. 32;
  • FIG. 35 is a sectional view taken along line 35 — 35 of FIG. 33;
  • FIG. 36 is a view similar to FIG. 12 but showing an alternative form of pin or barb according to the present invention.
  • FIG. 37 is an enlarged right end elevational view of the pin or barb illustrated in FIG. 36;
  • FIG. 38 is a view similar to FIG. 5 showing the alternative form of pins or barbs arranged in combination with the insert and in retracted positions relative thereto;
  • FIG. 39 is a view similar to FIG. 38 but showing the alternative form of the pins or barbs in an extended position
  • FIG. 40 is a view similar to FIG. 5 but showing a second embodiment of the present invention.
  • FIG. 41 is a longitudinal sectional view showing the components of the second embodiment of the present invention in exploded or disassembled relationship relative to each other;
  • FIG. 42 is a view similar to FIG. 40 schematically illustrating distention of the pins or barbs relative to the anchor;
  • FIG. 43 is a view similar to FIG. 42 but showing an alternative form of compression screw assembly arranged in operable combination with the anchor and a conventional side plate;
  • FIG. 44 is a view similar to FIG. 43 but showing a driver of the compression screw assembly arranged in a locking relationship relative to a compression screw;
  • FIG. 45 is a longitudinal sectional view of a third embodiment of a surgical anchor assembly according to the present invention with an alternative form of pins operably associated therewith and in a retracted relationship therewith;
  • FIG. 46 is a fragmentary longitudinal sectional view showing component parts of the third embodiment of the present invention in exploded or disassembled relation relative to each other;
  • FIG. 47 is a fragmentary longitudinal sectional view of an anchor or insert forming part of the third embodiment of the present invention.
  • FIG. 48 is a left end view of the anchor illustrated in FIG. 47;
  • FIG. 49 is a right end view of the anchor illustrated in FIG. 47;
  • FIG. 50 is a side elevational view of a pin forming part of the third embodiment of the present invention.
  • FIG. 51 is a sectional view taken along line 51 — 51 of FIG. 50;
  • FIG. 52 is a sectional view of a slide forming a component part of the third embodiment of the present invention.
  • FIG. 53 is a left end view of the slide illustrated in FIG. 52;
  • FIG. 54 is a right end view of the slide illustrated in FIG. 52;
  • FIG. 55 is a sectional view taken alone line 55 — 55 of FIG. 54;
  • FIG. 56 is a sectional view of an end cap forming part of the third embodiment of the present invention.
  • FIG. 57 is a left end view of the end cap shown in FIG. 56;
  • FIG. 58 is a right end view of the end cap shown in FIG. 56;
  • FIG. 59 is a side elevational view of a tool used to extend and retract the pins in the third embodiment of the anchor assembly shown in FIG. 45;
  • FIG. 60 is a right end view of the tool shown in FIG. 59;
  • FIG. 61 is a sectional view showing the tool illustrated in FIGS. 59 and 60 arranged in operable combination with a slide assembly forming part of the third embodiment of the present invention and with the pins or barbs shown in retracted position relative to the anchor;
  • FIG. 61A is a sectional view taken along line 61 A— 61 A of FIG. 45;
  • FIG. 62 is a view similar to FIG. 61 but showing the tool in operable relationship with the slide of the slide assembly for forcibly extending the pins or barbs radially outwardly from the anchor;
  • FIG. 62A is a sectional view taken along line 62 A— 62 A of FIG. 62;
  • FIG. 63 is a longitudinal sectional view similar to FIG. 45 but showing the pins arranged in an extended relationship relative to the anchor;
  • FIG. 64 is another form of surgical anchor assembly having an alternative form of a compression screw assembly for holding the anchor and guide in compressive relationship relative to each other;
  • FIG. 64A is an enlarged sectional view of the compression screw assembly encircled in FIG. 64;
  • FIG. 65 is a longitudinal sectional view of a compression screw forming a component part of the compression screw assembly illustrated in FIGS. 64 and 64A;
  • FIG. 66 is a left end elevational view of the compression screw illustrated in FIG. 65;
  • FIG. 67 is a right end elevational view of the compression screw illustrated in FIG. 65;
  • FIG. 68 is an elevational view of a driver used in combination with the compression screw assembly illustrated in FIGS. 65 through 67;
  • FIG. 69 is a left end elevational view of the driver illustrated in FIG. 68;
  • FIG. 70 is a right end elevational view of the driver illustrated in FIG. 68;
  • FIG. 71 is a schematic partially sectional elevational view of the compression screw (FIG. 65) and driver (FIG. 68) shown in exploded or disassembled relation relative to each other;
  • FIG. 72 is a schematic representation of the driver being illustrated in partial relation with the compression screw
  • FIG. 73 is a schematic representation of the driver being illustrated in complete relation with the compression screw;
  • FIG. 74 is a reduced view similar to FIG. 2;
  • FIG. 75 is an enlarged view of that area encircled in FIG. 74;
  • FIG. 76 illustrates component parts of an alternative form of a screw assembly used to secure the guide to the bone, with the component parts thereof shown in disassembled relationship relative to each other;
  • FIG. 77 is a sectional view of a compression screw illustrated in FIGS. 75 and 76 as taken along line 77 — 77 of FIG. 78;
  • FIG. 78 is a left end view of the compression screw shown in FIG. 77;
  • FIG. 79 is a right end view of the compression screw illustrated in FIG. 77;
  • FIG. 80 is a side elevational view of a driver used in combination with the screw assembly illustrated in FIGS. 75 and 76;
  • FIG. 81 is a left end elevational view of the driver illustrated in FIG. 80;
  • FIG. 82 is a right end elevational view of the driver illustrated in FIG. 30 80 ;
  • FIG. 83 is a view showing the driver partially arranged in operable association with the compression screw
  • FIG. 84 is an exploded, perspective view of another alternative embodiment for a surgical fastener assembly in accordance with the principles of the present invention.
  • FIG. 85 is an exploded, perspective view of the anchor assembly of FIG. 84;
  • FIG. 86 is an exploded side view of the anchor assembly of FIG. 85;
  • FIG. 87 is a perspective view of the tang assembly of FIGS. 85 and 86.
  • FIG. 88 is a front view of the tang assembly
  • FIG. 89 is a cross-sectional view of the anchor assembly with the tangs in a retracted position
  • FIG. 90 is a front view of the anchor assembly with the tangs in a deployed position
  • FIG. 91 is a cross-sectional view of the anchor assembly as taken along line 91 — 91 of FIG. 90;
  • FIG. 92 is a perspective view of the tang assembly with the tangs in a deployed position.
  • FIG. 93 is a perspective view of the compression screw with a retainer disposed on the outer surface of the screw.
  • FIG. 1 there is schematically represented in FIG. 1 one form of a fastener assembly 10 used to compressively secure fractured first and second bone fragments across the fracture therebetween.
  • the surgical fastener assembly 10 is used to set a condylar fracture accurately along a fracture line 12 disposed between proximal and distal portions 14 and 16 , respectively, of a bone 18 .
  • the surgical fastener assembly 10 includes a guide, generally represented by reference numeral 20 and an elongated anchor, generally represented by reference numeral 22 .
  • the surgical anchor assembly 10 further includes a compression screw or fastener 24 and a retainer 26 for releasably locking the fastener 24 against rotation.
  • a series of screws 28 operate in combination with and serve to secure the guide 20 to the bone section 18 .
  • guide 20 includes a hollow sleeve 30 that is rigidly attached to a trochanteric plate 32 at the proper angle.
  • the proximal portion 14 of the bone 18 is bored so as to receive the sleeve 30 .
  • the distal portion 16 of the bone 18 is configuratively manipulated to accommodate an end portion of the sleeve 30 therewith.
  • the plate 32 is provided with a plurality of throughholes 34 that allow the screws 28 to pass endwise therethrough, thereby securing the guide 20 to the bone section 18 .
  • the sleeve 30 defines a throughbore 36 that is open at opposite ends thereof.
  • the guide 20 is formed from a material chosen from the class comprised of: titanium, a titanium alloy, stainless steel, or cobalt chromium alloy.
  • the throughbore 36 is provided with a counterbore 38 at one end thereof.
  • the counterbore 38 has a larger diameter than does the throughbore 36 .
  • an annular or radial step 40 is defined toward one end of the throughbore 36 .
  • the anchor 22 includes an elongated insert 44 preferably formed from a material chosen from the class comprised of: titanium, a titanium alloy, stainless steel or cobalt chromium alloy.
  • the insert 44 has opposed first and second axially aligned ends 46 and 48 , respectively.
  • the insert 44 is sized such that when inserted within the bone, the first end 46 is disposed on one side of the fracture line 12 while the second end 48 of insert 44 is disposed on an opposite side of the fracture line 12 .
  • cooperative instrumentalities 50 are defined on the sleeve of guide 20 and on insert 44 .
  • the purpose of the cooperative instrumentalities 50 is to allow for axial movement of the sleeve 30 along an axis 52 defined by the insert 44 while preventing rotational movement of the sleeve 30 relative to the anchor 22 .
  • the cooperative instrumentalities 50 preferably comprises a pair of flats 54 extending axially along and inwardly from the second end 48 of insert 44 .
  • the flats 54 are diametrically opposed and generally parallel to each other.
  • the throughbore 36 of sleeve 30 includes generally flat sides 56 that are arranged in opposed and generally parallel relationship relative to each other.
  • the flat sides 56 of bore 36 to allow the second end 48 of the insert to slidably move therewithin while the flats 54 cooperate with the flat sides 56 in preventing rotation of the sleeve 30 and, thereby, the guide 20 relative to the anchor 22 .
  • other forms of cooperative instrumentalities for allowing endwise axial movement of the anchor 22 relative to the guide 20 while preventing rotational movement therebetween would equally suffice.
  • the anchor 22 of the surgical fastener assembly further includes a series of elongated pins 60 operably associated toward the first end 46 of the insert 44 for movement between a retracted position (FIG. 5) and a radially extended position (FIG. 6 ).
  • the pins 60 are candied by the insert 44 for endwise and radial displacement relative thereto.
  • four pins 60 are equidistantly spaced relative to each other for positive endwise movement in opposite directions between the retraced and extended positions shown in FIGS. 5 and 6, respectively.
  • a salient feature of the present invention relates to the provision of a mechanism 64 for positively positioning the pins 60 relative to the surgical anchor 22 . That is, and as will be described in detail below, the purpose of mechanism 64 is to positively extend the pins 60 radially outwardly from the insert 44 , thereby enhancing securement of the anchor 22 within the bone (FIG. 1 ). Additionally, and in response to mechanical manipulation, the mechanism 64 furthermore operates to positively retract the pins 60 into the surgical anchor 22 , thereby facilitating surgical removal of the anchor 22 when desired or when found to be surgically necessary.
  • insert 44 of anchor 22 defines an elongated bore 66 preferably arranged coaxially about the longitudinal axis 52 and opening to the first and second ends 46 and 48 , respectively, of the insert 44 .
  • first end 46 of the fastener 44 is preferably pointed to facilitate insertion of the fastener 44 into the bone.
  • the exterior configuration of the insert 44 can take a myriad of shapes and forms.
  • the elongated insert 44 preferably has external threading 68 axially extending therealong and leading rearwardly from the pointed first end 46 .
  • the pointed configuration of the insert 44 promotes insertion and, in the illustrated embodiment, self tapping of the anchor 22 within the substance of the bone.
  • the external threading 68 along the exterior of insert 44 has a relatively coarse pitch to enhance the purchasing ability and the anchorage of the anchor 22 within the substance of the bone in response to turning movements being imparted to the anchor 22 .
  • the second or trailing end 48 of the insert 44 is preferably configured to releasably accommodate a driving tool (not shown) capable of imparting turning movements to the anchor 22 .
  • a driving tool (not shown) capable of imparting turning movements to the anchor 22 .
  • the trailing or second end of the insert 44 is suitably configured with a slot-like opening 69 for releasably accommodating a distal end of a driving tool. It will be appreciated, however, that any suitable configuration including a socket-like configuration would equally suffice without detracting or departing from the spirit and scope of the present invention.
  • the insert 44 further defines a series of axially elongated openings arranged in spaced circumferential relation relative to each other.
  • insert 44 is provided with four openings 70 . Since the openings 70 are all substantially similar, only one opening 70 will be described in detail with the understanding that the other openings in the insert are similar thereto.
  • Each opening 70 intermediate positive ends thereof, intersects with and opens to the elongated bore 66 defined by insert 44 .
  • each elongated opening 70 has a blind configuration but opens at one end to the exterior of the insert 44 .
  • the openings 70 are generally equally disposed about the axis 52 of insert 44 .
  • each elongated opening 70 has a curvilinear or arcuate configuration between opposite ends thereof. That is, in the illustrated form of the invention, each opening 70 has an arcuate configuration having a predetermined and substantially constant radius.
  • each pin 60 is shaped to slidably fit endwise within a respective one of the openings 70 formed in the insert 44 .
  • the shape and size of each pin 60 generally corresponds to the shape and size of an opening 70 defined by the insert 44 .
  • each pin 60 is formed from a substantially rigid material that is biocompatible with the bone tissue of human beings. That is, the pins 60 should be configured with sufficient strength so as to allow for insertion in and through the bone tissue without substantially bending intermediate opposite ends thereof.
  • each pin 60 is formed from a material selected from the class comprised of: titanium, a titanium alloy, stainless steel, or a cobalt chromium alloy.
  • each pin 60 has a leading end 74 and an opposite generally pointed end 76 . Intermediate its ends, each pin 60 preferably has a curvilinear or arcuate configuration. In the illustrated form of the invention, each pin 60 has a curved arc with a predetermined radius that is substantially equal to the predetermined radius of each opening 70 formed in insert 44 (FIG. 9) and which extends proximate to and outwardly away from the axis 52 of insert 44 .
  • each pin 60 preferably forms an arc of about 80 degrees between opposite ends thereof, and with the length of each pin 60 being selected such that when the leading end 74 of the pin 60 is fully retracted within the fastener (FIG. 5 ), the opposite pointed end 76 of the pin or barb 60 will be positioned within the outside diameter of the insert 44 (FIG. 5) to facilitate insertion of the surgical anchor 20 within the bone of the patient.
  • the length of each barb or pin 60 is sized such that when the pins 60 are displaced to their extended position (FIG. 6) the leading end 74 of each pin 60 remains operably associated with the mechanism 64 to allow for positive retraction of the pins 60 from their extended positions when desired or found necessary by the surgeon.
  • the compressive and cannulated fastener 24 as schematically illustrated in FIGS. 16 through 20.
  • the purpose of the cannulated fastener 24 is to maintain the bone fragments (FIG. 1) in adjustable compressive relationship relative to each other as by axially fixing the guide 20 to the anchor 22 (FIG. 2 ).
  • the elongated bore 66 of the insert 44 opens to the second or trailing end 48 thereof.
  • the bore 66 defines an internally threaded portion 78 extending inwardly from the second or trailing end 48 of the insert 44 .
  • the internally threaded portion 78 of bore 66 has a relatively fine pitched threading extending therealong.
  • the compressive and cannulated fastener 24 is schematically illustrated in FIGS. 16 through 20.
  • the purpose of the cannulated fastener 24 is to maintain the bone fragments (FIG. 1) in adjustable compressive relationship relative to each other as by axially fixing the guide 20 to the anchor 22 (FIG. 2) such that the guide 20 is prevented from axially moving away from the anchor 22 , but allows movement of guide 20 toward the pointed or first end 46 of the anchor 22 (FIG. 2 ).
  • Fastener 24 is preferably formed from a material that is biocompatible with bone tissue or a substance and is preferably selected from the class comprised of: titanium, a titanium alloy, stainless steel, or a cobalt chromium alloy. As will be appreciated, and although not specifically mentioned herein, other unnamed materials may well equally suffice without detracting or departing from the spirit and scope of the present invention.
  • the fastener 24 is provided with an elongated shank position 80 and an enlarged head portion 82 .
  • the shank portion 80 of fastener 24 is provided with external threading 84 extending axially from a leading end 86 of the fastener 24 .
  • the external threading 84 has a relatively fine pitch that corresponds to the threading extending internally along the threaded portion 78 of anchor 22 .
  • the enlarged head portion 82 of fastener 24 has a diameter slightly smaller than the diameter of the counterbore 38 defined by the insert 44 (FIG. 2 ).
  • the axial length of the head portion 82 can be altered from that illustrated without detracting or departing from the spirit and scope of the present invention.
  • surgeon may have a collection of different fasteners 24 to select from; with each anchor having a different length such that a proper relationship is maintained between the guide 20 and anchor 22 .
  • the enlarged head portion 82 defines a radial shoulder 88 relative to the shank portion 80 .
  • a trailing end 90 of the fastener 24 is preferably configured to releasably accommodate a driving tool (not shown) capable of imparting turning movements to the fastener 24 .
  • the trailing end 90 of fastener 24 is configured with a socket-like opening 92 for releasably accommodating a distal end of a driving tool.
  • the socket or opening 92 has a hexagonal-like cross sectional configuration. It will be appreciated, however, that any suitable configuration including an elongated slot would equally suffice without detracting or departing from the spirit and scope of the present invention.
  • the cannulated fastener 24 furthermore defines an elongated bore 94 that opens to the leading and trailing ends 86 and 90 , respectively, of the fastener.
  • the anchor 22 is fastened within the bone fragment to one side of the fracture line 12 .
  • anchor 22 is configured such that the opposite or second end 48 of the anchor 22 extends to an opposite side of the fracture line 12 .
  • the guide 20 is arranged in cooperative relationship relative to the anchor 22 .
  • the sleeve 30 of guide 20 slidably fits endwise over and telescopically along the free end of the anchor 22 .
  • the screws 28 are used to fasten the plate 32 of guide 20 to the bone 18 . It will be observed that the cannulated compressive fastener 24 is thereafter arranged in operable combination with the anchor 22 and guide 20 .
  • the leading end 86 of the compressive screw 24 is inserted through the bore 36 of the sleeve 30 in turn such that the external threading 84 extending there along operably engages with the internal threading 78 at the proximal end of the anchor 22 .
  • the fastener 24 will cause the radial shoulder 88 on the enlarged head portion 82 to engage the radial stop 40 defined by the counterbore 38 and the guide 20 .
  • continued rotation of the screw 24 will cause the bone fragments to be brought into compressive relationship relative to each other.
  • the compressive screw 24 furthermore allows the surgeon the appropriate “feel” as the screw is tightened, thus bringing the bone fragments into compressive relationship relative to each other.
  • retainer 26 has external threading 100 extending axially there along between leading and trailing ends 102 and 104 , respectively thereof.
  • the retainer 26 is preferably formed from a material that is biocompatible with bone tissue or substance and is preferably ultra-high molecular weight polyethylene. It should be appreciated, however, that other unnamed materials would equally suffice without detracting or departing from the spirit and scope of the present invention.
  • the external threading 100 extending along the outside of retainer 26 has a fine pitch thereto which corresponds to the threading extending along the internally threaded portion 78 of the insert 44 .
  • the retainer 26 is provided with a throughbore 106 that opens to opposite ends 102 and 104 of the retainer.
  • a lengthwise portion of the throughbore 106 has a hexagonal-like cross sectional configuration for releasably accommodating a distal end of the driving tool. It will be appreciated, however, that any suitable socket-like configuration other than hexagonal would equally suffice without detracting or departing from the spirit and scope of the present invention.
  • the retainer 26 is initially threaded into the internally threaded portion 78 of the anchor 22 . Thereafter, and in the manner described above, the compressive fastener 24 is operably associated with the anchor 22 . After the compressive relationship between the guide 20 and anchor 22 has been established, as a result of turning the compressive screw 24 , a suitably elongated tool 95 is passed through the bore 94 (FIG. 20) of the cannulated fastener 24 and into releasable engagement with the socket-like configuration defined in the throughbore 106 of retainer 26 .
  • the mechanism 64 for positively displacing the pins 60 in opposite directions between retracted and extended positions (FIGS. 5 and 6, respectively) will now be described.
  • the mechanism for positively displacing the pins 60 in opposite directions can take a myriad of different forms without detracting or departing from the spirit and scope of the present invention.
  • One mechanism which has proven advantageous and quite effective involves equipping the anchor 20 with a manually operated driver 110 (FIGS. 5 and 6) which is operably associated with the pins 60 such that upon manipulation of the driver 110 the pins 60 will endwise be displaced relative to the anchor 22 , thereby effecting the anchorage of the surgical anchor 22 within the bone.
  • FIGS. 26 through 30 illustrate one form of a driver 110 for axially and appositively displacing the pins 60 (FIGS. 5 and 6) of the surgical anchor in opposite directions.
  • driver 110 comprises an axially elongated member 112 having external threading 114 extending axially rearwardly from a leading end 116 toward a trailing end 1 18 .
  • the driver member 112 is formed from a material that is biocompatible with bone tissue or a substance that is preferably selected from the class comprised of: titanium, a titanium alloy, stainless steel, or a cobalt chromium alloy. It should be appreciated, however, that other unnamed materials would equally suffice without detracting or departing from the spirit and scope of the present invention.
  • the outside diameter of the threading 114 of member 112 is such that it slidably fits endwise through the elongated bore 66 defined by insert 44 (FIGS. 5 and 6) and is accommodated for free turning movements in either rotational direction within the bore 66 of insert 44 .
  • the external threading 114 on member 112 has a relatively fine pitch thereto.
  • the member 112 preferably has an elongated bore 120 that opens to the leading and trailing ends 116 and 118 of member 112 .
  • the trailing end 118 of the member 112 is preferably configured to releasably accommodate a driving tool (not shown) capable of imparting turning movements to the driver 110 .
  • the trailing end 118 of member 112 is suitably configured with a socket-like opening 122 for releasably accommodating the distal end of a driving tool.
  • the socket or opening 122 has a hexagonal-like cross sectional configuration. It will be appreciated, however, that any suitable configuration, including a square or triangular configuration would equally suffice without detracting or departing from the spirit and scope of the present invention.
  • each pin or barb 60 preferably has an inner surface 124 , which proximates the axis 52 (FIGS. 7 and 9) of the anchor 22 when the pins 60 are inserted within the insert 44 , and an outer surface 126 .
  • the inner surface 124 of each pin 60 has a series of vertically spaced serrations 128 thereon.
  • the serrations 128 extend axially rearwardly from the leading end 74 and for a lengthwise distance toward the pointed end 76 of each pin 60 .
  • the serrations 128 on each pin 60 are configured for threadable engagement with the exterior threading 114 extending axially along the outer surface of driver 110 .
  • the driver 110 is operably engaged or associated with each of the pins 60 of this surgical anchor assembly.
  • mechanism 64 for positively displacing the pins 60 between retracted and extended positions and vice-versa further includes a limit stop 134 for preventing axial displacement of the driver 110 when rotated.
  • a limit stop 134 for preventing axial displacement of the driver 110 when rotated.
  • the limit stop 134 is illustrated in FIGS. 31 through 35.
  • the limit stop 134 is formed from a material that is biocompatible with human bone tissue.
  • the limit stop 134 is formed from a material chosen from the class comprised of: titanium, a titanium alloy, stainless steel, or a cobalt chromium alloy. It will be appreciated, however, that other materials would equally suffice without detracting or departing from the spirit and scope of the present invention. As shown in FIGS.
  • the limit stop 134 preferably includes a hollow member 136 with external threading 138 extending between leading and trailing ends 140 and 142 , respectively, thereof.
  • the external threading 138 has a relatively fine pitch which corresponds to the threading extending along the internally threaded portion 78 of insert 44 at the second end 48 of anchor 22 .
  • the trailing end 142 of the limit stop 134 is preferably configured to releasably accommodate a driving tool (not shown) capable of imparting turning movements to the limit stop 134 .
  • the trailing end 142 of limit stop 134 is provided with an elongated slot 148 for releasably accommodating a distal end of the driving tool.
  • the limit stop 134 defines a throughbore 146 that opens to leading and trailing ends 140 and 142 , respectively, of the limit stop and thereby allowing a tool to be passed endwise therethrough into operable engagement with the driver 110 .
  • pin 160 is substantially similar to pin 60 illustrated in FIGS. 11 through 15 and described in detail above.
  • each pin 160 has a leading end 174 and an opposite end 176 .
  • each pin 160 preferably has a curvilinear or arcuate configuration.
  • each pin has a curved arc with a predetermined radius that is substantially equal to the predetermined radius of each opening 170 formed in an insert 144 as shown in FIG. 38 .
  • each pin 160 preferably forms an arc of about 80° between opposite ends thereof, and with the length of each pin being selected such that when the leading end 174 of the pin 160 is fully retracted within the fastener or anchor 22 , the opposite end 176 of the pin or barb 160 will be positioned within the outside diameter of the insert 144 .
  • each pin 160 is formed with a configuration that complements the configuration of the anchor or fastener 22 .
  • the end 176 of each pin 160 is formed with a channel 177 disposed between two substantially similar projections 179 .
  • the length of each barb or pin 160 is sized such that when the pins 160 are displaced to their extended position, as shown in FIG. 39, the leading end 174 of each pin 160 remains operably associated with the mechanism 64 to allow for positive retraction of the pins 160 from their extended positions when desired or found necessary by the surgeon.
  • each pin or barb 160 preferably has an inner surface 184 which, as illustrated in FIGS. 38 and 39, proximates the axis 52 of the anchor when the pins are inserted within the insert 144 and an outer surface 186 .
  • the inner surface 184 of each pin has a series of spaced serrations 188 that extend axially rearwardly from the leading end 174 and for a lengthwise distance toward the second or other end 176 of each pin 160 .
  • the serrations 188 on each pin are configured for threadable engagement with the exterior threading 114 extending axially along the outer surface of driver 110 of mechanism 64 as described in detail above. As such, the driver 110 is operably engaged or associated with each of the pins 160 of this surgical anchor assembly.
  • FIG. 40 schematically illustrates an alternative form for the surgical anchor assembly.
  • This alternative form of the surgical anchor assembly is generally represented by reference number 210 .
  • the surgical anchor assembly 210 includes a guide, generally represented by reference numeral 220 and an elongated anchor, generally represented by reference numeral 222 .
  • the surgical fastener assembly 210 further includes a compressive fastener assembly 224 for holding the guide 220 in compressor relationship relative to the anchor 222 .
  • the guide 220 is substantially similar to the guide 20 described in detail above and, thus, a detailed description need not be provided therefor.
  • the guide 220 includes a hollow sleeve 230 that is substantially similar to the sleeve 30 discussed above.
  • Sleeve 230 defines a throughbore 236 that is open at opposite ends thereof.
  • the throughbore is provided with a counterbore portion 238 at one end thereof.
  • the counterbore 238 has a larger diameter than does the throughbore 236 and, thus, an annular or radial step 240 is defined there between.
  • the anchor 222 includes an elongated insert 244 having opposed first and second ends 246 and 248 .
  • the insert 244 is preferably formed from a material similar to that used to form insert 44 .
  • Insert 244 is sized such that when inserted within the bone, the first end 246 is disposed to one side of a fracture line while the second end 248 of the insert 244 is disposed to an opposite side of the fracture line.
  • the anchor 222 of the surgical fastener assembly 210 further includes a series of elongated pins or barbs 260 operably associated toward the first end 246 of the insert 244 for movement between a retracted position (FIG. 40) and a radially extended position (FIG. 42 ).
  • the pins 260 are carried by the insert 244 for endwise and radial displacement relative thereto.
  • four pins 260 are equidistantly spaced relative to each other for positive endwise movement in opposite directions between the retracted and extended positions shown in FIGS. 40 and 42, respectively.
  • the exterior configuration of the insert 244 can take a myriad of shapes and forms.
  • the elongated insert 244 preferably has external threading 268 axially extending therealong and leading rearwardly from the first end 246 thereof.
  • the external threading 268 along the exterior of insert 244 has a relatively coarse pitch to enhance the purchasing ability and the anchorage of the anchor 222 within the substance of the bone in response to turning movements being imparted to the anchor 222 .
  • the insert 244 of anchor 222 has a constant generally cylindrical-like configuration 249 extending to the terminal end of the exterior threading 268 and having a slightly smaller outside diameter than that of the exterior threading 268 .
  • the cylindrical-like configuration 249 extending axially forward from the terminal end 248 of the insert 244 has a diameter which is generally equal to the diameter of the throughbore 236 in the guide 220 thereby facilitating sliding movement of the anchor 222 axially within the sleeve 230 of the guide 220 .
  • cooperative instrumentalities are defined on the sleeve 230 of guide 220 and on the insert 244 .
  • the purpose of the cooperative instrumentalities is to allow for axial movement of the anchor 222 relative to the sleeve 230 along an axis 252 defined by the insert 244 while preventing rotational movement of the sleeve 230 relative to the anchor 222 .
  • insert 244 defines a constant diameter counterbore portion 253 extending axially inward from the first end 246 of insert 244 .
  • the counterbore portion 253 defines a radial wall 254 .
  • the insert 244 further defines a series of axially elongated openings arranged in spaced circumferential relation relative to each.
  • insert 244 is provided with four openings 270 .
  • Each opening 270 intersects with and opens to the counterbore 253 defined by insert 244 .
  • an axially inward portion 272 of each opening 270 has an inwardly slanted surface for purposes to be described in detail hereinafter.
  • another elongated bore 257 having an internally threaded portion 255 and a counterbore portion 256 .
  • the internally threaded portion 255 extends inwardly from the second or trailing end 248 of the insert.
  • the internally threaded portion 255 of bore 257 has a relatively fine pitched threading extending therealong.
  • the internally threaded portion 255 has a larger diameter than does counterbore portion 256 .
  • the insert 244 further defines a passage 258 extending between counterbore portions 253 and 256 .
  • the second or trailing end 248 of the insert 244 is furthermore configured to releasably accommodate a driving tool (not shown) capable of the parting turning movements to the anchor 222 .
  • a driving tool (not shown) capable of the parting turning movements to the anchor 222 .
  • the trailing or second end of the insert 244 is suitably configured with a slot-like opening 269 for releasably accommodating a distal end of a driving tool. It will be appreciated, however, that any suitable configuration would equally suffice without detracting or departing from the spirit and scope of the present invention.
  • Carrier assembly 262 preferably includes a slide 263 to which one end of each pin 260 is articulately connected to allow the pins 260 to flex or hingedly move relative to the slide while remaining operably connected thereto.
  • slide 263 has an outer surface configuration 264 having a diameter substantially equal to the diameter of the counterbore portion 253 defined by the insert 244 .
  • Slide 263 further defines a threaded opening 265 having a relatively fine pitched internal threading extending therealong.
  • the free ends of the pins 260 are biased to spring outwardly away from the axis 252 .
  • the free end of each pin 260 has a cam-like surface 266 thereon for purposes to be described in detail hereinafter.
  • the carrier assembly 262 fits axially within bore 253 defined by insert 244 for axial movement and with the pins 260 extending toward the second end 248 of insert 244 .
  • the open end of insert 244 is closed by an end cap 274 .
  • end cap 274 preferably includes a reduced annular portion 275 sized to snugly fit within the free open end of bore 253 defined by insert 244 .
  • Suitable retaining means such as welding, or staking, or the like securely fastens the end cap 274 to the remainder of the insert 244 .
  • End cap 274 is preferably formed from a material that is biocompatible with bone tissue or human substance and is preferably selected from the class comprised of: titanium or titanium alloy, stainless steel, or cobalt chromium alloy. It would be appreciated, however, that other unnamed materials would equally suffice without detracting or departing from the spirit or scope of the present invention.
  • the end cap 274 defines a central throughbore or hole 276 extending therethrough.
  • the annular or circumferential surface of end cap 274 is preferably chamfered to promote insertion of the anchor 222 into the bone.
  • each pin 260 tends to bias outwardly.
  • the slots or opening 270 in the insert 253 are elongated such that a distal end of each pin 260 tends to project radially outwardly into the slot 270 with the slanted surface 266 being advantageously arranged to engage and cooperate with slanting surface 272 on each opening 270 in a manner forcibly projecting the pins 260 radially outwardly as shown in FIG. 42 .
  • the mechanism 280 for positively displacing the pins 260 in opposite directions between retracted and extended positions will now be described.
  • the drive mechanism 280 preferably includes a manually operated driver 282 arranged in operative relation with the carrier assembly 262 . As will be described below, manual activation of the drive mechanism 280 will affect axial displacement of the carrier assembly 262 within bore 253 of insert 244 thereby effecting positive displacement of the pins 260 with the carrier assembly 262 .
  • driver 282 preferably includes an axially elongated and hollow member 284 having a reduced diameter portion 286 axially projecting rearwardly from a first end 288 thereof.
  • the driver 282 is formed from a material that is bio-compatible with bone tissue or human substance and is preferably selected from the class comprised of: titanium, titanium alloy, stainless steel, or cobalt chromium alloy. Of course, other unnamed materials will equally suffice without detracting or departing from the spirit and scope of the present invention.
  • the reduced diameter portion 286 of member 284 has a diameter equal to the diameter of bore 276 defined by end cap 274 .
  • driver 282 has an enlarged head portion 292 .
  • the second end 290 is configured to releasably to accommodate a distal end of a driving tool.
  • the second or terminal end 290 of driver 282 is provided with an elongated slot 294 that is configured to releasably accommodate a driving tool.
  • the driver 282 is provided with an axially extended shoulder 295 . Between the shoulder and the reduced diameter portion 286 , the driver 282 is provided with external threading 296 .
  • the external threading extending lengthwise along the driver 282 has a relatively fine pitch that corresponds to the internally threaded portion 265 of slide 263 forming part of the carrier assembly 262 .
  • the reduced diameter portion 286 and the externally threaded portion 296 of driver 282 are sized to permit their endwise insertion through passage 258 defined by insert 244 .
  • the shoulder portion 295 has a diameter that is substantially equal to the passage 258 and is journalled thereby.
  • the enlarged head portion 292 is specifically sized with the diameter greater than the passage 258 thereby preventing axial displacement or movement of the head portion 292 past the passage 258 .
  • the reduced diameter portion 286 and externally threaded portion 296 are passed endwise through the passage 258 defined in the insert 244 of anchor 222 .
  • the threaded portion 296 of driver 282 is likewise threadably engaged with the slide 263 of carrier assembly 262 to allow the reduced diameter portion 286 to pass endwise through and be journalled by the periphery of the bore 276 defined by end cap 274 .
  • the reduced diameter portion 286 is sized to allow a lengthwise portion thereof to pass endwise through and beyond the end cap 274 . That free end of the reduced diameter portion 286 is thereafter swaged or flared outwardly thus preventing axial displacement of the driver 282 in response to rotational movement being imparted thereto.
  • the pins 260 of carrier assembly 262 are radially and positively displaced in opposite directions relatively to axis 252 in response to and as a function of rotation of driver 282 .
  • a suitable tool 297 is displaced endwise through bore 236 of guide 220 and through the bore 257 of insert 244 into operable engagement with the slot 294 at the second end 290 of driver 282 .
  • rotation of the driver 282 will result in axial or endwise displacement of the slide 263 as a result of the threaded interconnection between the internal threading 265 on slide 263 and the external threading 296 on driver 282 .
  • the slanted surface configurations 266 thereon engage the outwardly slanting surfaces 272 of the openings thereby forcibly propelling the pins radially outwardly relative to the axis 252 .
  • rotation of the tool 297 in the opposite direction will likewise result in axial displacement of the carrier assembly 262 but in a direction opposed from that earlier discussed.
  • the turning or rotation of the driver 282 will affect retraction of the pins 260 as the slide assembly 262 is moved in a direction toward the end cap 274 .
  • the compression screw assembly 224 preferably includes a compression screw 300 and a driver 302 . Both the compression screw 300 and driver 302 are formed from a material that is bio-compatible with bone tissue or human substance material and is preferably selected from the class comprised of titanium, a titanium alloy, stainless steel, or cobalt chromium alloy.
  • the compression screw 300 is provided with first and second interconnected sections 304 and 306 .
  • the sections 304 and 306 of compression screw 300 are joined or interconnected to each other by a collapsible section 308 that transmits rotation and torque between the sections 304 and 306 .
  • the first section 304 of compression screw 300 is provided with an elongated shank portion 312 and an enlarged head portion 314 .
  • the shank portion 312 of the first section 304 is provided with external threading 316 therealong.
  • the external threading 316 has a relatively fine pitch that corresponds to the internal threading 255 extending along the bore 257 of insert 244 . As shown in FIG.
  • the enlarged head portion 314 of the first section 304 of screw 300 has a diameter slightly smaller than the diameter of the counterbore 238 defined by guide 220 .
  • the head portion 314 of screw 300 is preferably configured to releasably accommodate a driving tool capable of imparting turning movements to the screw section 304 .
  • the trailing end of screw section 304 is configured with a slot 318 for releasably accommodating a distal end of a driving tool.
  • the first section 304 of screw 300 is fixed to the collapsible section 308 such that turning movements imparted to screw section 304 will likewise be imparted to the collapsible section 308 .
  • the second screw section 306 is likewise connected to the collapsible section 308 in axially spaced relation relative to screw section 304 .
  • screw section 306 includes external threading 326 extending along the length thereof.
  • the external threading 326 on screw section 306 is identical to the external threading 316 on screw section 304 .
  • the collapsible section 308 serves to transfer the motion of screw section 304 to screw section 306 .
  • the second screw section 306 defines an internally threaded portion 330 extending therealong.
  • the threaded portion 330 of the second screw section 306 has a relatively fine pitched threading extending therealong.
  • the threading extending along portion 330 is left-handed threading while the external threading 316 and 326 on screw portions 304 and 306 , respectively, is right handed.
  • the threading along screw portion 330 and 316 , 326 can be right handed and left handed, respectively, without detracting or departing from the spirit and scope of the present invention.
  • the important aspect to note is that the threading along portions 330 and 316 , 326 are reversed from each other.
  • the driver 302 of compression screw assembly 224 comprises a shank portion 334 and an enlarged head portion 336 .
  • the shank portion 334 of driver 302 has a diameter sized to allow the shank portion 334 to slidably to fit endwise into and through the central interior of screw 300 .
  • the shank portion 334 of driver 302 includes external threading 340 axially extending from a free end 342 of the driver 302 .
  • the head portion 336 of driver 302 is sized to prevent it from passing through the interior of screw 300 .
  • the axial length or distance separating head portion 336 of screw 302 from the free end 342 thereof is about equal to the distance separating the head portion 314 of screw 300 from the beginning portion of the interior threading 330 most closely adjacent the head portion 314 .
  • the trailing end of the head section 336 of driver 302 is configured with a slot 344 for releasably accommodating the distal end of a driving tool.
  • a slot 344 for releasably accommodating the distal end of a driving tool.
  • the compressive screw 300 of the compressive screw assembly 224 is rotatably threaded into engagement with the internal threading 255 of the insert 244 .
  • a suitably configured tool 355 engages with the slot 318 and the head portion 314 of the screw 300 to drivingly rotate the first and second sections 304 and 306 of the screw 300 until the enlarged head 314 abuts the radial wall 240 defined by the counterbore 238 defined by the guide 220 .
  • the driver 302 is operably engaged with the screw 300 . That is, and is shown in FIG.
  • the driver 302 is inserted through the central opening defined by the screw 300 into threaded engagement with the internal threading 330 of the second section 306 of screw 300 .
  • the driver 302 is turned in a direction opposed from that in which the screw 300 was rotated for insertion into the anchor.
  • a suitable tool 357 releasably engages with the slot 344 in the head region 336 of the driver 302 to rotate the driver 302 .
  • Rotation of the driver 302 is affected until the section 308 joining sections 304 and 306 collapses. The collapse of the center section 308 causes opposing forces to act against the external threading on sections 304 , 306 and the internal threading 330 thereby preventing the compressive screw assembly 224 from inadvertently turning relative to the anchor 222 .
  • FIG. 45 schematically illustrates an alternative form of anchor, generally represented by reference to numeral 422 that can be used as part of the surgical anchor assembly.
  • the anchor 422 includes an elongated insert 444 having opposed first and second ends 446 and 448 .
  • the insert 444 is preferably formed from a material similar to that used to form insert 44 .
  • Insert 444 is sized such that when inserted within the bone, the first end 446 is disposed to one side of a fracture line while the second end 448 of the insert 444 is disposed to an opposite side of the fracture line.
  • the anchor 422 of the surgical fastener assembly further includes a series of elongated pins or barbs 460 operably associated toward the first end 446 of the insert 444 .
  • the pins or barbs 460 are operably associated with the anchor 422 for movement between a retracted position (FIG. 45) and a radially extended position (FIG. 63 ).
  • the pins 460 are carried by the insert 444 for endwise and radial displacement relative thereto.
  • two pins 460 are carried by the anchor 422 in diametrically opposed relation relative to each other for positive endwise movement in opposite directions between the retracted and extended positions shown in FIGS. 45 and 63, respectively.
  • the elongated insert 444 preferably has external threading 468 axially extending there along and leading rearwardly from the first end 446 thereof.
  • the external threading 468 along the exterior of insert 444 has a relative coarse pitch to enhance the purchasing ability and the anchorage of the anchor 422 within the substance of the bone in response to turning movements being imparted to the anchor 422 .
  • the insert 444 of anchor 422 has a constant generally cylindrical-like configuration 449 extending to the terminal end of the exterior threading 468 and having a slightly smaller outside diameter then that of the exterior threading 468 .
  • the cylindrical-like configuration 449 extending axially forward from the terminal end 448 of the insert 444 has a diameter which is generally equal to the diameter of the throughbore 36 (FIG. 2) in the guide operably associated therewith thereby facilitating sliding movement of the anchor 422 axially within the sleeve of the guide.
  • cooperative instrumentalities are defined on the exterior configuration 449 of the insert 444 and of the respective guide to allow for axial movement of the anchor 422 relative to the guide along an axis 451 defined by the insert 444 while preventing rotational movement of the anchor 422 relative to the respective guide.
  • insert 444 defines a constant diameter counterbore portion 452 extending axially inward from the first end 446 of insert 444 .
  • the counterbore portion 452 defines a radial wall 454 .
  • the insert further defines a pair of slanted openings 470 arranged in diametrically opposed relation relative to each other. Each opening intersects with and opens to the counterbore 452 defined by insert 444 . Moreover, each opening 470 opens to the exterior of insert 444 .
  • the insert 444 defines an elongated bore 455 that opens to the counterbore portion 452 .
  • bore 455 includes an internally threaded portion 457 .
  • the internally threaded portion 457 of bore 455 has a relatively fine pitched threading extending therealong.
  • the internal threading 457 corresponds to the external threading on the compressive screw assembly (not shown) arranged in operable combination with the insert 444 .
  • the second or trailing end 448 of insert 444 is furthermore configured to releasably accommodate a driving tool (not shown) capable of imparting turning movements to the anchor 422 .
  • a driving tool (not shown) capable of imparting turning movements to the anchor 422 .
  • the trailing or second end 448 of the insert 444 is suitably configured with a slot-like opening 469 for releasably accommodating a distal end of a driving tool. It will be appreciated, however, that any suitable configuration would equally suffice without detracting or departing from the spirit and scope of the present invention.
  • the insert 444 is further provided with a suitable guide mechanism 475 for purposes to be described hereinafter.
  • the guide mechanism 475 can take a myriad of different forms without detracting or departing from the spirit and scope of the present invention.
  • One form of guide mechanism 475 is schematically illustrated in FIG. 49 .
  • the guide mechanism 475 includes a pair of diametrically opposed guide keys 477 and 479 that extend along a lengthwise portion of the counterbore 452 defined by insert 444 . As shown in FIG. 49, the guide keys 477 and 479 project radially inwardly toward each other.
  • each guide key 477 and 479 terminates short of the first end 446 of the fastener 444 such that there is an axial space between the terminal end of the guide of each guide key 477 , 479 and the first end 446 of the insert 444 .
  • Carrier assembly 462 preferably includes a slide 463 to which one end of each pin is fixedly connected such that the pins 460 will positively move upon axial movement of the slide 463 within the counterbore 452 of insert 444 .
  • each pin 460 has a flexible wire-like configuration shaped to slidably fit endwise within and through a respective one of the openings 470 defined in the insert 444 . Suffice it to say, each pin 460 is provided with sufficient strength so as to allow for insertion in and through the bone tissue without substantially bending intermediate opposite ends thereof.
  • each pin 460 is formed from a material selected from the class comprised of: titanium, a titanium alloy, stainless steel, or cobalt chromium alloy.
  • each pin 460 has a leading end 461 and an opposite pointed end 466 .
  • each pin Toward end 466 , each pin preferably has a curvilinear or arcuate configuration such that the free ends 466 extend into and through the opening, 470 .
  • the length of each pin 460 is selected such that when the leading end 461 of the pin 460 is fully retracted within the anchor 422 (FIG. 45) the opposite pointed end 466 of the pin or barb 460 will be positioned within the outside diameter of the insert 444 to facilitate insertion of the surgical anchor assembly within the bone of the patient.
  • each barb or pin 460 is sized such that when the pins are displaced to their extended position (FIG. 63) the leading end 461 of each pin 460 remains operably associated with the carrier assembly 462 to allow for positive retraction of the pins 460 from their extended positions when desired or found necessary by the surgeon.
  • the carrier assembly 462 further includes a slide 463 .
  • the configuration of the slide 463 is illustrated in FIGS. 52 through 55.
  • slide 463 has a generally cylindrical outer surface configuration having a diameter substantially equal to the diameter to the counterbore portion 452 (FIG. 46) of fastener 444 .
  • Slide 463 defines an identical pair of throughbores or openings disposed in diametrically opposed relation relative to each other. The diameter of the openings 481 , 483 are sized to receive the end 461 of pin 460 and to allow the ends 461 of each pin 460 to be rigidly secured thereto.
  • the slide 463 defines a pair of diametrically opposed slots 485 and 487 that are arranged in other than a normal relation relative to the openings 481 and 483 .
  • the slots 485 , 487 are sized to facilitate guided movement of the slide 463 relative to the guide keys 477 and 479 on the insert 444 (FIG. 62 ).
  • the slide 463 defines a tool engagement cavity 491 that passes endwise through the slide and has recesses 493 and 495 on opposite sides thereof.
  • the carrier assembly 462 fits axially within the bore 452 defined by insert 444 for axial movement and with the pointed ends 466 of each pin 460 extending at least partially through the opening 470 , but not beyond the periphery of fastener 444 .
  • the open end of insert 444 is closed by an end cap 497 .
  • end cap 497 is illustrated in FIGS. 56, 57 and 58 .
  • end cap 497 preferably includes a reduced annular portion 498 sized to snugly fit within the free open end of bore 452 defined by insert 444 .
  • Suitable retaining means such as staking, welding or the like securely fastens the end cap 497 to the remainder of the insert 444 .
  • End cap 497 is preferably formed from material that is biocompatible with bone tissue or a human substance and is preferably selected from the class comprised of: titanium, a titanium alloy, stainless steel, or cobalt chromium alloy. Other unnamed materials would equally suffice, however, without detracting or departing from the spirit or scope of the present invention.
  • the end cap 497 defines a central throughbore or hole 499 .
  • the exposed surface of end cap 497 is preferably chamfered to promote insertion of the anchor 422 into the bone.
  • FIGS. 59 and 60 schematically illustrate a tool that is configured to cooperate with and axially move the carrier assembly 462 in opposite directions within the bore 452 of the insert 444 whereby positively moving the pins 460 between retracted (FIG. 45) and extended (FIG. 63) positions.
  • the tool 500 preferably includes an elongated shank 502 having axially spaced keys 504 and 506 at a distal end thereof.
  • the shank 502 and keys 504 and 506 are configured to axially fit endwise within the bore 455 of insert 444 and extend into operable combination within the slide 463 of the carrier assembly 462 .
  • the key 506 is specifically configured to fit endwise through the tool engagement cavity 491 such that the key 506 can operably engage with the surfaces 493 and 495 on the slide.
  • guide slots 485 and 487 in the slide 463 are not axially aligned with the guide keys 477 and 479 extending radially inwardly from the bore 452 .
  • the guide keys 477 and 479 are radially offset from the guide slots 485 and 487 , respectively, under the influence of the disposition of the pins 460 and their orientation relative to the guide slots 485 and 487 . Accordingly, the slide assembly 462 cannot be inadvertently displaced axially within the bore 452 and the pins 460 remain in the retracted positions.
  • the tool 500 is inserted through the fastener 444 . More specifically, the keys are endwise inserted through the insert 444 and allow to pass into operable engagement with the slide. After moving the keys 504 and 506 into operable engagement with the slide, the tool 500 is rotated to effect rotation of the slide 463 as shown in arrows and FIGS. 62 and 62A. Rotation of the slide 463 is permitted by the resiliency of the length of the pins 460 . The slide 463 is rotated until the slots 485 and 487 are aligned with the guide keys 477 and 479 and thereafter the tool 500 is moved to the left as shown in FIG.
  • the tool may also be used in operable engagement with the slide 462 to forcibly retract the pins 460 to the position shown in FIG. 45 . That is, the keys are rearranged in operable engagement with the slide 463 and the tool 500 is pushed and turned or rotated to forcibly retract the pins to facilitate removal of the anchor assembly when necessary or desired by the surgeon.
  • FIGS. 64 and 64A Still another alternative form of compression screw assembly, generally represented by reference numeral 600 , is illustrated in FIGS. 64 and 64A.
  • the purpose of the compression screw assembly 600 is to maintain a guide 620 and anchor 622 in compressive relationship relative to each other as by fixing the guide 620 to the anchor 622 .
  • the guide 620 and anchor 622 are substantially similar to the guide 20 and anchor 22 described above. Thus, no further detailed description need be provided therefore at this time.
  • the compressive screw assembly 600 preferably includes a compression screw 630 and a driver 650 . Both the compression screw 630 and driver 650 are formed from a material that is biocompatible with bone tissue or human substance.
  • the compression screw 630 is provided with an elongated shank portion 632 and an enlarged head portion 633 .
  • the shank portion 632 of the compression screw 630 is provided with external threading 634 extending axially from a leading end 635 of the screw 630 .
  • the external threading 634 has a relatively fine pitch that corresponds to internal threading extending axially along an internally threaded bore 678 of anchor 622 .
  • the enlarged head portion 633 of screw 630 has a diameter slightly smaller than the diameter of a counterbore 688 formed in guide 620 and which is substantially similar to counterbore 38 in guide 20 (FIG. 2 ).
  • a trailing end 636 of screw 630 is preferably configured to releasably accommodate a driving tool (not shown) capable of imparting turning movements to the screw 630 .
  • the trailing end 636 of screw 630 is configured with a socket-like opening 637 having a bottom 638 .
  • the socket-like opening 637 is configured to releasably accommodate a distal end of a driving tool.
  • the socket or opening 637 has a hexagonal-like cross-sectional configuration. It will be appreciated, however, that any suitable configuration including an elongated slot would equally suffice without detracting or departing from the spirit and scope of the present invention.
  • the screw 630 furthermore defines an elongated bore 640 that opens at opposite ends to the socket 637 and the leading end 635 of screw 630 .
  • the opening 640 has internal threading 642 extending along the length thereof.
  • the distal or leading end 635 of the screw 630 is provided with a series of radial through slots 643 , 644 , 645 , and 646 that are arranged in generally normal relation relative to each other and which extend axially inwardly from the fray or distal end 635 for a predetermined distance.
  • the internal bore 640 and the internal threading 642 narrow toward the fray or distal end 635 of screw 630 in the area of the slots 643 , 644 , 645 and 646 .
  • the compression screw assembly 600 further includes a driver 650 to be arranged in combination with the screw 630 .
  • the driver 650 is illustrated in FIGS. 68, 69 and 70 .
  • Driver 650 includes a shank portion 652 and an enlarged headed portion 654 .
  • the shank portion 652 of driver 650 is provided with external threading 656 extending axially from a leading end 658 of the driver 650 .
  • the external threading 656 has a relatively fine pitch that corresponds to the internal threading 642 provided bore 640 of screw 630 .
  • the enlarged head portion 654 of driver 650 has a diameter slightly smaller than that which can be endwise accommodated within the socket 637 of screw 630 .
  • the length of the shank portion 652 is sufficient such that the distal or free end 658 operably extends to and through the slotted end of screw 630 when the head portion 654 bottoms at the floor 638 of socket 637 .
  • the compression screw 630 is threaded into the anchor assembly 622 as shown in FIG. 64, to draw the guide 620 into compressive relationship relative to the anchor 622 . Thereafter, the driver 650 is threaded into engagement with the internal threading 642 of screw 630 . Notably, the outside diameter of the shank portion 632 of screw 630 is substantially constant as long as driver 650 remains out of engagement with the slotted end 635 of screw 630 . Once the appropriate compression has been achieved between guide 620 and anchor 622 , the driver 650 is further engaged with the compression screw as shown in FIG. 73 .
  • the slotted end 635 of screw 630 is expanded radially outwardly thus providing for a compressive fit which prevents the compression screw assembly 600 from rotating relative to the anchor 622 and thereby maintaining the compressive relationship between the guide 620 and anchor 622 .
  • a series of screws 28 are used to fasten plate 32 of guide 20 to bone fragment 18 .
  • Another aspect of the present invention relates to a preferred form of construction for the screw 28 used to fasten the plate 32 of guide 20 to the bone fragment 18 .
  • screw 28 comprises an elongated cannulated fastener 700 and a driver 702 .
  • fastener 700 is formed from a material that is biocompatible with bone tissue and includes a shank portion 710 and an enlarged head portion 712 .
  • the shank portion 710 of fastener 700 is provided with external threading 714 extending axially from a leading end 716 of the fastener 700 .
  • the external threading 714 has a pitch that promotes purchase and securement of the fastener 700 within the bone substance.
  • the enlarged head portion 712 of fastener 700 is configured to cooperate with the shape of the throughhole 34 in the plate 32 of guide 20 .
  • the head portion 712 of fastener 700 has a frusto-conical like configuration that cooperates with a countersunk configuration or recess in the throughhole 34 to secure the plate 32 to the bone 18 . It will be appreciated, however, that shapes other than that shown for the head portion 712 and throughhole 34 would equally suffice without detracting or departing from the spirit and scope of the disclosure.
  • a trailing end 718 of fastener 700 is preferably configured to releasably to accommodate a driving tool (not shown) capable of imparting turning movements to the fastener 700 .
  • the trailing end 718 of fastener 700 is configured with an elongated slot or opening 720 .
  • the slot 720 is configured to releasably accommodate a distal end of a driving tool.
  • any suitable configuration including a socket would equally suffice for releasably accommodating a distal end of a driving tool without detracting or departing from the spirit and scope of the present invention.
  • the cannulated fastener 700 furthermore defines an elongated bore 722 that opens at opposite ends 716 , 718 of fastener 700 .
  • the bore or opening 722 has a first section 724 opening to the first end 716 of fastener 700 and having a first diameter and a second counterbore portion 726 opening to the trailing or second end 718 of fastener 700 and having a second diameter.
  • the diameter of bore 726 is larger than the diameter of bore or opening 722 and, thus, a radial wall or annular shoulder 727 is defined by the differences in diameters therebetween. As shown in FIGS.
  • the distal or leading end 716 of the fastener 700 is provided with a series of radial through slots 728 , 730 , 732 and 734 that are arranged in generally normal relation relative to each other and which extend axially inwardly from the first or distal end 716 of fastener 700 for a predetermined distance.
  • the diameter of the first portion 724 of bore 722 narrows or is reduced in the area of the slots 728 through 734 while the outside diameter of the fastener remains substantially constant.
  • the axial length of the shank portion 710 of fastener 700 is such that when the fastener is passed through the throughhole 34 in the plate 32 of guide 20 and secured within the bone 18 , the axial lengthwise portion of the shank 710 with the slots formed therein will extend beyond the bone 18 by a distance equal to about the length of the slots 728 through 734 .
  • a surgeon may have a collection of different fasteners to choose from; with each fastener having a different length such that a proper relationship of the fastener to bone thickness is readily obtainable for the surgeon.
  • this form of screw 28 further includes a driver 702 arranged in combination with fastener 700 .
  • driver 702 is illustrated in FIGS. 80 through 82.
  • drive 702 preferably includes a one-piece member 750 formed from a material that is biocompatible with human bone tissue and substance.
  • Driver member 750 includes a first section 752 with a substantially constant diameter along its length and an axially aligned second section 754 having a substantially constant diameter along its length.
  • the second section 754 has a larger diameter than the first section 752 and, thus, a radial wall or annular should 757 is defined therebetween.
  • the annular shoulder or annular wall 757 on the driver 702 generally corresponds to the radial wall or annular shoulder 727 defined by fastener 700 . It is important to note, however, the axial length of the first section 752 extending between the radial wall or annular shoulder 757 and the free end of driver member 750 is generally equal to the distance separating the radial wall or annular shoulder 727 from the distal or free end 716 of fastener 700 . Moreover, the first section 752 of driver 702 is sized to establish a sliding fit within the first section 724 of bore 722 defined by fastener 700 . In a most preferred form of the invention, the second section 754 of driver 702 is sized to establish a sliding fit within the second section 726 of bore 722 defined by fastener 700 .
  • the first or forward end 716 of the fastener 700 is passed endwise through the throughbore 34 in plate 32 of guide 20 and the shank portion 710 is threaded into the bone 18 by turning the head portion 712 .
  • the head portion 712 will contact the plate 32 and draw the guide 620 into a secured relationship relative to the bone.
  • the slotted free end of the fastener 700 will extend beyond the bone 18 on that side thereof opposite from the plate 32 of guide 20 .
  • the outside diameter of the shank portion 710 of screw 700 is substantially constant as long as the driver 702 remains out of engagement with the fastener 700 .
  • the driver 702 is driven through the bore 722 of fastener 700 as shown in FIG. 83 .
  • the driver 702 is fully inserted into the fastener 700 , as when the shoulder 757 on the driver member 750 engages with the shoulder 727 on the fastener 700 , the slotted end 716 of fastener 700 is expanded radially outwardly thus preventing inadvertent rotation of the fastener 700 thereby maintaining the secured relationship between the guide 20 and bone 18 as shown in FIG. 75 .
  • FIG. 84 illustrates an additional alternative embodiment for a surgical fastener assembly 800 in accordance with the principles of the present invention.
  • surgical fastener assembly 800 includes, as did previously disclosed embodiments, an anchor assembly 810 , a guide 850 , a fastener, or compression screw, 860 and screws 880 , one of which is illustrated in FIG. 84 .
  • Surgical fastener assembly 800 is utilized in the same manner as are previously disclosed embodiments.
  • a first portion 822 of anchor assembly 810 is threaded into a first bone portion and a second portion 824 of anchor assembly 810 is disposed through a second bone portion, where a fracture extends between the first bone portion and the second bone portion.
  • Tangs 834 are extended from anchor assembly 810 where they extend into the first bone portion.
  • Sleeve 852 of guide 850 is positioned around the second portion 824 of anchor assembly 810 .
  • Fastener 860 is inserted into and through guide 850 where fastener 860 threadedly engages with anchor assembly 810 and operably couples to guide 850 .
  • guide 850 By threading fastener 860 into anchor assembly 810 , guide 850 , which is attached to the second bone portion, is drawn into a compressive relationship with anchor assembly 810 , thus compressing the first bone portion with the second bone portion. Further description of the operation and use of surgical fastener assembly 800 will be provided later in this specification.
  • anchor assembly 810 includes an anchor 820 , a tang, or pin, assembly 830 , and an actuator 840 , which is not visible in FIG. 84 but which can be seen in FIG. 85 .
  • guide 850 includes a sleeve 852 and a plate 854 .
  • Sleeve 852 is located at a first end 855 of plate 854 .
  • Plate 854 includes a plurality of screw apertures 857 through which are received screws 880 which serve to secure plate 854 to the second bone portion.
  • Sleeve 852 defines a longitudinal bore within it.
  • the second unthreaded portion 824 of anchor 820 which is disposed within the second bone portion, is received within the bore of sleeve 852 .
  • a driving tool receiving slot 824 A is provided within second portion 824 of anchor 820 .
  • Driving tool receiving slot 824 A receives within it structure of a driving tool that is used to rotate anchor assembly 810 , and thus anchor 820 , in order to thread anchor assembly 810 into the first bone portion.
  • second portion 824 of anchor 820 also includes two flats 824 B (only one of which is visible in FIG. 84) on the outside circumference of second portion 824 .
  • the flats 824 B are on opposed sides of second portion 824 and are thus 180° from each other around the circumference of second portion 824 .
  • Each flat 824 B provides a non-conforming surface (with respect to the circularly-shaped non-flats portion of the circumference of second portion 824 ) on the circumference of second portion 824 .
  • the internal bore of sleeve 852 of guide 850 is formed in a complementary configuration with respect to second portion 824 such that, as second portion 824 is received within sleeve 852 , the flats 824 B interact with the complementary surfaces defining the bore of sleeve 852 to prevent rotation of anchor assembly 810 within sleeve 852 .
  • Two flats 824 B are provided 180° from each other in order to provide for ease of aligning second portion 824 for positioning within sleeve 852 . If only one flat was provided, second portion 824 could only be positioned in one orientation such that it could be received within sleeve 852 .
  • the present invention can be practiced by utilizing various quantities and configurations for flats 824 B. Additionally, the present invention is not limited to only utilizing the abovedescribed structure for preventing rotation of anchor assembly 810 within sleeve 852 . Many other configurations for mating structures on the anchor assembly and sleeve could be utilized.
  • Guide 850 also defines a fastener aperture 856 through which fastener 860 extends when it is threadedly mated with anchor assembly 810 .
  • the threaded shank 864 of fastener 860 engages with internal threading that is included within second portion 824 of anchor 820 .
  • the head 862 of fastener 860 engages with the structure of guide 850 that defines fastener aperture 856 such that as fastener 860 is threaded within second portion 824 of anchor 820 , guide 850 is drawn into a compressive relationship with anchor assembly 810 .
  • fastener 860 includes a retainer 870 on its threaded shank portion 864 .
  • retainer 870 locks together fastener 860 and anchor assembly 810 such that, in the absence of a force applied specifically to withdraw fastener 860 from anchor assembly 810 , fastener 860 will not back-out of anchor assembly 810 . Inadvertent backing-out of fastener 860 from anchor assembly 810 would lessen the compressive force which joins the first bone portion to the second bone portion.
  • FIGS. 85 and 86 illustrate anchor assembly 810 .
  • anchor assembly 810 includes anchor 820 , tang assembly 830 , and actuator 840 .
  • Anchor 820 is comprised of an elongated structure that defines a hollow bore which extends longitudinally through anchor 820 .
  • Anchor 820 includes a first externally threaded portion 822 and a second portion 824 .
  • first externally threaded portion 822 is threaded into the first bone portion and second portion 824 is disposed within the second bone portion.
  • First portion 822 of anchor 820 includes an open end 821 , through which, as will be explained, is inserted tang assembly 830 .
  • First portion 822 also defines a plurality of slots 826 that extend completely through the structure of anchor 820 such that openings exist within first portion 822 that extend from the bore of anchor 820 through the exterior structure of anchor 820 .
  • Tang assembly 830 is comprised of a circular base portion 832 and a plurality of tangs 834 which extend from base 832 .
  • Base 832 defines a bore that extends therethrough which is internally threaded.
  • Tangs 834 extend from base 832 and, whereas the illustrated embodiment includes four tangs, any number of tangs can be utilized in the present invention. As can be understood, if other than four tangs were utilized, a like number of slots 826 would be provided in anchor 820 .
  • FIGS. 87 and 88 further illustrate tang assembly 830 .
  • each tang 834 includes an internally chamfered surface 834 A and outside chamfered surfaces 834 B. The operation of tang assembly 830 will be described later in this specification.
  • Tang assembly 830 is received within the bore that is defined by anchor 820 . As tang assembly 830 is positioned within anchor 820 , each tang 834 is positioned within one of the slots 826 that are included in anchor 820 .
  • the structure of anchor 820 that defines slots 826 may extend slightly within the bore defined by anchor 820 such that as the tangs 834 are positioned within the slots 826 , the tang assembly 830 is not able to rotate about its longitudinal axis within anchor 820 .
  • the tang assembly 830 is not able to rotate within anchor 820 due to the interaction of the structure that defines slots 826 with tangs 834 . The purpose of not allowing tang assembly 830 to rotate within anchor 820 will become clear later in this specification.
  • the present invention is not limited to any particular methodology for preventing rotation of tang assembly 830 within anchor 820 . Any number of different structural configurations could be provided within the bore of anchor 820 . Additionally, tangs 834 could be formed such that their ends could extend slightly up into slots 826 in order to prevent rotation. The tangs 834 would not yet extend completely up through slots 826 but yet would extend into slots 826 a sufficient distance such that they would contact the structure that defines the slots to prevent their rotation.
  • cap 828 is fitted within open end 821 of anchor 820 .
  • Cap 828 may be snap-fitted within open end 821 .
  • Cap 828 serves to enclose first portion 822 of anchor 820 for purposes of retaining tang assembly 830 within anchor 820 when, for example, actuator 840 is not engaged with tang assembly 830 , preventing material, e.g. bone particles, from entering the internal bore of anchor 820 as the anchor assembly 810 is threaded into the first bone portion, and for providing structure to allow anchor assembly 810 to be more easily threaded into the first bone portion.
  • actuator 840 is positioned within anchor 820 .
  • Actuator 840 includes a head portion 842 and a partially threaded shank portion 844 .
  • Head portion 842 includes a bore along its longitudinal axis such that, as can be understood, a driving tool may be received within the bore in order to rotate actuator 840 .
  • a hexagonally shaped bore may be provided that would receive within it a hexagonally shaped driving tool.
  • actuator 840 is inserted within anchor 820 where threaded shank portion 844 is threaded into the internally threaded bore that is defined by base 832 of tang assembly 830 .
  • actuator 840 is not threaded into the bore defined by anchor 820 , but rather, is threaded into the bore defined by base 832 of tang assembly 830 .
  • FIG. 89 is a cross-sectional view of anchor assembly 810 where tangs 834 are in a retracted position within anchor 820 .
  • anchor 820 defines a bore 825 within it that includes a larger diameter portion 825 A, which is unthreaded and which receives within it tang assembly 830 , and a smaller diameter portion 825 B, a portion of which is threaded and which receives within it the threaded shank portion 864 of compression screw 860 .
  • tang assembly 830 has been positioned within bore 825 A of anchor 820 .
  • Base portion 832 of tang assembly 830 is located at a first end 822 A of bore 825 A. When base 832 is in this position tangs 834 are retracted within anchor 820 .
  • actuator 840 is positioned within bore 825 of anchor 820 .
  • the threaded shank portion 844 of actuator 840 extends within bore portion 825 A and the head 842 of actuator 840 is received within bore portion 825 B.
  • a shoulder 820 A is formed within anchor 820 which engages with head 842 of actuator 840 .
  • Shoulder 820 A restricts actuator 840 from being inserted further within bore 825 beyond the point at which shoulder 820 A contacts head 842 .
  • threaded shank portion 844 has been threaded into base 832 of tang assembly 830 .
  • each tang 834 is positioned within, and consequently aligned with, a slot 826 .
  • tangs 834 do not extend up through slots 826 and thus do not extend beyond the outer surface of anchor 820 .
  • a portion of the structure of anchor 820 that defines slots 826 includes a slanted or curved surface 826 A. Curved surface 826 A defines a rear end of each slot 826 .
  • the internally chamfered surface 834 A of each tang 834 is oriented such that it faces curved surface 826 A.
  • FIGS. 90 and 91 illustrate anchor assembly 810 in a configuration where tangs 834 have been moved to a position where they extend from anchor 820 .
  • a user would insert a driver tool through bore 825 of anchor 820 and engage the driver tool with head 842 of actuator 840 .
  • the user would rotate, in a clockwise direction, actuator 840 within anchor 820 .
  • actuator 840 is free to rotate within bore 825 of anchor 820 .
  • tangs 834 are manufactured from a deformable material.
  • tangs 834 may be formed from stainless steel or any other material that is able to deform as tangs 834 are moved up through slots 826 .
  • Tangs 834 may be formed from any of a variety of materials with a consideration being that tangs 834 must be deformable such that they can extend outward from anchor 820 .
  • tangs 834 must be strong enough such that they can provide for purchase between anchor 820 and the first bone portion.
  • tangs 834 are not pre-formed into a configuration where, when they are moved within anchor 820 , they extend from anchor 820 because of their pre-formed configuration, e.g., in an arcuate shape. Rather, in the present embodiment, tangs 834 are formed of a deformable material and the movement of tangs 834 within anchor 820 form the tangs such that they are able to extend from anchor 820 .
  • structure of anchor 820 that defines bore 825 engages with base 832 at second end 822 B of bore 825 A such that tang assembly 830 is not able to be moved further within bore 825 A beyond second end 822 B.
  • This will prevent tangs 834 from being extended too far through slots 826 , which could result in the tangs 834 not being shaped in a desired form when extended from anchor 820 .
  • base 832 was moved too far within bore 825 , tangs 834 could be bent backwards and thus not achieve the desired anchoring strength within the first bone portion.
  • base 832 could become threadedly disengaged from actuator 840 .
  • base 832 defines a bore with a diameter that is smaller than the diameter of the unthreaded portion of shank 844 .
  • the base 832 of tang assembly 830 cannot travel on shank 844 beyond the threaded portion of shank 844 .
  • FIG. 92 illustrates tang assembly 830 as it would be configured after it has been moved within anchor 820 to extend tangs 834 from anchor 820 .
  • base 832 also includes a chamfered surface 833 .
  • Chamfered surface 833 may be seen in FIGS. 85 and 86 and the purpose of chamfered surface 833 is to engage with cap 828 to aid in preventing end cap 828 from being dislodged during tang retraction within anchor 820 , as will be explained below.
  • chamfered surface 833 wedges cap 828 into place within anchor 820 .
  • actuator 840 In order to retract tangs 834 back within anchor 820 after the tangs have been deployed from the anchor as described above, the operator would rotate actuator 840 in a counter-clockwise direction. Thus, as can be understood, since tangs 834 of tang assembly 830 are embedded within the first bone portion, as actuator 840 is rotated counter-clockwise within anchor 820 , actuator 840 will be backed-out of base 832 . Thus, actuator 840 can be entirely removed from tang assembly 830 and, consequently from bore 825 of anchor 820 . In order to retract tangs 834 into anchor 820 , one possible methodology is to drive base 832 back toward first end 822 A of bore 825 A.
  • One possible method for driving base 832 back toward first end 822 A is to insert a tool within bore 825 that would engage with base 832 and apply sufficient force to base 832 to drive base 832 toward first end 822 A such that tangs 834 are retracted back into anchor 820 .
  • the driving tool is not required to be threaded into base 832 , rather, it is only necessary to engage with base 832 such that sufficient force may be applied to base 832 to force it toward first end 822 A.
  • tangs 834 will be withdrawn from the first bone portion and retracted back through slots 826 .
  • tangs 834 will again deform such that they will return substantially to their original configuration such that they can once again be received within bore 825 A of anchor 820 .
  • tangs 834 are able to withstand at least one complete extension and retraction cycle without materially failing.
  • actuator 840 As the driving tool for forcing base 832 of tang assembly 830 toward first end 822 A of bore 825 A, as described above. After actuator 840 has been completely retracted from base 832 by rotating actuator 840 counter-clockwise, actuator 840 may be re-inserted within bore 825 such that it engages with base 832 . Actuator 840 does not necessarily have to threadedly engage with base 832 , but rather, only needs to structurally engage with base 832 such that force can be applied to base 832 in order to force it back toward first end 822 A. The present invention is not limited to any particular engagement methodology for engaging a driver tool with base 832 to drive base 832 toward first end 822 A. A variety of engagement methodologies may be utilized.
  • a driving tool which could be actuator 840 , engage with base 832 such that sufficient force may be applied to base 832 to move it within bore 825 toward first end 822 A.
  • FIG. 93 illustrates an embodiment for fastener, or compression screw, 860 .
  • compression screw 860 includes a head portion 862 and a threaded shank portion 864 .
  • Head portion 862 defines within it a hexagonally shaped bore 863 that receives a driving tool within it.
  • threaded shank portion 864 extends through fastener aperture 856 in guide 850 and is threadedly received within second portion 824 of anchor 820 .
  • Head portion 862 operably engages with guide 850 such that as shank portion 864 is further threaded into second portion 824 of anchor 820 , anchor assembly 810 and guide 850 are brought into a compressive relationship with each other thus joining the first bone portion with the second bone portion.
  • Retainer 870 is formed as an ultrahigh molecular weight polyethylene (UHMWPE) insert, or any other material with like properties, and is positioned within a bore that is included in threaded shank portion 864 . A portion of retainer 870 extends beyond the outer circumference of threaded shank portion 864 . As threaded shank portion 864 is threaded into anchor assembly 810 , it can be understood that retainer 870 will be compressed between the structure defining the bore in second portion 824 of anchor 820 and shank portion 864 of fastener 860 .
  • UHMWPE ultrahigh molecular weight polyethylene
  • retainer 870 Since retainer 870 is formed of a deformable material, it will deform slightly such that shank portion 864 can be threaded into anchor assembly 810 , however, it will provide additional frictional force between anchor assembly 810 and shank portion 864 such that, in the absence of a force specifically applied to retract fastener 860 from anchor assembly 810 , fastener 860 will not back-out from anchor assembly 810 . Thus, retainer 870 provides a self-locking capability for fastener 860 within anchor assembly 810 . Examples of other deformable materials that may be utilized for retainer 870 are nylon, acetal, polytetrafluoroethylene (PTFE), and polyetheretherketone (PEEK). However, again, the present invention is not limited to only utilizing these exemplary deformable materials for retainer 870 .
  • surgical fastener assembly 800 is utilized to join a first bone portion to a second bone portion where there is a fracture therebetween.
  • a user would thread externally threaded portion 822 of anchor 820 into the first bone portion.
  • Guide 850 is secured to the second bone portion.
  • Second portion 824 of anchor 820 is received within sleeve 852 of guide 850 .
  • anchor assembly 810 is prevented from rotating within sleeve 852 by the interaction of flats 824 B and the internal structure defining the bore within sleeve 852 .
  • tangs 834 are in a retracted position within anchor 820 .
  • Actuator 840 is threadedly engaged with tang assembly 830 .
  • a driving tool is inserted through guide 850 , which has been secured to the second bone portion, and through second portion 824 of anchor 820 , which has been received within sleeve 852 of guide 850 , to engage with actuator 840 to rotate actuator 840 in a clockwise direction.
  • This clockwise rotation of actuator 840 will move tang assembly 830 within anchor 820 and will extend tangs 834 from anchor 820 , as described previously. Tangs 834 embed themselves within the first bone portion such that the purchase between anchor 820 and the first bone portion is enhanced.
  • fastener 860 is inserted through fastener aperture 856 where fastener 860 is threadedly received within second portion 824 of anchor 820 .
  • Head 862 of fastener 860 operably engages with guide 850 .
  • guide 850 is drawn into a compressive relationship with anchor assembly 810 such that the second bone bone portion is joined to the first bone portion.
  • a user would decouple fastener 860 from anchor assembly 810 .
  • Guide 850 can then be removed from the second bone portion by removing screws 880 from the second bone portion.
  • tangs 834 are retracted within anchor 820 by any of the methods described previously. Once tangs 834 have been retracted into anchor 820 , anchor assembly 810 may be unthreaded from the first bone portion.

Abstract

A surgical fastener assembly for coupling first and second bone portions across a fracture therebetween is disclosed. In one embodiment of the present invention, the surgical fastener assembly includes an anchor that has a first externally threaded portion disposed in the first bone portion and a second portion which is at least partially disposed in the second bone portion. At least one pin is operably associated with the first portion of the anchor such that when the pin is in a retracted position the pin is disposed within the anchor and when the pin is in an extended position at least a portion of the pin extends outward from the anchor. An actuator is disposed within the anchor and is operably coupled with the at least one pin. A guide is adapted to be fixedly secured to the second bone portion and includes a sleeve. The second portion of the anchor is received within the sleeve. A fastener is provided that has a head portion and an externally threaded shank portion. The shank portion threadedly engages with the anchor and the head portion operably engages with the guide.

Description

This application is a continuation-in-part of patent application Ser. No. 08/680,620, filed Jul. 17, 1996, now U.S. Pat. No. 5,976,139, and a continuation-in-part of patent application Ser. No. 08/615,022, filed Mar. 13, 1996, now U.S. Pat. No. 5,984,970.
FIELD OF THE INVENTION
The present invention generally relates to a surgical fastener assembly for coupling first and second bone portions across a fracture therebetween and, more specifically, to a hip-pinning system for rigidly interconnecting a femoral head to the remaining portion of the femur and across a fracture in the area of the femur neck.
BACKGROUND OF THE INVENTION
A hip joint is a heavily stressed, load-carrying bone joint in the human body. It is essentially a ball and socket joint formed by the top of the femur which pivots within a cup-shaped acetabulum at the base of the pelvis. When a break or fracture occurs adjacent to the top of the femur, the separated portions of the femur must be held together while healing occurs.
There have been a number of techniques used historically for treatment of fractures of the proximal and distal ends of the femur. In early parts of this century, patients were merely placed in bed or in traction for prolonged periods, frequently resulting in deformity or death. In the 1930s, the Smith-Peterson nail was introduced, resulting in immediate fixation of hip fractures, early mobilization of the patient, and a lowered morbidity and mortality. A number of nails have been introduced for a fracture fixation about the femur in its proximal end, including the Jewett nail and, in more recent years, dynamic compression devices that allow capture of the most proximal fragments of the femur, compression of intertrochanteric and subtrochanteric fracture fragments, rigid fixation of the most proximal and distal fragments, and a sliding lag screw or anchor which fits within a barreled side plate for allowing further compression of fragments as the patient ambulates and begins to bear weight on the fractured limb. The side plate is typically secured to the bone fragment with a series of screws or fasteners.
The use of a rigid, blade plate, has been used both at the proximal end of the femur for fixation of subtrochanteric femur fractures, and at the distal end for fixation of supracondylar and intercondylar fractures about the knee. Because these fractures can be technically challenging to fix, a dynamic compression screw, similar in many respects to a dynamic hip compression screw, but with a side plate design and angle similar to a blade plate, have been utilized for several years.
All of the known prior art, whether in the patient literature as described above, or in commercial devices, fails to take into account the shifting of the lag screw or anchor and its compression screw in the barrel as the break heals and the fragments move closer together. When this movement occurs, the compression screw can back out of the lag screw and move away from the break and into the soft tissue causing discomfort, pain and a painful bursa. With osteogenic patients, the dynamic hip compression screws can loosen or erode through the superior bone of the head of the femur, resulting in joint penetration and destruction of the joint, producing arthritis. This can necessitate additional surgery for the removal of the hip compression screw, and replacement of the hip with a prosthesis. Similarly, the use of a dynamic compression screw in osteogenic patients may result in inadequate purchase of the lag screw threads within the bone. With loss of purchase of the lag screw or anchor within the head of the femur, compression forces are dissipated, and the implant device can fail, resulting in a nonunion or malunion of the fracture fragments. Similar loss of fixation can occur about the supracondylar and intercondylar fractures of the distal femur with osteogenic patients.
To prevent loss of fixation with compression and to decrease required removal of the anchoring lag screw within the femoral head in osteogenic patients, some devices have been modified to increase purchase of the anchoring lag screw within the femoral head, by enlarging the lag screw, or by alternative means of fixation of the proximal fragment with a molley bolt concept. This later device has not gained as wide an acceptance with surgeons in the United States as it differs from traditional lag screw techniques of screwing in the device, giving the surgeon a sense of “feel” of the degree of purchase of the lag screw with the bone, and thus, an idea of the degree to which the surgeon may compress the lag screw and side plate assembly without loss of fixation by “over-compression”.
As the lag screw slides within the barrel of the side plate, it can become prominent on the side of patients who are cachectic. Frequently, the compression screw will back out once implanted, leading to further prominence of the device and possible erosion through the skin. This can lead to premature or unwanted additional surgery for removal of the compression screw or device increasing the morbidity, rate of infection and mortality caused by additional surgery, frequently in frail elderly patients who are least able to withstand additional surgical insult to their body. Many surgeons remove the compression screw for this very reason, to prevent it from backing out. With removal of the compression screw, however, the possibility of disassembly of the device can occur with resultant failure of fracture fixation and the necessity for further surgical operations. Some hip pinning systems have been modified to prevent the inadvertent disassembly of the lag screw and side plate by constraining the degree to which the lag screw and side plate can dissociate and by increased modularity of the side plate and lag screw component, enabling perhaps a smaller incision on the patient. This modularity, however, introduces another theoretical variable of potential loss of fixation of the side plate in the lag screw portions of the devices. Furthermore, the side plates can loosen their purchase from the distal fragments by biological resorption with resultant loss of purchase of fixation of the screws holding the side plate to the lateral side of the femur. This can happen in either the dynamic hip compression screws or the dynamic compression screws used about distal condylar fractures of the femur or for subtrochanteric fractures of the femur. Closer placement of the screw holes in the side plate, enabling more threads per unit of length of the femur, or alternating the number and location of holes in the side plate with a broader side plate have been advocated to reduce the incidence of loss of purchase of the side plate. The use of a distal compression screw allows more proximal compression in the longitudinal axis of the femur, to increase compression at the fracture site.
Furthermore, the screws or fasteners used to hold the side plate to the lateral femur often become loose as bone is resorbed about the external threading on the screws. Thus, the side plate often becomes loose from the bone, resulting in failure of the implant and loss of fixation of the fracture.
Thus, there is a need for an improved hip pinning or surgical fastener assembly that allows greater purchase of the lag screw within the femoral head of the hip bone while yielding a “feel” of fixation to the surgeon during insertion of the lag screw.
Such a pinning system for fixation assembly should furthermore be designed to allow a compression screw to remain permanently in place after surgery thus maintaining the degree of compression between the lag screw and side plate. It is also desirable to prevent the screws used to maintain the side plate in fixed relation relative to the bone fragment from loosening thereby maintaining the side plate in secure relation relative to the bone to which it was initially secured.
SUMMARY OF THE INVENTION
A surgical fastener assembly for coupling first and second bone portions across a fracture therebetween is provided. In one embodiment of the present invention, the surgical fastener assembly includes an anchor that has a first externally threaded portion disposed in the first bone portion and a second portion which is at least partially disposed in the second bone portion. At least one pin is operably associated with the first portion of the anchor such that when the pin is in a retracted position the pin is disposed within the anchor and when the pin is in an extended position at least a portion of the pin extends outward from the anchor. An actuator is disposed within the anchor and is operably coupled with the at least one pin. A guide is adapted to be fixedly secured to the second bone portion and includes a sleeve. The second portion of the anchor is received within the sleeve. A fastener is provided that has a head portion and an externally threaded shank portion. The shank portion threadedly engages with the anchor and the head portion operably engages with the guide.
DESCRIPTION OF THE DRAWINGS
FIG. 1 is a view showing a surgical fastener assembly according to the present invention in operable association with and extending across a condylar fracture;
FIG. 2 is an enlarged view, partly in section, of the apparatus of the present invention shown in FIG. 1;
FIG. 3 is an assembled perspective view of the present invention;
FIG. 4 is a disassembled side elevational view illustrating component parts of one form of the present invention;
FIG. 5 is a longitudinal sectional view through a fastener forming part of the present invention;
FIG. 6 is a sectional view similar to FIG. 5 but showing pins or barbs of the fastener in an extended position;
FIG. 7 is a perspective view of the fastener illustrated in FIGS. 5 and 6;
FIG. 8 is an end view of the fastener as shown in FIG. 7;
FIG. 9 is a sectional view taken along line 99 of FIG. 8;
FIG. 10 is another end view of the present invention;
FIG. 11 is an enlarged perspective view of a pin or barb forming part of the first embodiment of the surgical fastener assembly according to the present invention;
FIG. 12 is a side elevational view of the pin illustrated in FIG. 11;
FIG. 13 is another side elevational view of the pin or barb illustrated in FIG. 11;
FIG. 14 is an end view of the pin or barb illustrated in FIG. 12;
FIG. 15 is a sectional view taken along line 1515 of FIG. 12;
FIG. 16 is a perspective view of one form of a compression screw forming part of the present invention;
FIG. 17 is a side elevational view of the compression screw illustrated in FIG. 16;
FIG. 18 is a left end view of the compression screw illustrated in FIG. 17;
FIG. 19 is a right end view of the compression screw illustrated in FIG. 17;
FIG. 20 is a sectional view taken along line 2020 of FIG. 18;
FIG. 21 is a perspective view of a retainer forming part of the anchor assembly illustrated in FIG. 9;
FIG. 22 is a side elevational view of the retainer illustrated in FIG. 21;
FIG. 23 is a left end view of the retainer illustrated in FIG. 22;
FIG. 24 is a right end view of the retainer shown in FIG. 22;
FIG. 25 is a sectional view taken along line 2525 of FIG. 23;
FIG. 25A illustrates assembly of the surgical anchor assembly according to one form of the invention with the pins or barbs extended and a tool positioned to engage the retainer illustrated in FIGS. 21 through 25;
FIG. 25B is similar to FIG. 25A but illustrates further assembly of the surgical anchor assembly according to one form of the invention with the pins or barbs extended and a tool for moving the retainer illustrated in FIGS. 21 through 25 into operable engagement with the compressive cannulated fastener illustrated in FIGS. 16 through 20;
FIG. 26 is a perspective view of a driver forming part of the first embodiment of this surgical fastener assembly according to the present invention;
FIG. 27 is a fragmentary side elevational view of the driver illustrated in FIG. 26;
FIG. 28 is a left end view of the driver illustrated in FIG. 27;
FIG. 29 is a right end view of the driver illustrated in FIG. 27;
FIG. 30 is a longitudinal sectional view taken along line 3030 of FIG. 28;
FIG. 31 is a perspective view of a limit stop forming part of the first embodiment of the present invention;
FIG. 32 is an enlarged side elevational view of the limit stop illustrated in FIG. 31;
FIG. 33 is a left end elevational view of the limit stop illustrated in FIG. 32;
FIG. 34 is a right end view of the limit stop illustrated in FIG. 32;
FIG. 35 is a sectional view taken along line 3535 of FIG. 33;
FIG. 36 is a view similar to FIG. 12 but showing an alternative form of pin or barb according to the present invention;
FIG. 37 is an enlarged right end elevational view of the pin or barb illustrated in FIG. 36;
FIG. 38 is a view similar to FIG. 5 showing the alternative form of pins or barbs arranged in combination with the insert and in retracted positions relative thereto;
FIG. 39 is a view similar to FIG. 38 but showing the alternative form of the pins or barbs in an extended position;
FIG. 40 is a view similar to FIG. 5 but showing a second embodiment of the present invention;
FIG. 41 is a longitudinal sectional view showing the components of the second embodiment of the present invention in exploded or disassembled relationship relative to each other;
FIG. 42 is a view similar to FIG. 40 schematically illustrating distention of the pins or barbs relative to the anchor;
FIG. 43 is a view similar to FIG. 42 but showing an alternative form of compression screw assembly arranged in operable combination with the anchor and a conventional side plate;
FIG. 44 is a view similar to FIG. 43 but showing a driver of the compression screw assembly arranged in a locking relationship relative to a compression screw;
FIG. 45 is a longitudinal sectional view of a third embodiment of a surgical anchor assembly according to the present invention with an alternative form of pins operably associated therewith and in a retracted relationship therewith;
FIG. 46 is a fragmentary longitudinal sectional view showing component parts of the third embodiment of the present invention in exploded or disassembled relation relative to each other;
FIG. 47 is a fragmentary longitudinal sectional view of an anchor or insert forming part of the third embodiment of the present invention;
FIG. 48 is a left end view of the anchor illustrated in FIG. 47;
FIG. 49 is a right end view of the anchor illustrated in FIG. 47;
FIG. 50 is a side elevational view of a pin forming part of the third embodiment of the present invention;
FIG. 51 is a sectional view taken along line 5151 of FIG. 50;
FIG. 52 is a sectional view of a slide forming a component part of the third embodiment of the present invention;
FIG. 53 is a left end view of the slide illustrated in FIG. 52;
FIG. 54 is a right end view of the slide illustrated in FIG. 52;
FIG. 55 is a sectional view taken alone line 5555 of FIG. 54;
FIG. 56 is a sectional view of an end cap forming part of the third embodiment of the present invention;
FIG. 57 is a left end view of the end cap shown in FIG. 56;
FIG. 58 is a right end view of the end cap shown in FIG. 56;
FIG. 59 is a side elevational view of a tool used to extend and retract the pins in the third embodiment of the anchor assembly shown in FIG. 45;
FIG. 60 is a right end view of the tool shown in FIG. 59;
FIG. 61 is a sectional view showing the tool illustrated in FIGS. 59 and 60 arranged in operable combination with a slide assembly forming part of the third embodiment of the present invention and with the pins or barbs shown in retracted position relative to the anchor;
FIG. 61A is a sectional view taken along line 61A—61A of FIG. 45;
FIG. 62 is a view similar to FIG. 61 but showing the tool in operable relationship with the slide of the slide assembly for forcibly extending the pins or barbs radially outwardly from the anchor;
FIG. 62A is a sectional view taken along line 62A—62A of FIG. 62;
FIG. 63 is a longitudinal sectional view similar to FIG. 45 but showing the pins arranged in an extended relationship relative to the anchor;
FIG. 64 is another form of surgical anchor assembly having an alternative form of a compression screw assembly for holding the anchor and guide in compressive relationship relative to each other;
FIG. 64A is an enlarged sectional view of the compression screw assembly encircled in FIG. 64;
FIG. 65 is a longitudinal sectional view of a compression screw forming a component part of the compression screw assembly illustrated in FIGS. 64 and 64A;
FIG. 66 is a left end elevational view of the compression screw illustrated in FIG. 65;
FIG. 67 is a right end elevational view of the compression screw illustrated in FIG. 65;
FIG. 68 is an elevational view of a driver used in combination with the compression screw assembly illustrated in FIGS. 65 through 67;
FIG. 69 is a left end elevational view of the driver illustrated in FIG. 68;
FIG. 70 is a right end elevational view of the driver illustrated in FIG. 68;
FIG. 71 is a schematic partially sectional elevational view of the compression screw (FIG. 65) and driver (FIG. 68) shown in exploded or disassembled relation relative to each other;
FIG. 72 is a schematic representation of the driver being illustrated in partial relation with the compression screw;
FIG. 73 is a schematic representation of the driver being illustrated in complete relation with the compression screw; FIG. 74 is a reduced view similar to FIG. 2;
FIG. 75 is an enlarged view of that area encircled in FIG. 74;
FIG. 76 illustrates component parts of an alternative form of a screw assembly used to secure the guide to the bone, with the component parts thereof shown in disassembled relationship relative to each other;
FIG. 77 is a sectional view of a compression screw illustrated in FIGS. 75 and 76 as taken along line 7777 of FIG. 78;
FIG. 78 is a left end view of the compression screw shown in FIG. 77;
FIG. 79 is a right end view of the compression screw illustrated in FIG. 77;
FIG. 80 is a side elevational view of a driver used in combination with the screw assembly illustrated in FIGS. 75 and 76;
FIG. 81 is a left end elevational view of the driver illustrated in FIG. 80;
FIG. 82 is a right end elevational view of the driver illustrated in FIG. 3080;
FIG. 83 is a view showing the driver partially arranged in operable association with the compression screw;
FIG. 84 is an exploded, perspective view of another alternative embodiment for a surgical fastener assembly in accordance with the principles of the present invention;
FIG. 85 is an exploded, perspective view of the anchor assembly of FIG. 84;
FIG. 86 is an exploded side view of the anchor assembly of FIG. 85;
FIG. 87 is a perspective view of the tang assembly of FIGS. 85 and 86.
FIG. 88 is a front view of the tang assembly;
FIG. 89 is a cross-sectional view of the anchor assembly with the tangs in a retracted position;
FIG. 90 is a front view of the anchor assembly with the tangs in a deployed position;
FIG. 91 is a cross-sectional view of the anchor assembly as taken along line 9191 of FIG. 90;
FIG. 92 is a perspective view of the tang assembly with the tangs in a deployed position; and
FIG. 93 is a perspective view of the compression screw with a retainer disposed on the outer surface of the screw.
DETAILED DESCRIPTION
While the present invention is susceptible of embodiment in various forms, there is shown in the drawings and will hereinafter be described preferred embodiments of the invention with the understanding that the present disclosure is to be considered as setting forth exemplifications of the invention which are not intended to limit the invention to the specific embodiments illustrated.
Referring now to the drawings, wherein like reference numerals refer to like parts throughout the several views, there is schematically represented in FIG. 1 one form of a fastener assembly 10 used to compressively secure fractured first and second bone fragments across the fracture therebetween. In the illustrated embodiment, the surgical fastener assembly 10 is used to set a condylar fracture accurately along a fracture line 12 disposed between proximal and distal portions 14 and 16, respectively, of a bone 18.
As shown, the surgical fastener assembly 10 includes a guide, generally represented by reference numeral 20 and an elongated anchor, generally represented by reference numeral 22. As shown in FIG. 2, the surgical anchor assembly 10 further includes a compression screw or fastener 24 and a retainer 26 for releasably locking the fastener 24 against rotation. As shown in FIG. 2, a series of screws 28 operate in combination with and serve to secure the guide 20 to the bone section 18.
As shown in FIGS. 2 through 4, guide 20 includes a hollow sleeve 30 that is rigidly attached to a trochanteric plate 32 at the proper angle. The proximal portion 14 of the bone 18 is bored so as to receive the sleeve 30. The distal portion 16 of the bone 18 is configuratively manipulated to accommodate an end portion of the sleeve 30 therewith. As shown, the plate 32 is provided with a plurality of throughholes 34 that allow the screws 28 to pass endwise therethrough, thereby securing the guide 20 to the bone section 18. The sleeve 30 defines a throughbore 36 that is open at opposite ends thereof. In a preferred form of the invention, the guide 20 is formed from a material chosen from the class comprised of: titanium, a titanium alloy, stainless steel, or cobalt chromium alloy.
Notably, the throughbore 36 is provided with a counterbore 38 at one end thereof. In the illustrated embodiment, the counterbore 38 has a larger diameter than does the throughbore 36. Accordingly, an annular or radial step 40 is defined toward one end of the throughbore 36.
As shown in FIG. 4, the anchor 22 includes an elongated insert 44 preferably formed from a material chosen from the class comprised of: titanium, a titanium alloy, stainless steel or cobalt chromium alloy. The insert 44 has opposed first and second axially aligned ends 46 and 48, respectively. The insert 44 is sized such that when inserted within the bone, the first end 46 is disposed on one side of the fracture line 12 while the second end 48 of insert 44 is disposed on an opposite side of the fracture line 12. Notably, cooperative instrumentalities 50 are defined on the sleeve of guide 20 and on insert 44. The purpose of the cooperative instrumentalities 50 is to allow for axial movement of the sleeve 30 along an axis 52 defined by the insert 44 while preventing rotational movement of the sleeve 30 relative to the anchor 22.
In the illustrated embodiment, and as well known, the cooperative instrumentalities 50 preferably comprises a pair of flats 54 extending axially along and inwardly from the second end 48 of insert 44. The flats 54 are diametrically opposed and generally parallel to each other. As shown in FIG. 3, the throughbore 36 of sleeve 30 includes generally flat sides 56 that are arranged in opposed and generally parallel relationship relative to each other. The flat sides 56 of bore 36 to allow the second end 48 of the insert to slidably move therewithin while the flats 54 cooperate with the flat sides 56 in preventing rotation of the sleeve 30 and, thereby, the guide 20 relative to the anchor 22. It will be appreciated, and it is within the spirit and scope of the present invention that other forms of cooperative instrumentalities for allowing endwise axial movement of the anchor 22 relative to the guide 20 while preventing rotational movement therebetween would equally suffice.
As shown in FIGS. 5 and 6, the anchor 22 of the surgical fastener assembly further includes a series of elongated pins 60 operably associated toward the first end 46 of the insert 44 for movement between a retracted position (FIG. 5) and a radially extended position (FIG. 6). As shown, the pins 60 are candied by the insert 44 for endwise and radial displacement relative thereto. In the illustrated embodiment of the invention, four pins 60 are equidistantly spaced relative to each other for positive endwise movement in opposite directions between the retraced and extended positions shown in FIGS. 5 and 6, respectively.
A salient feature of the present invention relates to the provision of a mechanism 64 for positively positioning the pins 60 relative to the surgical anchor 22. That is, and as will be described in detail below, the purpose of mechanism 64 is to positively extend the pins 60 radially outwardly from the insert 44, thereby enhancing securement of the anchor 22 within the bone (FIG. 1). Additionally, and in response to mechanical manipulation, the mechanism 64 furthermore operates to positively retract the pins 60 into the surgical anchor 22, thereby facilitating surgical removal of the anchor 22 when desired or when found to be surgically necessary.
Turning to FIG. 7 through 10, insert 44 of anchor 22 defines an elongated bore 66 preferably arranged coaxially about the longitudinal axis 52 and opening to the first and second ends 46 and 48, respectively, of the insert 44. As shown, the first end 46 of the fastener 44 is preferably pointed to facilitate insertion of the fastener 44 into the bone.
As will be appreciated by those skilled in the art, the exterior configuration of the insert 44 can take a myriad of shapes and forms. According to the present invention, and as illustrated in FIGS. 7 through 10, the elongated insert 44 preferably has external threading 68 axially extending therealong and leading rearwardly from the pointed first end 46. As mentioned, the pointed configuration of the insert 44 promotes insertion and, in the illustrated embodiment, self tapping of the anchor 22 within the substance of the bone. The external threading 68 along the exterior of insert 44 has a relatively coarse pitch to enhance the purchasing ability and the anchorage of the anchor 22 within the substance of the bone in response to turning movements being imparted to the anchor 22.
As shown in FIG. 9, the second or trailing end 48 of the insert 44 is preferably configured to releasably accommodate a driving tool (not shown) capable of imparting turning movements to the anchor 22. In a preferred form, and as shown in FIGS. 8 and 9, the trailing or second end of the insert 44 is suitably configured with a slot-like opening 69 for releasably accommodating a distal end of a driving tool. It will be appreciated, however, that any suitable configuration including a socket-like configuration would equally suffice without detracting or departing from the spirit and scope of the present invention.
As shown in FIG. 9, the insert 44 further defines a series of axially elongated openings arranged in spaced circumferential relation relative to each other. In the illustrated form of the invention, insert 44 is provided with four openings 70. Since the openings 70 are all substantially similar, only one opening 70 will be described in detail with the understanding that the other openings in the insert are similar thereto. Each opening 70, intermediate positive ends thereof, intersects with and opens to the elongated bore 66 defined by insert 44. Preferably, each elongated opening 70 has a blind configuration but opens at one end to the exterior of the insert 44. As will be appreciated, the openings 70 are generally equally disposed about the axis 52 of insert 44. In the form of the invention illustrated in FIG. 9, each elongated opening 70 has a curvilinear or arcuate configuration between opposite ends thereof. That is, in the illustrated form of the invention, each opening 70 has an arcuate configuration having a predetermined and substantially constant radius.
An exemplary form of pin 60 is illustrated in FIGS. 11 through 15. Each pin 60 is shaped to slidably fit endwise within a respective one of the openings 70 formed in the insert 44. The shape and size of each pin 60 generally corresponds to the shape and size of an opening 70 defined by the insert 44. Preferably, each pin 60 is formed from a substantially rigid material that is biocompatible with the bone tissue of human beings. That is, the pins 60 should be configured with sufficient strength so as to allow for insertion in and through the bone tissue without substantially bending intermediate opposite ends thereof. In a most preferred form of the invention, each pin 60 is formed from a material selected from the class comprised of: titanium, a titanium alloy, stainless steel, or a cobalt chromium alloy.
In the embodiment illustrated in FIG. 11 through 15, each pin 60 has a leading end 74 and an opposite generally pointed end 76. Intermediate its ends, each pin 60 preferably has a curvilinear or arcuate configuration. In the illustrated form of the invention, each pin 60 has a curved arc with a predetermined radius that is substantially equal to the predetermined radius of each opening 70 formed in insert 44 (FIG. 9) and which extends proximate to and outwardly away from the axis 52 of insert 44.
In a most preferred form of the invention, each pin 60 preferably forms an arc of about 80 degrees between opposite ends thereof, and with the length of each pin 60 being selected such that when the leading end 74 of the pin 60 is fully retracted within the fastener (FIG. 5), the opposite pointed end 76 of the pin or barb 60 will be positioned within the outside diameter of the insert 44 (FIG. 5) to facilitate insertion of the surgical anchor 20 within the bone of the patient. Moreover, it is to be appreciated that the length of each barb or pin 60 is sized such that when the pins 60 are displaced to their extended position (FIG. 6) the leading end 74 of each pin 60 remains operably associated with the mechanism 64 to allow for positive retraction of the pins 60 from their extended positions when desired or found necessary by the surgeon.
The compressive and cannulated fastener 24 as schematically illustrated in FIGS. 16 through 20. The purpose of the cannulated fastener 24 is to maintain the bone fragments (FIG. 1) in adjustable compressive relationship relative to each other as by axially fixing the guide 20 to the anchor 22 (FIG. 2).
Returning to FIGS. 5, 6, and 9, the elongated bore 66 of the insert 44 opens to the second or trailing end 48 thereof. The bore 66 defines an internally threaded portion 78 extending inwardly from the second or trailing end 48 of the insert 44. Preferably, the internally threaded portion 78 of bore 66 has a relatively fine pitched threading extending therealong.
The compressive and cannulated fastener 24 is schematically illustrated in FIGS. 16 through 20. The purpose of the cannulated fastener 24 is to maintain the bone fragments (FIG. 1) in adjustable compressive relationship relative to each other as by axially fixing the guide 20 to the anchor 22 (FIG. 2) such that the guide 20 is prevented from axially moving away from the anchor 22, but allows movement of guide 20 toward the pointed or first end 46 of the anchor 22 (FIG. 2).
Fastener 24 is preferably formed from a material that is biocompatible with bone tissue or a substance and is preferably selected from the class comprised of: titanium, a titanium alloy, stainless steel, or a cobalt chromium alloy. As will be appreciated, and although not specifically mentioned herein, other unnamed materials may well equally suffice without detracting or departing from the spirit and scope of the present invention.
As shown, the fastener 24 is provided with an elongated shank position 80 and an enlarged head portion 82. The shank portion 80 of fastener 24 is provided with external threading 84 extending axially from a leading end 86 of the fastener 24. The external threading 84 has a relatively fine pitch that corresponds to the threading extending internally along the threaded portion 78 of anchor 22. The enlarged head portion 82 of fastener 24 has a diameter slightly smaller than the diameter of the counterbore 38 defined by the insert 44 (FIG. 2). As will be appreciated from an understanding of the present invention, the axial length of the head portion 82 can be altered from that illustrated without detracting or departing from the spirit and scope of the present invention. That is, during a surgery, surgeon may have a collection of different fasteners 24 to select from; with each anchor having a different length such that a proper relationship is maintained between the guide 20 and anchor 22. Notably, the enlarged head portion 82 defines a radial shoulder 88 relative to the shank portion 80.
As shown in FIGS. 18 and 20, a trailing end 90 of the fastener 24 is preferably configured to releasably accommodate a driving tool (not shown) capable of imparting turning movements to the fastener 24. In a preferred form, and as shown in FIGS. 18 and 20, the trailing end 90 of fastener 24 is configured with a socket-like opening 92 for releasably accommodating a distal end of a driving tool. In a most preferred form of the invention, and as shown, the socket or opening 92 has a hexagonal-like cross sectional configuration. It will be appreciated, however, that any suitable configuration including an elongated slot would equally suffice without detracting or departing from the spirit and scope of the present invention. The cannulated fastener 24 furthermore defines an elongated bore 94 that opens to the leading and trailing ends 86 and 90, respectively, of the fastener.
In the illustrated embodiment shown in FIG. 2, the anchor 22 is fastened within the bone fragment to one side of the fracture line 12. As mentioned, anchor 22 is configured such that the opposite or second end 48 of the anchor 22 extends to an opposite side of the fracture line 12. Thereafter, the guide 20 is arranged in cooperative relationship relative to the anchor 22. As shown, the sleeve 30 of guide 20 slidably fits endwise over and telescopically along the free end of the anchor 22. The screws 28 are used to fasten the plate 32 of guide 20 to the bone 18. It will be observed that the cannulated compressive fastener 24 is thereafter arranged in operable combination with the anchor 22 and guide 20. That is, the leading end 86 of the compressive screw 24 is inserted through the bore 36 of the sleeve 30 in turn such that the external threading 84 extending there along operably engages with the internal threading 78 at the proximal end of the anchor 22. Continued rotation of the fastener 24, ultimately, will cause the radial shoulder 88 on the enlarged head portion 82 to engage the radial stop 40 defined by the counterbore 38 and the guide 20. As will be appreciated, continued rotation of the screw 24 will cause the bone fragments to be brought into compressive relationship relative to each other. The compressive screw 24 furthermore allows the surgeon the appropriate “feel” as the screw is tightened, thus bringing the bone fragments into compressive relationship relative to each other.
One form of a retainer 26 is schematically illustrated in FIGS. 21 through 25. As shown, retainer 26 has external threading 100 extending axially there along between leading and trailing ends 102 and 104, respectively thereof. The retainer 26 is preferably formed from a material that is biocompatible with bone tissue or substance and is preferably ultra-high molecular weight polyethylene. It should be appreciated, however, that other unnamed materials would equally suffice without detracting or departing from the spirit and scope of the present invention. Notably, the external threading 100 extending along the outside of retainer 26 has a fine pitch thereto which corresponds to the threading extending along the internally threaded portion 78 of the insert 44.
As shown in FIGS. 23, 24 and 25, the retainer 26 is provided with a throughbore 106 that opens to opposite ends 102 and 104 of the retainer. In a preferred form, and as shown in FIGS. 23, 24 and 25, a lengthwise portion of the throughbore 106 has a hexagonal-like cross sectional configuration for releasably accommodating a distal end of the driving tool. It will be appreciated, however, that any suitable socket-like configuration other than hexagonal would equally suffice without detracting or departing from the spirit and scope of the present invention.
During assembly of the surgical fastener assembly 10, and as shown in FIG. 25A, the retainer 26 is initially threaded into the internally threaded portion 78 of the anchor 22. Thereafter, and in the manner described above, the compressive fastener 24 is operably associated with the anchor 22. After the compressive relationship between the guide 20 and anchor 22 has been established, as a result of turning the compressive screw 24, a suitably elongated tool 95 is passed through the bore 94 (FIG. 20) of the cannulated fastener 24 and into releasable engagement with the socket-like configuration defined in the throughbore 106 of retainer 26.
As shown in FIG. 25B, appropriate rotation of the retainer 26 under the influence of tool 95 will thereafter cause the trailing end 104 to be moved into abutting relationship to the leading end 86 of the compressive screw 24, thereby locking the compressive screw 24 and, thus, maintaining the compressive relationship between the bone fragments. As will be appreciated, however, the bone fragments are allowed to shift through the axial movement of the head portion 82 along the length of the counterbore 38. The head portion 82 of the compressive screw 24 limits, however, movement of the anchor 22 and the bone fragments secured thereby away from the bone 18, thereby maintaining the compressive relationship therebetween.
The mechanism 64 for positively displacing the pins 60 in opposite directions between retracted and extended positions (FIGS. 5 and 6, respectively) will now be described. As will be appreciated, the mechanism for positively displacing the pins 60 in opposite directions can take a myriad of different forms without detracting or departing from the spirit and scope of the present invention. One mechanism which has proven advantageous and quite effective involves equipping the anchor 20 with a manually operated driver 110 (FIGS. 5 and 6) which is operably associated with the pins 60 such that upon manipulation of the driver 110 the pins 60 will endwise be displaced relative to the anchor 22, thereby effecting the anchorage of the surgical anchor 22 within the bone.
FIGS. 26 through 30 illustrate one form of a driver 110 for axially and appositively displacing the pins 60 (FIGS. 5 and 6) of the surgical anchor in opposite directions. As shown, driver 110 comprises an axially elongated member 112 having external threading 114 extending axially rearwardly from a leading end 116 toward a trailing end 1 18. The driver member 112 is formed from a material that is biocompatible with bone tissue or a substance that is preferably selected from the class comprised of: titanium, a titanium alloy, stainless steel, or a cobalt chromium alloy. It should be appreciated, however, that other unnamed materials would equally suffice without detracting or departing from the spirit and scope of the present invention. The outside diameter of the threading 114 of member 112 is such that it slidably fits endwise through the elongated bore 66 defined by insert 44 (FIGS. 5 and 6) and is accommodated for free turning movements in either rotational direction within the bore 66 of insert 44. Preferably, the external threading 114 on member 112 has a relatively fine pitch thereto. As shown in FIGS. 26, 28, 29 and 30, the member 112 preferably has an elongated bore 120 that opens to the leading and trailing ends 116 and 118 of member 112. The trailing end 118 of the member 112 is preferably configured to releasably accommodate a driving tool (not shown) capable of imparting turning movements to the driver 110. In a preferred form, and as shown in FIGS. 28 and 30, the trailing end 118 of member 112 is suitably configured with a socket-like opening 122 for releasably accommodating the distal end of a driving tool. In a most preferred form of the invention, and as shown in FIGS. 28 and 30, the socket or opening 122 has a hexagonal-like cross sectional configuration. It will be appreciated, however, that any suitable configuration, including a square or triangular configuration would equally suffice without detracting or departing from the spirit and scope of the present invention.
As will be described hereinafter in detail below, the driver 110 of mechanism 64 is operably associated with each pin 60 such that manipulation of the driver 110 results in positive endwise displacement of the pins 60 either toward an extended or retracted position depending upon the movements provided to the driver 110 of mechanism 64. In the illustrated form of the invention and returning to FIGS. 11 through 15, each pin or barb 60 preferably has an inner surface 124, which proximates the axis 52 (FIGS. 7 and 9) of the anchor 22 when the pins 60 are inserted within the insert 44, and an outer surface 126. As shown, in FIGS. 11 through 15, the inner surface 124 of each pin 60 has a series of vertically spaced serrations 128 thereon. The serrations 128 extend axially rearwardly from the leading end 74 and for a lengthwise distance toward the pointed end 76 of each pin 60. Notably, the serrations 128 on each pin 60 are configured for threadable engagement with the exterior threading 114 extending axially along the outer surface of driver 110. As such, the driver 110 is operably engaged or associated with each of the pins 60 of this surgical anchor assembly.
As shown in FIGS. 5 and 6, mechanism 64 for positively displacing the pins 60 between retracted and extended positions and vice-versa, further includes a limit stop 134 for preventing axial displacement of the driver 110 when rotated. One form of the limit stop 134 is illustrated in FIGS. 31 through 35. Preferably, the limit stop 134 is formed from a material that is biocompatible with human bone tissue. In a most preferred form of the invention, the limit stop 134 is formed from a material chosen from the class comprised of: titanium, a titanium alloy, stainless steel, or a cobalt chromium alloy. It will be appreciated, however, that other materials would equally suffice without detracting or departing from the spirit and scope of the present invention. As shown in FIGS. 31 through 35, the limit stop 134 preferably includes a hollow member 136 with external threading 138 extending between leading and trailing ends 140 and 142, respectively, thereof. The external threading 138 has a relatively fine pitch which corresponds to the threading extending along the internally threaded portion 78 of insert 44 at the second end 48 of anchor 22. The trailing end 142 of the limit stop 134 is preferably configured to releasably accommodate a driving tool (not shown) capable of imparting turning movements to the limit stop 134. In a preferred form, and as shown in FIGS. 31, 32 and 33, the trailing end 142 of limit stop 134 is provided with an elongated slot 148 for releasably accommodating a distal end of the driving tool. Moreover, the limit stop 134 defines a throughbore 146 that opens to leading and trailing ends 140 and 142, respectively, of the limit stop and thereby allowing a tool to be passed endwise therethrough into operable engagement with the driver 110.
An alternative form of pin 160 to be arranged in operable combination with the anchor 22 is shown in FIGS. 36 and 37. Pin 160 is substantially similar to pin 60 illustrated in FIGS. 11 through 15 and described in detail above. In the embodiment illustrated in FIGS. 36 and 37, each pin 160 has a leading end 174 and an opposite end 176. Intermediate its ends, each pin 160 preferably has a curvilinear or arcuate configuration. In the illustrated form of the invention, each pin has a curved arc with a predetermined radius that is substantially equal to the predetermined radius of each opening 170 formed in an insert 144 as shown in FIG. 38.
In the embodiment of the pin shown in FIG. 36, each pin 160 preferably forms an arc of about 80° between opposite ends thereof, and with the length of each pin being selected such that when the leading end 174 of the pin 160 is fully retracted within the fastener or anchor 22, the opposite end 176 of the pin or barb 160 will be positioned within the outside diameter of the insert 144.
In the illustrated embodiment shown, end 176 of each pin 160 is formed with a configuration that complements the configuration of the anchor or fastener 22. In the illustrated embodiment the end 176 of each pin 160 is formed with a channel 177 disposed between two substantially similar projections 179. As shown in FIG. 38, when the pin 160 is fully retracted the channel-like configuration and the projections 179 on opposite sides thereof blend into the outer threaded configuration extending axially along the fastener 22. It is to be appreciated that the length of each barb or pin 160 is sized such that when the pins 160 are displaced to their extended position, as shown in FIG. 39, the leading end 174 of each pin 160 remains operably associated with the mechanism 64 to allow for positive retraction of the pins 160 from their extended positions when desired or found necessary by the surgeon.
As shown in FIG. 36, each pin or barb 160 preferably has an inner surface 184 which, as illustrated in FIGS. 38 and 39, proximates the axis 52 of the anchor when the pins are inserted within the insert 144 and an outer surface 186. The inner surface 184 of each pin has a series of spaced serrations 188 that extend axially rearwardly from the leading end 174 and for a lengthwise distance toward the second or other end 176 of each pin 160. The serrations 188 on each pin are configured for threadable engagement with the exterior threading 114 extending axially along the outer surface of driver 110 of mechanism 64 as described in detail above. As such, the driver 110 is operably engaged or associated with each of the pins 160 of this surgical anchor assembly.
FIG. 40 schematically illustrates an alternative form for the surgical anchor assembly. This alternative form of the surgical anchor assembly is generally represented by reference number 210. As shown in FIG. 40, the surgical anchor assembly 210 includes a guide, generally represented by reference numeral 220 and an elongated anchor, generally represented by reference numeral 222. As shown in FIG. 41, and as will be discussed in detail below, the surgical fastener assembly 210 further includes a compressive fastener assembly 224 for holding the guide 220 in compressor relationship relative to the anchor 222.
The guide 220 is substantially similar to the guide 20 described in detail above and, thus, a detailed description need not be provided therefor. Suffice it to say, the guide 220 includes a hollow sleeve 230 that is substantially similar to the sleeve 30 discussed above. Sleeve 230 defines a throughbore 236 that is open at opposite ends thereof. The throughbore is provided with a counterbore portion 238 at one end thereof. In the illustrated embodiment, the counterbore 238 has a larger diameter than does the throughbore 236 and, thus, an annular or radial step 240 is defined there between.
The anchor 222 includes an elongated insert 244 having opposed first and second ends 246 and 248. The insert 244 is preferably formed from a material similar to that used to form insert 44. Insert 244 is sized such that when inserted within the bone, the first end 246 is disposed to one side of a fracture line while the second end 248 of the insert 244 is disposed to an opposite side of the fracture line.
As shown in FIG. 40, the anchor 222 of the surgical fastener assembly 210 further includes a series of elongated pins or barbs 260 operably associated toward the first end 246 of the insert 244 for movement between a retracted position (FIG. 40) and a radially extended position (FIG. 42). As shown, the pins 260 are carried by the insert 244 for endwise and radial displacement relative thereto. In the illustrated embodiment of the invention, four pins 260 are equidistantly spaced relative to each other for positive endwise movement in opposite directions between the retracted and extended positions shown in FIGS. 40 and 42, respectively.
As will be appreciated by those skilled in the art, the exterior configuration of the insert 244 can take a myriad of shapes and forms. According to the present invention, and as illustrated in FIG. 41, the elongated insert 244 preferably has external threading 268 axially extending therealong and leading rearwardly from the first end 246 thereof. The external threading 268 along the exterior of insert 244 has a relatively coarse pitch to enhance the purchasing ability and the anchorage of the anchor 222 within the substance of the bone in response to turning movements being imparted to the anchor 222.
Extending axially forward from the second or trailing end 248, the insert 244 of anchor 222 has a constant generally cylindrical-like configuration 249 extending to the terminal end of the exterior threading 268 and having a slightly smaller outside diameter than that of the exterior threading 268. Notably, the cylindrical-like configuration 249 extending axially forward from the terminal end 248 of the insert 244 has a diameter which is generally equal to the diameter of the throughbore 236 in the guide 220 thereby facilitating sliding movement of the anchor 222 axially within the sleeve 230 of the guide 220. Although not specifically shown, as is conventional, cooperative instrumentalities are defined on the sleeve 230 of guide 220 and on the insert 244. As mentioned above, the purpose of the cooperative instrumentalities is to allow for axial movement of the anchor 222 relative to the sleeve 230 along an axis 252 defined by the insert 244 while preventing rotational movement of the sleeve 230 relative to the anchor 222.
As shown in FIG. 41, insert 244 defines a constant diameter counterbore portion 253 extending axially inward from the first end 246 of insert 244. At an inner end, the counterbore portion 253 defines a radial wall 254. Between end 246 and wall 254, the insert 244 further defines a series of axially elongated openings arranged in spaced circumferential relation relative to each. In the illustrated form of the invention, insert 244 is provided with four openings 270. Each opening 270 intersects with and opens to the counterbore 253 defined by insert 244. As shown in FIG. 41, an axially inward portion 272 of each opening 270 has an inwardly slanted surface for purposes to be described in detail hereinafter.
At an opposite end of the insert 244, another elongated bore 257 having an internally threaded portion 255 and a counterbore portion 256. The internally threaded portion 255 extends inwardly from the second or trailing end 248 of the insert. Preferably, the internally threaded portion 255 of bore 257 has a relatively fine pitched threading extending therealong. Notably, the internally threaded portion 255 has a larger diameter than does counterbore portion 256. The insert 244 further defines a passage 258 extending between counterbore portions 253 and 256.
As shown in FIG. 41, the second or trailing end 248 of the insert 244 is furthermore configured to releasably accommodate a driving tool (not shown) capable of the parting turning movements to the anchor 222. In a preferred form, and as shown in FIG. 41, the trailing or second end of the insert 244 is suitably configured with a slot-like opening 269 for releasably accommodating a distal end of a driving tool. It will be appreciated, however, that any suitable configuration would equally suffice without detracting or departing from the spirit and scope of the present invention.
As shown in FIG. 41, the pins or barbs 260 in this form of the invention form part of a carrier assembly 262. Carrier assembly 262 preferably includes a slide 263 to which one end of each pin 260 is articulately connected to allow the pins 260 to flex or hingedly move relative to the slide while remaining operably connected thereto. As shown, slide 263 has an outer surface configuration 264 having a diameter substantially equal to the diameter of the counterbore portion 253 defined by the insert 244. Slide 263 further defines a threaded opening 265 having a relatively fine pitched internal threading extending therealong. Notably the free ends of the pins 260 are biased to spring outwardly away from the axis 252. Moreover, the free end of each pin 260 has a cam-like surface 266 thereon for purposes to be described in detail hereinafter.
As shown in FIG. 40, the carrier assembly 262 fits axially within bore 253 defined by insert 244 for axial movement and with the pins 260 extending toward the second end 248 of insert 244. After fitting the carrier assembly 262 within bore 253 of insert 244, the open end of insert 244 is closed by an end cap 274.
As shown in FIG. 41, end cap 274 preferably includes a reduced annular portion 275 sized to snugly fit within the free open end of bore 253 defined by insert 244. Suitable retaining means, such as welding, or staking, or the like securely fastens the end cap 274 to the remainder of the insert 244. End cap 274 is preferably formed from a material that is biocompatible with bone tissue or human substance and is preferably selected from the class comprised of: titanium or titanium alloy, stainless steel, or cobalt chromium alloy. It would be appreciated, however, that other unnamed materials would equally suffice without detracting or departing from the spirit or scope of the present invention. As shown in FIG. 41, the end cap 274 defines a central throughbore or hole 276 extending therethrough. Moreover, the annular or circumferential surface of end cap 274 is preferably chamfered to promote insertion of the anchor 222 into the bone.
Returning to FIG. 40, when the carrier assembly 262 is mounted within bore 253 of insert 244, the pins 260 tend to bias outwardly. The slots or opening 270 in the insert 253 are elongated such that a distal end of each pin 260 tends to project radially outwardly into the slot 270 with the slanted surface 266 being advantageously arranged to engage and cooperate with slanting surface 272 on each opening 270 in a manner forcibly projecting the pins 260 radially outwardly as shown in FIG. 42.
The mechanism 280 for positively displacing the pins 260 in opposite directions between retracted and extended positions (FIGS. 40 and 42, respectively) will now be described. The drive mechanism 280 preferably includes a manually operated driver 282 arranged in operative relation with the carrier assembly 262. As will be described below, manual activation of the drive mechanism 280 will affect axial displacement of the carrier assembly 262 within bore 253 of insert 244 thereby effecting positive displacement of the pins 260 with the carrier assembly 262.
Turning to FIG. 41, driver 282 preferably includes an axially elongated and hollow member 284 having a reduced diameter portion 286 axially projecting rearwardly from a first end 288 thereof. The driver 282 is formed from a material that is bio-compatible with bone tissue or human substance and is preferably selected from the class comprised of: titanium, titanium alloy, stainless steel, or cobalt chromium alloy. Of course, other unnamed materials will equally suffice without detracting or departing from the spirit and scope of the present invention. The reduced diameter portion 286 of member 284 has a diameter equal to the diameter of bore 276 defined by end cap 274. At a second end 290, driver 282 has an enlarged head portion 292. In a preferred form, and as shown in FIG. 41, the second end 290 is configured to releasably to accommodate a distal end of a driving tool. In a most preferred form of the invention, the second or terminal end 290 of driver 282 is provided with an elongated slot 294 that is configured to releasably accommodate a driving tool. Axially spaced inwardly from the terminal end 290 thereof, the driver 282 is provided with an axially extended shoulder 295. Between the shoulder and the reduced diameter portion 286, the driver 282 is provided with external threading 296. The external threading extending lengthwise along the driver 282 has a relatively fine pitch that corresponds to the internally threaded portion 265 of slide 263 forming part of the carrier assembly 262. Notably, the reduced diameter portion 286 and the externally threaded portion 296 of driver 282 are sized to permit their endwise insertion through passage 258 defined by insert 244. Moreover, the shoulder portion 295 has a diameter that is substantially equal to the passage 258 and is journalled thereby. Moreover, the enlarged head portion 292 is specifically sized with the diameter greater than the passage 258 thereby preventing axial displacement or movement of the head portion 292 past the passage 258.
During assembly of the surgical fastener assembly 210, the reduced diameter portion 286 and externally threaded portion 296 are passed endwise through the passage 258 defined in the insert 244 of anchor 222. The threaded portion 296 of driver 282 is likewise threadably engaged with the slide 263 of carrier assembly 262 to allow the reduced diameter portion 286 to pass endwise through and be journalled by the periphery of the bore 276 defined by end cap 274. The reduced diameter portion 286 is sized to allow a lengthwise portion thereof to pass endwise through and beyond the end cap 274. That free end of the reduced diameter portion 286 is thereafter swaged or flared outwardly thus preventing axial displacement of the driver 282 in response to rotational movement being imparted thereto.
Turning to FIG. 42, the pins 260 of carrier assembly 262 are radially and positively displaced in opposite directions relatively to axis 252 in response to and as a function of rotation of driver 282. As shown, a suitable tool 297 is displaced endwise through bore 236 of guide 220 and through the bore 257 of insert 244 into operable engagement with the slot 294 at the second end 290 of driver 282. Thereafter, rotation of the driver 282 will result in axial or endwise displacement of the slide 263 as a result of the threaded interconnection between the internal threading 265 on slide 263 and the external threading 296 on driver 282. As will be appreciated, and as the pins 260 are drawn toward the radial wall 254 of bore 253, the slanted surface configurations 266 thereon engage the outwardly slanting surfaces 272 of the openings thereby forcibly propelling the pins radially outwardly relative to the axis 252. As will be appreciated, rotation of the tool 297 in the opposite direction will likewise result in axial displacement of the carrier assembly 262 but in a direction opposed from that earlier discussed. As a result, the turning or rotation of the driver 282 will affect retraction of the pins 260 as the slide assembly 262 is moved in a direction toward the end cap 274.
Another aspect of the present invention relates to the surgical anchor assembly 210 having a compressive screw assembly 224 for maintaining the guide 220 and anchor 222 in compressive relationship relative to each other as by axially fixing the guide 220 to the anchor 222. In that embodiment shown in FIG. 41, the compression screw assembly 224 preferably includes a compression screw 300 and a driver 302. Both the compression screw 300 and driver 302 are formed from a material that is bio-compatible with bone tissue or human substance material and is preferably selected from the class comprised of titanium, a titanium alloy, stainless steel, or cobalt chromium alloy.
As shown in FIG. 41, the compression screw 300 is provided with first and second interconnected sections 304 and 306. The sections 304 and 306 of compression screw 300 are joined or interconnected to each other by a collapsible section 308 that transmits rotation and torque between the sections 304 and 306. The first section 304 of compression screw 300 is provided with an elongated shank portion 312 and an enlarged head portion 314. The shank portion 312 of the first section 304 is provided with external threading 316 therealong. The external threading 316 has a relatively fine pitch that corresponds to the internal threading 255 extending along the bore 257 of insert 244. As shown in FIG. 43, the enlarged head portion 314 of the first section 304 of screw 300 has a diameter slightly smaller than the diameter of the counterbore 238 defined by guide 220. Notably, the head portion 314 of screw 300 is preferably configured to releasably accommodate a driving tool capable of imparting turning movements to the screw section 304.
In a preferred form, and as shown in FIG. 41, the trailing end of screw section 304 is configured with a slot 318 for releasably accommodating a distal end of a driving tool. Notably, the first section 304 of screw 300 is fixed to the collapsible section 308 such that turning movements imparted to screw section 304 will likewise be imparted to the collapsible section 308.
The second screw section 306 is likewise connected to the collapsible section 308 in axially spaced relation relative to screw section 304. As shown, screw section 306 includes external threading 326 extending along the length thereof. Notably, the external threading 326 on screw section 306 is identical to the external threading 316 on screw section 304.
The collapsible section 308 serves to transfer the motion of screw section 304 to screw section 306. Moreover, the second screw section 306 defines an internally threaded portion 330 extending therealong. The threaded portion 330 of the second screw section 306 has a relatively fine pitched threading extending therealong. Notably, however, the threading extending along portion 330 is left-handed threading while the external threading 316 and 326 on screw portions 304 and 306, respectively, is right handed. As will be appreciated, the threading along screw portion 330 and 316, 326 can be right handed and left handed, respectively, without detracting or departing from the spirit and scope of the present invention. The important aspect to note is that the threading along portions 330 and 316, 326 are reversed from each other.
As shown in FIG. 41, the driver 302 of compression screw assembly 224 comprises a shank portion 334 and an enlarged head portion 336. The shank portion 334 of driver 302 has a diameter sized to allow the shank portion 334 to slidably to fit endwise into and through the central interior of screw 300. The shank portion 334 of driver 302 includes external threading 340 axially extending from a free end 342 of the driver 302. The head portion 336 of driver 302 is sized to prevent it from passing through the interior of screw 300. As will be appreciated, the axial length or distance separating head portion 336 of screw 302 from the free end 342 thereof is about equal to the distance separating the head portion 314 of screw 300 from the beginning portion of the interior threading 330 most closely adjacent the head portion 314.
In a preferred form, and as shown in FIG. 41, the trailing end of the head section 336 of driver 302 is configured with a slot 344 for releasably accommodating the distal end of a driving tool. As will be appreciated, configurations other than a slot would equally suffice without detracting or departing from the spirit and scope of the present invention.
During assembly of the surgical fastener assembly 210, and as shown in FIG. 43, the compressive screw 300 of the compressive screw assembly 224 is rotatably threaded into engagement with the internal threading 255 of the insert 244. A suitably configured tool 355 engages with the slot 318 and the head portion 314 of the screw 300 to drivingly rotate the first and second sections 304 and 306 of the screw 300 until the enlarged head 314 abuts the radial wall 240 defined by the counterbore 238 defined by the guide 220. Thereafter, the driver 302 is operably engaged with the screw 300. That is, and is shown in FIG. 44, the driver 302 is inserted through the central opening defined by the screw 300 into threaded engagement with the internal threading 330 of the second section 306 of screw 300. Notably, however, the driver 302 is turned in a direction opposed from that in which the screw 300 was rotated for insertion into the anchor. In this regard, a suitable tool 357 releasably engages with the slot 344 in the head region 336 of the driver 302 to rotate the driver 302. Rotation of the driver 302 is affected until the section 308 joining sections 304 and 306 collapses. The collapse of the center section 308 causes opposing forces to act against the external threading on sections 304, 306 and the internal threading 330 thereby preventing the compressive screw assembly 224 from inadvertently turning relative to the anchor 222.
FIG. 45 schematically illustrates an alternative form of anchor, generally represented by reference to numeral 422 that can be used as part of the surgical anchor assembly. The anchor 422 includes an elongated insert 444 having opposed first and second ends 446 and 448. The insert 444 is preferably formed from a material similar to that used to form insert 44. Insert 444 is sized such that when inserted within the bone, the first end 446 is disposed to one side of a fracture line while the second end 448 of the insert 444 is disposed to an opposite side of the fracture line.
As shown in FIGS. 45 and 46, the anchor 422 of the surgical fastener assembly further includes a series of elongated pins or barbs 460 operably associated toward the first end 446 of the insert 444. As shown in FIGS. 45 and 63, the pins or barbs 460 are operably associated with the anchor 422 for movement between a retracted position (FIG. 45) and a radially extended position (FIG. 63). As shown, the pins 460 are carried by the insert 444 for endwise and radial displacement relative thereto. In the illustrated embodiment of the invention, two pins 460 are carried by the anchor 422 in diametrically opposed relation relative to each other for positive endwise movement in opposite directions between the retracted and extended positions shown in FIGS. 45 and 63, respectively.
According to this aspect of the present invention, and as illustrated in FIGS. 46 and 47, the elongated insert 444 preferably has external threading 468 axially extending there along and leading rearwardly from the first end 446 thereof. The external threading 468 along the exterior of insert 444 has a relative coarse pitch to enhance the purchasing ability and the anchorage of the anchor 422 within the substance of the bone in response to turning movements being imparted to the anchor 422.
Extending axially forward from the second or trailing end 448, the insert 444 of anchor 422 has a constant generally cylindrical-like configuration 449 extending to the terminal end of the exterior threading 468 and having a slightly smaller outside diameter then that of the exterior threading 468. Notably, the cylindrical-like configuration 449 extending axially forward from the terminal end 448 of the insert 444 has a diameter which is generally equal to the diameter of the throughbore 36 (FIG. 2) in the guide operably associated therewith thereby facilitating sliding movement of the anchor 422 axially within the sleeve of the guide. Although not specifically shown, and as is conventional, cooperative instrumentalities are defined on the exterior configuration 449 of the insert 444 and of the respective guide to allow for axial movement of the anchor 422 relative to the guide along an axis 451 defined by the insert 444 while preventing rotational movement of the anchor 422 relative to the respective guide.
As shown in FIG. 47, insert 444 defines a constant diameter counterbore portion 452 extending axially inward from the first end 446 of insert 444. At an inner end, the counterbore portion 452 defines a radial wall 454. Between end 446 and wall 454, the insert further defines a pair of slanted openings 470 arranged in diametrically opposed relation relative to each other. Each opening intersects with and opens to the counterbore 452 defined by insert 444. Moreover, each opening 470 opens to the exterior of insert 444.
Extending axially forwardly from the second or opposed end 448, the insert 444 defines an elongated bore 455 that opens to the counterbore portion 452. Extending inwardly from the second end 448, bore 455 includes an internally threaded portion 457. Preferably, the internally threaded portion 457 of bore 455 has a relatively fine pitched threading extending therealong. As should be appreciated, the internal threading 457 corresponds to the external threading on the compressive screw assembly (not shown) arranged in operable combination with the insert 444.
As shown in FIG. 47, the second or trailing end 448 of insert 444 is furthermore configured to releasably accommodate a driving tool (not shown) capable of imparting turning movements to the anchor 422. In a preferred form, and as shown, the trailing or second end 448 of the insert 444 is suitably configured with a slot-like opening 469 for releasably accommodating a distal end of a driving tool. It will be appreciated, however, that any suitable configuration would equally suffice without detracting or departing from the spirit and scope of the present invention.
Turning to FIG. 49, the insert 444 is further provided with a suitable guide mechanism 475 for purposes to be described hereinafter. The guide mechanism 475 can take a myriad of different forms without detracting or departing from the spirit and scope of the present invention. One form of guide mechanism 475 is schematically illustrated in FIG. 49. In the illustrated embodiment, the guide mechanism 475 includes a pair of diametrically opposed guide keys 477 and 479 that extend along a lengthwise portion of the counterbore 452 defined by insert 444. As shown in FIG. 49, the guide keys 477 and 479 project radially inwardly toward each other. Notably, the distal end of each guide key 477 and 479 terminates short of the first end 446 of the fastener 444 such that there is an axial space between the terminal end of the guide of each guide key 477, 479 and the first end 446 of the insert 444.
Returning to FIG. 45, the pins or barbs 460 in this form of the present invention form part of a carrier assembly 462. Carrier assembly 462 preferably includes a slide 463 to which one end of each pin is fixedly connected such that the pins 460 will positively move upon axial movement of the slide 463 within the counterbore 452 of insert 444.
Turning to FIGS. 46, 50 and 51, each pin 460 has a flexible wire-like configuration shaped to slidably fit endwise within and through a respective one of the openings 470 defined in the insert 444. Suffice it to say, each pin 460 is provided with sufficient strength so as to allow for insertion in and through the bone tissue without substantially bending intermediate opposite ends thereof. In a most preferred form of the invention, each pin 460 is formed from a material selected from the class comprised of: titanium, a titanium alloy, stainless steel, or cobalt chromium alloy.
In the embodiment illustrated in FIGS. 46, 50 and 51, each pin 460 has a leading end 461 and an opposite pointed end 466. Toward end 466, each pin preferably has a curvilinear or arcuate configuration such that the free ends 466 extend into and through the opening, 470. The length of each pin 460 is selected such that when the leading end 461 of the pin 460 is fully retracted within the anchor 422 (FIG. 45) the opposite pointed end 466 of the pin or barb 460 will be positioned within the outside diameter of the insert 444 to facilitate insertion of the surgical anchor assembly within the bone of the patient. Moreover, it is to be appreciated that the length of each barb or pin 460 is sized such that when the pins are displaced to their extended position (FIG. 63) the leading end 461 of each pin 460 remains operably associated with the carrier assembly 462 to allow for positive retraction of the pins 460 from their extended positions when desired or found necessary by the surgeon.
As mentioned, the carrier assembly 462 further includes a slide 463. The configuration of the slide 463 is illustrated in FIGS. 52 through 55. As shown, slide 463 has a generally cylindrical outer surface configuration having a diameter substantially equal to the diameter to the counterbore portion 452 (FIG. 46) of fastener 444. Slide 463 defines an identical pair of throughbores or openings disposed in diametrically opposed relation relative to each other. The diameter of the openings 481, 483 are sized to receive the end 461 of pin 460 and to allow the ends 461 of each pin 460 to be rigidly secured thereto. Additionally, the slide 463 defines a pair of diametrically opposed slots 485 and 487 that are arranged in other than a normal relation relative to the openings 481 and 483. Notably, the slots 485,487 are sized to facilitate guided movement of the slide 463 relative to the guide keys 477 and 479 on the insert 444 (FIG. 62). Moreover, the slide 463 defines a tool engagement cavity 491 that passes endwise through the slide and has recesses 493 and 495 on opposite sides thereof.
As shown in FIG. 45, the carrier assembly 462 fits axially within the bore 452 defined by insert 444 for axial movement and with the pointed ends 466 of each pin 460 extending at least partially through the opening 470, but not beyond the periphery of fastener 444. After fitting the carrier assembly 462 within the bore 452 of insert 444, the open end of insert 444 is closed by an end cap 497.
A preferred form of end cap 497 is illustrated in FIGS. 56, 57 and 58. As shown, end cap 497 preferably includes a reduced annular portion 498 sized to snugly fit within the free open end of bore 452 defined by insert 444. Suitable retaining means such as staking, welding or the like securely fastens the end cap 497 to the remainder of the insert 444. End cap 497 is preferably formed from material that is biocompatible with bone tissue or a human substance and is preferably selected from the class comprised of: titanium, a titanium alloy, stainless steel, or cobalt chromium alloy. Other unnamed materials would equally suffice, however, without detracting or departing from the spirit or scope of the present invention. As shown in FIGS. 56 through 58, the end cap 497 defines a central throughbore or hole 499. Moreover, the exposed surface of end cap 497 is preferably chamfered to promote insertion of the anchor 422 into the bone.
FIGS. 59 and 60 schematically illustrate a tool that is configured to cooperate with and axially move the carrier assembly 462 in opposite directions within the bore 452 of the insert 444 whereby positively moving the pins 460 between retracted (FIG. 45) and extended (FIG. 63) positions. The tool 500 preferably includes an elongated shank 502 having axially spaced keys 504 and 506 at a distal end thereof. The shank 502 and keys 504 and 506 are configured to axially fit endwise within the bore 455 of insert 444 and extend into operable combination within the slide 463 of the carrier assembly 462. More specifically, the key 506 is specifically configured to fit endwise through the tool engagement cavity 491 such that the key 506 can operably engage with the surfaces 493 and 495 on the slide.
As shown in FIG. 45, guide slots 485 and 487 in the slide 463 are not axially aligned with the guide keys 477 and 479 extending radially inwardly from the bore 452. As will be appreciated by those skilled in the art, the guide keys 477 and 479 are radially offset from the guide slots 485 and 487, respectively, under the influence of the disposition of the pins 460 and their orientation relative to the guide slots 485 and 487. Accordingly, the slide assembly 462 cannot be inadvertently displaced axially within the bore 452 and the pins 460 remain in the retracted positions.
To affect extension of the pins or barbs 460 radially outwardly from the bore 452 of the fastener 444, the tool 500 is inserted through the fastener 444. More specifically, the keys are endwise inserted through the insert 444 and allow to pass into operable engagement with the slide. After moving the keys 504 and 506 into operable engagement with the slide, the tool 500 is rotated to effect rotation of the slide 463 as shown in arrows and FIGS. 62 and 62A. Rotation of the slide 463 is permitted by the resiliency of the length of the pins 460. The slide 463 is rotated until the slots 485 and 487 are aligned with the guide keys 477 and 479 and thereafter the tool 500 is moved to the left as shown in FIG. 62 to forcibly propel the pins 460 outwardly relatively to the insert 444 thereby enhancing securement of the surgical anchor 422 into the bone. When desired, the tool may also be used in operable engagement with the slide 462 to forcibly retract the pins 460 to the position shown in FIG. 45. That is, the keys are rearranged in operable engagement with the slide 463 and the tool 500 is pushed and turned or rotated to forcibly retract the pins to facilitate removal of the anchor assembly when necessary or desired by the surgeon.
Still another alternative form of compression screw assembly, generally represented by reference numeral 600, is illustrated in FIGS. 64 and 64A. The purpose of the compression screw assembly 600 is to maintain a guide 620 and anchor 622 in compressive relationship relative to each other as by fixing the guide 620 to the anchor 622. For purposes of this description, the guide 620 and anchor 622 are substantially similar to the guide 20 and anchor 22 described above. Thus, no further detailed description need be provided therefore at this time.
The compressive screw assembly 600 preferably includes a compression screw 630 and a driver 650. Both the compression screw 630 and driver 650 are formed from a material that is biocompatible with bone tissue or human substance.
As shown in FIG. 65, the compression screw 630 is provided with an elongated shank portion 632 and an enlarged head portion 633. The shank portion 632 of the compression screw 630 is provided with external threading 634 extending axially from a leading end 635 of the screw 630. The external threading 634 has a relatively fine pitch that corresponds to internal threading extending axially along an internally threaded bore 678 of anchor 622. The enlarged head portion 633 of screw 630 has a diameter slightly smaller than the diameter of a counterbore 688 formed in guide 620 and which is substantially similar to counterbore 38 in guide 20 (FIG. 2).
As shown in FIG. 65 and 66, a trailing end 636 of screw 630 is preferably configured to releasably accommodate a driving tool (not shown) capable of imparting turning movements to the screw 630. In a preferred form, and as shown, the trailing end 636 of screw 630 is configured with a socket-like opening 637 having a bottom 638. The socket-like opening 637 is configured to releasably accommodate a distal end of a driving tool. In a most preferred form of the invention, and as shown, the socket or opening 637 has a hexagonal-like cross-sectional configuration. It will be appreciated, however, that any suitable configuration including an elongated slot would equally suffice without detracting or departing from the spirit and scope of the present invention.
The screw 630 furthermore defines an elongated bore 640 that opens at opposite ends to the socket 637 and the leading end 635 of screw 630. As shown, the opening 640 has internal threading 642 extending along the length thereof. As shown in FIG. 65 and 67, the distal or leading end 635 of the screw 630 is provided with a series of radial through slots 643, 644, 645, and 646 that are arranged in generally normal relation relative to each other and which extend axially inwardly from the fray or distal end 635 for a predetermined distance.
Moreover, and as shown in FIG. 65, the internal bore 640 and the internal threading 642 narrow toward the fray or distal end 635 of screw 630 in the area of the slots 643, 644, 645 and 646.
As mentioned above, the compression screw assembly 600 further includes a driver 650 to be arranged in combination with the screw 630. The driver 650 is illustrated in FIGS. 68, 69 and 70. Driver 650 includes a shank portion 652 and an enlarged headed portion 654. The shank portion 652 of driver 650 is provided with external threading 656 extending axially from a leading end 658 of the driver 650. The external threading 656 has a relatively fine pitch that corresponds to the internal threading 642 provided bore 640 of screw 630. The enlarged head portion 654 of driver 650 has a diameter slightly smaller than that which can be endwise accommodated within the socket 637 of screw 630. As will be appreciated from an understanding of the compression screw assembly 630, the length of the shank portion 652 is sufficient such that the distal or free end 658 operably extends to and through the slotted end of screw 630 when the head portion 654 bottoms at the floor 638 of socket 637.
As will be appreciated from an understanding of the compression screw assembly 600, the compression screw 630 is threaded into the anchor assembly 622 as shown in FIG. 64, to draw the guide 620 into compressive relationship relative to the anchor 622. Thereafter, the driver 650 is threaded into engagement with the internal threading 642 of screw 630. Notably, the outside diameter of the shank portion 632 of screw 630 is substantially constant as long as driver 650 remains out of engagement with the slotted end 635 of screw 630. Once the appropriate compression has been achieved between guide 620 and anchor 622, the driver 650 is further engaged with the compression screw as shown in FIG. 73. As a result, the slotted end 635 of screw 630 is expanded radially outwardly thus providing for a compressive fit which prevents the compression screw assembly 600 from rotating relative to the anchor 622 and thereby maintaining the compressive relationship between the guide 620 and anchor 622.
As mentioned above, and as schematically represented in FIG. 74, a series of screws 28 are used to fasten plate 32 of guide 20 to bone fragment 18. Another aspect of the present invention relates to a preferred form of construction for the screw 28 used to fasten the plate 32 of guide 20 to the bone fragment 18.
In the preferred embodiment, and as shown in FIG. 75, screw 28 comprises an elongated cannulated fastener 700 and a driver 702. As will be appreciated, fastener 700 is formed from a material that is biocompatible with bone tissue and includes a shank portion 710 and an enlarged head portion 712. The shank portion 710 of fastener 700 is provided with external threading 714 extending axially from a leading end 716 of the fastener 700. The external threading 714 has a pitch that promotes purchase and securement of the fastener 700 within the bone substance. The enlarged head portion 712 of fastener 700 is configured to cooperate with the shape of the throughhole 34 in the plate 32 of guide 20. In the illustrated embodiment, the head portion 712 of fastener 700 has a frusto-conical like configuration that cooperates with a countersunk configuration or recess in the throughhole 34 to secure the plate 32 to the bone 18. It will be appreciated, however, that shapes other than that shown for the head portion 712 and throughhole 34 would equally suffice without detracting or departing from the spirit and scope of the disclosure.
As shown in FIG. 76, a trailing end 718 of fastener 700 is preferably configured to releasably to accommodate a driving tool (not shown) capable of imparting turning movements to the fastener 700. In a preferred form, and as shown, the trailing end 718 of fastener 700 is configured with an elongated slot or opening 720. The slot 720 is configured to releasably accommodate a distal end of a driving tool. As will be appreciated, however, any suitable configuration including a socket would equally suffice for releasably accommodating a distal end of a driving tool without detracting or departing from the spirit and scope of the present invention.
The cannulated fastener 700 furthermore defines an elongated bore 722 that opens at opposite ends 716, 718 of fastener 700. As shown in FIGS. 76 and 77, the bore or opening 722 has a first section 724 opening to the first end 716 of fastener 700 and having a first diameter and a second counterbore portion 726 opening to the trailing or second end 718 of fastener 700 and having a second diameter. Notably, the diameter of bore 726 is larger than the diameter of bore or opening 722 and, thus, a radial wall or annular shoulder 727 is defined by the differences in diameters therebetween. As shown in FIGS. 77 and 79, the distal or leading end 716 of the fastener 700 is provided with a series of radial through slots 728, 730, 732 and 734 that are arranged in generally normal relation relative to each other and which extend axially inwardly from the first or distal end 716 of fastener 700 for a predetermined distance. As shown, and for purposes described hereinafter, the diameter of the first portion 724 of bore 722 narrows or is reduced in the area of the slots 728 through 734 while the outside diameter of the fastener remains substantially constant.
As will be appreciated from an understanding of this embodiment, the axial length of the shank portion 710 of fastener 700 is such that when the fastener is passed through the throughhole 34 in the plate 32 of guide 20 and secured within the bone 18, the axial lengthwise portion of the shank 710 with the slots formed therein will extend beyond the bone 18 by a distance equal to about the length of the slots 728 through 734. Of course, during surgery, a surgeon may have a collection of different fasteners to choose from; with each fastener having a different length such that a proper relationship of the fastener to bone thickness is readily obtainable for the surgeon.
As mentioned above, this form of screw 28 further includes a driver 702 arranged in combination with fastener 700. A preferred form of driver 702 is illustrated in FIGS. 80 through 82. As shown, drive 702 preferably includes a one-piece member 750 formed from a material that is biocompatible with human bone tissue and substance. Driver member 750 includes a first section 752 with a substantially constant diameter along its length and an axially aligned second section 754 having a substantially constant diameter along its length. The second section 754 has a larger diameter than the first section 752 and, thus, a radial wall or annular should 757 is defined therebetween.
In the illustrated embodiment, the annular shoulder or annular wall 757 on the driver 702 generally corresponds to the radial wall or annular shoulder 727 defined by fastener 700. It is important to note, however, the axial length of the first section 752 extending between the radial wall or annular shoulder 757 and the free end of driver member 750 is generally equal to the distance separating the radial wall or annular shoulder 727 from the distal or free end 716 of fastener 700. Moreover, the first section 752 of driver 702 is sized to establish a sliding fit within the first section 724 of bore 722 defined by fastener 700. In a most preferred form of the invention, the second section 754 of driver 702 is sized to establish a sliding fit within the second section 726 of bore 722 defined by fastener 700.
As will be appreciated from an understanding of the screw 28, and as shown in FIG. 75, the first or forward end 716 of the fastener 700 is passed endwise through the throughbore 34 in plate 32 of guide 20 and the shank portion 710 is threaded into the bone 18 by turning the head portion 712. Ultimately, the head portion 712 will contact the plate 32 and draw the guide 620 into a secured relationship relative to the bone. At this point, the slotted free end of the fastener 700 will extend beyond the bone 18 on that side thereof opposite from the plate 32 of guide 20. Notably, as the fastener 700 is secured within the bone 18, the outside diameter of the shank portion 710 of screw 700 is substantially constant as long as the driver 702 remains out of engagement with the fastener 700. Once the appropriate securement has been achieved between guide 620 and cannulated fastener 700, the driver 702 is driven through the bore 722 of fastener 700 as shown in FIG. 83. When the driver 702 is fully inserted into the fastener 700, as when the shoulder 757 on the driver member 750 engages with the shoulder 727 on the fastener 700, the slotted end 716 of fastener 700 is expanded radially outwardly thus preventing inadvertent rotation of the fastener 700 thereby maintaining the secured relationship between the guide 20 and bone 18 as shown in FIG. 75.
FIG. 84 illustrates an additional alternative embodiment for a surgical fastener assembly 800 in accordance with the principles of the present invention. As can be seen in FIG. 84, surgical fastener assembly 800 includes, as did previously disclosed embodiments, an anchor assembly 810, a guide 850, a fastener, or compression screw, 860 and screws 880, one of which is illustrated in FIG. 84. Surgical fastener assembly 800 is utilized in the same manner as are previously disclosed embodiments. A first portion 822 of anchor assembly 810 is threaded into a first bone portion and a second portion 824 of anchor assembly 810 is disposed through a second bone portion, where a fracture extends between the first bone portion and the second bone portion. Tangs 834 are extended from anchor assembly 810 where they extend into the first bone portion. Sleeve 852 of guide 850 is positioned around the second portion 824 of anchor assembly 810. Fastener 860 is inserted into and through guide 850 where fastener 860 threadedly engages with anchor assembly 810 and operably couples to guide 850. By threading fastener 860 into anchor assembly 810, guide 850, which is attached to the second bone portion, is drawn into a compressive relationship with anchor assembly 810, thus compressing the first bone portion with the second bone portion. Further description of the operation and use of surgical fastener assembly 800 will be provided later in this specification.
As will also be further described in additional detail, anchor assembly 810 includes an anchor 820, a tang, or pin, assembly 830, and an actuator 840, which is not visible in FIG. 84 but which can be seen in FIG. 85.
In further describing guide 850, as can be seen in FIG. 84 and as was described in connection with other disclosed embodiments, guide 850 includes a sleeve 852 and a plate 854. Sleeve 852 is located at a first end 855 of plate 854. Plate 854 includes a plurality of screw apertures 857 through which are received screws 880 which serve to secure plate 854 to the second bone portion. Sleeve 852 defines a longitudinal bore within it. The second unthreaded portion 824 of anchor 820, which is disposed within the second bone portion, is received within the bore of sleeve 852.
As can be seen in FIG. 84, a driving tool receiving slot 824A is provided within second portion 824 of anchor 820. Driving tool receiving slot 824A receives within it structure of a driving tool that is used to rotate anchor assembly 810, and thus anchor 820, in order to thread anchor assembly 810 into the first bone portion.
As can also been seen in FIG. 84, second portion 824 of anchor 820 also includes two flats 824B (only one of which is visible in FIG. 84) on the outside circumference of second portion 824. The flats 824B are on opposed sides of second portion 824 and are thus 180° from each other around the circumference of second portion 824. Each flat 824B provides a non-conforming surface (with respect to the circularly-shaped non-flats portion of the circumference of second portion 824) on the circumference of second portion 824. The internal bore of sleeve 852 of guide 850 is formed in a complementary configuration with respect to second portion 824 such that, as second portion 824 is received within sleeve 852, the flats 824B interact with the complementary surfaces defining the bore of sleeve 852 to prevent rotation of anchor assembly 810 within sleeve 852. Two flats 824B are provided 180° from each other in order to provide for ease of aligning second portion 824 for positioning within sleeve 852. If only one flat was provided, second portion 824 could only be positioned in one orientation such that it could be received within sleeve 852. However, the present invention can be practiced by utilizing various quantities and configurations for flats 824B. Additionally, the present invention is not limited to only utilizing the abovedescribed structure for preventing rotation of anchor assembly 810 within sleeve 852. Many other configurations for mating structures on the anchor assembly and sleeve could be utilized.
Guide 850 also defines a fastener aperture 856 through which fastener 860 extends when it is threadedly mated with anchor assembly 810. As was disclosed when discussing previous embodiments, when fastener 860 is inserted through fastener aperture 856, the threaded shank 864 of fastener 860 engages with internal threading that is included within second portion 824 of anchor 820. The head 862 of fastener 860 engages with the structure of guide 850 that defines fastener aperture 856 such that as fastener 860 is threaded within second portion 824 of anchor 820, guide 850 is drawn into a compressive relationship with anchor assembly 810.
As will be further discussed later in this specification, fastener 860 includes a retainer 870 on its threaded shank portion 864. When fastener 860 has been threaded into anchor assembly 810, retainer 870 locks together fastener 860 and anchor assembly 810 such that, in the absence of a force applied specifically to withdraw fastener 860 from anchor assembly 810, fastener 860 will not back-out of anchor assembly 810. Inadvertent backing-out of fastener 860 from anchor assembly 810 would lessen the compressive force which joins the first bone portion to the second bone portion.
FIGS. 85 and 86 illustrate anchor assembly 810. As was described previously, anchor assembly 810 includes anchor 820, tang assembly 830, and actuator 840. Each of these components will now be described in further detail. Anchor 820 is comprised of an elongated structure that defines a hollow bore which extends longitudinally through anchor 820. Anchor 820 includes a first externally threaded portion 822 and a second portion 824. As was explained earlier, first externally threaded portion 822 is threaded into the first bone portion and second portion 824 is disposed within the second bone portion. First portion 822 of anchor 820 includes an open end 821, through which, as will be explained, is inserted tang assembly 830. First portion 822 also defines a plurality of slots 826 that extend completely through the structure of anchor 820 such that openings exist within first portion 822 that extend from the bore of anchor 820 through the exterior structure of anchor 820. There is a slot 826 provided in anchor 820 for each of the tangs 834 that are included in tang assembly 830.
Tang assembly 830 is comprised of a circular base portion 832 and a plurality of tangs 834 which extend from base 832. Base 832 defines a bore that extends therethrough which is internally threaded. Tangs 834 extend from base 832 and, whereas the illustrated embodiment includes four tangs, any number of tangs can be utilized in the present invention. As can be understood, if other than four tangs were utilized, a like number of slots 826 would be provided in anchor 820.
FIGS. 87 and 88 further illustrate tang assembly 830. As can be seen, each tang 834 includes an internally chamfered surface 834A and outside chamfered surfaces 834B. The operation of tang assembly 830 will be described later in this specification.
Tang assembly 830 is received within the bore that is defined by anchor 820. As tang assembly 830 is positioned within anchor 820, each tang 834 is positioned within one of the slots 826 that are included in anchor 820. The structure of anchor 820 that defines slots 826 may extend slightly within the bore defined by anchor 820 such that as the tangs 834 are positioned within the slots 826, the tang assembly 830 is not able to rotate about its longitudinal axis within anchor 820. The tang assembly 830 is not able to rotate within anchor 820 due to the interaction of the structure that defines slots 826 with tangs 834. The purpose of not allowing tang assembly 830 to rotate within anchor 820 will become clear later in this specification.
The present invention is not limited to any particular methodology for preventing rotation of tang assembly 830 within anchor 820. Any number of different structural configurations could be provided within the bore of anchor 820. Additionally, tangs 834 could be formed such that their ends could extend slightly up into slots 826 in order to prevent rotation. The tangs 834 would not yet extend completely up through slots 826 but yet would extend into slots 826 a sufficient distance such that they would contact the structure that defines the slots to prevent their rotation.
After tang assembly 830 has been inserted within anchor 820, cap 828 is fitted within open end 821 of anchor 820. Cap 828 may be snap-fitted within open end 821. Cap 828 serves to enclose first portion 822 of anchor 820 for purposes of retaining tang assembly 830 within anchor 820 when, for example, actuator 840 is not engaged with tang assembly 830, preventing material, e.g. bone particles, from entering the internal bore of anchor 820 as the anchor assembly 810 is threaded into the first bone portion, and for providing structure to allow anchor assembly 810 to be more easily threaded into the first bone portion.
After tang assembly 830 has been inserted within anchor 820, actuator 840 is positioned within anchor 820. Actuator 840 includes a head portion 842 and a partially threaded shank portion 844. Head portion 842 includes a bore along its longitudinal axis such that, as can be understood, a driving tool may be received within the bore in order to rotate actuator 840. Thus, for example, a hexagonally shaped bore may be provided that would receive within it a hexagonally shaped driving tool. As will be further explained, actuator 840 is inserted within anchor 820 where threaded shank portion 844 is threaded into the internally threaded bore that is defined by base 832 of tang assembly 830. Thus, actuator 840 is not threaded into the bore defined by anchor 820, but rather, is threaded into the bore defined by base 832 of tang assembly 830.
The operation of anchor assembly 810 will now be described in further detail. FIG. 89 is a cross-sectional view of anchor assembly 810 where tangs 834 are in a retracted position within anchor 820. As can be seen in FIG. 89, anchor 820 defines a bore 825 within it that includes a larger diameter portion 825A, which is unthreaded and which receives within it tang assembly 830, and a smaller diameter portion 825B, a portion of which is threaded and which receives within it the threaded shank portion 864 of compression screw 860. As can be seen, tang assembly 830 has been positioned within bore 825A of anchor 820. Base portion 832 of tang assembly 830 is located at a first end 822A of bore 825A. When base 832 is in this position tangs 834 are retracted within anchor 820.
As can also be seen in FIG. 89, actuator 840 is positioned within bore 825 of anchor 820. The threaded shank portion 844 of actuator 840 extends within bore portion 825A and the head 842 of actuator 840 is received within bore portion 825B. As can be seen, a shoulder 820A is formed within anchor 820 which engages with head 842 of actuator 840. Shoulder 820A restricts actuator 840 from being inserted further within bore 825 beyond the point at which shoulder 820A contacts head 842. As can be seen, threaded shank portion 844 has been threaded into base 832 of tang assembly 830.
In FIG. 89, each tang 834 is positioned within, and consequently aligned with, a slot 826. However, in this position for tang assembly 830, tangs 834 do not extend up through slots 826 and thus do not extend beyond the outer surface of anchor 820. As can also be seen in FIG. 89, a portion of the structure of anchor 820 that defines slots 826 includes a slanted or curved surface 826A. Curved surface 826A defines a rear end of each slot 826. As can also be seen, the internally chamfered surface 834A of each tang 834 is oriented such that it faces curved surface 826A.
FIGS. 90 and 91 illustrate anchor assembly 810 in a configuration where tangs 834 have been moved to a position where they extend from anchor 820. In order to extend tangs 834 from anchor 820, a user would insert a driver tool through bore 825 of anchor 820 and engage the driver tool with head 842 of actuator 840. The user would rotate, in a clockwise direction, actuator 840 within anchor 820. Thus, as can be understood, actuator 840 is free to rotate within bore 825 of anchor 820. Since threaded shank portion 844 of actuator 840 is threaded into base 832 of tang assembly 830, as actuator 840 is rotated in a clockwise direction, base 832, and consequently tang assembly 830, is moved up the threaded shank 844 of actuator 840 and toward the second end 822B of bore 825A. As can be understood, as tang assembly 830 is moved toward second end 822B, the chamfered ends 834A of tangs 834 will engage with the slanted surfaces 826A of each slot 826. Thus, due to the complimentary surfaces of tangs 834 and slots 826, as tang assembly 830 is moved along threaded shank 844 of actuator 840, tangs 834 will be moved up through slots 826 and be extended from anchor 820.
In order for tangs 834 to be able to extend up through slots 826, tangs 834 are manufactured from a deformable material. Thus, tangs 834 may be formed from stainless steel or any other material that is able to deform as tangs 834 are moved up through slots 826. Tangs 834 may be formed from any of a variety of materials with a consideration being that tangs 834 must be deformable such that they can extend outward from anchor 820. However, tangs 834 must be strong enough such that they can provide for purchase between anchor 820 and the first bone portion. Thus, as described above, tangs 834 are not pre-formed into a configuration where, when they are moved within anchor 820, they extend from anchor 820 because of their pre-formed configuration, e.g., in an arcuate shape. Rather, in the present embodiment, tangs 834 are formed of a deformable material and the movement of tangs 834 within anchor 820 form the tangs such that they are able to extend from anchor 820.
As can also be seen in FIG. 91, structure of anchor 820 that defines bore 825 engages with base 832 at second end 822B of bore 825A such that tang assembly 830 is not able to be moved further within bore 825A beyond second end 822B. This will prevent tangs 834 from being extended too far through slots 826, which could result in the tangs 834 not being shaped in a desired form when extended from anchor 820. For example, if base 832 was moved too far within bore 825, tangs 834 could be bent backwards and thus not achieve the desired anchoring strength within the first bone portion. Additionally, if base 832 was moved too far within bore 825, base 832 could become threadedly disengaged from actuator 840. However, in the disclosed embodiment this will not occur because base 832 defines a bore with a diameter that is smaller than the diameter of the unthreaded portion of shank 844. Thus, the base 832 of tang assembly 830 cannot travel on shank 844 beyond the threaded portion of shank 844.
Thus, as explained above, clockwise rotation of actuator 840 within anchor 820 moves tang assembly 830 within anchor 820. As base 832 of tang assembly 830 is moved toward second end 822B of bore 825A, tangs 834 engage with the curved surfaces 826A that define the rear of slots 826 in anchor 820 such that tangs 834 will extend out through slots 826 and from anchor 820. The interaction of tangs 834 and curved surfaces 826A deform tangs 834 such that they extend from anchor 820 and are inserted within the first bone portion.
FIG. 92 illustrates tang assembly 830 as it would be configured after it has been moved within anchor 820 to extend tangs 834 from anchor 820. Whereas it was not discussed previously when describing tang assembly 830, base 832 also includes a chamfered surface 833. Chamfered surface 833 may be seen in FIGS. 85 and 86 and the purpose of chamfered surface 833 is to engage with cap 828 to aid in preventing end cap 828 from being dislodged during tang retraction within anchor 820, as will be explained below. Thus, chamfered surface 833 wedges cap 828 into place within anchor 820.
In order to retract tangs 834 back within anchor 820 after the tangs have been deployed from the anchor as described above, the operator would rotate actuator 840 in a counter-clockwise direction. Thus, as can be understood, since tangs 834 of tang assembly 830 are embedded within the first bone portion, as actuator 840 is rotated counter-clockwise within anchor 820, actuator 840 will be backed-out of base 832. Thus, actuator 840 can be entirely removed from tang assembly 830 and, consequently from bore 825 of anchor 820. In order to retract tangs 834 into anchor 820, one possible methodology is to drive base 832 back toward first end 822A of bore 825A.
One possible method for driving base 832 back toward first end 822A is to insert a tool within bore 825 that would engage with base 832 and apply sufficient force to base 832 to drive base 832 toward first end 822A such that tangs 834 are retracted back into anchor 820. The driving tool is not required to be threaded into base 832, rather, it is only necessary to engage with base 832 such that sufficient force may be applied to base 832 to force it toward first end 822A. As base 832 is driven toward first end 822A, tangs 834 will be withdrawn from the first bone portion and retracted back through slots 826. Thus, as tangs 834 are drawn back through slots 826, tangs 834 will again deform such that they will return substantially to their original configuration such that they can once again be received within bore 825A of anchor 820. As such, tangs 834 are able to withstand at least one complete extension and retraction cycle without materially failing.
It is possible to utilize actuator 840 as the driving tool for forcing base 832 of tang assembly 830 toward first end 822A of bore 825A, as described above. After actuator 840 has been completely retracted from base 832 by rotating actuator 840 counter-clockwise, actuator 840 may be re-inserted within bore 825 such that it engages with base 832. Actuator 840 does not necessarily have to threadedly engage with base 832, but rather, only needs to structurally engage with base 832 such that force can be applied to base 832 in order to force it back toward first end 822A. The present invention is not limited to any particular engagement methodology for engaging a driver tool with base 832 to drive base 832 toward first end 822A. A variety of engagement methodologies may be utilized. All that is required is that a driving tool, which could be actuator 840, engage with base 832 such that sufficient force may be applied to base 832 to move it within bore 825 toward first end 822A. Thus, by utilizing the above-described methodology for retracting tangs 834 back within anchor 820, threaded engagement is not required between a driving tool and each individual tang.
Whereas a methodology for retracting tangs 834 within anchor 820 has been described above, the present invention is not limited to utilizing only this methodology. For example, if sufficient force is applied to actuator 840, counter-clockwise rotation of actuator 840, while threaded shank portion 844 is still threadedly engaged with base portion 832, could serve to retract tangs 834 within anchor 820. In this manner, counter-clockwise rotation of actuator 840 within base 832 would drive base 832 toward first end 822A of bore 825A which would in-turn retract tangs 834 within anchor 820.
FIG. 93 illustrates an embodiment for fastener, or compression screw, 860. As was mentioned previously, compression screw 860 includes a head portion 862 and a threaded shank portion 864. Head portion 862 defines within it a hexagonally shaped bore 863 that receives a driving tool within it. Also as was described previously. threaded shank portion 864 extends through fastener aperture 856 in guide 850 and is threadedly received within second portion 824 of anchor 820. Head portion 862 operably engages with guide 850 such that as shank portion 864 is further threaded into second portion 824 of anchor 820, anchor assembly 810 and guide 850 are brought into a compressive relationship with each other thus joining the first bone portion with the second bone portion.
As was mentioned previously, included on threaded shank portion 864 of fastener 860 is a retainer 870. Retainer 870 is formed as an ultrahigh molecular weight polyethylene (UHMWPE) insert, or any other material with like properties, and is positioned within a bore that is included in threaded shank portion 864. A portion of retainer 870 extends beyond the outer circumference of threaded shank portion 864. As threaded shank portion 864 is threaded into anchor assembly 810, it can be understood that retainer 870 will be compressed between the structure defining the bore in second portion 824 of anchor 820 and shank portion 864 of fastener 860. Since retainer 870 is formed of a deformable material, it will deform slightly such that shank portion 864 can be threaded into anchor assembly 810, however, it will provide additional frictional force between anchor assembly 810 and shank portion 864 such that, in the absence of a force specifically applied to retract fastener 860 from anchor assembly 810, fastener 860 will not back-out from anchor assembly 810. Thus, retainer 870 provides a self-locking capability for fastener 860 within anchor assembly 810. Examples of other deformable materials that may be utilized for retainer 870 are nylon, acetal, polytetrafluoroethylene (PTFE), and polyetheretherketone (PEEK). However, again, the present invention is not limited to only utilizing these exemplary deformable materials for retainer 870.
As can be understood from the above description, surgical fastener assembly 800 is utilized to join a first bone portion to a second bone portion where there is a fracture therebetween. In utilizing surgical fastener assembly 800, a user would thread externally threaded portion 822 of anchor 820 into the first bone portion. Guide 850 is secured to the second bone portion. Second portion 824 of anchor 820 is received within sleeve 852 of guide 850. As explained previously, anchor assembly 810 is prevented from rotating within sleeve 852 by the interaction of flats 824B and the internal structure defining the bore within sleeve 852.
When anchor 820 is threaded into the first bone portion, tangs 834 are in a retracted position within anchor 820. Actuator 840 is threadedly engaged with tang assembly 830. A driving tool is inserted through guide 850, which has been secured to the second bone portion, and through second portion 824 of anchor 820, which has been received within sleeve 852 of guide 850, to engage with actuator 840 to rotate actuator 840 in a clockwise direction. This clockwise rotation of actuator 840 will move tang assembly 830 within anchor 820 and will extend tangs 834 from anchor 820, as described previously. Tangs 834 embed themselves within the first bone portion such that the purchase between anchor 820 and the first bone portion is enhanced.
After tangs 834 have been extended from anchor 820, fastener 860 is inserted through fastener aperture 856 where fastener 860 is threadedly received within second portion 824 of anchor 820. Head 862 of fastener 860 operably engages with guide 850. Thus, as fastener 860 is further threaded into anchor assembly 810, guide 850 is drawn into a compressive relationship with anchor assembly 810 such that the second bone bone portion is joined to the first bone portion.
In order to remove the surgical fastener assembly 800 from the body of the patient, a user would decouple fastener 860 from anchor assembly 810. Guide 850 can then be removed from the second bone portion by removing screws 880 from the second bone portion. In order to remove anchor assembly 810, tangs 834 are retracted within anchor 820 by any of the methods described previously. Once tangs 834 have been retracted into anchor 820, anchor assembly 810 may be unthreaded from the first bone portion.
The disclosed embodiments are illustrative of the various ways in which the present invention may be practiced. Other embodiments can be implemented by those skilled in the art without departing from the spirit and scope of the present invention.

Claims (19)

What is claimed is:
1. A surgical fastener assembly for coupling first and second bone portions across a fracture therebetween, comprising
an anchor, said anchor including a first externally threaded portion adapted to be disposed in the first bone portion and a second portion which is adapted to be at least partially disposed in the second bone portion;
at least one pin operably associated with said first portion of said anchor, wherein when said pin is in a retracted position said pin is disposed within said anchor and wherein when said pin is in an extended position at least a portion of said pin extends outward from said anchor;
an actuator, said actuator disposed within said anchor and operably coupled with said at least one pin;
a guide, said guide adapted to be fixedly secured to the second bone portion and including a sleeve, said second portion of said anchor received within said sleeve; and
a fastener, said fastener including a head portion and an externally threaded shank portion wherein said shank portion threadedly engages with said anchor and said head portion operably engages with said guide.
2. The surgical fastener assembly of claim 1 wherein said at least one pin has an arcuate configuration.
3. The surgical fastener assembly of claim 1 wherein said at least one pin extends from a base, said base defining an internally threaded bore and said base movably disposed within said first portion of said anchor.
4. The surgical fastener assembly of claim 3 wherein said actuator is externally threaded along a first portion thereof and wherein said first portion of said actuator is threadedly coupled to said internally threaded bore of said base.
5. The surgical fastener assembly of claim 3 wherein a plurality of pins extend from said base.
6. A surgical fastener assembly comprising:
an anchor, said anchor including external threading extending along a first portion thereof and said anchor defining a longitudinal bore and at least one slot;
at least one pin operably associated with said first portion of said anchor, wherein when said pin is in a retracted position said pin is disposed within said longitudinal bore of said anchor and wherein when said pin is in an extended position at least a portion of said pin extends outward from said anchor through said slot;
an actuator, said actuator disposed within said bore of said anchor and operably coupled with said at least one pin;
a guide, said guide including a sleeve, a second portion of said anchor received within said sleeve; and
a fastener, said fastener threadedly engaged within said bore of said anchor and operably engaged with said guide.
7. The surgical fastener assembly of claim 6 wherein said at least one pin has an arcuate configuration.
8. The surgical fastener assembly of claim 6 wherein said at least one pin extends from a base, said base defining an internally threaded bore and said base movably disposed within said longitudinal bore of said anchor.
9. The surgical fastener assembly of claim 8 wherein said actuator is externally threaded along a first portion thereof and wherein said first portion of said actuator is threadedly coupled to said internally threaded bore of said base.
10. The surgical fastener assembly of claim 6 wherein said at least one pin is formed from a deformable material.
11. The surgical fastener assembly of claim 6 further comprising a retainer, at least a portion of said retainer positioned between structure defining said longitudinal bore of said anchor and said fastener.
12. The surgical fastener assembly of claim 11 wherein said retainer is inserted within said fastener and wherein said retainer is formed of a deformable material.
13. A method of coupling a first bone portion to a second bone portion across a fracture therebetween comprising the steps of:
threading a first portion of an anchor into the first bone portion, said first anchor portion including external threading and said anchor including a second portion disposed within the second bone portion;
attaching a guide to the second bone portion, said guide including a sleeve;
positioning said second portion of said anchor within said sleeve;
extending a pin from said anchor such that said pin enters the first bone portion; and
drawing said guide into a compressive relationship with said anchor.
14. The method of claim 13 wherein said step of extending a pin from said anchor comprises the step of threading an actuator into a pin assembly, said pin assembly including a base which defines an internally threaded bore and wherein said pin extends from said base, said actuator threaded into said bore.
15. The method of claim 13 wherein said step of extending a pin from said anchor comprises the step of deforming said pin as said pin is extended from said anchor.
16. The method of claim 13 wherein said step of drawing said guide into a compressive relationship with said anchor comprises the step of threading a compression screw into said anchor, said compression screw including a threaded shank portion and a head portion, said shank portion threaded into said anchor and said head portion operably coupled to said guide.
17. The method of claim 16 further comprising the step of locking said threaded shank portion of said compression screw within said anchor.
18. The method of claim 17 wherein said step of locking said threaded shank portion of said compression screw within said anchor includes the step of inserting a deformable insert within said shank portion of said compression screw.
19. The method of claim 13 wherein said pin has an arcuate shape.
US09/239,862 1996-03-13 1999-01-29 Surgical fastener assembly Expired - Lifetime US6183474B1 (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
US08/680,620 US5976139A (en) 1996-07-17 1996-07-17 Surgical fastener assembly
AU36625/97A AU3662597A (en) 1996-07-17 1997-07-14 Surgical fastener assembly
EP97933436A EP0925038A4 (en) 1996-07-17 1997-07-14 Surgical fastener assembly
JP50622698A JP3949725B2 (en) 1996-07-17 1997-07-14 Surgical fastener assembly
PCT/US1997/012232 WO1998002105A1 (en) 1996-07-17 1997-07-14 Surgical fastener assembly
US09/239,862 US6183474B1 (en) 1996-03-13 1999-01-29 Surgical fastener assembly
DE60031766T DE60031766T2 (en) 1999-01-29 2000-01-27 SURGICAL CLOSURE DEVICE
AU32139/00A AU757037B2 (en) 1996-07-17 2000-01-27 Surgical fastener assembly
CA002360675A CA2360675C (en) 1996-07-17 2000-01-27 Surgical fastener assembly
EP00909967A EP1154725B1 (en) 1996-07-17 2000-01-27 Surgical fastener assembly
JP2000595599A JP2002535068A (en) 1996-07-17 2000-01-27 Surgical fastener assembly
PCT/US2000/001709 WO2000044293A1 (en) 1996-07-17 2000-01-27 Surgical fastener assembly
AT00909967T ATE344641T1 (en) 1999-01-29 2000-01-27 SURGICAL CLOSURE DEVICE
US09/729,243 US6695844B2 (en) 1996-03-13 2000-12-05 Surgical fastener assembly
JP2005282906A JP2006081914A (en) 1999-01-29 2005-09-28 Surgical fastening device assembly

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/615,022 US5984970A (en) 1996-03-13 1996-03-13 Arthroplasty joint assembly
US08/680,620 US5976139A (en) 1996-07-17 1996-07-17 Surgical fastener assembly
US09/239,862 US6183474B1 (en) 1996-03-13 1999-01-29 Surgical fastener assembly

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US08/615,022 Continuation-In-Part US5984970A (en) 1996-03-13 1996-03-13 Arthroplasty joint assembly
US08/680,620 Continuation-In-Part US5976139A (en) 1996-03-13 1996-07-17 Surgical fastener assembly

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/729,243 Division US6695844B2 (en) 1996-03-13 2000-12-05 Surgical fastener assembly

Publications (1)

Publication Number Publication Date
US6183474B1 true US6183474B1 (en) 2001-02-06

Family

ID=27760186

Family Applications (3)

Application Number Title Priority Date Filing Date
US08/680,620 Expired - Lifetime US5976139A (en) 1996-03-13 1996-07-17 Surgical fastener assembly
US09/239,862 Expired - Lifetime US6183474B1 (en) 1996-03-13 1999-01-29 Surgical fastener assembly
US09/729,243 Expired - Fee Related US6695844B2 (en) 1996-03-13 2000-12-05 Surgical fastener assembly

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US08/680,620 Expired - Lifetime US5976139A (en) 1996-03-13 1996-07-17 Surgical fastener assembly

Family Applications After (1)

Application Number Title Priority Date Filing Date
US09/729,243 Expired - Fee Related US6695844B2 (en) 1996-03-13 2000-12-05 Surgical fastener assembly

Country Status (6)

Country Link
US (3) US5976139A (en)
EP (1) EP1154725B1 (en)
JP (1) JP2002535068A (en)
AU (1) AU757037B2 (en)
CA (1) CA2360675C (en)
WO (1) WO2000044293A1 (en)

Cited By (147)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6443954B1 (en) * 2001-04-24 2002-09-03 Dale G. Bramlet Femoral nail intramedullary system
US6511481B2 (en) 2001-03-30 2003-01-28 Triage Medical, Inc. Method and apparatus for fixation of proximal femoral fractures
US20030078565A1 (en) * 2001-08-03 2003-04-24 Stefan Vilsmeier Fixing device
US20030158562A1 (en) * 2002-02-15 2003-08-21 Feigl Alexander J. Devices and methods for positioning sutures
US6632224B2 (en) 1996-11-12 2003-10-14 Triage Medical, Inc. Bone fixation system
US6648890B2 (en) 1996-11-12 2003-11-18 Triage Medical, Inc. Bone fixation system with radially extendable anchor
US6648889B2 (en) * 2001-04-24 2003-11-18 Dale G. Bramlet Intramedullary hip nail with bifurcated lock
US6685706B2 (en) 2001-11-19 2004-02-03 Triage Medical, Inc. Proximal anchors for bone fixation system
US20040127906A1 (en) * 2002-07-19 2004-07-01 Culbert Brad S. Method and apparatus for spinal fixation
US20040172030A1 (en) * 2001-10-18 2004-09-02 Kishore Tipirrneni System and method for the fixation of bone fractures
US20040193162A1 (en) * 2003-02-03 2004-09-30 Bramlet Dale G. Femoral neck compression screw system with ortho-biologic material delivery capability
US20040234356A1 (en) * 2001-08-15 2004-11-25 Parker John M. Self-attaching fastener
US20040236337A1 (en) * 2003-04-02 2004-11-25 Benoist Girard Sas Greater trochanteric re-attachment device
US20050010226A1 (en) * 2003-05-30 2005-01-13 Grady Mark P. Bone plate
US20050013679A1 (en) * 2001-08-15 2005-01-20 Ladoucer Harold A. Self-attaching fastener systems
WO2005025437A1 (en) * 2003-09-08 2005-03-24 Smith & Nephew, Inc. Orthopaedic plate and screw assembly
US6887243B2 (en) 2001-03-30 2005-05-03 Triage Medical, Inc. Method and apparatus for bone fixation with secondary compression
US20050143734A1 (en) * 1996-11-12 2005-06-30 Cachia Victor V. Bone fixation system with radially extendable anchor
US20050159749A1 (en) * 2004-01-16 2005-07-21 Expanding Orthopedics, Inc. Bone fracture treatment devices and methods of their use
US20050177158A1 (en) * 2004-02-09 2005-08-11 Doubler Robert L. Intramedullary screw and tang for orthopedic surgery
US20050182406A1 (en) * 2004-01-23 2005-08-18 Orbay Jorge L. System for stabilization of fractures of convex articular bone surfaces including subchondral support structure
US20050182405A1 (en) * 2004-01-23 2005-08-18 Orbay Jorge L. System for stabilization of fractures of convex articular bone surfaces including subchondral support structure
US20050216027A1 (en) * 2004-03-24 2005-09-29 Suh Sean S Extraction screwdriver
US6951561B2 (en) 2003-05-06 2005-10-04 Triage Medical, Inc. Spinal stabilization device
US20060004361A1 (en) * 2004-06-21 2006-01-05 Garry Hayeck Bone plate
US20060064094A1 (en) * 1998-10-26 2006-03-23 Expanding Orthopedics, Inc. Expandable orthopedic device
US20060089647A1 (en) * 2004-08-20 2006-04-27 Culbert Brad S Method and apparatus for delivering an agent
US20060189996A1 (en) * 2005-01-28 2006-08-24 Orbay Jorge L Nail plate and implantation jig therefor
US20060189987A1 (en) * 2002-05-30 2006-08-24 Orbay Jorge L Nail plate
US20060217711A1 (en) * 2003-01-16 2006-09-28 Stevens Bruce E Locking plate for bone anchors
US20060229617A1 (en) * 2005-02-25 2006-10-12 Orthomechanics Ltd. Intramedullary devices and methods of deploying the same
US20060235410A1 (en) * 2005-04-15 2006-10-19 Ralph James D Surgical expansion fasteners
EP1749490A1 (en) * 2005-08-05 2007-02-07 BIEDERMANN MOTECH GmbH Bone anchoring element
US7207993B1 (en) * 2000-02-03 2007-04-24 Pioneer Laboratories, Inc. Apparatus and method for repairing the femur
EP1797835A1 (en) * 2005-12-16 2007-06-20 DePuy Products, Inc. Orthopaedic device with locking barrel
US20070162026A1 (en) * 2001-10-18 2007-07-12 Fxdevices Llc System and method for a cap used in the fixation of bone fractures
US20070225819A1 (en) * 2006-03-24 2007-09-27 Depuy Products, Inc. Apparatus and method for the treatment of periprosthetic fractures
US20070260248A1 (en) * 2001-10-18 2007-11-08 Fxdevices, Llc Cannulated bone screw system and method
US20070299447A1 (en) * 2003-09-08 2007-12-27 Kohsuke Watanabe Orthopaedic plate and screw assembly
US20080086131A1 (en) * 2006-10-06 2008-04-10 Depuy Spine, Inc. Bone screw fixation
US20080147126A1 (en) * 2001-10-18 2008-06-19 Fxdevices, Llc System and method for a cap used in the fixation of bone fractures
US20080147127A1 (en) * 2001-10-18 2008-06-19 Fxdevices, Llc Bone screw system and method
US20080243132A1 (en) * 2001-10-18 2008-10-02 Fx Devices, Llc Tensioning system and method for the fixation of bone fractures
US20080243191A1 (en) * 2001-10-18 2008-10-02 Fx Devices, Llc Adjustable bone plate fixation system and metho
US20080269776A1 (en) * 2007-04-24 2008-10-30 Osteolign System and Method for Guidance and Implantation of Implantable Devices
US20080269807A1 (en) * 2007-04-19 2008-10-30 Stryker Trauma Gmbh Hip fracture device with static locking mechanism allowing compression
US20080269752A1 (en) * 2007-04-19 2008-10-30 Stryker Trauma Gmbh Hip fracture device with barrel and end cap for load control
US20080281326A1 (en) * 2007-03-20 2008-11-13 Kohsuke Watanabe Orthopaedic plate and screw assembly
US20080281364A1 (en) * 2007-05-08 2008-11-13 Spineworks Medical, Inc. Systems, devices and methods for stabilizing bone
US20080287951A1 (en) * 2007-03-22 2008-11-20 Stoneburner James D Segmented intramedullary structure
US20080294204A1 (en) * 2007-03-07 2008-11-27 Spineworks Medical, Inc. Systems, methods, and devices for soft tissue attachment to bone
US20080306537A1 (en) * 2007-06-08 2008-12-11 Interventional Spine, Inc. Method and apparatus for spinal stabilization
US20090005782A1 (en) * 2007-03-02 2009-01-01 Chirico Paul E Fracture Fixation System and Method
US20090012564A1 (en) * 2007-03-07 2009-01-08 Spineworks Medical, Inc. Transdiscal interbody fusion device and method
US7476253B1 (en) * 2004-08-11 2009-01-13 Biomet Manufacturing Corporation Humeral head preserving implant
US20090048606A1 (en) * 2001-10-18 2009-02-19 Fxdevices Llc Guide system and method for the fixation of bone fractures
US20090131991A1 (en) * 2001-10-18 2009-05-21 Kishore Tipirneni System and method for the fixation of bone fractures
US20090131936A1 (en) * 2001-10-18 2009-05-21 Kishore Tipirneni System and method for the fixation of bone fractures
US20090216260A1 (en) * 2008-02-20 2009-08-27 Souza Alison M Interlocking handle
US20090234398A1 (en) * 2005-08-31 2009-09-17 Chirico Paul E Implantable devices and methods for treating micro-architecture deterioration of bone tissue
US20090254089A1 (en) * 2001-10-18 2009-10-08 Pogo Screw, Llc Stabilization system and method for the fixation of bone fractures
US20090254129A1 (en) * 2007-04-30 2009-10-08 Kishore Tipirneni Bone screw system and method for the fixation of bone fractures
US20090276048A1 (en) * 2007-05-08 2009-11-05 Chirico Paul E Devices and method for bilateral support of a compression-fractured vertebral body
US20100069913A1 (en) * 2005-08-31 2010-03-18 Chirico Paul E Threaded bone filling material plunger
US20100113866A1 (en) * 2008-11-03 2010-05-06 Ian Lee Goldman Atraumatic medical device anchoring and delivery system
US20100152786A1 (en) * 2006-09-28 2010-06-17 Ogen Innovative Medical Devices Ltd. Orthopedic bone fixation
US20100161057A1 (en) * 2008-12-19 2010-06-24 Amicus, Llc Interbody Vertebral Prosthetic Device With Self-Deploying Screws
US20100168748A1 (en) * 2008-07-16 2010-07-01 Knopp Peter G Morselizer
US20100185289A1 (en) * 2009-01-20 2010-07-22 Incite Innovation Llc Interbody fusion device and method of operation
US20100217335A1 (en) * 2008-12-31 2010-08-26 Chirico Paul E Self-expanding bone stabilization devices
US7799030B2 (en) 2003-09-08 2010-09-21 Smith & Nephew, Inc. Orthopaedic plate and screw assembly
US20100312292A1 (en) * 2001-10-18 2010-12-09 Orthoip, Llc Lagwire system and method for the fixation of bone fractures
US20100331891A1 (en) * 2009-06-24 2010-12-30 Interventional Spine, Inc. System and method for spinal fixation
US20110166573A1 (en) * 2010-01-07 2011-07-07 Klaus Wenk Bone plate fixation system
US20120123415A1 (en) * 2010-11-17 2012-05-17 Vienney Cecile Devices, Methods and Systems for Remedying or Preventing Fractures
US8282675B2 (en) 2008-01-25 2012-10-09 Depuy Spine, Inc. Anti-backout mechanism
US8449544B2 (en) 2009-06-30 2013-05-28 Smith & Nephew, Inc. Orthopaedic implant and fastener assembly
US8460388B2 (en) 2011-10-28 2013-06-11 Incite Innovation Llc Spinal interbody device
US8491584B1 (en) 2012-04-13 2013-07-23 Orthopedic Designs North America, Inc. Intramedullary nail system with tang fixation
US8535322B1 (en) * 2012-11-07 2013-09-17 Roy Y. Powlan Hip nail and inertial insertion tooling
US8685104B2 (en) 2012-03-19 2014-04-01 Amicus Design Group, Llc Interbody vertebral prosthetic and orthopedic fusion device with self-deploying anchors
US8814912B2 (en) 2012-07-27 2014-08-26 Zimmer Spine, Inc. Bone stabilization member with bone screw retention mechanism
US8834469B2 (en) 2009-06-30 2014-09-16 Smith & Nephew, Inc. Orthopaedic implant and fastener assembly
US8858644B2 (en) 2009-01-08 2014-10-14 Memometal Technologies Orthopaedic implant for arthroplasty of the fingers
US8876822B2 (en) 2012-04-13 2014-11-04 Orthopedic Designs North American, Inc. Intramedullary nail system with tang fixation after lock screw placement
US9060809B2 (en) 2001-10-18 2015-06-23 Orthoip, Llc Lagwire system and method for the fixation of bone fractures
US9247963B2 (en) 2008-08-12 2016-02-02 Charles Kollmer Bone compression device and methods
US9433449B2 (en) 2012-04-13 2016-09-06 Orthopedic Designs North America, Inc Intramedullary nail system including tang-deployment screw with male interface
US9463091B2 (en) 2009-09-17 2016-10-11 Ldr Medical Intervertebral implant having extendable bone fixation members
US9522070B2 (en) 2013-03-07 2016-12-20 Interventional Spine, Inc. Intervertebral implant
US9522028B2 (en) 2013-07-03 2016-12-20 Interventional Spine, Inc. Method and apparatus for sacroiliac joint fixation
US9566165B2 (en) 2012-03-19 2017-02-14 Amicus Design Group, Llc Interbody vertebral prosthetic and orthopedic fusion device with self-deploying anchors
US9597194B2 (en) 2005-09-23 2017-03-21 Ldr Medical Intervertebral disc prosthesis
US9597192B2 (en) 2014-06-02 2017-03-21 Stryker European Holdings I, Llc Metacarpal rod anchor for a trapezometacarpal prosthesis
US20170143390A1 (en) * 2015-11-20 2017-05-25 Globus Medical, Inc. Expandable intramedullary systems and methods of using the same
CN105263429B (en) * 2013-11-07 2017-06-06 株式会社4S The master screw formula screwing device of the bone engagement device of thigh peri position portion fracture and the bone engagement device of thigh peri position portion fracture
US9693876B1 (en) 2012-03-30 2017-07-04 Ali H. MESIWALA Spinal fusion implant and related methods
US9713535B2 (en) 2006-02-15 2017-07-25 Ldr Medical Transforaminal intersomatic cage for an intervertebral fusion graft and an instrument for implanting the cage
US9795485B2 (en) 2007-06-08 2017-10-24 Ldr Medical Intersomatic cage, intervertebral prosthesis, anchoring device and implantation instruments
US9833331B2 (en) 2009-12-31 2017-12-05 Ldr Medical Anchoring device and system for an intervertebral implant, intervertebral implant and implantation instrument
US9839530B2 (en) 2007-06-26 2017-12-12 DePuy Synthes Products, Inc. Highly lordosed fusion cage
US9883951B2 (en) 2012-08-30 2018-02-06 Interventional Spine, Inc. Artificial disc
US9895236B2 (en) 2010-06-24 2018-02-20 DePuy Synthes Products, Inc. Enhanced cage insertion assembly
US9907638B2 (en) 2008-11-03 2018-03-06 Ian L. Goldman Atraumatic medical device anchoring and delivery system with enhanced anchoring
US9907597B2 (en) 2008-08-12 2018-03-06 Charles E. Kollmer Bone compression system and associated methods
US9913727B2 (en) 2015-07-02 2018-03-13 Medos International Sarl Expandable implant
US9931223B2 (en) 2008-04-05 2018-04-03 DePuy Synthes Products, Inc. Expandable intervertebral implant
US9937050B2 (en) 2013-05-16 2018-04-10 Ldr Medical Vertebral implant, vertebral fastening device of the implant and implant instrumentation
US9937055B1 (en) 2016-11-28 2018-04-10 Spine Wave, Inc. Scoring implant trial and implant inserter for spinal fusion system
US9968464B2 (en) 2014-01-17 2018-05-15 Spine Wave, Inc. Spinal fusion system
US9993349B2 (en) 2002-06-27 2018-06-12 DePuy Synthes Products, Inc. Intervertebral disc
US10058433B2 (en) 2012-07-26 2018-08-28 DePuy Synthes Products, Inc. Expandable implant
US10335211B2 (en) 2004-01-26 2019-07-02 DePuy Synthes Products, Inc. Highly-versatile variable-angle bone plate system
US10342586B2 (en) 2003-08-26 2019-07-09 DePuy Synthes Products, Inc. Bone plate
US10390963B2 (en) 2006-12-07 2019-08-27 DePuy Synthes Products, Inc. Intervertebral implant
US10398563B2 (en) 2017-05-08 2019-09-03 Medos International Sarl Expandable cage
US10433977B2 (en) 2008-01-17 2019-10-08 DePuy Synthes Products, Inc. Expandable intervertebral implant and associated method of manufacturing the same
US10478310B2 (en) 2014-05-06 2019-11-19 Ldr Medical, S.A.S. Vertebral implant, device for vertebral attachment of the implant and instrumentation for implantation thereof
US10500062B2 (en) 2009-12-10 2019-12-10 DePuy Synthes Products, Inc. Bellows-like expandable interbody fusion cage
US10537436B2 (en) 2016-11-01 2020-01-21 DePuy Synthes Products, Inc. Curved expandable cage
US10548741B2 (en) 2010-06-29 2020-02-04 DePuy Synthes Products, Inc. Distractible intervertebral implant
US10575883B2 (en) 2014-12-15 2020-03-03 Smith & Nephew, Inc. Active fracture compression implants
US10624686B2 (en) 2016-09-08 2020-04-21 DePuy Synthes Products, Inc. Variable angel bone plate
US10772665B2 (en) 2018-03-29 2020-09-15 DePuy Synthes Products, Inc. Locking structures for affixing bone anchors to a bone plate, and related systems and methods
US10820930B2 (en) 2016-09-08 2020-11-03 DePuy Synthes Products, Inc. Variable angle bone plate
US10888433B2 (en) 2016-12-14 2021-01-12 DePuy Synthes Products, Inc. Intervertebral implant inserter and related methods
US10888435B2 (en) 2017-10-05 2021-01-12 Spine Wave, Inc. Modular inserter for anterior cervical cage
US10905476B2 (en) 2016-09-08 2021-02-02 DePuy Synthes Products, Inc. Variable angle bone plate
US10925651B2 (en) 2018-12-21 2021-02-23 DePuy Synthes Products, Inc. Implant having locking holes with collection cavity for shavings
US10940016B2 (en) 2017-07-05 2021-03-09 Medos International Sarl Expandable intervertebral fusion cage
US11013541B2 (en) 2018-04-30 2021-05-25 DePuy Synthes Products, Inc. Threaded locking structures for affixing bone anchors to a bone plate, and related systems and methods
US11026727B2 (en) 2018-03-20 2021-06-08 DePuy Synthes Products, Inc. Bone plate with form-fitting variable-angle locking hole
US11172969B2 (en) * 2020-01-28 2021-11-16 Loubert S. Suddaby Fusion device
US11259851B2 (en) 2003-08-26 2022-03-01 DePuy Synthes Products, Inc. Bone plate
US11291484B2 (en) 2004-01-26 2022-04-05 DePuy Synthes Products, Inc. Highly-versatile variable-angle bone plate system
US11344424B2 (en) 2017-06-14 2022-05-31 Medos International Sarl Expandable intervertebral implant and related methods
US11426286B2 (en) 2020-03-06 2022-08-30 Eit Emerging Implant Technologies Gmbh Expandable intervertebral implant
US11426290B2 (en) 2015-03-06 2022-08-30 DePuy Synthes Products, Inc. Expandable intervertebral implant, system, kit and method
US11446156B2 (en) 2018-10-25 2022-09-20 Medos International Sarl Expandable intervertebral implant, inserter instrument, and related methods
US11452607B2 (en) 2010-10-11 2022-09-27 DePuy Synthes Products, Inc. Expandable interspinous process spacer implant
US11510788B2 (en) 2016-06-28 2022-11-29 Eit Emerging Implant Technologies Gmbh Expandable, angularly adjustable intervertebral cages
US11583326B2 (en) * 2020-01-28 2023-02-21 Loubert S. Suddaby Fusion device
US11596523B2 (en) 2016-06-28 2023-03-07 Eit Emerging Implant Technologies Gmbh Expandable and angularly adjustable articulating intervertebral cages
US11612491B2 (en) 2009-03-30 2023-03-28 DePuy Synthes Products, Inc. Zero profile spinal fusion cage
US11752009B2 (en) 2021-04-06 2023-09-12 Medos International Sarl Expandable intervertebral fusion cage
US11850160B2 (en) 2021-03-26 2023-12-26 Medos International Sarl Expandable lordotic intervertebral fusion cage
US11911287B2 (en) 2010-06-24 2024-02-27 DePuy Synthes Products, Inc. Lateral spondylolisthesis reduction cage

Families Citing this family (162)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0944371A1 (en) * 1997-02-04 1999-09-29 Alain Fouere Meatus plug for lachrymal canal capable of being screwed
EP1006886B1 (en) 1997-02-13 2003-07-09 Boston Scientific Limited Dilator for minimally invasive pelvic surgery
US6436100B1 (en) * 1998-08-07 2002-08-20 J. Lee Berger Cannulated internally threaded bone screw and reduction driver device
US6981974B2 (en) * 1998-08-07 2006-01-03 Berger J Lee Cannulated internally threaded bone screw with aperatured insert
US7485119B2 (en) * 2000-03-07 2009-02-03 Zimmer Technology, Inc. Method and apparatus for reducing femoral fractures
US20030220644A1 (en) * 2002-05-23 2003-11-27 Thelen Sarah L. Method and apparatus for reducing femoral fractures
US20030220646A1 (en) * 2002-05-23 2003-11-27 Thelen Sarah L. Method and apparatus for reducing femoral fractures
US7488329B2 (en) * 2000-03-07 2009-02-10 Zimmer Technology, Inc. Method and apparatus for reducing femoral fractures
US7258692B2 (en) * 2000-03-07 2007-08-21 Zimmer, Inc. Method and apparatus for reducing femoral fractures
AU2000235484B2 (en) * 2000-04-10 2004-10-14 Synthes Gmbh Osteosynthetic anchoring element
US6488684B2 (en) 2001-04-25 2002-12-03 Dale G. Bramlet Intramedullary nail
US6679890B2 (en) * 2001-08-28 2004-01-20 Joseph Y. Margulies Method and apparatus for augmentation of the femoral neck
US20030055316A1 (en) * 2001-09-19 2003-03-20 Brannon James Kevin Endoscopic bone debridement
US6835197B2 (en) 2001-10-17 2004-12-28 Christoph Andreas Roth Bone fixation system
US20090306718A1 (en) * 2001-10-18 2009-12-10 Orthoip, Llc Filament and cap systems and methods for the fixation of bone fractures
US20030187443A1 (en) * 2002-03-27 2003-10-02 Carl Lauryssen Anterior bone plate system and method of use
US6932834B2 (en) * 2002-06-27 2005-08-23 Ethicon, Inc. Suture anchor
US20040030237A1 (en) * 2002-07-29 2004-02-12 Lee David M. Fiducial marker devices and methods
US7720522B2 (en) * 2003-02-25 2010-05-18 Medtronic, Inc. Fiducial marker devices, tools, and methods
US7787934B2 (en) * 2002-07-29 2010-08-31 Medtronic, Inc. Fiducial marker devices, tools, and methods
DE10246386B4 (en) * 2002-10-04 2008-08-07 Biedermann Motech Gmbh Bone screw, bone fixation device and retaining element
WO2004069031A2 (en) * 2003-02-03 2004-08-19 Kinetikos Medical Incorporated Compression screw apparatuses, systems and methods
US20060052788A1 (en) * 2003-02-04 2006-03-09 Thelen Sarah L Expandable fixation devices for minimally invasive surgery
ITTO20030034U1 (en) * 2003-02-28 2004-09-01 Vese Silvana PLATE OF OSTEOSYNTHESIS
EP2263584B1 (en) * 2003-03-07 2012-09-05 Synthes GmbH Intramedullary nail with locking screw
CN100374093C (en) * 2003-03-13 2008-03-12 钱本文 Artificial hip joint device without handle
WO2004110291A1 (en) * 2003-06-12 2004-12-23 Synthes Ag Chur Surgical nail
CN100528094C (en) * 2003-06-12 2009-08-19 斯恩蒂斯有限公司 Surgical nail
US7135023B2 (en) * 2003-07-07 2006-11-14 Watkins William T Compression bone screw device
NZ544958A (en) * 2003-07-30 2009-01-31 Synthes Gmbh Surgical nail
WO2005020830A1 (en) 2003-08-29 2005-03-10 Synthes Gmbh Intramedullary nail
DE50312580D1 (en) * 2003-10-21 2010-05-12 Synthes Gmbh MARK NAGEL
US8182485B1 (en) 2003-11-21 2012-05-22 Toby Orthopaedics, Llc Fracture fixation system
EP1713410B1 (en) 2004-01-23 2010-11-24 Depuy Products, Inc. Proximal humeral fracture fixation system comprising a plate including a post rotationally locked in a post hole, and a rigid cross support
AU2011202774B2 (en) * 2004-01-23 2012-02-02 Hand Innovations, Llc System for stabilization of fractures of convex articular bone surfaces including subchondral support structure
CN1997322B (en) * 2004-01-23 2013-09-11 拜欧米特公司 System for stabilization of fractures of convex articular bone surfaces including subchondral support structure
WO2005074580A2 (en) * 2004-02-02 2005-08-18 Acumed Llc Bone plate with toothed aperture
WO2005084568A1 (en) * 2004-03-03 2005-09-15 Synthes Gmbh Bone fixation means
DE502004009250D1 (en) * 2004-06-22 2009-05-07 Synthes Gmbh INTRAMEDULLÄRER BRAND NAIL
ATE407635T1 (en) * 2004-06-24 2008-09-15 Synthes Gmbh INTEGRAL NAIL
EP1761182B1 (en) * 2004-06-30 2011-04-06 Synthes GmbH Surgical nail
EP1761184A2 (en) * 2004-07-01 2007-03-14 Smith and Nephew, Inc. Fixation elements
CN100403995C (en) * 2004-08-26 2008-07-23 华中科技大学同济医学院附属协和医院 Support device for head of femur
US7648508B2 (en) * 2004-11-30 2010-01-19 Stryker Trauma S.A. Bone plating implants, instruments and methods
US20060229624A1 (en) * 2005-03-31 2006-10-12 Zimmer Technology, Inc. Orthopaedic cutting instrument and method
US7951198B2 (en) * 2005-05-10 2011-05-31 Acumed Llc Bone connector with pivotable joint
KR200392672Y1 (en) * 2005-05-12 2005-08-17 김진곤 Apparatus for the prevention of distal migration of lag screw for a surgical operation in hip fracture
US9060820B2 (en) 2005-05-18 2015-06-23 Sonoma Orthopedic Products, Inc. Segmented intramedullary fracture fixation devices and methods
WO2010037038A2 (en) 2008-09-26 2010-04-01 Sonoma Orthopedic Products, Inc. Bone fixation device, tools and methods
US8961516B2 (en) 2005-05-18 2015-02-24 Sonoma Orthopedic Products, Inc. Straight intramedullary fracture fixation devices and methods
EP1885263A1 (en) * 2005-05-18 2008-02-13 Sonoma Orthopaedic Products, Inc Minimally invasive actuable bone fixation devices, systems and methods of use
US7909825B2 (en) * 2006-11-22 2011-03-22 Sonoma Orthepedic Products, Inc. Fracture fixation device, tools and methods
US8568413B2 (en) * 2008-12-18 2013-10-29 Sonoma Orthopedic Products, Inc. Bone fixation device, tools and methods
JP2007029566A (en) * 2005-07-28 2007-02-08 Koji Hasegawa Screw for fixation and tool for pulling out screw for fixation
WO2007035713A2 (en) * 2005-09-16 2007-03-29 Small Bone Innovations, Inc. Condylar plate
US7704257B2 (en) * 2005-11-23 2010-04-27 Stryker Trauma S.A. Compression instrument
EP1825826B1 (en) * 2006-02-23 2008-08-06 BIEDERMANN MOTECH GmbH Bone anchoring device
US20070225715A1 (en) * 2006-03-24 2007-09-27 Depuy Products, Inc. Fastening system for internal fixation
US20070270832A1 (en) * 2006-05-01 2007-11-22 Sdgi Holdings, Inc. Locking device and method, for use in a bone stabilization system, employing a set screw member and deformable saddle member
US8187276B1 (en) * 2006-09-26 2012-05-29 Zahiri Christopher A Odd angle internal bone fixation device for use in a transverse fracture of a humerus
JP4978906B2 (en) * 2006-10-17 2012-07-18 周 中村 Fracture fixation device for femoral trochanteric fracture
JP2010510042A (en) * 2006-11-22 2010-04-02 ソノマ・オーソペディック・プロダクツ・インコーポレイテッド Tools for use in the placement of bone repair devices
US20080149115A1 (en) * 2006-11-22 2008-06-26 Sonoma Orthopedic Products, Inc. Surgical station for orthopedic reconstruction surgery
CA2670438A1 (en) * 2006-11-22 2008-05-29 Sonoma Orthopedic Products, Inc. Curved orthopedic tool
US20080125777A1 (en) * 2006-11-27 2008-05-29 Warsaw Orthopedic, Inc. Vertebral Stabilizer Having Adjustable Rigidity
US8267972B1 (en) 2006-12-01 2012-09-18 Gehlert Rick J Bone plate
IL181211A0 (en) * 2007-02-07 2007-07-04 Nmb Medical Applic Ltd Device and methods for strengthening long bones
US8177786B2 (en) * 2007-03-30 2012-05-15 Depuy Products, Inc. Orthopaedic trauma hip screw assembly and associated method
US20080262626A1 (en) * 2007-04-18 2008-10-23 Howmedica Osteonics Corp. Femoral sleeve for hip resurfacing
WO2009009772A1 (en) * 2007-07-11 2009-01-15 Sonoma Orthopedic Products, Inc. Fracture fixation devices and methods incorporating a membrane
SE533302C2 (en) * 2007-07-24 2010-08-17 Henrik Hansson Device for fixing bone fragments in case of bone fracture
US20090125071A1 (en) * 2007-10-23 2009-05-14 Skinlo David M Shape-changing anatomical anchor
CA2702952C (en) 2007-10-27 2017-01-03 Parcus Medical, Llc Suture anchor
US8556949B2 (en) * 2007-11-14 2013-10-15 DePuy Synthes Products, LLC Hybrid bone fixation element and methods of using the same
CN105213010A (en) 2008-01-14 2016-01-06 康文图斯整形外科公司 For the apparatus and method of fracture repair
US20090228010A1 (en) 2008-03-10 2009-09-10 Eduardo Gonzalez-Hernandez Bone fixation system
US8162978B2 (en) * 2008-03-25 2012-04-24 Linvatec Corporation Non-metallic knotless suture anchor
US8409252B2 (en) * 2008-03-25 2013-04-02 Linvatec Corporation Knotless suture anchor
KR101602153B1 (en) 2008-03-26 2016-03-10 신세스 게엠바하 Universal anchor for attaching objects to bone tissue
SE532211C2 (en) * 2008-03-27 2009-11-17 Swemac Innovation Ab Device for fixing bone fragments in case of bone fracture
EP2282690A4 (en) 2008-04-17 2017-06-14 Toby Orthopaedics, Llc Soft tissue attachment system and clip
US8882838B2 (en) * 2008-06-05 2014-11-11 DePuy Synthes Products, LLC Articulating disc implant
CA2726642A1 (en) 2008-06-05 2009-12-10 Synthes Usa, Llc Articulating disc implant
WO2009152273A1 (en) 2008-06-10 2009-12-17 Sonoma Orthopedic Products, Inc. Fracture fixation device, tools and methods
US9044282B2 (en) * 2008-06-24 2015-06-02 Extremity Medical Llc Intraosseous intramedullary fixation assembly and method of use
US20110230884A1 (en) * 2008-06-24 2011-09-22 Adam Mantzaris Hybrid intramedullary fixation assembly and method of use
US8343199B2 (en) * 2008-06-24 2013-01-01 Extremity Medical, Llc Intramedullary fixation screw, a fixation system, and method of fixation of the subtalar joint
US9289220B2 (en) 2008-06-24 2016-03-22 Extremity Medical Llc Intramedullary fixation assembly and method of use
US8328806B2 (en) 2008-06-24 2012-12-11 Extremity Medical, Llc Fixation system, an intramedullary fixation assembly and method of use
US9017329B2 (en) * 2008-06-24 2015-04-28 Extremity Medical, Llc Intramedullary fixation assembly and method of use
US8313487B2 (en) 2008-06-24 2012-11-20 Extremity Medical Llc Fixation system, an intramedullary fixation assembly and method of use
US8303589B2 (en) * 2008-06-24 2012-11-06 Extremity Medical Llc Fixation system, an intramedullary fixation assembly and method of use
AU2009273934A1 (en) * 2008-07-23 2010-01-28 University Of Louisville Research Foundation, Inc. Device and method to prevent hip fractures
US8298272B2 (en) * 2008-08-12 2012-10-30 Warsaw Orthopedic Inc. Self-locking surgical fastener
CN101721242B (en) * 2008-10-30 2012-07-04 法玛科技顾问股份有限公司 Hip joint dynamic inter-locking screw
US9060808B2 (en) 2008-12-05 2015-06-23 DePuy Synthes Products, Inc. Anchor-in-anchor system for use in bone fixation
CA2745264A1 (en) * 2008-12-05 2010-06-10 Synthes Usa, Llc Anchor-in-anchor system for use in bone fixation
US20110152943A1 (en) * 2009-12-22 2011-06-23 Eduardo Gonzalez-Hernandez Bone plate and tool assembly and method for use thereof
US10743854B2 (en) 2010-01-20 2020-08-18 Micro Interventional Devices, Inc. Tissue closure device and method
CA2825186A1 (en) * 2010-01-20 2011-07-28 Michael P. Whitman Tissue repair implant and delivery device and method
US9980708B2 (en) 2010-01-20 2018-05-29 Micro Interventional Devices, Inc. Tissue closure device and method
US10058314B2 (en) 2010-01-20 2018-08-28 Micro Interventional Devices, Inc. Tissue closure device and method
US10959840B2 (en) 2010-01-20 2021-03-30 Micro Interventional Devices, Inc. Systems and methods for affixing a prosthesis to tissue
US20110218191A1 (en) * 2010-03-03 2011-09-08 Boehringer Ingelheim Vetmedica Gmbh Use of meloxicam for the long term-treatment of kidney disorders in cats
US9204910B2 (en) * 2010-03-10 2015-12-08 Advanced Orthopaedic Solutions, Inc. Telescoping bone screw
US20130041414A1 (en) 2010-03-10 2013-02-14 Advanced Orthopaedic Solutions, Inc. Telescoping Bone Screw
US20120083840A1 (en) * 2010-09-30 2012-04-05 Depuy Mitek, Inc. Suture anchor with enhanced fixation
US8961573B2 (en) 2010-10-05 2015-02-24 Toby Orthopaedics, Inc. System and method for facilitating repair and reattachment of comminuted bone portions
WO2012058448A2 (en) 2010-10-27 2012-05-03 Toby Orthopaedics, Llc System and method for fracture replacement of comminuted bone fractures or portions thereof adjacent bone joints
US9254154B2 (en) 2011-03-03 2016-02-09 Toby Orthopaedic, Inc. Anterior lesser tuberosity fixed angle fixation device and method of use associated therewith
WO2012122047A2 (en) * 2011-03-04 2012-09-13 Toby Orthopaedics, Llc Extra-medullary cortical buttress fixation device and method of use associated therewith
US10251684B2 (en) * 2011-06-23 2019-04-09 DePuy Synthes Products, Inc. Monofix nail
US8652136B2 (en) 2011-08-15 2014-02-18 Zimmer, Gmbh Femoral fracture fixation device
EP2570091B1 (en) 2011-09-15 2015-04-22 Biedermann Technologies GmbH & Co. KG Bone anchoring device
US9730797B2 (en) 2011-10-27 2017-08-15 Toby Orthopaedics, Inc. Bone joint replacement and repair assembly and method of repairing and replacing a bone joint
US9271772B2 (en) 2011-10-27 2016-03-01 Toby Orthopaedics, Inc. System and method for fracture replacement of comminuted bone fractures or portions thereof adjacent bone joints
US9402667B2 (en) 2011-11-09 2016-08-02 Eduardo Gonzalez-Hernandez Apparatus and method for use of the apparatus for fracture fixation of the distal humerus
US20130158608A1 (en) * 2011-12-20 2013-06-20 Osteomed L.P. Plate and cannulated transfixation screw system for human implant
US9155578B2 (en) 2012-02-28 2015-10-13 DePuy Synthes Products, Inc. Expandable fastener
US20130310883A1 (en) * 2012-05-16 2013-11-21 Mark M. Levy Expandable bone fixation element
GB201209809D0 (en) * 2012-06-01 2012-07-18 Depuy Ireland Ltd Surgical instrument
US9907588B2 (en) * 2012-09-06 2018-03-06 Orthohelix Surgical Designs, Inc. Orthopedic dual pocket compression plate and method of surgery
EP2919686B1 (en) * 2012-09-20 2017-08-09 MJP Innovations, Inc. Hip implant
US9398928B2 (en) * 2012-09-28 2016-07-26 DePuy Synthes Products, Inc. Adjustable height arthroplasty plate
US9283008B2 (en) 2012-12-17 2016-03-15 Toby Orthopaedics, Inc. Bone plate for plate osteosynthesis and method for use thereof
JP5510874B1 (en) * 2013-03-11 2014-06-04 多摩メディカル有限会社 Medical screw and jig for removing medical screw
US9119732B2 (en) 2013-03-15 2015-09-01 Orthocision, Inc. Method and implant system for sacroiliac joint fixation and fusion
EP2967535A4 (en) 2013-03-15 2016-11-16 Mark Brunsvold Suture anchor
US9333014B2 (en) 2013-03-15 2016-05-10 Eduardo Gonzalez-Hernandez Bone fixation and reduction apparatus and method for fixation and reduction of a distal bone fracture and malunion
JP5472517B1 (en) * 2013-07-12 2014-04-16 多摩メディカル有限会社 Medical screw and jig for removing medical screw
US10028778B2 (en) * 2013-11-11 2018-07-24 Orthofix S.R.L. Endosseous screw assembly and internal fixation system comprising said endosseous screw assembly
US9463055B2 (en) 2013-12-09 2016-10-11 Acumed Llc Plate-based compliant hip fixation system
US10080596B2 (en) 2013-12-09 2018-09-25 Acumed Llc Hip fixation with load-controlled dynamization
US9526542B2 (en) 2014-05-07 2016-12-27 Acumed Llc Hip fixation with load-controlled dynamization
WO2015089086A1 (en) 2013-12-09 2015-06-18 Acumed Llc Nail-based compliant hip fixation system
US9433451B2 (en) 2013-12-09 2016-09-06 Acumed Llc Hip fixation system with a compliant fixation element
US20170042591A9 (en) * 2013-12-12 2017-02-16 Extremity Designs, Llc Intramedullary anchor-screw fracture fixation
US9770278B2 (en) 2014-01-17 2017-09-26 Arthrex, Inc. Dual tip guide wire
CN103860251B (en) * 2014-03-07 2017-01-25 中国人民解放军第四军医大学 Medical anchor type vertebral pedicle screw
US10064670B2 (en) 2014-05-12 2018-09-04 DePuy Synthes Products, Inc. Sacral fixation system
WO2015175376A1 (en) * 2014-05-12 2015-11-19 DePuy Synthes Products, Inc. Sacral fixation system
US10166055B2 (en) 2014-05-16 2019-01-01 Biomet C.V. Method and apparatus for bone fixation
CN105411660A (en) * 2014-09-17 2016-03-23 镱钛科技股份有限公司 Rear stop structure of dynamic hip screw
US9814499B2 (en) 2014-09-30 2017-11-14 Arthrex, Inc. Intramedullary fracture fixation devices and methods
WO2016123671A1 (en) * 2015-02-05 2016-08-11 The Sydney Children's Hospitals Network (Randwick And Westmead) Orthopaedic device for correction of deformities in a bone
US9974582B1 (en) 2015-02-26 2018-05-22 Lucas Anissian Orthopedic surgical implants and methods
US10182845B2 (en) 2015-07-23 2019-01-22 William P. Grant Bone securement apparatus and method
US9974581B2 (en) * 2015-11-20 2018-05-22 Globus Medical, Inc. Expandable intramedullary systems and methods of using the same
US20190125409A1 (en) * 2016-04-20 2019-05-02 Dignity Health Systems and methods for a pedicle screw assembly
US11219442B2 (en) * 2016-05-03 2022-01-11 Smith & Nephew, Inc. Expanding knotless suture anchor
US9949774B2 (en) 2016-05-26 2018-04-24 Timothy Chen Axial compression implant
US10918426B2 (en) 2017-07-04 2021-02-16 Conventus Orthopaedics, Inc. Apparatus and methods for treatment of a bone
US10881436B2 (en) 2017-10-27 2021-01-05 Wright Medical Technology, Inc. Implant with intramedullary portion and offset extramedullary portion
CN107822701A (en) * 2017-10-31 2018-03-23 陕西爱骨医疗股份有限公司 A kind of PFN
USD921898S1 (en) 2017-12-22 2021-06-08 Orthocision Inc. Helical implant
CA3089126A1 (en) * 2018-02-14 2019-08-22 Dignity Health Systems and methods for a pedicle screw assembly with anchor deployment
WO2019173627A1 (en) * 2018-03-08 2019-09-12 Materialise N.V. Method and apparatus for fixation
US11918261B2 (en) * 2019-04-12 2024-03-05 Stryker European Operations Limited Locking system for femoral neck fracture fixation
US11864857B2 (en) 2019-09-27 2024-01-09 Globus Medical, Inc. Surgical robot with passive end effector
CN115968273A (en) * 2020-09-25 2023-04-14 波士顿科学国际有限公司 Tissue anchor that minimizes migration and maximizes engagement
EP3977949A1 (en) * 2020-10-01 2022-04-06 Globus Medical, Inc. Systems and methods for fixating a navigation array
WO2023177741A1 (en) * 2022-03-18 2023-09-21 Toetal Solutions Inc. Interphalangeal joint implant methods and apparatus

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3791380A (en) 1971-12-13 1974-02-12 G Dawidowski Method and apparatus of immobilizing a fractured femur
US4632101A (en) 1985-01-31 1986-12-30 Yosef Freedland Orthopedic fastener
US4898156A (en) 1987-05-18 1990-02-06 Mitek Surgical Products, Inc. Suture anchor
US4946468A (en) 1989-06-06 1990-08-07 Mitek Surgical Products, Inc. Suture anchor and suture anchor installation tool
US4968315A (en) 1987-12-15 1990-11-06 Mitek Surgical Products, Inc. Suture anchor and suture anchor installation tool
US5002550A (en) 1989-06-06 1991-03-26 Mitek Surgical Products, Inc. Suture anchor installation tool
US5007910A (en) 1989-01-04 1991-04-16 Emmanuel Anapliotis Device for compression screwing
US5041116A (en) 1990-05-21 1991-08-20 Wilson James T Compression hip screw system
US5057103A (en) 1990-05-01 1991-10-15 Davis Emsley A Compressive intramedullary nail
US5207679A (en) 1991-09-26 1993-05-04 Mitek Surgical Products, Inc. Suture anchor and installation tool
US5217486A (en) 1992-02-18 1993-06-08 Mitek Surgical Products, Inc. Suture anchor and installation tool
US5324292A (en) 1993-02-10 1994-06-28 Zimmer, Inc. Fracture fixation assembly with selectively removable protrusion
US5356413A (en) 1993-03-12 1994-10-18 Mitek Surgical Products, Inc. Surgical anchor and method for deploying the same
US5478342A (en) 1994-06-30 1995-12-26 Spinetech, Inc. Reversible bone screw lock
US5534004A (en) 1993-07-23 1996-07-09 Santangelo; Massimo Device for preventive support of the femur
US5578035A (en) 1995-05-16 1996-11-26 Lin; Chih-I Expandable bone marrow cavity fixation device
US5591168A (en) 1993-10-25 1997-01-07 Tornier S.A. Device for stabilizing fractures of the upper end of the femur
US5643321A (en) 1994-11-10 1997-07-01 Innovasive Devices Suture anchor assembly and methods

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL132715C (en) 1967-01-06
US3593342A (en) 1969-01-27 1971-07-20 Cutter Lab Prosthetic joint
US3798679A (en) 1971-07-09 1974-03-26 Ewald Frederick Joint prostheses
US3886600A (en) 1971-07-15 1975-06-03 Cutter Lab Joint prosthesis
CH542624A (en) 1971-10-08 1973-10-15 Mathys Robert Finger joint prosthesis
US3879767A (en) 1972-01-26 1975-04-29 Cutter Lab Prosthesis for articulating body structures
US3848276A (en) 1973-05-03 1974-11-19 Y Martinez Knee implant device
CH566773A5 (en) 1973-07-19 1975-09-30 Sulzer Ag
US3875594A (en) 1973-08-27 1975-04-08 Dow Corning Surgically implantable prosthetic joint having load distributing flexible hinge
GB1509533A (en) 1974-05-03 1978-05-04 Nat Res Dev Endo-prosthetic devices
GB1522603A (en) 1974-08-07 1978-08-23 Nat Res Dev Prosthetic devices
US3990116A (en) 1974-10-17 1976-11-09 Fixel Irving E Pretensioned prosthetic device for skeletal joints
US3986212A (en) 1975-04-11 1976-10-19 Glasrock Products, Inc. Composite prosthetic device with porous polymeric coating
US4011603A (en) 1975-08-29 1977-03-15 Laure Prosthetics, Inc. Finger joint implant
US3991425A (en) 1975-11-20 1976-11-16 Minnesota Mining And Manufacturing Company Prosthetic bone joint devices
SE409170B (en) 1976-06-28 1979-08-06 Hagert Carl Goran LEDPROTES
US4158893A (en) 1976-10-12 1979-06-26 Swanson Alfred B Protective sleeve for implantable prosthesis and method of protecting the prosthesis
US4059854A (en) 1977-01-03 1977-11-29 Laure Prosthetics, Inc. Ribbed finger joint implant
GB1565178A (en) 1977-02-24 1980-04-16 Interfix Ltd Bone screw
US4193139A (en) 1978-03-08 1980-03-18 Codman & Shurtleff, Inc. Prosthetic finger joint
US4470158A (en) 1978-03-10 1984-09-11 Biomedical Engineering Corp. Joint endoprosthesis
US4267608A (en) 1978-10-04 1981-05-19 Bora Jr F William Prosthetic joint
US4313232A (en) 1979-01-10 1982-02-02 Habal Mutaz B An elastomeric mesh hinge primarily for replacement of the finger joints
US4352212A (en) 1979-03-05 1982-10-05 Howmedica, Inc. Joint prosthesis
US4242759A (en) 1979-03-12 1981-01-06 Ontario Research Foundation M.C.P. Joint replacement
US4231121A (en) 1979-07-05 1980-11-04 Wright Dow Corning Metacarpal-phalangeal prosthesis
WO1981000511A1 (en) 1979-08-17 1981-03-05 D Evans Endoprosthetic bone joint devices
US4467479A (en) 1982-02-05 1984-08-28 Brody Garry S Method of surgically repairing an injured human joint and a prosthetic device therefor
USD291731S (en) 1985-05-08 1987-09-01 Zimmer, Inc. Prosthetic joint implant for a finger or toe or the like
US4725280A (en) 1986-03-28 1988-02-16 Laure Prosthetics, Inc. Finger implant
US5314479A (en) 1986-08-15 1994-05-24 Depuy Inc. Modular prosthesis
US4790852A (en) 1986-09-15 1988-12-13 Joint Medical Products Corporation Sleeves for affixing artificial joints to bone
FR2610513B1 (en) 1987-02-09 1992-06-05 Merle Michel JOINT PROSTHESIS
EP0278184A1 (en) 1987-02-11 1988-08-17 Thierry Hermann Joint prosthesis, in particular a finger joint prosthesis
US4787908A (en) 1987-04-30 1988-11-29 Queen's University At Kingston Metatarsal-phalangeal replacement joint
JPS6446019U (en) 1987-09-18 1989-03-22
FR2622100B1 (en) 1987-10-27 1991-02-15 Barouk Louis JOINT PROSTHETIC IMPLANT WITH TEMPORARY FIXING
US5147386A (en) 1988-08-22 1992-09-15 Techmedica, Inc. Securable pistoning finger prosthesis
US5171284A (en) 1989-04-25 1992-12-15 Medevelop Ab Method of inserting an anchoring element within a finger bone
SE466936B (en) 1989-04-25 1992-05-04 Branemark Per Ingvar ANCHORING ELEMENT FOR PROCESSING
US5108443A (en) 1989-04-25 1992-04-28 Medevelop Ab Anchoring element for supporting a joint mechanism of a finger or other reconstructed joint
FR2651119A1 (en) 1989-08-23 1991-03-01 Felman Daniel Phalangeal articular prosthesis
DE59003145D1 (en) 1989-09-28 1993-11-25 Sulzer Ag Finger joint prosthesis.
US5133761A (en) 1991-06-12 1992-07-28 Research Development Foundation Finger joint prosthesis
US5290314A (en) 1992-01-31 1994-03-01 Sulzer Medizinaltechnik Ag Finger joint prosthesis made of metal
US5207712A (en) 1992-05-07 1993-05-04 Michael Cohen Absorbable joint implants for the lesser digits and metatarsal phalangeal joints in the surgical correction of the foot
JP3949725B2 (en) * 1996-07-17 2007-07-25 オーソーペディック デザインズ,インコーポレイティド Surgical fastener assembly

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3791380A (en) 1971-12-13 1974-02-12 G Dawidowski Method and apparatus of immobilizing a fractured femur
US4632101A (en) 1985-01-31 1986-12-30 Yosef Freedland Orthopedic fastener
US5046513A (en) 1987-05-18 1991-09-10 Mitek Surgical Products, Inc. Method for anchoring suture to bone
US4898156A (en) 1987-05-18 1990-02-06 Mitek Surgical Products, Inc. Suture anchor
US5192303A (en) 1987-05-18 1993-03-09 Mitek Surgical Products, Inc. Suture anchor
US4968315A (en) 1987-12-15 1990-11-06 Mitek Surgical Products, Inc. Suture anchor and suture anchor installation tool
US5007910A (en) 1989-01-04 1991-04-16 Emmanuel Anapliotis Device for compression screwing
US5002550A (en) 1989-06-06 1991-03-26 Mitek Surgical Products, Inc. Suture anchor installation tool
US4946468A (en) 1989-06-06 1990-08-07 Mitek Surgical Products, Inc. Suture anchor and suture anchor installation tool
US5057103A (en) 1990-05-01 1991-10-15 Davis Emsley A Compressive intramedullary nail
US5041116A (en) 1990-05-21 1991-08-20 Wilson James T Compression hip screw system
US5207679A (en) 1991-09-26 1993-05-04 Mitek Surgical Products, Inc. Suture anchor and installation tool
US5217486A (en) 1992-02-18 1993-06-08 Mitek Surgical Products, Inc. Suture anchor and installation tool
US5324292A (en) 1993-02-10 1994-06-28 Zimmer, Inc. Fracture fixation assembly with selectively removable protrusion
US5356413A (en) 1993-03-12 1994-10-18 Mitek Surgical Products, Inc. Surgical anchor and method for deploying the same
US5534004A (en) 1993-07-23 1996-07-09 Santangelo; Massimo Device for preventive support of the femur
US5591168A (en) 1993-10-25 1997-01-07 Tornier S.A. Device for stabilizing fractures of the upper end of the femur
US5478342A (en) 1994-06-30 1995-12-26 Spinetech, Inc. Reversible bone screw lock
US5643321A (en) 1994-11-10 1997-07-01 Innovasive Devices Suture anchor assembly and methods
US5578035A (en) 1995-05-16 1996-11-26 Lin; Chih-I Expandable bone marrow cavity fixation device

Cited By (319)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7008428B2 (en) 1996-11-12 2006-03-07 Triage Medical, Inc. Bone fixation system
US20050143734A1 (en) * 1996-11-12 2005-06-30 Cachia Victor V. Bone fixation system with radially extendable anchor
US6632224B2 (en) 1996-11-12 2003-10-14 Triage Medical, Inc. Bone fixation system
US6648890B2 (en) 1996-11-12 2003-11-18 Triage Medical, Inc. Bone fixation system with radially extendable anchor
US20040010257A1 (en) * 1996-11-12 2004-01-15 Cachia Victor V. Bone fixation system
US20060064094A1 (en) * 1998-10-26 2006-03-23 Expanding Orthopedics, Inc. Expandable orthopedic device
US7670339B2 (en) 1998-10-26 2010-03-02 Expanding Orthopedics, Inc. Expandable orthopedic device
US7601152B2 (en) 1998-10-26 2009-10-13 Expanding Orthopedics, Inc. Expandable orthopedic device
US7207993B1 (en) * 2000-02-03 2007-04-24 Pioneer Laboratories, Inc. Apparatus and method for repairing the femur
US20050131411A1 (en) * 2001-03-30 2005-06-16 Culbert Brad S. Method and apparatus for bone fixation with secondary compression
US10111695B2 (en) 2001-03-30 2018-10-30 DePuy Synthes Products, Inc. Distal bone anchors for bone fixation with secondary compression
US7556629B2 (en) 2001-03-30 2009-07-07 Interventional Spine, Inc. Method and apparatus for bone fixation with secondary compression
US20090069813A1 (en) * 2001-03-30 2009-03-12 Interventional Spine, Inc. Method and apparatus for bone fixation with secondary compression
US20040199162A1 (en) * 2001-03-30 2004-10-07 Von Hoffmann Gerard Method and apparatus for bone fixation with secondary compression
US20050251142A1 (en) * 2001-03-30 2005-11-10 Hoffmann Gerard V Distal bone anchors for bone fixation with secondary compression
US8715284B2 (en) 2001-03-30 2014-05-06 Interventional Spine, Inc. Method and apparatus for bone fixation with secondary compression
US20050137595A1 (en) * 2001-03-30 2005-06-23 Hoffmann Gerard V. Method and apparatus for spinal fusion
US6511481B2 (en) 2001-03-30 2003-01-28 Triage Medical, Inc. Method and apparatus for fixation of proximal femoral fractures
US10349991B2 (en) 2001-03-30 2019-07-16 DePuy Synthes Products, Inc. Method and apparatus for bone fixation with secondary compression
US6887243B2 (en) 2001-03-30 2005-05-03 Triage Medical, Inc. Method and apparatus for bone fixation with secondary compression
US6890333B2 (en) 2001-03-30 2005-05-10 Triage Medical, Inc. Method and apparatus for bone fixation with secondary compression
US9408648B2 (en) 2001-03-30 2016-08-09 Interventional Spine, Inc. Method and apparatus for bone fixation with secondary compression
US6908465B2 (en) 2001-03-30 2005-06-21 Triage Medical, Inc. Distal bone anchors for bone fixation with secondary compression
US6443954B1 (en) * 2001-04-24 2002-09-03 Dale G. Bramlet Femoral nail intramedullary system
US6648889B2 (en) * 2001-04-24 2003-11-18 Dale G. Bramlet Intramedullary hip nail with bifurcated lock
US20070160439A1 (en) * 2001-08-03 2007-07-12 Brainlab Ag Fixing device
US20030078565A1 (en) * 2001-08-03 2003-04-24 Stefan Vilsmeier Fixing device
US7862568B2 (en) 2001-08-03 2011-01-04 Brainlab Ag Fixing device
US20050013679A1 (en) * 2001-08-15 2005-01-20 Ladoucer Harold A. Self-attaching fastener systems
US20040234356A1 (en) * 2001-08-15 2004-11-25 Parker John M. Self-attaching fastener
US7427180B2 (en) * 2001-08-15 2008-09-23 Whitesell International Corporation Self-attaching fastener systems
US7901412B2 (en) 2001-10-18 2011-03-08 Orthoip, Llc Method for the fixation of bone structures
US20090171403A1 (en) * 2001-10-18 2009-07-02 Lagwire, Llc Method for the fixation of bone structures
US8109936B2 (en) 2001-10-18 2012-02-07 Orthoip, Llc Cap device for use in the fixation of bone structures
US20100312292A1 (en) * 2001-10-18 2010-12-09 Orthoip, Llc Lagwire system and method for the fixation of bone fractures
US20080147127A1 (en) * 2001-10-18 2008-06-19 Fxdevices, Llc Bone screw system and method
US9060809B2 (en) 2001-10-18 2015-06-23 Orthoip, Llc Lagwire system and method for the fixation of bone fractures
US9028534B2 (en) 2001-10-18 2015-05-12 Orthoip, Llc Bone screw system and method
US8828067B2 (en) 2001-10-18 2014-09-09 Orthoip, Llc Bone screw system and method
US8702768B2 (en) 2001-10-18 2014-04-22 Orthoip, Llc Cannulated bone screw system and method
US20080147126A1 (en) * 2001-10-18 2008-06-19 Fxdevices, Llc System and method for a cap used in the fixation of bone fractures
US8679167B2 (en) 2001-10-18 2014-03-25 Orthoip, Llc System and method for a cap used in the fixation of bone fractures
US20090254089A1 (en) * 2001-10-18 2009-10-08 Pogo Screw, Llc Stabilization system and method for the fixation of bone fractures
US7591823B2 (en) 2001-10-18 2009-09-22 Lagwire, Llc System and method for the fixation of bone fractures
US20090177199A1 (en) * 2001-10-18 2009-07-09 Lagwire, Llc Cap device for use in the fixation of bone structures
US20040172030A1 (en) * 2001-10-18 2004-09-02 Kishore Tipirrneni System and method for the fixation of bone fractures
US20080243132A1 (en) * 2001-10-18 2008-10-02 Fx Devices, Llc Tensioning system and method for the fixation of bone fractures
US20090131936A1 (en) * 2001-10-18 2009-05-21 Kishore Tipirneni System and method for the fixation of bone fractures
US20080243191A1 (en) * 2001-10-18 2008-10-02 Fx Devices, Llc Adjustable bone plate fixation system and metho
US20090131991A1 (en) * 2001-10-18 2009-05-21 Kishore Tipirneni System and method for the fixation of bone fractures
US20070260248A1 (en) * 2001-10-18 2007-11-08 Fxdevices, Llc Cannulated bone screw system and method
US20070162026A1 (en) * 2001-10-18 2007-07-12 Fxdevices Llc System and method for a cap used in the fixation of bone fractures
US20090048606A1 (en) * 2001-10-18 2009-02-19 Fxdevices Llc Guide system and method for the fixation of bone fractures
US6685706B2 (en) 2001-11-19 2004-02-03 Triage Medical, Inc. Proximal anchors for bone fixation system
US20040138665A1 (en) * 2001-11-19 2004-07-15 Marty Padget Proximal anchors for bone fixation system
US6942668B2 (en) 2001-11-19 2005-09-13 Triage Medical, Inc. Proximal anchors for bone fixation system
US20060195103A1 (en) * 2001-11-19 2006-08-31 Marty Padget Proximal anchors for bone fixation system
US20030158562A1 (en) * 2002-02-15 2003-08-21 Feigl Alexander J. Devices and methods for positioning sutures
US20090030433A1 (en) * 2002-02-15 2009-01-29 Feigl Alexander J Devices and Methods for Positioning Sutures
US9801623B2 (en) 2002-02-15 2017-10-31 A&P Feigl Family Limited Partnership Devices and methods for positioning sutures
US7402166B2 (en) * 2002-02-15 2008-07-22 A&P Feigl Family Limited Partnership Devices and methods for positioning sutures
US20060189987A1 (en) * 2002-05-30 2006-08-24 Orbay Jorge L Nail plate
US7938850B2 (en) 2002-05-30 2011-05-10 Depuy Products, Inc. Nail plate
US9993349B2 (en) 2002-06-27 2018-06-12 DePuy Synthes Products, Inc. Intervertebral disc
US7824429B2 (en) 2002-07-19 2010-11-02 Interventional Spine, Inc. Method and apparatus for spinal fixation
US20040127906A1 (en) * 2002-07-19 2004-07-01 Culbert Brad S. Method and apparatus for spinal fixation
US8945190B2 (en) 2002-07-19 2015-02-03 Interventional Spine, Inc. Method and apparatus for spinal fixation
US9713486B2 (en) 2002-07-19 2017-07-25 DePuy Synthes Products, Inc. Method and apparatus for spinal fixation
US8109977B2 (en) 2002-07-19 2012-02-07 Interventional Spine, Inc. Method and apparatus for spinal fixation
US7993377B2 (en) 2002-07-19 2011-08-09 Interventional Spine, Inc. Method and apparatus for spinal fixation
US20060217711A1 (en) * 2003-01-16 2006-09-28 Stevens Bruce E Locking plate for bone anchors
US20040193162A1 (en) * 2003-02-03 2004-09-30 Bramlet Dale G. Femoral neck compression screw system with ortho-biologic material delivery capability
US7118572B2 (en) * 2003-02-03 2006-10-10 Orthopedic Designs, Inc. Femoral neck compression screw system with ortho-biologic material delivery capability
US7611513B2 (en) 2003-04-02 2009-11-03 Benoist Girard Sas Greater trochanteric re-attachment device
US20040236337A1 (en) * 2003-04-02 2004-11-25 Benoist Girard Sas Greater trochanteric re-attachment device
US20060015105A1 (en) * 2003-05-06 2006-01-19 Christopher Warren Proximal anchors for bone fixation system
US6951561B2 (en) 2003-05-06 2005-10-04 Triage Medical, Inc. Spinal stabilization device
US20050010226A1 (en) * 2003-05-30 2005-01-13 Grady Mark P. Bone plate
US9931148B2 (en) 2003-05-30 2018-04-03 DePuy Synthes Products, Inc. Bone plate
US10653466B2 (en) 2003-05-30 2020-05-19 DePuy Synthes Products, Inc. Bone plate
US10231768B2 (en) 2003-05-30 2019-03-19 DePuy Synthes Products, Inc. Methods for implanting bone plates
US11419647B2 (en) 2003-05-30 2022-08-23 DePuy Synthes Products, Inc. Bone plate
US9308034B2 (en) 2003-05-30 2016-04-12 DePuy Synthes Products, Inc. Bone plate
US7951176B2 (en) 2003-05-30 2011-05-31 Synthes Usa, Llc Bone plate
US11259851B2 (en) 2003-08-26 2022-03-01 DePuy Synthes Products, Inc. Bone plate
US10342586B2 (en) 2003-08-26 2019-07-09 DePuy Synthes Products, Inc. Bone plate
US8105326B2 (en) 2003-09-08 2012-01-31 Smith & Nephew, Inc. Orthopaedic implant and fastener assembly
US20110060337A1 (en) * 2003-09-08 2011-03-10 Smith & Nephew, Inc. Orthopaedic Implant and Fastener Assembly
US20070299447A1 (en) * 2003-09-08 2007-12-27 Kohsuke Watanabe Orthopaedic plate and screw assembly
US8617161B2 (en) 2003-09-08 2013-12-31 Smith & Nephew, Inc. Orthopaedic plate and fastener assembly
US20090209961A1 (en) * 2003-09-08 2009-08-20 Smith & Nephew, Inc., A Delaware Corporation Orthopaedic implant and fastener assembly
AU2010202805B2 (en) * 2003-09-08 2014-07-03 Smith & Nephew, Inc. Orthopaedic implant and bone screw assembly
WO2005025437A1 (en) * 2003-09-08 2005-03-24 Smith & Nephew, Inc. Orthopaedic plate and screw assembly
US7883509B2 (en) 2003-09-08 2011-02-08 Smith & Nephew, Inc. Orthopaedic implant and screw assembly
US8298234B2 (en) 2003-09-08 2012-10-30 Smith & Nephew, Inc. Orthopaedic implant and fastener assembly
US7799030B2 (en) 2003-09-08 2010-09-21 Smith & Nephew, Inc. Orthopaedic plate and screw assembly
US7534244B2 (en) 2003-09-08 2009-05-19 Smith & Nephew, Inc. Orthopaedic plate and screw assembly
US8187275B2 (en) 2003-09-08 2012-05-29 Smith & Nephew, Inc. Orthopaedic implant and fastening assembly
US7780667B2 (en) 2003-09-08 2010-08-24 Smith & Nephew, Inc. Orthopaedic plate and screw assembly
US7527627B2 (en) 2003-09-08 2009-05-05 Smith & Nephew, Inc. Orthopaedic implant and screw assembly
US20110087228A1 (en) * 2003-09-08 2011-04-14 Smith & Nephew, Inc. Orthopaedic Plate and Fastener Assembly
US7931652B2 (en) 2003-09-08 2011-04-26 Smith & Nephew, Inc. Orthopaedic plate and screw assembly
US20080188853A1 (en) * 2003-09-08 2008-08-07 Joseph Ferrante Orthopaedic implant and fastening assembly
US20050159749A1 (en) * 2004-01-16 2005-07-21 Expanding Orthopedics, Inc. Bone fracture treatment devices and methods of their use
US7828802B2 (en) 2004-01-16 2010-11-09 Expanding Orthopedics, Inc. Bone fracture treatment devices and methods of their use
US20050182406A1 (en) * 2004-01-23 2005-08-18 Orbay Jorge L. System for stabilization of fractures of convex articular bone surfaces including subchondral support structure
US20050182405A1 (en) * 2004-01-23 2005-08-18 Orbay Jorge L. System for stabilization of fractures of convex articular bone surfaces including subchondral support structure
US7744638B2 (en) 2004-01-23 2010-06-29 Depuy Products, Inc. System for stabilization of fractures of convex articular bone surfaces including subchondral support structure
US7780710B2 (en) 2004-01-23 2010-08-24 Depuy Products, Inc. System for stabilization of fractures of convex articular bone surfaces including subchondral support structure
US11291484B2 (en) 2004-01-26 2022-04-05 DePuy Synthes Products, Inc. Highly-versatile variable-angle bone plate system
US10335211B2 (en) 2004-01-26 2019-07-02 DePuy Synthes Products, Inc. Highly-versatile variable-angle bone plate system
US8157801B2 (en) * 2004-02-09 2012-04-17 Doubler Robert L Intramedullary screw and tang for orthopedic surgery
US20050177158A1 (en) * 2004-02-09 2005-08-11 Doubler Robert L. Intramedullary screw and tang for orthopedic surgery
US20050216027A1 (en) * 2004-03-24 2005-09-29 Suh Sean S Extraction screwdriver
US7229445B2 (en) 2004-06-21 2007-06-12 Synthes (Usa) Bone plate with bladed portion
US20060004361A1 (en) * 2004-06-21 2006-01-05 Garry Hayeck Bone plate
US7476253B1 (en) * 2004-08-11 2009-01-13 Biomet Manufacturing Corporation Humeral head preserving implant
US20060089647A1 (en) * 2004-08-20 2006-04-27 Culbert Brad S Method and apparatus for delivering an agent
US7927341B2 (en) 2005-01-28 2011-04-19 Depuy Products, Inc. Nail plate and jig therefor
US20060200157A1 (en) * 2005-01-28 2006-09-07 Orbay Jorge L Nail Plate and Jig Therefor
US20060189996A1 (en) * 2005-01-28 2006-08-24 Orbay Jorge L Nail plate and implantation jig therefor
US7896886B2 (en) 2005-01-28 2011-03-01 Depuy Products, Inc. Nail plate and implantation jig therefor
US20060229617A1 (en) * 2005-02-25 2006-10-12 Orthomechanics Ltd. Intramedullary devices and methods of deploying the same
US20060235410A1 (en) * 2005-04-15 2006-10-19 Ralph James D Surgical expansion fasteners
US8128670B2 (en) 2005-04-15 2012-03-06 Biodynamics Llc Surgical expansion fasteners
CN1943522B (en) * 2005-08-05 2011-08-24 比德曼莫泰赫有限公司 Bone anchoring element
US20110093019A1 (en) * 2005-08-05 2011-04-21 Biedermann Motech Gmbh Bone Anchoring Element
EP1749490A1 (en) * 2005-08-05 2007-02-07 BIEDERMANN MOTECH GmbH Bone anchoring element
US20070073295A1 (en) * 2005-08-05 2007-03-29 Lutz Biedermann Bone anchoring element
US8657860B2 (en) 2005-08-05 2014-02-25 Biedermann Technologies Gmbh & Co. Kg Bone anchoring element
US7879036B2 (en) 2005-08-05 2011-02-01 Biedermann Motech Gmbh Bone anchoring element
US20090234398A1 (en) * 2005-08-31 2009-09-17 Chirico Paul E Implantable devices and methods for treating micro-architecture deterioration of bone tissue
US20100069913A1 (en) * 2005-08-31 2010-03-18 Chirico Paul E Threaded bone filling material plunger
US8998923B2 (en) 2005-08-31 2015-04-07 Spinealign Medical, Inc. Threaded bone filling material plunger
US11872138B2 (en) 2005-09-23 2024-01-16 Ldr Medical Intervertebral disc prosthesis
US10492919B2 (en) 2005-09-23 2019-12-03 Ldr Medical Intervertebral disc prosthesis
US9597194B2 (en) 2005-09-23 2017-03-21 Ldr Medical Intervertebral disc prosthesis
US20070162011A1 (en) * 2005-12-16 2007-07-12 Depuy Products, Inc. Orthopaedic device with locking barrel
EP1797835A1 (en) * 2005-12-16 2007-06-20 DePuy Products, Inc. Orthopaedic device with locking barrel
US7670341B2 (en) 2005-12-16 2010-03-02 Depuy Products, Inc. Orthopaedic device with locking barrel
US10758363B2 (en) 2006-02-15 2020-09-01 Ldr Medical Transforaminal intersomatic cage for an intervertebral fusion graft and an instrument for implanting the cage
US9713535B2 (en) 2006-02-15 2017-07-25 Ldr Medical Transforaminal intersomatic cage for an intervertebral fusion graft and an instrument for implanting the cage
US20070225819A1 (en) * 2006-03-24 2007-09-27 Depuy Products, Inc. Apparatus and method for the treatment of periprosthetic fractures
US20100152786A1 (en) * 2006-09-28 2010-06-17 Ogen Innovative Medical Devices Ltd. Orthopedic bone fixation
US8361130B2 (en) * 2006-10-06 2013-01-29 Depuy Spine, Inc. Bone screw fixation
US9119676B2 (en) 2006-10-06 2015-09-01 DePuy Synthes Products, Inc. Bone screw fixation
US20080086131A1 (en) * 2006-10-06 2008-04-10 Depuy Spine, Inc. Bone screw fixation
US10390963B2 (en) 2006-12-07 2019-08-27 DePuy Synthes Products, Inc. Intervertebral implant
US10398566B2 (en) 2006-12-07 2019-09-03 DePuy Synthes Products, Inc. Intervertebral implant
US11432942B2 (en) 2006-12-07 2022-09-06 DePuy Synthes Products, Inc. Intervertebral implant
US10583015B2 (en) 2006-12-07 2020-03-10 DePuy Synthes Products, Inc. Intervertebral implant
US11642229B2 (en) 2006-12-07 2023-05-09 DePuy Synthes Products, Inc. Intervertebral implant
US11273050B2 (en) 2006-12-07 2022-03-15 DePuy Synthes Products, Inc. Intervertebral implant
US11497618B2 (en) 2006-12-07 2022-11-15 DePuy Synthes Products, Inc. Intervertebral implant
US11660206B2 (en) 2006-12-07 2023-05-30 DePuy Synthes Products, Inc. Intervertebral implant
US11712345B2 (en) 2006-12-07 2023-08-01 DePuy Synthes Products, Inc. Intervertebral implant
US20090005782A1 (en) * 2007-03-02 2009-01-01 Chirico Paul E Fracture Fixation System and Method
US20080294204A1 (en) * 2007-03-07 2008-11-27 Spineworks Medical, Inc. Systems, methods, and devices for soft tissue attachment to bone
US20090012564A1 (en) * 2007-03-07 2009-01-08 Spineworks Medical, Inc. Transdiscal interbody fusion device and method
US8939978B2 (en) 2007-03-20 2015-01-27 Smith & Nephew, Inc. Orthopaedic plate and screw assembly
US20080281326A1 (en) * 2007-03-20 2008-11-13 Kohsuke Watanabe Orthopaedic plate and screw assembly
US20110238121A1 (en) * 2007-03-20 2011-09-29 Smith & Nephew, Inc. Orthopaedic plate and screw assembly
US7918853B2 (en) 2007-03-20 2011-04-05 Smith & Nephew, Inc. Orthopaedic plate and screw assembly
US8496658B2 (en) 2007-03-22 2013-07-30 Sonoma Orthopedic Products, Inc. Segmented intramedullary structure
US20080287951A1 (en) * 2007-03-22 2008-11-20 Stoneburner James D Segmented intramedullary structure
US8128627B2 (en) 2007-03-22 2012-03-06 Sonoma Orthopedic Products, Inc. Segmented intramedullary system and apparatus
US20090228007A1 (en) * 2007-03-22 2009-09-10 Osteolign, Inc. Segmented intramedullary system and methods
US8430879B2 (en) 2007-03-22 2013-04-30 Sonoma Orthopedic Products, Inc. Segmented intramedullary structure
US20090228008A1 (en) * 2007-03-22 2009-09-10 Osteolign, Inc. Segmented intramedullary system and apparatus
US8734494B2 (en) 2007-04-19 2014-05-27 Stryker Trauma Gmbh Hip fracture device with static locking mechanism allowing compression
US9254153B2 (en) 2007-04-19 2016-02-09 Stryker Trauma Gmbh Hip fracture device with static locking mechanism allowing compression
US20080269807A1 (en) * 2007-04-19 2008-10-30 Stryker Trauma Gmbh Hip fracture device with static locking mechanism allowing compression
US8398636B2 (en) 2007-04-19 2013-03-19 Stryker Trauma Gmbh Hip fracture device with barrel and end cap for load control
US20080269752A1 (en) * 2007-04-19 2008-10-30 Stryker Trauma Gmbh Hip fracture device with barrel and end cap for load control
US8834468B2 (en) 2007-04-24 2014-09-16 Flexfix, Llc Bone stabilization device and method
US20080269776A1 (en) * 2007-04-24 2008-10-30 Osteolign System and Method for Guidance and Implantation of Implantable Devices
US20080269748A1 (en) * 2007-04-24 2008-10-30 Osteolign Deformable Implant Systems and Methods
US20080269747A1 (en) * 2007-04-24 2008-10-30 Osteolign, Inc. System and method for delivery, conformation and removal of intramedullary bone fixation devices
US9421045B2 (en) 2007-04-24 2016-08-23 Flexfix, Llc Bone stabilization device and method
US20080269749A1 (en) * 2007-04-24 2008-10-30 Osteolign Thermo-Chemically Activated Implantable Apparatus and Method
US8167881B2 (en) 2007-04-24 2012-05-01 Flexfix, Llc Implantable composite apparatus and method
US8162943B2 (en) 2007-04-24 2012-04-24 Flexfix, Llc Deformable implant systems and methods
US8128626B2 (en) 2007-04-24 2012-03-06 Flexfix, Llc System and method for delivery conformation and removal of intramedullary bone fixation devices
US20080269746A1 (en) * 2007-04-24 2008-10-30 Osteolign, Inc. Conformable intramedullary implant with nestable components
US8147492B2 (en) 2007-04-24 2012-04-03 Flexfix, Llc System and method for guidance and implantation of implantable devices
US20090254129A1 (en) * 2007-04-30 2009-10-08 Kishore Tipirneni Bone screw system and method for the fixation of bone fractures
US20080281364A1 (en) * 2007-05-08 2008-11-13 Spineworks Medical, Inc. Systems, devices and methods for stabilizing bone
US20090276048A1 (en) * 2007-05-08 2009-11-05 Chirico Paul E Devices and method for bilateral support of a compression-fractured vertebral body
US9795485B2 (en) 2007-06-08 2017-10-24 Ldr Medical Intersomatic cage, intervertebral prosthesis, anchoring device and implantation instruments
US7998176B2 (en) 2007-06-08 2011-08-16 Interventional Spine, Inc. Method and apparatus for spinal stabilization
US20080306537A1 (en) * 2007-06-08 2008-12-11 Interventional Spine, Inc. Method and apparatus for spinal stabilization
US10751187B2 (en) 2007-06-08 2020-08-25 Ldr Medical Intersomatic cage, intervertebral prosthesis, anchoring device and implantation instruments
US11622868B2 (en) 2007-06-26 2023-04-11 DePuy Synthes Products, Inc. Highly lordosed fusion cage
US9839530B2 (en) 2007-06-26 2017-12-12 DePuy Synthes Products, Inc. Highly lordosed fusion cage
US10973652B2 (en) 2007-06-26 2021-04-13 DePuy Synthes Products, Inc. Highly lordosed fusion cage
US10433977B2 (en) 2008-01-17 2019-10-08 DePuy Synthes Products, Inc. Expandable intervertebral implant and associated method of manufacturing the same
US10449058B2 (en) 2008-01-17 2019-10-22 DePuy Synthes Products, Inc. Expandable intervertebral implant and associated method of manufacturing the same
US11737881B2 (en) 2008-01-17 2023-08-29 DePuy Synthes Products, Inc. Expandable intervertebral implant and associated method of manufacturing the same
US8282675B2 (en) 2008-01-25 2012-10-09 Depuy Spine, Inc. Anti-backout mechanism
US20090216260A1 (en) * 2008-02-20 2009-08-27 Souza Alison M Interlocking handle
US11617655B2 (en) 2008-04-05 2023-04-04 DePuy Synthes Products, Inc. Expandable intervertebral implant
US10449056B2 (en) 2008-04-05 2019-10-22 DePuy Synthes Products, Inc. Expandable intervertebral implant
US9931223B2 (en) 2008-04-05 2018-04-03 DePuy Synthes Products, Inc. Expandable intervertebral implant
US9993350B2 (en) 2008-04-05 2018-06-12 DePuy Synthes Products, Inc. Expandable intervertebral implant
US11712342B2 (en) 2008-04-05 2023-08-01 DePuy Synthes Products, Inc. Expandable intervertebral implant
US11712341B2 (en) 2008-04-05 2023-08-01 DePuy Synthes Products, Inc. Expandable intervertebral implant
US11707359B2 (en) 2008-04-05 2023-07-25 DePuy Synthes Products, Inc. Expandable intervertebral implant
US11701234B2 (en) 2008-04-05 2023-07-18 DePuy Synthes Products, Inc. Expandable intervertebral implant
US11602438B2 (en) 2008-04-05 2023-03-14 DePuy Synthes Products, Inc. Expandable intervertebral implant
US20100168748A1 (en) * 2008-07-16 2010-07-01 Knopp Peter G Morselizer
US9247963B2 (en) 2008-08-12 2016-02-02 Charles Kollmer Bone compression device and methods
US9907597B2 (en) 2008-08-12 2018-03-06 Charles E. Kollmer Bone compression system and associated methods
US9907638B2 (en) 2008-11-03 2018-03-06 Ian L. Goldman Atraumatic medical device anchoring and delivery system with enhanced anchoring
US20100113866A1 (en) * 2008-11-03 2010-05-06 Ian Lee Goldman Atraumatic medical device anchoring and delivery system
US10045860B2 (en) 2008-12-19 2018-08-14 Amicus Design Group, Llc Interbody vertebral prosthetic device with self-deploying screws
US20100161057A1 (en) * 2008-12-19 2010-06-24 Amicus, Llc Interbody Vertebral Prosthetic Device With Self-Deploying Screws
US20100217335A1 (en) * 2008-12-31 2010-08-26 Chirico Paul E Self-expanding bone stabilization devices
US8858644B2 (en) 2009-01-08 2014-10-14 Memometal Technologies Orthopaedic implant for arthroplasty of the fingers
US20100185289A1 (en) * 2009-01-20 2010-07-22 Incite Innovation Llc Interbody fusion device and method of operation
US8968405B2 (en) 2009-01-20 2015-03-03 Incite Innovation Llc Interbody fusion device and method of operation
US11612491B2 (en) 2009-03-30 2023-03-28 DePuy Synthes Products, Inc. Zero profile spinal fusion cage
US20100331891A1 (en) * 2009-06-24 2010-12-30 Interventional Spine, Inc. System and method for spinal fixation
US8834469B2 (en) 2009-06-30 2014-09-16 Smith & Nephew, Inc. Orthopaedic implant and fastener assembly
US8449544B2 (en) 2009-06-30 2013-05-28 Smith & Nephew, Inc. Orthopaedic implant and fastener assembly
US9463091B2 (en) 2009-09-17 2016-10-11 Ldr Medical Intervertebral implant having extendable bone fixation members
US10500062B2 (en) 2009-12-10 2019-12-10 DePuy Synthes Products, Inc. Bellows-like expandable interbody fusion cage
US11607321B2 (en) 2009-12-10 2023-03-21 DePuy Synthes Products, Inc. Bellows-like expandable interbody fusion cage
US10531961B2 (en) 2009-12-31 2020-01-14 Ldr Medical Anchoring device and system for an intervertebral implant, intervertebral implant and implantation instrument
US11246715B2 (en) 2009-12-31 2022-02-15 Ldr Medical Anchoring device and system for an intervertebral implant, intervertebral implant and implantation instrument
US10195046B2 (en) 2009-12-31 2019-02-05 Ldr Medical Instruments and methods for removing fixation devices from intervertebral implants
US9833331B2 (en) 2009-12-31 2017-12-05 Ldr Medical Anchoring device and system for an intervertebral implant, intervertebral implant and implantation instrument
US9155575B2 (en) 2010-01-07 2015-10-13 Zimmer, Inc. Bone plate fixation system
US8328809B2 (en) 2010-01-07 2012-12-11 Zimmer, Inc. Bone plate fixation system
US20110166573A1 (en) * 2010-01-07 2011-07-07 Klaus Wenk Bone plate fixation system
US10966840B2 (en) 2010-06-24 2021-04-06 DePuy Synthes Products, Inc. Enhanced cage insertion assembly
US11911287B2 (en) 2010-06-24 2024-02-27 DePuy Synthes Products, Inc. Lateral spondylolisthesis reduction cage
US11872139B2 (en) 2010-06-24 2024-01-16 DePuy Synthes Products, Inc. Enhanced cage insertion assembly
US9895236B2 (en) 2010-06-24 2018-02-20 DePuy Synthes Products, Inc. Enhanced cage insertion assembly
US10548741B2 (en) 2010-06-29 2020-02-04 DePuy Synthes Products, Inc. Distractible intervertebral implant
US11654033B2 (en) 2010-06-29 2023-05-23 DePuy Synthes Products, Inc. Distractible intervertebral implant
US11452607B2 (en) 2010-10-11 2022-09-27 DePuy Synthes Products, Inc. Expandable interspinous process spacer implant
US10405899B2 (en) * 2010-11-17 2019-09-10 Hyprevention Sas Devices, methods and systems for remedying or preventing fractures
US20120123415A1 (en) * 2010-11-17 2012-05-17 Vienney Cecile Devices, Methods and Systems for Remedying or Preventing Fractures
US8460388B2 (en) 2011-10-28 2013-06-11 Incite Innovation Llc Spinal interbody device
US10058435B2 (en) 2012-03-19 2018-08-28 Amicus Design Group, Llc Interbody vertebral prosthetic and orthopedic fusion device with self-deploying anchors
US8685104B2 (en) 2012-03-19 2014-04-01 Amicus Design Group, Llc Interbody vertebral prosthetic and orthopedic fusion device with self-deploying anchors
US9107761B2 (en) 2012-03-19 2015-08-18 Amicus Design Group, Llc Interbody vertebral prosthetic and orthopedic fusion device with self-deploying anchors
US9757252B2 (en) 2012-03-19 2017-09-12 Amicus Design Group, Llc Interbody vertebral prosthetic and orthopedic fusion device with self-deploying anchors
US8906101B2 (en) 2012-03-19 2014-12-09 Amicus Design Group, Llc Interbody vertebral prosthetic and orthopedic fusion device with self-deploying anchors
US9566165B2 (en) 2012-03-19 2017-02-14 Amicus Design Group, Llc Interbody vertebral prosthetic and orthopedic fusion device with self-deploying anchors
US9283087B2 (en) 2012-03-19 2016-03-15 Amicus Design Group, Llc Interbody vertebral prosthetic and orthopedic fusion device with self-deploying anchors
US9693876B1 (en) 2012-03-30 2017-07-04 Ali H. MESIWALA Spinal fusion implant and related methods
US10238504B2 (en) 2012-03-30 2019-03-26 Ali H. MESIWALA Spinal fusion implant and related methods
US9433449B2 (en) 2012-04-13 2016-09-06 Orthopedic Designs North America, Inc Intramedullary nail system including tang-deployment screw with male interface
US8876822B2 (en) 2012-04-13 2014-11-04 Orthopedic Designs North American, Inc. Intramedullary nail system with tang fixation after lock screw placement
US8491584B1 (en) 2012-04-13 2013-07-23 Orthopedic Designs North America, Inc. Intramedullary nail system with tang fixation
US10058433B2 (en) 2012-07-26 2018-08-28 DePuy Synthes Products, Inc. Expandable implant
US9937056B2 (en) 2012-07-27 2018-04-10 Zimmer Spine, Inc. Bone stabilization member with bone screw retention mechanism
US8814912B2 (en) 2012-07-27 2014-08-26 Zimmer Spine, Inc. Bone stabilization member with bone screw retention mechanism
US9414937B2 (en) 2012-07-27 2016-08-16 Zimmer Spine, Inc. Bone stabilization member with bone screw retention mechanism
US9883951B2 (en) 2012-08-30 2018-02-06 Interventional Spine, Inc. Artificial disc
US8535322B1 (en) * 2012-11-07 2013-09-17 Roy Y. Powlan Hip nail and inertial insertion tooling
US11850164B2 (en) 2013-03-07 2023-12-26 DePuy Synthes Products, Inc. Intervertebral implant
US11497619B2 (en) 2013-03-07 2022-11-15 DePuy Synthes Products, Inc. Intervertebral implant
US9522070B2 (en) 2013-03-07 2016-12-20 Interventional Spine, Inc. Intervertebral implant
US10413422B2 (en) 2013-03-07 2019-09-17 DePuy Synthes Products, Inc. Intervertebral implant
US9937050B2 (en) 2013-05-16 2018-04-10 Ldr Medical Vertebral implant, vertebral fastening device of the implant and implant instrumentation
US11633288B2 (en) 2013-05-16 2023-04-25 Ldr Medical Vertebral implant, vertebral fastening device of the implant and implant instrumentation
US9974661B2 (en) 2013-05-16 2018-05-22 Ldr Medical Vertebral implant, vertebral fastening device of the implant and implant instrumentation
US10154909B2 (en) 2013-05-16 2018-12-18 Ldr Medical Vertebral implant, vertebral fastening device of the implant and implant instrumentation
US10779953B2 (en) 2013-05-16 2020-09-22 Ldr Medical Vertebral implant, vertebral fastening device of the implant and implant instrumentation
US9522028B2 (en) 2013-07-03 2016-12-20 Interventional Spine, Inc. Method and apparatus for sacroiliac joint fixation
US11006991B2 (en) 2013-07-03 2021-05-18 DePuy Synthes Products, Inc. Method and apparatus for sacroiliac joint fixation
US10166056B2 (en) 2013-07-03 2019-01-01 DePuy Synthes Products, Inc. Method and apparatus for sacroiliac joint fixation
CN105263429B (en) * 2013-11-07 2017-06-06 株式会社4S The master screw formula screwing device of the bone engagement device of thigh peri position portion fracture and the bone engagement device of thigh peri position portion fracture
US10219916B2 (en) 2014-01-17 2019-03-05 Spine Wave, Inc. Method for fusing spinal vertebrae
US11051952B2 (en) 2014-01-17 2021-07-06 Spine Wave, Inc. Spinal implant system
US9968464B2 (en) 2014-01-17 2018-05-15 Spine Wave, Inc. Spinal fusion system
US10702391B2 (en) 2014-05-06 2020-07-07 Ldr Medical, S.A.S. Vertebral implant, device for vertebral attachment of the implant and instrumentation for implantation thereof
US10478310B2 (en) 2014-05-06 2019-11-19 Ldr Medical, S.A.S. Vertebral implant, device for vertebral attachment of the implant and instrumentation for implantation thereof
US9597192B2 (en) 2014-06-02 2017-03-21 Stryker European Holdings I, Llc Metacarpal rod anchor for a trapezometacarpal prosthesis
US10575883B2 (en) 2014-12-15 2020-03-03 Smith & Nephew, Inc. Active fracture compression implants
US11426290B2 (en) 2015-03-06 2022-08-30 DePuy Synthes Products, Inc. Expandable intervertebral implant, system, kit and method
US9913727B2 (en) 2015-07-02 2018-03-13 Medos International Sarl Expandable implant
US10092333B2 (en) * 2015-11-20 2018-10-09 Globus Medical, Inc. Expandable intramedullary systems and methods of using the same
US20170143390A1 (en) * 2015-11-20 2017-05-25 Globus Medical, Inc. Expandable intramedullary systems and methods of using the same
US11596523B2 (en) 2016-06-28 2023-03-07 Eit Emerging Implant Technologies Gmbh Expandable and angularly adjustable articulating intervertebral cages
US11596522B2 (en) 2016-06-28 2023-03-07 Eit Emerging Implant Technologies Gmbh Expandable and angularly adjustable intervertebral cages with articulating joint
US11510788B2 (en) 2016-06-28 2022-11-29 Eit Emerging Implant Technologies Gmbh Expandable, angularly adjustable intervertebral cages
US10624686B2 (en) 2016-09-08 2020-04-21 DePuy Synthes Products, Inc. Variable angel bone plate
US11529176B2 (en) 2016-09-08 2022-12-20 DePuy Synthes Products, Inc. Variable angle bone plate
US10820930B2 (en) 2016-09-08 2020-11-03 DePuy Synthes Products, Inc. Variable angle bone plate
US10905476B2 (en) 2016-09-08 2021-02-02 DePuy Synthes Products, Inc. Variable angle bone plate
US10537436B2 (en) 2016-11-01 2020-01-21 DePuy Synthes Products, Inc. Curved expandable cage
US10500060B2 (en) 2016-11-28 2019-12-10 Spine Wave, Inc. Disc preparation instrument for use in spinal fusion
US10524925B2 (en) 2016-11-28 2020-01-07 Spine Wave, Inc. Method for spinal fusion
US10603186B2 (en) 2016-11-28 2020-03-31 Spine Wave, Inc. Spinal implant inserter assembly for use in spinal fusion
US9937055B1 (en) 2016-11-28 2018-04-10 Spine Wave, Inc. Scoring implant trial and implant inserter for spinal fusion system
US10888433B2 (en) 2016-12-14 2021-01-12 DePuy Synthes Products, Inc. Intervertebral implant inserter and related methods
US11446155B2 (en) 2017-05-08 2022-09-20 Medos International Sarl Expandable cage
US10398563B2 (en) 2017-05-08 2019-09-03 Medos International Sarl Expandable cage
US11344424B2 (en) 2017-06-14 2022-05-31 Medos International Sarl Expandable intervertebral implant and related methods
US10940016B2 (en) 2017-07-05 2021-03-09 Medos International Sarl Expandable intervertebral fusion cage
US11819222B2 (en) 2017-10-05 2023-11-21 Spine Wave, Inc. Depth stop instrument for use in spinal surgery
US11813177B2 (en) 2017-10-05 2023-11-14 Spine Wave, Inc. Spinal surgery kit comprising a plurality of modular inserter tips
US10888434B2 (en) 2017-10-05 2021-01-12 Spine Wave, Inc. Modular scoring trial for anterior cervical cage
US10888435B2 (en) 2017-10-05 2021-01-12 Spine Wave, Inc. Modular inserter for anterior cervical cage
US11026727B2 (en) 2018-03-20 2021-06-08 DePuy Synthes Products, Inc. Bone plate with form-fitting variable-angle locking hole
US10772665B2 (en) 2018-03-29 2020-09-15 DePuy Synthes Products, Inc. Locking structures for affixing bone anchors to a bone plate, and related systems and methods
US11013541B2 (en) 2018-04-30 2021-05-25 DePuy Synthes Products, Inc. Threaded locking structures for affixing bone anchors to a bone plate, and related systems and methods
US11446156B2 (en) 2018-10-25 2022-09-20 Medos International Sarl Expandable intervertebral implant, inserter instrument, and related methods
US10925651B2 (en) 2018-12-21 2021-02-23 DePuy Synthes Products, Inc. Implant having locking holes with collection cavity for shavings
US20230157739A1 (en) * 2020-01-28 2023-05-25 Loubert S. Suddaby Fusion device
US11172969B2 (en) * 2020-01-28 2021-11-16 Loubert S. Suddaby Fusion device
US11583326B2 (en) * 2020-01-28 2023-02-21 Loubert S. Suddaby Fusion device
US11806245B2 (en) 2020-03-06 2023-11-07 Eit Emerging Implant Technologies Gmbh Expandable intervertebral implant
US11426286B2 (en) 2020-03-06 2022-08-30 Eit Emerging Implant Technologies Gmbh Expandable intervertebral implant
US11850160B2 (en) 2021-03-26 2023-12-26 Medos International Sarl Expandable lordotic intervertebral fusion cage
US11752009B2 (en) 2021-04-06 2023-09-12 Medos International Sarl Expandable intervertebral fusion cage

Also Published As

Publication number Publication date
WO2000044293A8 (en) 2001-04-12
EP1154725A1 (en) 2001-11-21
AU3213900A (en) 2000-08-18
WO2000044293A1 (en) 2000-08-03
US20010000186A1 (en) 2001-04-05
EP1154725B1 (en) 2006-11-08
CA2360675A1 (en) 2000-08-03
JP2002535068A (en) 2002-10-22
US6695844B2 (en) 2004-02-24
US5976139A (en) 1999-11-02
AU757037B2 (en) 2003-01-30
CA2360675C (en) 2006-06-27
EP1154725A4 (en) 2003-01-02

Similar Documents

Publication Publication Date Title
US6183474B1 (en) Surgical fastener assembly
JP3949725B2 (en) Surgical fastener assembly
JP6290984B2 (en) Anchor-in-anchor system for use in bone fixation
AU2001237191B2 (en) Device for rotational stabilization of bone segments
EP0441577B1 (en) Intramedullary hip screw
US9186189B2 (en) Bone screw retaining system
AU2002309801C1 (en) Fermoral nail intamedullary system
EP1443865B1 (en) Intramedullary hip nail with lock
US20020055742A1 (en) Apparatus for attaching fractured sections of bone
AU2001237191A1 (en) Device for rotational stabilization of bone segments
WO2002034120A2 (en) Facet fixation devices
US20200205870A1 (en) Cannulated fixation device
JP2006081914A (en) Surgical fastening device assembly

Legal Events

Date Code Title Description
AS Assignment

Owner name: ORTHOPEDIC DESIGNS, INC., FLORIDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:STERGHOS, PETER;SODEIKA, JOHN;REEL/FRAME:009853/0139

Effective date: 19990324

AS Assignment

Owner name: BRAMLET, DALE G., FLORIDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ORTHOPEDIC DESIGNS, INC.;REEL/FRAME:011127/0118

Effective date: 20000804

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

AS Assignment

Owner name: ORTHOPEDIC DESIGNS, INC., FLORIDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BRAMLET, DALE G.;REEL/FRAME:013634/0837

Effective date: 20020924

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
FEPP Fee payment procedure

Free format text: PETITION RELATED TO MAINTENANCE FEES FILED (ORIGINAL EVENT CODE: PMFP); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Free format text: PETITION RELATED TO MAINTENANCE FEES GRANTED (ORIGINAL EVENT CODE: PMFG); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

REIN Reinstatement after maintenance fee payment confirmed
FP Lapsed due to failure to pay maintenance fee

Effective date: 20090206

PRDP Patent reinstated due to the acceptance of a late maintenance fee

Effective date: 20091028

FPAY Fee payment

Year of fee payment: 8

STCF Information on status: patent grant

Free format text: PATENTED CASE

SULP Surcharge for late payment
AS Assignment

Owner name: ASCENSION RESEARCH, INC., FLORIDA

Free format text: SECURITY AGREEMENT;ASSIGNOR:ORTHOPEDIC DESIGN, INC.;REEL/FRAME:023556/0975

Effective date: 20090729

AS Assignment

Owner name: ORTHOPEDIC DESIGNS NORTH AMERICA, INC., FLORIDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ORTHOPEDIC DESIGNS, INC.;REEL/FRAME:026313/0705

Effective date: 20110517

FPAY Fee payment

Year of fee payment: 12