Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS6165431 A
Publication typeGrant
Application numberUS 09/286,829
Publication date26 Dec 2000
Filing date6 Apr 1999
Priority date8 Dec 1993
Fee statusLapsed
Also published asEP1183092A1, EP1183092A4, WO2000059613A1
Publication number09286829, 286829, US 6165431 A, US 6165431A, US-A-6165431, US6165431 A, US6165431A
InventorsRichard Mackay, Anthony F. Sammells, Michael Schwartz
Original AssigneeEltron Research, Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Methods for separating oxygen from oxygen-containing gases
US 6165431 A
Abstract
This invention provides mixed conducting metal oxides particularly useful for the manufacture of catalytic membranes for gas-phase oxygen separation processes. The materials of this invention have the general formula:
A.sub.x A'.sub.x A".sub.2-(x+x') B.sub.y B'.sub.y B".sub.2-(y+y') O.sub.5+z
;
where
x and x' are greater than 0;
y and y' are greater than 0;
x+x' is less than or equal to 2;
y+y' is less than or equal to 2;
z is a number that makes the metal oxide charge neutral;
A is an element selected from the f block lanthanide elements; A' is an element selected from Be, Mg, Ca, Sr, Ba and Ra;
A" is an element selected from the f block lanthanides or Be, Mg, Ca, Sr, Ba and Ra; B is an element selected from the group consisting of Al, Ga, In or mixtures thereof; and
B' and B" are different elements and are independently selected from the group of elements Mg or the d-block transition elements.
The invention also provides methods for oxygen separation and oxygen enrichment of oxygen deficient gases which employ mixed conducting metal oxides of the above formula. Examples of the materials used for the preparation of the membrane include
A.sub.x Sr.sub.x' B.sub.y Fe.sub.y' Co.sub.2-(y+y') O.sub.5+z,
where
x is about 0.3 to about 0.5,
x' is about 1.5 to about 1.7,
y is 0.6,
y' is between about 1.0 and 1.4 and
B is Ga or Al.
Images(7)
Previous page
Next page
Claims(26)
We claim:
1. A method for separating oxygen from an oxygen-containing gas which comprises the steps of:
(a) providing an oxidation zone and a reduction zone separated from one another by a substantially gas-impermeable membrane having a reduction surface in contact with said reduction zone and an oxidation surface in contact with said oxidation zone said membrane prepared from a mixed conducting metal oxide having the formula:
A.sub.x A'.sub.x' A".sub.2-(x+x') B.sub.y B'.sub.y' B".sub.2-(y+y') O.sub.5+z
where:
x and x' are greater than 0;
y and y' are greater than 0;
x+x' is less than or equal to 2;
y+y' is less than or equal to 2;
z is a number selected to make the metal oxide charge neutral;
A is an element selected from the f block lanthanide elements;
A' is an element selected from Be, Mg, Ca, Sr, Ba and Ra;
A" is an element selected from the f block lanthanides or the Be, Mg, Ca, Sr, or Ba;
B is an element selected from the group consisting of Al, Ga, In or mixtures thereof; and
B' and B" are different elements and are independently selected from the group of elements Mg or the d-block transition elements;
(b) passing said oxygen-containing gas in contact with said membrane in said reduction zone to reduce oxygen therein and generate oxygen anions in said membrane material said oxygen anions thereafter transported to said oxidation zone where said oxygen anions are oxidized forming oxygen which is thereby separated from said oxygen-containing gas.
2. The method of claim 1 wherein in said mixed metal oxide B is Ga.
3. The method of claim 1 wherein in said mixed metal oxide B' is Fe.
4. The method of claim 3 wherein B' is Co.
5. The method of claim 1 wherein in said mixed metal oxide B" is Co.
6. The method of claim 1 wherein in said mixed metal oxide A is La.
7. The method of claim 1 wherein in said mixed metal oxide A' is Sr.
8. The method of claim 1 wherein in said mixed metal oxide A" is Ba or Ce.
9. The method of claim 1 wherein in said mixed metal oxide A is La, A' is Sr, B' is Fe and B" is Co.
10. The method of claim 9 wherein in said mixed metal oxide x+x' is equal to 2.
11. The method of claim 9 wherein x is about 0.3 to about 0.5.
12. The method of claim 9 wherein y is about 0.6.
13. The method of claim 1 wherein x is about 0.3 to about 0.5.
14. The method of claim 1 wherein y is about 0.6.
15. The method of claim 1 wherein said oxidation zone contains an inert gas and said separated oxygen is entrained in said inert gas.
16. The method of claim 1 wherein said oxidation surface of said membrane is coated with an oxidation catalyst.
17. The method of claim 1 wherein said reduction surface of said membrane is coated with a reduction catalyst.
18. The method of claim 1 wherein La.sub.0.8 Sr.sub.0.2 CoO.sub.3-x is coated on said oxidation surface, said reduction surface or both as an oxidation catalyst, reduction catalyst or both.
19. The method of claim 1 wherein said oxygen-containing gas is air.
20. The method of claim 1 wherein the membrane is prepared from a mixed conducting metal oxide selected from those oxides having the formulas La.sub.0.3 Sr.sub.1.7 Ga.sub.0.6 Fe.sub.1.0-m Co.sub.m O.sub.5+z, La.sub.0.4 Sr.sub.1.6 Ga.sub.0.6 Fe.sub.1.0-m Co.sub.m O.sub.5+z, La.sub.0.3 Sr.sub.1.7 Al.sub.0.6 Fe.sub.1.0-m Co.sub.m O.sub.5+z, La.sub.0.4 Sr.sub.1.6 Al.sub.0.6 Fe.sub.1.0-m Co.sub.m O.sub.5+z where m is 0.1, 0.15, 0.20, 0.25, 0.30, 0.35 or 0.40.
21. The method of claim 1 where the membrane is prepared from La.sub.0.3 Sr.sub.1.7 Al.sub.0.6 Fe.sub.1.1 Co.sub.0.3 O.sub.5+z or La.sub.0.4 Sr.sub.1.6 Ga.sub.0.6 Fe.sub.1.2 Co.sub.0.2 O.sub.5+z.
22. The method of claim 1 wherein the gas impermeable membrane is a porous membrane coated with a thin film having thickness from about 10 to about 300 microns wherein both the porous membrane and the thin film are made from the same mixed metal oxide.
23. The method of claim 1 wherein the membrane is a gas impermeable disk or a gas impermeable open-one-end tube.
24. The method of claim 1 wherein the gas impermeable membrane is formed by mixing a mixed metal oxide powder with a binder, pressing the mixed metal oxide/binder mixture into a disk or tube and sintering the disk or tube in air.
25. A method for separating oxygen from an oxygen-containing gas which is prepared from the steps of:
(a) providing an oxidation zone and a reduction zone separated from one another by a substantially gas-impermeable membrane having a reduction surface in contact with said reduction zone and an oxidation surface in contact with said oxidation zone said membrane prepared from a mixed conducting metal oxide having the formula:
A.sub.x A'.sub.x' A".sub.2-(x+x') B.sub.y B'.sub.y' B".sub.2-(y+y') O.sub.5+z
where:
x and x' are greater than 0;
y and y' are greater than 0;
x+x' is less than or equal to 2;
y+y' is less than or equal to 2;
z is a number selected to make the metal oxide charge neutral;
A is an element selected from the f block lanthanide elements;
A' is an element selected from the Be, Mg, Ca, Sr, Ba and Ra;
A" is an element selected from the f block lanthanides or Be, Mg, Ca, Sr, Ba;
B is an element selected from the group consisting of Al, Ga, In or mixtures thereof; and
B' and B" are different elements and are independently selected from the group of elements Mg or the d-block transition elements;
(b) passing said oxygen-containing gas in contact with said membrane in said reduction zone to reduce oxygen therein and generate oxygen anions in said membrane material said oxygen anions thereafter transported to said oxidation zone where said oxygen anions are oxidized forming oxygen which is thereby separated from said oxygen-containing gas.
26. The method of claim 25 wherein the membrane comprises up to about 10% by weight of a second metal oxide phase.
Description
DESCRIPTION OF THE INVENTION

Brownmillerites are generally referred to as having the formula A.sub.2 B.sub.2 O.sub.5. Brownmillerite is considered to be derived from the perovskite structure by removal of 1/6 of the oxygen atoms. Solid state compositions based on the brownmillerite parent compound Ba.sub.2 In.sub.2 O.sub.5 and useful in this invention are formed by introducing dopants or substitutents into the B-site of the lattice to lower the order-disorder phase transition. Higher oxygen anion conductivity is generally found to correlate with the disordered phase. Clear correlations exist between perovskite-related crystallographic and thermodynamic parameters with empirical parameters relating to the activation energy (E.sub.a) for ionic transport. Lower values of E.sub.a favor higher ionic conduction. The derived expression for ionic conductivity is given by:

σT=Aexp(-.increment.Hm/KT)

where K is the Boltzman constant and -.increment.H.sub.m is the enthalpy of activation which is equivalent to E.sub.a. This equation indicates that the overall ionic conductivity σ is a function of both an exponential term and a pre-exponential term. The pre-exponential term, A is given by:

A=(Zλ.sup.2 e.sup.2 / 6ν.sub.o K)C(1-C)ν.sub.o exp(.increment.Sm / K)

where .increment.S.sub.m is the activation entropy, C is the fraction of available sites occupied by mobile ions, A is the jump distance, Z is the number of jump directions ν.sub.o is the molar volume and e is the electronic charge. The exponential term is related to the activation energy. These equations provide a rationale for dopant metal cation selection to improve ionic conduction. Dopants are selected to improve ionic conductivity by (i) optimizing vacancy concentration to maximize the pre-exponential term A, and (ii) decreasing activation energy to maximize the exponential term.

Membrane materials of this invention can be used for oxygen separation or oxygen enrichment, i.e., for decreasing the oxygen concentration in one gas stream and increasing or enriching the oxygen concentration in another gas stream. Oxygen-containing gas includes air, oxygen in nitrogen, oxygen in inert gases and contaminated oxygen. Oxygen from the oxygen-containing gas can be transferred in the reactors of this invention, in principle, to any gas in which it is desired to increase oxygen concentration, in particular an inert gas, nitrogen, a reduced gas (i.e., hydrocarbon-containing gas) can be introduced into the oxidation zone of the reactor. Alternatively, a vacuum or partial vacuum can be applied to the oxidation zone to collect separated oxygen. The separated oxygen can also be used to oxidize a reduced gas in the oxidation zone, i.e., to form oxygenated hydrocarbons.

This invention provides a method for separating oxygen from oxygen-containing gases and/or for oxygen enrichment of oxygen-deficient gases in which it is desired to increase the level of oxygen. The method employs a reactor having two chambers or zones (an oxidation zone and a reduction zone) separated by a substantially gas impermeable membrane. A substantially gas impermeable membrane may not be completely impermeable to small gaseous species such as hydrogen gas and may allow a low level of leakage of other gases. It is particularly important that the membrane be impermeable to gases from which oxygen is to be separated, such as nitrogen. Preferred membranes are formed without substantial cracking and gas leakage. The membrane is capable of transporting oxygen ions and also conducts electrons. The membrane is fabricated from an ion-conducting and electron-conducting mixed metal oxide of this invention having the formula given above.

The oxygen-containing gas is introduced into one chamber, the reduction zone, in contact with the reduction surface of the membrane. A differential oxygen partial pressure is established between the two chambers or zones, with oxygen partial pressure higher in the reduction zone. The differential partial pressure can be established by introducing an oxygen-deficient gas or a reduced gas into the oxidation zone which has a lower concentration of oxygen than in the oxygen-containing gas. The oxygen-deficient gas can be an inert gas such as helium. Alternatively, a partial or full vacuum can be applied to the oxidation zone to remove transported oxygen. Gas pressure in the zones may be ambient or higher or lower than ambient to achieve the desired differential oxygen partial pressure. The membrane is heated to a temperature that facilitates oxygen anion transport and also facilitates electron transport. Oxygen is transported across the membrane to enrich the oxygen content of the oxygen-deficient or reduced gas. Oxygen can be concentrated from the oxygen-enriched gas exiting the oxidation zone.

During operation the membranes of this invention are heated, typically to at least about 700 C., ionic conductivity of the 1 mm thick membrane is typically too low for practical operation.

The oxygen-separation reactors of this invention can be combined with other known methods for gas purification or gas separation to provide desired levels of purity in gas streams. The gas stream output of oxygen-separation reactors can be introduced as product gas streams for other reactors.

Mixed metal oxide materials useful for preparation of ionically- and electronically-conductive membranes include, among others:

______________________________________A.sub.x Sr.sub.x' B.sub.y Fe.sub.y' Co.sub.2-(y+y') O.sub.5+z          particularly where x is about 0.3 to   about 0.5, x' is about 1.5 to about 1.7, y is   0.6, y' is between about 1.0 and 1.4, and   where B is Ga or Al.  La.sub.x A'.sub.x' B.sub.y Fe.sub.y' Co.sub.2-(y+y') O.sub.5+z particula          rly where x is about 0.3 to   about 0.5, x' is about 1.5 to about 1.7, y is   0.6, y' is between about 1.0 and 1.4, and   where B is Ga or Al.  La.sub.x Sr.sub.x' B.sub.y B'.sub.y' Co.sub.2-(y+y') O.sub.5+z particula          rly where x is about 0.3 to   about 0.5, x' is about 1.5 to about 1.7, y is   0.6, y' is between about 1.0 and 1.4, and   where B is Ga or Al.  La.sub.x Sr.sub.x' B.sub.y Fe.sub.y' B".sub.2-(y+y') O.sub.5+z particula          rly where x is about 0.3 to   about 0.5, x' is about 1.5 to about 1.7, y is   0.6, y' is between about 1.0 and 1.4, and   where B is Ga or Al.  La.sub.x Sr.sub.x' B.sub.y Fe.sub.y' Co.sub.2-(y+y') O.sub.5+z particula          rly where x is about 0.3 to   about 0.5, x' is about 1.5 to about 1.7, y is   0.6, y' is between about 1.0 and 1.4, and   where B is Ga or Al.  La.sub.0.3 Sr.sub.1.7 Ga.sub.0.6 Fe.sub.1.0-m Co.sub.m O.sub.5+z where          m is 0, 0.1, 0.15, 0.20, 0.25, 0.30,   0.35, and 0.40.  La.sub.0.4 Sr.sub.1.6 Ga.sub.0.6 Fe.sub.1.0-m Co.sub.m O.sub.5+z where          m is 0, 0.1, 0.15, 0.20, 0.25, 0.30,   0.35 and 0.40.  La.sub.0.3 Sr.sub.1.7 Al.sub.0.6 Fe.sub.1.0-m Co.sub.m O.sub.5+z where          m is 0, 0.1, 0.15, 0.20, 0.25, 0.30,   0.35 and 0.40.  La.sub.0.4 Sr.sub.1.6 Al.sub.0.6 Fe.sub.1.0-m Co.sub.m O.sub.5+z where          m is 0, 0.1, 0.15, 0.20, 0.25, 0.30,   0.35 and 0.40.  La.sub.0.3 Sr.sub.1.7 Al.sub.0.6 Fe.sub.1.1 Co.sub.0.3 O.sub.5+z           La.sub.0.4 Sr.sub.1.6 Al.sub.0.6 Fe.sub.1.2 Co.sub.0.2          O.sub.5+z  La.sub.0.3 Sr.sub.1.7 Ga.sub.0.6 Fe.sub.1.4 O.sub.5+z  La.sub.0.4 Sr.sub.1.6 Ga.sub.0.6 Fe.sub.1.4 O.sub.5+z______________________________________

Mixed metal oxide materials of this invention are substantially single-phase in that they are predominately (greater than about 90% by weight) comprised of a single-phase mixed metal oxide of the formula given above. The purity of the materials can be determined by X-ray diffraction methods which are believed to detect the presence of greater than about 4% by weight of other phases. The materials formed on mixing, calcining and milling individual metal oxide powders may contain minor amounts (up to about 10% by weight) of other metal oxides that form distinct phases, but which do not contribute significantly to the electronic and ionic conductivity of the material as a whole. These additional metal oxide phases may be formed unintentionally due to inaccuracies in the amounts of starting materials added because, for example, the starting materials may contain non-volatile impurities (e.g., starting metal oxides may contain low levels of metal carbonates) or volatile impurities (e.g., water) that alter the relative stoichiometries of component metals. Alternatively, additional metal oxide phases may be selectively introduced into the mixed metal oxide material by preparing off-stoichiometric mixtures of starting materials.

FIGS. 1-5 are X-ray diffractometer scans for several mixed metal oxides of the above formula La.sub.0.4 Sr.sub.1.6 Ga.sub.0.6 Fe.sub.1.4 O.sub.5+z (FIG. 1), La.sub.0.3 Sr.sub.1.7 Ga.sub.0.6 Fe.sub.1.1 Co.sub.0.3 O.sub.5+z (FIG. 2), La.sub.0.3 Sr.sub.1.7 Al.sub.0.6 Fe.sub.1.1 Co.sub.0.3 O.sub.5+z (FIG. 3), La.sub.0.4 Sr.sub.1.6 Ga.sub.0.6 Fe.sub.1.2 Co.sub.0.2 O.sub.5+z (FIG. 4), all of which were calcined, and La.sub.0.4 Sr.sub.1.6 Al.sub.0.6 Fe.sub.1.2 Co.sub.0.2 O.sub.5+z (FIG. 5), calcined and sintered (see Example 1). These scans were run on a Philips PW1830 X-ray generator with model 1050 goniometer for powder samples with a PW3710 control unit. The X-ray diffractometer scans indicate that the mixed metal oxide materials are substantially single-phase oxides of the desired stoichiometry containing small amounts of other oxide phases (less than about 10% by weight). The diffractometer employed can detect greater than about 4% by weight of other phases (as determined by adding increasing amounts of SrAl.sub.2 O.sub.4 impurity). Small arrows on the scans indicate peaks believed to be indicative of second phases. The shoulder peak at about 32 is believed to be due to (Sr, La).sub.2 AlO.sub.4. The peaks between 28-30 are believed to be due to Sr(Fe, Al).sub.2 O.sub.4. The peaks at 34 and 41 have not as yet been identified.

In the mixed metal oxides of this invention, Group 2 elements Mg, Ca, Sr, Ba and Ra are believed to be in the 2+ oxidation state. Group 13 elements Al, Ga, and In are believed to be in the 3+ oxidation state. Lanthanides (including lanthanum and yttrium) are believed to be in the 3+ oxidation state. The transition metals in these materials are expected to be of mixed valence (i.e., a mixture of oxidation states) dependent upon the amount of oxygen present and the temperature.

Membranes useful in the oxygen separation method of this invention can be dense, substantially gas impermeable sintered materials in any desired shape, including membrane disks, open tubes, one-open-ended tubes, etc., that can be adapted to form a gas-tight seal between the two zones or chambers discussed above. The membrane can be sealed between the two zone or chambers with a gas tight seal employing approriately selected adhesive or sealant. Membranes can be formed by isostatic pressing of mixed metal oxide materials of this invention into dense substantially gas impermeable membranes. Alternatively, substantially gas-impermeable membranes can be formed by forming dense thin films of ionically and electronically conducting mixed metal oxide on porous substrate materials. Again these two component membranes (porous substrate and dense thin film) can have any desired shape including disks, tubes or one-open-ended tubes. Porous substrates (which allow passage of gas through the substrate) can include various metal oxide materials including metal-oxide stabilized zirconia, titania, alumina, magnesia, or silica, mixed metal oxide materials exhibiting ion and/or electronic conduction or metal alloys, particularly those that minimally react with oxygen. The substrate material should be inert to oxygen or facilitate the desired transport of oxygen. More preferred substrates are those that have a thermal expansion coefficient (over the operational temperatures of the reactor) that is matched to that of the mixed metal oxide ion/electron conducting material.

Thin films (about 10-300 μm thick) of the mixed metal oxides of this invention are formed on the porous substrate by a variety of techniques, including tape casting, dip coating or spin coating. A presently preferred two component membrane is prepared by forming dense thin films of the mixed metal oxides of this invention on a porous substrate formed from the same mixed metal oxide material.

The oxidation and reduction surfaces of the membranes of this invention can optionally be provided with an oxidation catalyst, a reduction catalyst or both. Oxidation and reduction catalysts can be selected from mixed metal oxides having the formula:

La.sub.a A.sub.2-a CO.sub.2-b M.sub.b O.sub.5+a/2+b/2

where 0<b<0.4, 0≦a≦1.6, and where A is Ba, Sr, Ca or mixtures thereof and M is Fe, Cu or Ag or mixtures thereof.

A preferred oxidation/reduction catalyst is La.sub.0.8 Sr.sub.0.2 CoO.sub.3-δ where δ is a number that makes the metal oxide charge neutral. Alternative catalysts include: A.sub.2 CO.sub.2-b M.sub.b O.sub.5+b/2, where 0<b≦0.2, A is Ba, Sr, Ca or mixtures thereof and M is Fe, Ni, Cu, Ag or mixtures thereof; and metals dispersed onto ceramic material, particularly where the metal is Ag, Pd, Pt, Ir, Rh, Ru or mixtures thereof.

Catalysts can be deposited on the membrane surface by any known deposition process. A preferred process is the deposition of the catalysts on the sintered membrane surfaces by spray pyrolysis. Stoichiometric aqueous metal nitrate (or other metal precursor) solutions (having the stoichiometry of the desired metal oxide catalyst, for example, can be spray pyrolyzed by heating to about 700 pyrolysis propellant to avoid oxygen depletion during deposition. The pyrolyzed spray is uniformly deposited onto a heated (e.g., to 500 C.) sintered membrane, for example using an air brush device. Other solvents that do not interfere with deposition or react with the catalyst can be employed in the pyrolysis solution. Catalyst loading is varied by adjusting the concentration of the catalyst (or catalyst precursor) in the pyrolysis solution. Catalyst loading will typically be about 0.001 to about 0.1 g/cm.sup.2 and preferably about 0.01 gr/cm.sup.2.

EXAMPLES Example 1 Preparation of Mixed Metal Oxides

Starting materials for preparation of mixed metal oxides were obtained from commercial sources and typically were employed without further purification. Higher purity mixed metal oxides can be obtained by initial removal of volatile impurities (e.g., H.sub.2 O, by heating starting materials under vacuum). For specific examples below, La.sub.2 O.sub.3, SrCO.sub.3, Ga.sub.2 O.sub.3, Al.sub.2 O.sub.3 and Co.sub.3 O.sub.4 were obtained from Alfa/Aesar at purities indicated below. Fe.sub.2 O.sub.3 was obtained from Aldrich.

The brownmillerite-derived ceramic materials of this invention were in general prepared from powders using standard solid state synthesis techniques.

A. La.sub.0.4 Sr.sub.1.6 Ga.sub.0.6 Fe.sub.1.2 Co.sub.0.2 O.sub.5+z

The following were combined:

16.34 parts by wt. of La.sub.2 O.sub.3 (99.9% purity by weight on a rare earth metals basis)

59.23 parts by wt. of SrCO.sub.3 (99% purity by weight, with <1% Ba)

14.10 parts by wt. of Ga.sub.2 O.sub.3 (99.9% purity by weight on a metals basis)

24.03 parts by wt. of Fe.sub.2 O.sub.3 (99+% purity by weight)

4.03 parts by wt. of Co.sub.3 O.sub.4 (99.7% purity by weight on a metals basis)

in propanol (about 100 ml) and milled together for 18-24 hrs, after which the milled powder was dried and calcined in an alumina crucible (in air) for 6-12 h at 1175 subjected to grinding and sieving before calcining a second time at 1175 calcined powder of La.sub.0.4 Sr.sub.1.6 Ga.sub.0.6 Fe.sub.1.2 Co.sub.0.2 O.sub.5+z shows these materials to be substantially single-phase, containing only small amounts of second phases (<10%), see FIG. 4.

To prepare dense membranes, the resulting powders were mixed with polyvinyl butyral binder and pressed and sintered in air at 1150 C.-1450 tubes. Materials containing Ga are preferably sintered at lower temperatures in this range, up to about 1225 of sintered membranes show material to be substantially single-phase containing small amounts (less than about 10%) of second phases.

B. La.sub.0.3 Sr.sub.1.7 Ga.sub.0.6 Fe.sub.1.1 C.sub.0.3 O.sub.5+x was prepared as in A above combining the following starting materials of the same purity and source:

12.40 parts by wt. of La.sub.2 O.sub.3

63.70 parts by wt. of SrCO.sub.3

14.27 parts by wt. of Ga.sub.2 O.sub.3

22.29 parts by wt. of Fe.sub.2 O.sub.3

6.11 parts by wt. of Co.sub.3 O.sub.4

Membranes were prepared as in A above. An X-ray diffraction scan of calcined La.sub.0.3 Sr.sub.1.7 Ga.sub.0.6 Fe.sub.1.1 Co.sub.0.3 O.sub.5+x is provided in FIG. 2.

C. La.sub.0.3 Sr.sub.1.7 Ga.sub.0.6 Fe.sub.1.1 Co.sub.0.35 O.sub.5+x was prepared as in A above combining the following starting materials of the same purity and source:

16.289 parts by wt. of La.sub.2 O.sub.3

59.044 parts by wt. of SrCO.sub.3

14.056 parts by wt. of Ga.sub.2 O.sub.3

20.597 parts by wt. of Fe.sub.2 O.sub.3

7.022 parts by wt. of Co.sub.3 O.sub.4

Membranes were prepared as in A above.

D. La.sub.0.4 Sr.sub.1.6 Al.sub.0.6 Fe.sub.1.2 Co.sub.0.2 O.sub.5+x was prepared as in A above combining the following starting materials of the same purity and source unless otherwise indicated:

17.43 parts by wt. of La.sub.2 O.sub.3

63.17 parts by wt. of SrCO.sub.3

8.18 parts by wt. of αAl.sub.2 O.sub.3 (alpha-alumina)(99.9% purity by weight on a metals basis)

25.62 parts by wt. of Fe.sub.2 O.sub.3

4.29 parts by wt. of Co.sub.3 O.sub.4

Dense membranes were prepared as described above in A with the exception that materials containing Al are preferably sintered at temperatures at the higher end of the range given, i.e. at about 1300 and preferably at 1400 scan of sintered material is provided in FIG. 5.

Example 2 O.sub.2 Flux or Permeation Measurements

An open-one-end membrane tube (about 1.0 mm m thick) prepared from La.sub.0.3 Sr.sub.1.7 Ga.sub.0.6 Fe.sub.1.1 Co.sub.0.35 O.sub.5+x as described in Example 1 C was incorporated into a membrane reactor with a Pyrex seal used to isolate the air from the permeate chamber. A slurry of La.sub.0.8 Sr.sub.0.2 CoO.sub.3-x (in 1, 2-butanediol) was applied on both the anode (oxidation) and cathode (reduction) sides of the membrane to serve as both oxidation and reduction catalysts. Gas flows on both sides of the membrane were under ambient pressure. Air flow on the cathode side of the reactor was held at 600 ml/min, and the He flow on the anode side was fixed at 400 ml/min. Under these conditions, an oxygen flux of 0.9 ml/min-cm.sup.2 was maintained at 900 This is equivalent to an oxygen ion conductivity of 0.7 S/cm. An activation energy of less than 0.5eV was calculated from temperature dependent measurements. Oxygen conductivity is calculated from oxygen flux (or permeation) according to the equation:

σion(S/cm)=5.7.times.10.sup.3 (J*d/T)[log(P'/P")].sup.-1

where

J is the oxygen permeation in ml/min-Cm.sup.3,

d is membrane thickness in cm,

T is temperature in K,

P' and P" are the oxygen partial pressures on opposite sides of the membrane.

See, Y. Teraoka, et al. (1988) Mater. Res. Bull. 23:51.

Table 1 provides oxygen permeation data for dense membranes (about 0.8-1.0 mm thick) prepared by isostatic pressing of mixed metal oxide materials of this invention. Membranes were prepared as open-one-ended tubes. In these experiments, the partial pressure of oxygen on the cathode side was 0.21 atm (O.sub.2 in air) and on the anode side was maintained at 0.02 atm. He flow on the anode side was adjusted to maintain the constant oxygen partial pressure of 0.02 atm. In both cases gas flows were at ambient pressure. Maintenance of the constant partial pressures of oxygen on either side of the membrane allows comparison of data among different membrane materials.

Table 1 also lists ion conductivities which are calculated using the equation above. The values of oxygen permeation and calculated conductivity given in the table at those measured after operation in a reactor for the time listed in Table 1. FIGS. 6 and 7 are graphs comparing oxygen flux or permeation (ml/min-cm.sup.2) as a function of time at 900 oxygen flux as a function of time using membranes prepared from La.sub.0.3 Sr.sub.1.7 Ga.sub.0.6 Fe.sub.1.4-y Co.sub.y O.sub.5+z where 0ltoreq.y<0.4, indicating that the amount of Co is varied. The preferred material over time based on this data is that where y=0.30. FIG. 7 compares oxygen flux as a function of time using membranes prepared from La.sub.0.4 Sr.sub.1.6 Ga.sub.0.6 Fe.sub.1.4-y Co.sub.y O.sub.5+z where 0.0<y<0.4, indicating that the amount of Co is varied. The preferred material over time based on these data is that where y=0.20.

Example 3 Preparation of Thin Films

Membranes for oxygen separation reactors can be prepared by coating a substrate with a thin film (about 10-about 300 μm thick) of a mixed metal oxide material of this invention. In particular a porous substrate material can be coated with a dense thin film of these materials to provide a substantially gas impermeable membrane. In general, thin films are applied to selected substrates by methods known in the art, including tape casting, dip coating or spin coating. Presently preferred thin film-coated membranes are prepared using a porous membrane as a substrate where the porous membrane is made of a mixed metal oxide of the same or similar composition to the ion and electron conduction mixed metal oxide that will comprise the thin film. Use of a substrate that has the same or a similar (preferably within about 20% of) thermal expansion coefficient as the thin film material will minimize or avoid cracking of the film and/or membrane on heating. Furthermore, use of a chemically similar material for both the substrate and thin film will minimize undesired reactivity of the two materials with each other and undesired reactivity of the substrate with gases in the reactor. Porous membranes of the mixed metal oxides of this invention can be prepared in a variety of ways, for example, by combining the metal oxide with an organic filler (up to about 20% by weight), such as cellulose or starch particles of a selected size range 9 e.g. about 20 μm particles), shaping or pressing the desired membrane and sintering. The organic filler is destroyed and removed on sintering leaving desired pores of a selected size in the membrane. Thin films are preferably uniformly thick and crack-free on firing. Uniform deposition of films can for example be obtained by use of colloidal suspensions of the metal oxide in a selected solvent. The suspension is applied to the porous substrate by conventional coating or casting methods to give a uniform deposition which on firing gives a film of uniform thickness. An alternative method for applying thin films is the use of co-polymeric precursors which comprise metal oxide incorporated into the polymer. Flat membranes or tubular membranes can be prepared having dense thin films of the metal oxide mixed ion and electron conductors of this invention.

Those of ordinary skill in the art will appreciate that methods, materials, reagents, solvents, membrane structures and reactors other than those specifically described herein can be employed or adapted without undue experimentation to the practice of this invention. All such variants in methods, materials, reagents, solvents, structures and reactors that are known in the art and that can be so adapted or employed are encompassed by this invention.

                                  TABLE 1__________________________________________________________________________         total             J (ml/min-cm.sup.2) σ.sub.ion (S/cm)  time Temperature (Membrane Compound         (hr)             750 800 850 900 E.sub.a                                 750 800 850 900 E.sub.a__________________________________________________________________________Sr.sub.1.6 La.sub.0.4 Ga.sub.0.6 Fe.sub.1.3 Co.sub.0.1 O.sub.5+z         144 0.092                 0.138                     0.207                         0.231                             0.66                                 0.033                                     0.053                                         0.088                                             0.098                                                 0.79  Sr.sub.1.6 La.sub.0.4 Ga.sub.0.6 Fe.sub.1.25 Co.sub.0.15 O.sub.5+z 144                                                 0.327 0.447 0.600                                                 0.725 0.56 0.140                                                 0.201 0.285 0.352                                                 0.64  Sr.sub.1.6 La.sub.0.4 Ga.sub.0.6 Fe.sub.1.2 Co.sub.0.2 O.sub.5+z 168                                                 0.529 0.778 1.023                                                 1.282 0.61 0.213                                                 0.339 0.470 0.616                                                 0.73  Sr.sub.1.6 La.sub.0.4 Ga.sub.0.6 Fe.sub.1.15 Co.sub.0.25 O.sub.5+z 168                                                 0.201 0.289 0.560                                                 0.793 0.99 0.057                                                 0.084 0.185 0.277                                                 1.14  Sr.sub.1.6 La.sub.0.4 Ga.sub.0.6 Fe.sub.1.1 Co.sub.0.3 O.sub.5+z 360                                                 0.297 0.456 0.629                                                 0.882 0.74 0.098                                                 0.160 0.229 0.340                                                 0.84  Sr.sub.1.6 La.sub.0.4 Ga.sub.0.6 Fe.sub.1.05 Co.sub.0.35 O.sub.5+z 168                                                 0.226 0.355 0.700                                                 1.184 1.17 0.069                                                 0.114 0.261 0.507                                                 1.40  Sr.sub.1.7 La.sub.0.3 Ga.sub.0.6 Fe.sub.1.3 Co.sub.0.1 O.sub.5+z 168                                                 0.164 0.246 0.363                                                 0.523 0.80 0.061                                                 0.094 0.147 0.224                                                 0.90  Sr.sub.1.7 La.sub.0.3 Ga.sub.0.6 Fe.sub.1.2 Co.sub.0.2 O.sub.5+z 192                                                 0.035 0.059 0.074                                                 0.141 0.91 0.008                                                 0.014 0.018 0.038                                                 1.00  Sr.sub.1.7 La.sub.0.3 Ga.sub.0.6 Fe.sub.1.15 Co.sub.0.25 O.sub.5+z 144                                                 0.124 0.188 0.286                                                 0.394 0.81 0.054                                                 0.086 0.142 0.212                                                 0.95  Sr.sub.1.7 La.sub.0.3 Ga.sub.0.6 Fe.sub.1.1 Co.sub.0.3 O.sub.5+z 192                                                 0.298 0.508 0.888                                                 1.239 1.00 0.101                                                 0.190 0.379 0.570                                                 1.22  Sr.sub.1.7 La.sub.0.3 Ga.sub.0.6 Fe.sub.1.05 Co.sub.0.35 O.sub.5+z 168                                                 0.146 0.228 0.325                                                 0.484 0.82 0.059                                                 0.101 0.156 0.266                                                 1.02  Sr.sub.1.7 La.sub.0.3 Ga.sub.0.6 Fe.sub.1.4 O.sub.5+z 192 0.343 0.487                                                 0.625 0.751 0.54                                                 0.143 0.217 0.291                                                 0.361 0.64__________________________________________________________________________
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an x-ray diffractometer scan for calcined mixed metal oxide having the formula La.sub.0.4 Sr.sub.1.6 Ga.sub.0.6 Fe.sub.1.4 O5.sub.+z.

FIG. 2 is an x-ray diffractometer scan for calcined mixed metal oxide having the formula La.sub.0.3 Sr.sub.1.7 Ga.sub.0.6 Fe.sub.1.1 Co.sub.0.3 O.sub.5+z.

FIG. 3 is an x-ray diffractometer scan for calcined mixed metal oxides having the formula La.sub.0.4 Sr.sub.1.7 Al.sub.0.6 Fe.sub.1.1 Co.sub.0.3 O.sub.5+z.

FIG. 4 is an x-ray diffractometer scan for calcined mixed metal oxides of formula La.sub.0.4 Sr.sub.1.6 Ga.sub.0.6 Fe.sub.1.2 Co.sub.0.2 O.sub.5+z.

FIG. 5 is an x-ray diffractometer scan for calcined and sintered mixed metal oxides of formula La.sub.0.4 Sr.sub.1.6 Al.sub.0.6 Fe.sub.1.2 Co.sub.0.2 O.sub.5+z.

FIG. 6 is a graph of oxygen permeation (ml/min-cm.sup.2) at 900 as a function of time for compounds of composition Sr.sub.1.7 La.sub.0.3 Ga.sub.0.6 Fe.sub.1.4-y CO.sub.y O.sub.5+z where 0ltoreq.y.ltoreq4. Closed circles (--.circle-solid.--) are the results with the composition where y=0, closed triangles (--.tangle-solidup.--) are results where y=0.10, closed squares (--.box-solid.--) are the results where y=0.20, closed diamonds (--.diamond-solid.--) are the results where y=0.25, closed inverted triangles (--.tangle-soliddn.--) are the results where y=0.30 and open circles (--◯--) are the results where y=0.35.

FIG. 7 is a graph of oxygen permeation at 900 as a function of time for compounds of composition Sr.sub.1.6 La.sub.0.4 Ga.sub.0.6 Fe.sub.1.4-y Co.sub.y O.sub.5+z where 0.0<y<0.4. Closed circles (--.circle-solid.--) are the results with the composition where y=0.10, closed triangles (--.tangle-solidup.--) are results where y-0.15, closed squares (--.box-solid.--) are the results where y=0.20, closed diamonds (--.diamond-solid.--) are the results where y=0.25, closed inverted triangles (--.tangle-soliddn.--) are the results where y=0.30 and open circles (--◯--) are the results where y=0.35.

BACKGROUND OF THE INVENTION

Strong incentives exist for the development of efficient processes for the separation of oxygen from gas mixtures, such as air. Low-cost production would enhance the availability of pure oxygen for a variety of industrial applications including its use in high efficiency combustion processes. There is significant potential for the application of solid state catalytic membranes to oxygen separation. This technology is presently limited by the ceramic materials that are available. New ceramic materials that exhibit higher oxygen flux and improved mechanical and chemical stability in long term operation for use in membrane reactors are of significant interest in the art.

SUMMARY OF THE INVENTION

This invention relates to mixed metal oxide materials that are particularly useful for the manufacture of catalytic membranes for gas-phase oxygen separation processes. Oxygen-deficient oxides of this invention are derived from brownmillerite materials which have the general structure A.sub.2 B.sub.2 O.sub.5. The materials of this invention maintain high oxygen anion conductivities at relatively low membrane operating conditions ranging from about 700 elements at the B-site in the brownmillerite structure are selected to provide mixed ion- and electron-conducting materials and particularly to provide material that conduct oxygen anions and electrons. The materials of this invention have the general formula:

A.sub.x A'.sub.x' A".sub.2-(x+x') B.sub.y B'.sub.y' B".sub.2-(y+y') O.sub.5+z

where:

x and x' are greater than 0;

y and y' are greater than 0;

x+x' is less than or equal to 2;

y+y' is less than or equal to 2;

z is a number that makes the metal oxide charge neutral;

A is an element selected from the lanthanide elements and yttrium;

A' is an element selected from the Group 2 elements;

B is an element selected from the group consisting of Al, Ga, In or mixtures thereof; and

B' and B" are different elements and are independently selected from the group of elements Mg or the d-block transition elements.

The lanthanide metals include the f block lanthanide metals: La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Yttrium has properties similar to the f block lanthanide metals and is also included herein in the definition of lanthanide metals. A is preferably La or Gd, with La more preferred. Group 2 metal elements of the Periodic Table (also designated Group IIa) are Be, Mg, Ca, Sr, Ba, and Ra. The preferred Group 2 elements for the A' element of the materials of this invention are Ca, Sr and Ba and Sr is most preferred. The more preferred B elements are Ga and Al, with Ga more preferred. The d block transition elements include Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn. Preferred B' and B" elements are Mg, Fe and Co, with Fe and Co being more preferred as B' and B", respectively.

Mixed metal oxides in which B" and B" are Fe and Co are particularly preferred for membranes having high oxygen flux rates.

The value of z in the above formula depends upon the values of x, x', y and y' and the oxidation states of the A, A', A", B, B' and B" elements. The value of z is such that the mixed metal oxide material is charge neutral. In preferred materials, 0<z<1.

Preferred stoichiometries for materials of this invention of the above formula are those in which x is about 0.1 to about 0.6, and x' is about 1.4 to about 1.9, and where in addition x+x' is about equal to 2. More preferred are materials in which x is about 0.3 to about 0.5 and x' is about 1.5 to about 1.7. Also preferred are those materials of the above formula where y is about 0.3 to about 0.9 and y' is about 0.70 to about 1.70. More preferred materials have y=about 0.6 and y'=about 1.0 to about 1.4. More preferred materials have y+y' equal to about 1.6 to about 2

Electronically- and ionically-conducting membranes employed in the oxygen-separation reactors of this invention comprise mixed metal oxides of the above formula. Substantially gas-impermeable membranes having both electronic and ionic conductivity are formed by initially preparing mixed metal oxide powders by repeatedly calcining and milling the powders of individual metal oxides or the corresponding carbonates (or other metal precursors) in the desired stoichiometric ratios. The resulting mixed metal oxide is then pressed and sintered into dense membranes of various shapes, including disks and open-one-ended tubes. These membranes are then employed to construct catalytic membrane reactors, particularly for oxygen separation processes. The purity of the product oxygen produced in reactors of this invention, which can be stored or used in other chemical processes, is generally greater than about 90% and preferably greater than about 99%.

The presence of the mixed metal oxide of desired stoichiometry (as in the given formulas) in a repeatedly calcined and milled mixed metal oxide can be assessed by X-ray diffraction studies. Further, the presence of distinct phases of metal oxides or other metal species that may be present in the mixed metal oxides materials of this invention can be detected by X-ray diffraction techniques by the observation of peaks not assignable with the predominate mixed metal oxide of desired stoichiometry. The level of distinct phase material that can be detected depends upon the resolution and sensitivity of the X-ray diffractometer employed and upon the identity and number of the distinct phases present. It is believed that greater than about 4% by weight of another phase can be detected by the X-ray diffraction method employed (FIGS. 1-5)

A catalytic reactor of this invention comprises an oxidation zone and a reduction zone separated by the substantially gas-impermeable catalytic membrane which comprises the electronically and ionically conducting mixed metal oxides of the above formula. Once in the reactor, the membrane has an oxidation surface in contact with the oxidation zone of the reactor and a reduction surface in contact with the reduction zone of the reactor. Electronic conduction in the reactor is provided through the membrane material which is a mixed ion and electron conductor (i.e., conducts both electrons and ions, such as oxygen anions). A reactor also comprises passages for admission of oxygen-containing gas, such as air, into the reactor reduction zone and admission of an oxygen-depleted gas, inert gas or reduced gas into the oxidation zone of the reactor. A vacuum can alternatively be applied to the oxidation zone to remove separated oxygen from the oxidation zone. Oxygen removed in this way can be collected and concentrated, if desired. The reactor also has gas exit passages from the reduction and oxidation zones. A plurality of membrane reactors can be provided in series or in parallel (with respect to gas flow through the reactor) to form a multi-membrane reactor to enhance speed or efficiency of oxygen separation.

In operation for oxygen separation, an oxygen-containing gas, such as air, is introduced into the reduction zone of the reactor in contact with the reduction surface to the catalytic membrane. Oxygen is reduced to oxygen anion at the reduction surface and the anion is conducted through the membrane to the oxidation surface. At the oxidation surface, the oxygen anion is re-oxidized to oxygen which is released into the oxidation zone of the reactor. (Alternatively, oxygen anion can be employed to oxidize a reduced gas (e.g., a hydrocarbon gas) at the oxidation surface of the membrane.) Membrane materials of this invention conduct electrons as well as anions. (Membrane materials that also conduct electrons allow charge neutralization of the membrane during operation.) Gases in the reactor can be under ambient or atmospheric pressure or they can be placed under higher or lower pressure (e.g., a vacuum can be applied) than ambient conditions. During operation for oxygen separation, the membrane is heated typically at a temperature above about 700 from about 700 this invention can be efficiently operated at temperatures that are generally lower than those currently used in the art, at from about 700

The oxidation surface, or the reduction surface or both surfaces (or parts of those surfaces) of the membrane can be coated with an oxidation catalyst or reduction catalyst, respectively, or both. A preferred catalyst for either or both surfaces of the membrane is La.sub.0.8 Sr.sub.0.2 CoO.sub.3-z where z is a number that makes the oxide charge neutral.

An oxygen flux of about 1 ml/min-cm.sup.2 or higher can be obtained through a 1 mm- thick membrane at ambient pressure and at an operating temperature of about 900 long-term operation, e.g., up to about 700 h of operation.

Membrane materials as described herein can be employed in a method for oxygen separation from an oxygen-containing gas. In this method a reactor, as described above, is provided with a substantially gas-impermeable membrane which separates an oxidation and reduction zone. Oxygen is reduced at the reducing surface of the membrane, the resulting oxygen anions are then transported across the membrane to the reduction surface where oxygen anions are re-oxidized to form oxygen which is released into the oxidation zone for collection. This method can be employed to generate high purity oxygen (greater than about 90% purity) or very high purity oxygen (greater than about 99% purity) or to generate oxygen-enriched gases (e.g., oxygen in an inert gas).

CROSS-REFERENCE TO RELATED PATENT APPLICATIONS

This application is a continuation-in-part of U.S. patent application Ser. No. 08/639,781, filed Apr. 29, 1996 now U.S. Pat. No. 6,033,632, which in turn is a continuation-in-part application of U.S. patent application Ser. No. 08/163,620 filed Dec. 8, 1993 now abandoned, both of which applications are incorporated by reference herein in their entirety to the extent not inconsistent with the disclosure herein.

STATEMENT OF GOVERNMENT SUPPORT

The research for this invention was supported by a grant from the U.S. Department of Energy, Grant No. DE-FG03-96ER82215. The United States government may have certain rights in this invention.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3607863 *28 Feb 196721 Sep 1971Dyckerhoff Zementwerke AgClathrate compounds
US3754951 *26 Jul 197128 Aug 1973Kaiser Aluminium Chem CorpPericlase refractory grain
US4083730 *20 Jul 197611 Apr 1978Perlmooser Zementwerke A.G.Cement, process and device for its production
US4330633 *3 Feb 198118 May 1982Teijin LimitedSolid electrolyte
US4791079 *9 Jun 198613 Dec 1988Arco Chemical CompanyCeramic membrane for hydrocarbon conversion
US4793904 *5 Oct 198727 Dec 1988The Standard Oil CompanyProcess for the electrocatalytic conversion of light hydrocarbons to synthesis gas
US4802958 *17 Mar 19877 Feb 1989The Standard Oil CompanyProcess for the electrocatalytic oxidation of low molecular weight hydrocarbons to higher molecular weight hydrocarbons
US4827071 *15 Jun 19882 May 1989Arco Chemical Technology, Inc.Ceramic membrane and use thereof for hydrocarbon conversion
US4933054 *13 Mar 198712 Jun 1990The Standard Oil CompanyElectrocatalytic oxidative dehydrogenation of saturated hydrocarbons to unsaturated hydrocarbons
US5160618 *2 Jan 19923 Nov 1992Air Products And Chemicals, Inc.Method for manufacturing ultrathin inorganic membranes
US5160713 *9 Oct 19903 Nov 1992The Standard Oil CompanyProcess for separating oxygen from an oxygen-containing gas by using a bi-containing mixed metal oxide membrane
US5210059 *10 Oct 199111 May 1993Exxon Research & Engineering CompanyMultilayered catalyst for controlled transport of reactant
US5240473 *1 Sep 199231 Aug 1993Air Products And Chemicals, Inc.Process for restoring permeance of an oxygen-permeable ion transport membrane utilized to recover oxygen from an oxygen-containing gaseous mixture
US5240480 *15 Sep 199231 Aug 1993Air Products And Chemicals, Inc.Composite mixed conductor membranes for producing oxygen
US5306411 *27 Nov 199026 Apr 1994The Standard Oil CompanySolid multi-component membranes, electrochemical reactor components, electrochemical reactors and use of membranes, reactor components, and reactor for oxidation reactions
US5356728 *16 Apr 199318 Oct 1994Amoco CorporationCross-flow electrochemical reactor cells, cross-flow reactors, and use of cross-flow reactors for oxidation reactions
US5366712 *3 Feb 199322 Nov 1994Enea-Ente Per Le Nuove Tecnologie, L'energia E L'ambienteCeramic catalytic membrane reactor for the separation of hydrogen and/or isotopes thereof from fluid feeds
US5393325 *8 Nov 199328 Feb 1995Bend Research, Inc.Composite hydrogen separation metal membrane
US5397541 *10 Sep 199314 Mar 1995National Research Council Of CanadaThin film oxygen sensor
US5430209 *27 Aug 19934 Jul 1995Mobil Oil Corp.Process for the catalytic dehydrogenation of alkanes to alkenes with simultaneous combustion of hydrogen
US5466646 *18 Aug 199214 Nov 1995Worcester Polytechnic InstituteProcess for the preparation of solid state materials and said materials
US5534471 *12 Jan 19949 Jul 1996Air Products And Chemicals, Inc.Ion transport membranes with catalyzed mixed conducting porous layer
US5569633 *12 Jan 199429 Oct 1996Air Products And Chemicals, Inc.Ion transport membranes with catalyzed dense layer
US5591315 *24 Feb 19957 Jan 1997The Standard Oil CompanySolid-component membranes electrochemical reactor components electrochemical reactors use of membranes reactor components and reactor for oxidation reactions
US5639437 *3 Sep 199617 Jun 1997Amoco CorporationOxygen ion-conducting dense ceramic
US5648304 *13 Mar 199615 Jul 1997Mazanec; Terry J.Oxygen permeable mixed conductor membranes
US5693212 *15 Aug 19962 Dec 1997The Standard Oil CompanySolid multi-component membranes, electrochemical reactor components, electrochemical reactors and use of membranes, reactor components, and reactor for oxidation reactions
US5702999 *10 Dec 199630 Dec 1997The Standard Oil CompanyOxygen permeable mixed conductor membranes
US5712220 *29 Feb 199627 Jan 1998Air Products And Chemicals, Inc.Coompositions capable of operating under high carbon dioxide partial pressures for use in solid-state oxygen producing devices
US5714091 *7 Jun 19953 Feb 1998The Standard Oil CompanyProcess for the partial oxydation of hydrocarbons
US5723035 *7 Jun 19953 Mar 1998The Standard Oil CompanyCoated membranes
US5744015 *7 Jun 199528 Apr 1998Mazanec; Terry J.Solid multi-component membranes, electrochemical reactor components, electrochemical reactors and use of membranes, reactor components, and reactor for oxidation reactions
US5779904 *7 Jun 199514 Jul 1998InradSynthesis of inorganic membranes on supports
US5788748 *20 Dec 19954 Aug 1998The Standard Oil CompanyOxygen permeable mixed conductor membranes
US5817597 *29 Feb 19966 Oct 1998Air Products And Chemicals, Inc.Compositions capable of operating under high oxygen partial pressures for use in solid-state oxygen producing devices
US5821185 *21 Jun 199513 Oct 1998Eltron Research, Inc.Solid state proton and electron mediating membrane and use in catalytic membrane reactors
US6010614 *3 Jun 19984 Jan 2000Praxair Technology, Inc.Temperature control in a ceramic membrane reactor
US6056807 *26 Jan 19982 May 2000Air Products And Chemicals, Inc.Fluid separation devices capable of operating under high carbon dioxide partial pressures which utilize creep-resistant solid-state membranes formed from a mixed conducting multicomponent metallic oxide
EP0399833A1 *24 May 199028 Nov 1990The Standard Oil CompanyNovel solid multi-component membranes, electrochemical reactor and use of membranes and reactor for oxidation reactions
EP0438902B1 *20 Dec 19907 May 1997The Standard Oil CompanyElectrochemical reactors and multicomponent membranes useful for oxidation reactions
EP0673675A2 *24 May 199027 Sep 1995The Standard Oil CompanySolid multi-component membranes for reactions
EP0705790A1 *21 Sep 199510 Apr 1996The Standard Oil CompanyOxygen permeable mixed conductor membranes
EP0766330A1 *20 Dec 19902 Apr 1997The Standard Oil CompanyComponents for use in electrochemical cells and their use in oxygen separation
GB2203446A * Title not available
WO1994024065A1 *5 Apr 199427 Oct 1994Amoco CorpOxygen ion-conducting dense ceramic
WO1997041060A1 *13 Sep 19966 Nov 1997Eltron Research IncSolid state oxygen anion and electron mediating membrane and catalytic membrane reactors containing them
Non-Patent Citations
Reference
1 *Chick et al. (1990)Mater. Lett. 10(1,2):6 12.
2Chick et al. (1990)Mater. Lett. 10(1,2):6-12.
3 *Cook et al. (1990) J. Electrochem. Soc. 137:3309 3310.
4Cook et al. (1990) J. Electrochem. Soc. 137:3309-3310.
5 *Cook, R.L. and Sammells, A.F. (1991) Solid State Ionics 45:311 321.
6Cook, R.L. and Sammells, A.F. (1991) Solid State Ionics 45:311-321.
7 *Crespin, M. and Hall, K.W. (1981) J. Catal. 69:359 370.
8Crespin, M. and Hall, K.W. (1981) J. Catal. 69:359-370.
9 *Gallagher et al. (1964) J. Chem. Phys. 41(8):2429 2434.
10Gallagher et al. (1964) J. Chem. Phys. 41(8):2429-2434.
11 *Goodenough et al. (1990) Solid State Ionics 44:21 31.
12Goodenough et al. (1990) Solid State Ionics 44:21-31.
13 *Greaves et al. (1975) Acta Cryst. B31:641 646.
14Greaves et al. (1975) Acta Cryst. B31:641-646.
15 *Hawley s Condensed Chemical Dictionary. 13th Ed., revised by Richard J Lewis Sr., John Wiley & Sons, Inc. USA, ISBN 0 471 29205 2, p. 852, 1997.
16Hawley's Condensed Chemical Dictionary. 13th Ed., revised by Richard J Lewis Sr., John Wiley & Sons, Inc. USA, ISBN 0-471-29205-2, p. 852, 1997.
17 *Kuchynka, D.J. et al. (1991) J. Electrochem. Soc. 138(5):1284 1299.
18Kuchynka, D.J. et al. (1991) J. Electrochem. Soc. 138(5):1284-1299.
19 *Matsumoto et al. (1980) J. Electrochem. Soc. 127(11):2360 2364.
20Matsumoto et al. (1980) J. Electrochem. Soc. 127(11):2360-2364.
21 *Pederson et al. (1991) Mater. Lett. 10(9,10):437 443.
22Pederson et al. (1991) Mater. Lett. 10(9,10):437-443.
23 *Pujare, N U and Sammells, A.F. (1988) J. Electrochem. Soc. 135(10):2544 2545.
24Pujare, N U and Sammells, A.F. (1988) J. Electrochem. Soc. 135(10):2544-2545.
25 *Rostrup Nielson, J.R. and Bak Hansen, J. H. (1993) J. Catalysis 144:38 49.
26Rostrup-Nielson, J.R. and Bak Hansen, J.-H. (1993) J. Catalysis 144:38-49.
27 *Sammells et al. (1992) Solid State Ionics 52:111 123.
28Sammells et al. (1992) Solid State Ionics 52:111-123.
29Sammells, A.F. and Cook, R.L. (1991), "Rational Selection of Advanced Solid Electrolytes for Intermediate Temperature Fuel Cells," presented at the Ceramic Conductors for Solid-State Electrochemical Devices Meeting, May 12-15, 1991, Snowbird, UT, (abstract only).
30 *Sammells, A.F. and Cook, R.L. (1991), Rational Selection of Advanced Solid Electrolytes for Intermediate Temperature Fuel Cells, presented at the Ceramic Conductors for Solid State Electrochemical Devices Meeting, May 12 15, 1991, Snowbird, UT, (abstract only).
31Sammells, T., (1991), "Rational Selection of Perovskites for Solid Electrolytes and Electrocatalysis," Presented at BP America Research, Warrenville Research Center, Sep. 16, 1991, 46pp.
32 *Sammells, T., (1991), Rational Selection of Perovskites for Solid Electrolytes and Electrocatalysis, Presented at BP America Research, Warrenville Research Center, Sep. 16, 1991, 46pp.
33 *Schwartz, M. et al. (1993) J. Electrochem. Soc. 140(4):L62 L63 (Apr.).
34Schwartz, M. et al. (1993) J. Electrochem. Soc. 140(4):L62-L63 (Apr.).
35 *Shin, S. and Yonemura, M. (1978) Mat. Res. Bull. 13:1017 1021.
36Shin, S. and Yonemura, M. (1978) Mat. Res. Bull. 13:1017-1021.
37 *Teraoka et al. (1985) Chem. Lett. 1367 1370.
38Teraoka et al. (1985) Chem. Lett. 1367-1370.
39 *Teraoka et al. (1985) Chem. Lett. 1743 1746, The Chemical Society of Japan.
40Teraoka et al. (1985) Chem. Lett. 1743-1746, The Chemical Society of Japan.
41 *Teraoka et al. (1988) Chem. Lett. 503 506, The Chemical Society of Japan.
42Teraoka et al. (1988) Chem. Lett. 503-506, The Chemical Society of Japan.
43 *Teraoka et al. (1988) Mat. Res. Bull. 23:51 58.
44Teraoka et al. (1988) Mat. Res. Bull. 23:51-58.
45 *Teraoka, Y. et al. (1989) J. Ceram. Soc. Jpn. Inter. Ed. 97:458 462.
46Teraoka, Y. et al. (1989) J. Ceram. Soc. Jpn. Inter. Ed. 97:458-462.
47 *Teraoka, Y. et al. (1989) J. Ceram. Soc. Jpn. Inter. Ed. 97:523 529.
48Teraoka, Y. et al. (1989) J. Ceram. Soc. Jpn. Inter. Ed. 97:523-529.
49 *van der Pauw (1958) Philips Res. Rep. 13(1):1 9.
50van der Pauw (1958) Philips Res. Rep. 13(1):1-9.
51 *Zhen, Y.S. and Goodenough, J.B. (1990) Mat. Res. Bull. 25:785 790.
52Zhen, Y.S. and Goodenough, J.B. (1990) Mat. Res. Bull. 25:785-790.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US6352955 *22 Jun 19995 Mar 2002Catalytic Solutions, Inc.Perovskite-type metal oxide compounds
US6361584 *2 Nov 199926 Mar 2002Advanced Technology Materials, Inc.High temperature pressure swing adsorption system for separation of oxygen-containing gas mixtures
US6372686 *10 Nov 200016 Apr 2002Catalytic Solutions, Inc.Perovskite-type metal oxide compounds and methods of making and using thereof
US6471921 *19 May 199929 Oct 2002Eltron Research, Inc.Mixed ionic and electronic conducting ceramic membranes for hydrocarbon processing
US6503296 *5 Jun 19987 Jan 2003Norsk Hydro AsaMembrane and use thereof
US6514314 *4 Dec 20004 Feb 2003Praxair Technology, Inc.Ceramic membrane structure and oxygen separation method
US6524421 *22 Sep 200025 Feb 2003Praxair Technology, Inc.Cold isopressing method
US65314254 Dec 200111 Mar 2003Catalytic Solutions, Inc.Catalytic converter comprising perovskite-type metal oxide catalyst
US6592782 *22 Dec 200015 Jul 2003Eltron Research, Inc.Materials and methods for the separation of oxygen from air
US6641626 *19 Sep 20024 Nov 2003Eltron Research, Inc.Mixed ionic and electronic conducting ceramic membranes for hydrocarbon processing
US6786952 *22 Sep 20007 Sep 2004Norsk Hydro AsaMembrane and use thereof
US694923014 Aug 200127 Sep 2005Eltron Research, Inc.Solid state oxygen anion and electron mediating membrane and catalytic membrane reactors containing them
US70148256 Feb 200321 Mar 2006Catalytic Solutions, Inc.Perovskite-type metal oxide compounds and methods of making and using thereof
US7387755 *21 Mar 200517 Jun 2008Praxair Technology, Inc.Method of making a ceramic composite
US751405520 Sep 20057 Apr 2009Catalytic Solutions, Inc.Method of controlling emissions from a diesel cycle internal combustion engine with perovskite-type metal oxide compounds
US786648623 Jan 200611 Jan 2011Uhde GmbhComposite ceramic hollow fibres method for production and use thereof
US8435920 *11 Oct 20107 May 2013Eltron Research & Development, Inc.Cyclic catalytic upgrading of chemical species using metal oxide materials
US20110024687 *11 Oct 20103 Feb 2011Eltron Research & Development, Inc.Cyclic catalytic upgrading of chemical species using metal oxide materials
EP1412053A1 *3 Jul 200228 Apr 2004Advanced Technology Materials, Inc.Method for carbon monoxide reduction during thermal/wet abatement of organic compounds
WO2006061390A16 Dec 200515 Jun 2006Air LiquideCatalytic membrane reactor
Classifications
U.S. Classification423/219, 502/4, 55/524, 95/54, 96/4
International ClassificationC01B13/02, B01J19/00, B01J23/83, B01D53/32, B01J19/24, B01J35/00, B01J8/00, B01J12/00, C01B3/36, C01B17/04, B01D53/22, B01J23/00, B01D71/02, H01M8/12, B01J4/04, C01C3/02, B01J35/06, C01B3/38
Cooperative ClassificationC01B2203/1052, C01B2210/0046, B01J35/065, B01J2523/00, B01J23/002, B01D2325/18, B01J23/83, B01J2219/00063, B01J35/0033, C01B3/36, H01M4/9033, B01D67/0041, C01B3/386, C01B2203/1258, B01D53/326, C01B2203/1064, C01B2203/1011, B01J12/007, B01J8/009, C01B2203/1035, C01B2203/1082, B01J2219/00051, C01B2203/1241, H01M4/9066, B01D71/024, B01D2325/10, B01J2219/0018, C01B17/0465, Y02E60/521, H01M8/1206, B01J2219/00189, B01D53/228, B01J2208/00601, C01B13/0255, B01D2323/12, B01D69/141, Y02E60/525, C01B2203/1041, C01B2203/0261, C01C3/0216, H01M8/1246, B01D2323/08, B01J19/2475
European ClassificationB01D67/00M10, B01D69/14B, B01J12/00P, H01M8/12B, B01D71/02P, B01J23/83, B01D53/22M, B01J19/24P, B01D53/32E, C01B17/04B14D, H01M8/12E2, C01B3/36, B01J8/00L4, C01B13/02D4B2, C01C3/02D1B, B01J35/06B, B01J35/00D4, B01J23/00B, C01B3/38D
Legal Events
DateCodeEventDescription
12 Feb 2013FPExpired due to failure to pay maintenance fee
Effective date: 20121226
26 Dec 2012LAPSLapse for failure to pay maintenance fees
6 Aug 2012REMIMaintenance fee reminder mailed
26 Nov 2008ASAssignment
Owner name: GUARANTY BANK, COLORADO
Free format text: SECURITY INTEREST;ASSIGNOR:ELTRON RESEARCH, INC.;REEL/FRAME:021924/0143
Effective date: 20050620
26 Jun 2008FPAYFee payment
Year of fee payment: 8
16 Mar 2004FPAYFee payment
Year of fee payment: 4
13 Nov 2001CCCertificate of correction
28 Dec 2000ASAssignment
Owner name: ENERGY, U.S. DEPARTMENT OF, CALIFORNIA
Free format text: CONFIRMATORY LICENSE;ASSIGNOR:ELTRON RESEARCH INC.;REEL/FRAME:011385/0566
Effective date: 20000310
Owner name: ENERGY, U.S. DEPARTMENT OF P.O. BOX 808 (L-376) LI
21 Apr 1999ASAssignment
Owner name: ELTRON RESEARCH, INC., COLORADO
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MACKAY, RICHARD;SCHWARTZ, MICHAEL;SAMMELLS, ANTHONY F.;REEL/FRAME:009897/0738
Effective date: 19990412