US5925707A - Oil gel formulations containing high vinyl content hydrogenated styrene-butadiene-styrene block copolymers - Google Patents

Oil gel formulations containing high vinyl content hydrogenated styrene-butadiene-styrene block copolymers Download PDF

Info

Publication number
US5925707A
US5925707A US08/903,526 US90352697A US5925707A US 5925707 A US5925707 A US 5925707A US 90352697 A US90352697 A US 90352697A US 5925707 A US5925707 A US 5925707A
Authority
US
United States
Prior art keywords
oil
polymer
styrene
weight
butadiene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US08/903,526
Inventor
David Lee Shafer
Glenn Roy Himes
Michael John Modic
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bank of America NA
Original Assignee
Shell Oil Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US08/903,526 priority Critical patent/US5925707A/en
Application filed by Shell Oil Co filed Critical Shell Oil Co
Assigned to SHELL OIL COMPANY reassignment SHELL OIL COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HIMES, GLENN R., MODIC, MICHAEL J., SHAFER, DAVID L.
Application granted granted Critical
Publication of US5925707A publication Critical patent/US5925707A/en
Assigned to CHASE MANHATTAN BANK, AS COLLATERAL AGENT, THE reassignment CHASE MANHATTAN BANK, AS COLLATERAL AGENT, THE SECURITY AGREEMENT Assignors: KRATON, POLYMERS U.S. LLC, FORMERLY KNOWN AS SHELL ELASTOMERS LLC
Assigned to SHELL ELASTOMERS LLC reassignment SHELL ELASTOMERS LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SHELL OIL COMPANY
Assigned to UBS AG, STAMFORD BRANCH reassignment UBS AG, STAMFORD BRANCH SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KRATON POLYMERS U.S. LLC
Assigned to KRATON POLYMERS LLC reassignment KRATON POLYMERS LLC RELEASE BY SECURED PARTY Assignors: JPMORGAN CHASE BANK
Assigned to KRATON POLYMERS U.S. LLC reassignment KRATON POLYMERS U.S. LLC RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: UBS AG, STAMFORD BRANCH
Assigned to KRATON POLYMERS U.S.LLC reassignment KRATON POLYMERS U.S.LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: SHELL ELASTOMERS LLC
Assigned to KRATON POLYMERS U.S. LLC reassignment KRATON POLYMERS U.S. LLC CORRECTIVE ASSIGNMENT TO CORRECT THE INCORRECT PATENT NUMBER 7720798 AND REPLACE WITH PATENT NUMBER 7220798 PREVIOUSLY RECORDED ON REEL 025845 FRAME 0795. ASSIGNOR(S) HEREBY CONFIRMS THE RELEASE BY SECURED PARTY. Assignors: USB AG, STAMFORD BRANCH
Assigned to BANK OF AMERICA, N.A. reassignment BANK OF AMERICA, N.A. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ARIZONA CHEMICAL COMPANY, LLC, KRATON POLYMERS U.S. LLC
Assigned to CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS COLLATERAL AGENT reassignment CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS COLLATERAL AGENT PATENT SECURITY AGREEMENT Assignors: KRATON POLYMERS U.S. LLC
Anticipated expiration legal-status Critical
Assigned to KRATON POLYMERS U.S. LLC reassignment KRATON POLYMERS U.S. LLC RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS COLLATERAL AGENT
Assigned to BANK OF AMERICA, N.A. reassignment BANK OF AMERICA, N.A. CORRECTIVE ASSIGNMENT TO CORRECT THE PATENT NO. 8837224 TO PATENT NO. 7737224 PREVIOUSLY RECORDED AT REEL: 037448 FRAME: 0453. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT. Assignors: ARIZONA CHEMICAL COMPANY, LLC, KRATON POLYMERS U.S. LLC
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/01Hydrocarbons

Definitions

  • This invention relates to oil gel compositions for use as filling compounds in wire and cable applications. More particularly, this invention relates to such compositions containing new high vinyl content hydrogenated styrene-butadiene-styrene (SEBS) block copolymers and to the polymers themselves.
  • SEBS hydrogenated styrene-butadiene-styrene
  • the oil gel must possess some degree of slump resistance at high service temperatures. Additionally, the gel needs to be strippable so that installers and repairmen can make electrical splices easily in the field. Also, the oil gel should have a good working viscosity in the melt so it can be easily pumped into the cable.
  • Filling compounds used to prevent the ingress of water into telecommunications cable must have processing characteristics which allow the material to penetrate and fill the voids between densely packed insulated conductors. Application viscosity is critical and the ability to adjust the viscosity by temperature is limited by potential damage to the insulation on the copper conductors. Once the cable is filled, the filling compound must not flow out at temperatures of up to 80° C., must withstand significant heads of water, should have good craft handling characteristics, must be compatible with other components in the cable system such as splice encapsulants, and should not significantly add to the stiffness of the cable.
  • KRATON® G1650, G1726, and G1652 polymers are used in the cable filling industry.
  • KRATON® G1650 and G1652 polymers possess good strippability benefits (as measured by oil gel tear strengths), and are of low enough viscosity to pump into the cable and fill all the crevices between bundles of wire in cables.
  • the major problem with KRATON® G1650 and G1652 polymers is that these polymers in oil gel formulations do not perform well at high service temperatures. This is due to the relatively low molecular weight of the polystyrene endblocks.
  • KRATON® G 1651 and G1654 polymers show promise for excellent service temperature performance.
  • the large styrene endblocks are much more resistant to flow (and loss of elasticity), thus giving high service temperature performance.
  • the large endblocks also help produce oil gels which, under some conditions, can be difficult to strip (high tear resistance), and prevent flow at service temperatures.
  • oil gels based on KRATON® G1651 and G1654 polymers have poor adhesion and their viscosity is too high at application temperatures to allow the gel to flow properly between the bundles of wires in a cable. Therefore, KRATON® G1651 and G1654 polymers is not used extensively in cable filling applications.
  • This invention provides the advantages of both low molecular weight polymers and higher molecular weight polymers while minimizing their disadvantages.
  • Using the high vinyl content polymers of the present invention in an oil gel application allows oil gel formulators to manufacture gels with high service temperature properties in a strippable and pumpable form.
  • high service temperatures and a reduction of application viscosity may be mutually exclusive for oil gels.
  • This invention provides a novel way to produce compositions which exhibit both of these characteristics.
  • Using high vinyl content polymers as opposed to the lower vinyl content polymers discussed above fortifies the viscosity/concentration relationship of the polymers, i.e. lower viscosity with other properties remaining about the same.
  • This invention provides oil gel compositions which comprise a hydrogenated styrene-butadiene-styrene (SEBS) block copolymer which has an overall weight average molecular weight of from 30,000 to 300,000, (preferably 40,000 to 220,000 and most preferably 60,000 to 220,000), a styrene block weight average molecular weight of from 4,000 to 35,000, (preferably 6000 to 33,000 and most preferably 9000 to 33,000), and a vinyl content of at least 45% by weight (% wt), preferably 45 to 90%, and an oil and, optionally, thickeners such as polyolefin wax, silica gel, fumed silica, fatty acid soaps and extender liquids such as poly(alpha-olefins). For every 100 parts by weight of copolymer, there should be at least 900 parts of oil or a mixture of oil and a polyethylene wax and/or an extender liquid.
  • SEBS hydrogenated styrene-butadiene-s
  • the endblocks of these novel copolymers are polymer blocks of styrene.
  • Other vinyl aromatic hydrocarbons including alphamethyl styrene, various alkyl-substituted styrenes, alkoxy-substituted styrenes, vinyl naphthalene, vinyl toluene and the like, can be substituted for styrene and are expressly included in this invention.
  • the butadiene used herein must produce a polymer block with a high vinyl content.
  • the percent of 1,2 addition of the butadiene should be at least 45% wt, preferably 45 to 90%, more preferably 60 to 90%, and most preferably 65 to 80%.
  • polymer viscosity is similar to conventional polymers and there is no advantage. Above 90% the viscosity decrease has reached a plateau and no longer drops with higher 1,2 content; therefore, there is no further advantage.
  • vinyl content refers to the fact that a conjugated diene is polymerized via 1,2-addition (in the case of butadiene--it would be 3,4 addition in the case of isoprene). Although a pure "vinyl" group is formed only in the case of 1,2 addition polymerization of 1,3 butadiene, the effects of 3,4 addition polymerization of isoprene (and similar addition for other conjugated dienes) on the final properties of the block copolymer will be similar.
  • vinyl refers to the presence of a pendant vinyl group on the polymer chain. The chain branching thus introduced reduces the length of the main polymer backbone, since some of the carbons in the diene are in the pendant groups. The shorter chain length reduces polymer viscosity. The pendant groups reduce ability of the polymer molecules to form crystalline structures.
  • B represents polymerized units of one or more conjugated diene hydrocarbons such as butadiene or isoprene
  • A represents polymerized units of one or more vinyl aromatic compounds such as styrene
  • X is the residue of a monolithium initiator such as sec-butyllithium
  • Y is the residue of a dilithium initiator such as the diadduct of sec-butyllithium and m-diisopropenylbenzene.
  • the anionic polymerization of the conjugated diene hydrocarbons is typically controlled with structure modifiers such as diethylether or ethyl glyme (1,2-diethoxyethane) to obtain the desired amount of 1,2-addition.
  • structure modifiers such as diethylether or ethyl glyme (1,2-diethoxyethane)
  • diethylether or ethyl glyme (1,2-diethoxyethane structure modifiers
  • diethylether or ethyl glyme (1,2-diethoxyethane structure modifiers
  • ethyl glyme 1,2-diethoxyethane
  • One of the benefits of polymers of high vinyl content as defined in this specification is improved clarity of oil gels containing such polymers. This is a particularly valuable characteristic for oil gels formulated for applications requiring good appearance.
  • the improvement derives from the reduced concentration of crystalline polyethylene which is formed when butadiene polymerizes in the 1,4 (head-to-tail) orientation repeatedly and is hydrogenated to polyethylene. Concentration of polyethylene crystals decreases with increasing 1,2 addition (i.e., vinyl content) and goes to zero above about 55% vinyl content.
  • the polymers useful in this invention may be prepared by contacting the monomer or monomers with an organoalkali metal compound in a suitable solvent at a temperature within the range from -150° C. to 300° C., preferably at a temperature within the range from 0° C. to 100° C.
  • organolithium compounds having the general formula:
  • R is an aliphatic, cycloaliphatic, alkyl-substituted cycloaliphatic, aromatic or alkyl-substituted aromatic hydrocarbon radical having from 1 to 20 carbon atoms.
  • Suitable solvents include those useful in the solution polymerization of the polymer and include aliphatic, cycloaliphatic, alkyl-substituted cycloaliphatic, aromatic and alkyl-substituted aromatic hydrocarbons, ethers and mixtures thereof.
  • Suitable solvents include aliphatic hydrocarbons such as butane, pentane, hexane, heptane and the like, cycloaliphatic hydrocarbons such as cyclohexane, cycloheptane and the like, alkyl-substituted cycloaliphatic hydrocarbons such as methylcyclohexane, methylcycloheptane and the like, aromatic hydrocarbons such as benzene and the alkyl-substituted aromatic hydrocarbons such as toluene, xylene and the like and ethers such as tetrahydrofuran, diethylether, di-n-butyl ether and the like.
  • aliphatic hydrocarbons such as butane, pentane, hexane, heptane and the like
  • cycloaliphatic hydrocarbons such as cyclohexane, cycloheptane and the like
  • the hydrogenation of these polymers may be carried out by a variety of well established processes including hydrogenation in the presence of such catalysts as Raney Nickel, noble metals such as platinum, palladium and the like and soluble transition metal catalysts.
  • Suitable hydrogenation processes which can be used are ones wherein the diene-containing polymer or copolymer is dissolved in an inert hydrocarbon diluent such as cyclohexane and hydrogenated by reaction with hydrogen in the present of a soluble hydrogenation catalysts.
  • Such processes are disclosed in U.S. Pat. Nos. 3,113,986, 4,226,952 and U.S. Pat. No. Reissue 27,145, the disclosures of which are herein incorporated by reference.
  • the polymers are hydrogenated in such a manner as to produce hydrogenated polymers having a residual unsaturation content in polydiene blocks of less than about 1 percent, and preferably as close to 0 percent as possible, of their original unsaturation content prior to hydrogenation.
  • a titanium catalyst such as disclosed in U.S. Pat. No. 5,039,755, which is herein incorporated by reference, may also be used in the hydrogenation process.
  • the molecular weights of linear polymers or unassembled linear segments of polymers such as mono-, di-, triblock, etc., or the arms of star polymers before coupling are conveniently measured by Gel Permeation Chromatography (GPC), where the GPC system has been appropriately calibrated.
  • GPC Gel Permeation Chromatography
  • the polymer is essentially monodisperse (weight average molecular weight/number average molecular weight ratio approaches unity), and it is both convenient and adequately descriptive to report the "peak" molecular weight of the narrow molecular weight distribution observed. Usually, the peak value is between the number and the weight average.
  • the peak molecular weight is the molecular weight of the main species shown on the chromatograph.
  • the weight average molecular weight should be calculated from the chromatograph and used.
  • the materials used in the columns of the GPC are styrene-divinyl benzene gels or silica gels.
  • the solvent is tetrahydrofuran and the detector is a refractive index detector.
  • the invention accordingly provides an oil gel composition
  • a styrene-alkylene-styrene block copolymer whose polyalkylene blocks comprise ethylene/butylene units and an oil
  • optionally may include a polyolefin wax and/or an extender liquid which liquid is a poly(alpha-olefin) and extends and softens the polybutadiene blocks of the copolymer.
  • pbw 100 parts by weight
  • No more than 4900 pbw wax/oil/extender liquid per 100 parts polymer can be used or the polymer will not thicken the composition properly and will not retain oil well enough to prevent oil bleed during service. More preferably, the amount is 1400 to 4850 pbw and most preferably, it is 1600 to 2500.
  • the oils which can be used include, for example, paraffinic oils, mineral oils, naphthenic oils, and those available from Shell Oil Company under its trademark SHELLFLEX®, Kaydol oil produced by Witco, and Fina Chemicals under the trade mark Vestan A360B. Drakeol 34 oil from Penreco and Witco 380P0 oil from Witco can also be used. If it is used, the extender liquid will generally make up at least 5% wt of the total oil/extender liquid portion but no more than about 50% wt because the polymer may not be able to retain larger proportions due to limited compatibility.
  • the polyolefin wax component of oil gels if used, generally is low molecular weight polyethylene. Suitable grades are manufactured by Allied under the A-C trade name, by Quantum Chemical under Petrothene, and Eastman Chemical Products under Epolene.
  • the content of polyethylene wax is usually 3 to 10% of the total composition. More than 10% reduces the oil retention capability of the composition and less than 3% increases the cost of the polymer package.
  • the poly(alpha-olefin) extender liquids useful in the compositions of this invention comprising the block copolymer may be selected from those available by simple trial and error. Examples include those available from Ethyl Corporation under the trade mark "Ethylflo".
  • the extenders preferably have a minimum boiling point higher than the softening point of the block copolymer. Commercially available grades include "Ethylflo 164", “Ethylflo 166", “Ethylflo 168", and "Ethylflo 170".
  • compositions are generally prepared by mixing the oil and the polymer together with some kind of mechanical mixing aid and optionally with the aid of a volatile solvent.
  • the extender liquid When the extender liquid is used, it is usually mixed with these components at a temperature not less than the glass transition temperature of the polystyrene blocks of the copolymer. It may be useful to use various additives such as stabilizers, antioxidants, tackifiers, and the like.
  • PP5181 is an SEBS Block copolymer with a high vinyl content. Its molecular characteristics are compared with those of Polymer A in Table 1 below. It can be seen that they are very similar except for the vinyl content. The other polymers have different characteristics.
  • PP5828 shown below, is similar to Polymer B except 78% of its rubber block is in a 1,2 microstructure, compared to 38% for Polymer B.
  • the flow properties of PP5828 are dramatically better than Polymer B as indicated by solution viscosity (two orders of magnitude lower) and much higher melt flow indices.
  • PP5823 (78% 1,2 addition) exhibits much better flow properties than Polymer C, which has 38% 1,2 addition.
  • PP5819 has an intermediate level of 1,2 structure (47%), but is still markedly better in flow properties than Polymer C.
  • the high flow characteristics mean that pumpability of oil gel formulations made from high vinyl polymers is far superior to conventional block polymers.
  • the oil gel samples for Formulation #1 were prepared by adding 6% by weight of polymer to Kaydol mineral oil in a Silverson mixer @ 100 degrees Centigrade. The samples were mixed until fully dissolved and poured out into a release lined boat to approximately 0.2 inches thick. When problems existed during mixing that prevented good incorporation of the polymer, temperature was raised in the mixer until a uniform mixture was achieved. Samples were then cut and tested for tear resistance in accordance with ASTM method D624.
  • the oil gel samples for Formulation #2 were prepared by adding 6% by weight of polymer to Kaydol mineral oil in a Silverson mixer @ 100 degrees Centigrade. Additionally, 6% AC9 polyethylene wax was added to the formulation. The samples were mixed until fully dissolved and poured out into a release lined boat to approximately 0.2 inches thick. When problems existed during mixing that prevented good incorporation of the polymer in the oil, the temperature was raised in the mixer until uniform mixing was achieved. Samples were then cut and tested for tear resistance in accordance with ASTM method D624. Melt viscosities were run on selected gels. Additionally, DMA temperature sweeps were run to determine the temperature at which the gel began to fall apart (via elastic modulus loss).

Abstract

This invention provides oil gel compositions which comprise a hydrogenated styrene-butadiene-styrene (SEBS) block copolymer (although other vinyl aromatic hydrocarbons may be used) which has an overall weight average molecular weight of from 30,000 to 300,000, a styrene block weight average molecular weight of from 4000 to 35,000, and a vinyl content of at least 45% by weight (% wt), preferably 45 to 90%, and an oil and, optionally, a polyolefin wax and/or an extender liquid. For every 100 parts by weight of copolymer, there should be at least 900 parts of oil or a mixture of oil and polyolefin wax and/or an extender liquid.

Description

CROSSREFERENCE TO RELATED APPLICATION
This application claims the benefit of U.S. Provisional Application Ser. No. 60/022,834, filed Jul. 31, 1996.
FIELD OF THE INVENTION
This invention relates to oil gel compositions for use as filling compounds in wire and cable applications. More particularly, this invention relates to such compositions containing new high vinyl content hydrogenated styrene-butadiene-styrene (SEBS) block copolymers and to the polymers themselves.
BACKGROUND OF THE INVENTION
There are at least three major criteria in formulating an oil gel for cables. The oil gel must possess some degree of slump resistance at high service temperatures. Additionally, the gel needs to be strippable so that installers and repairmen can make electrical splices easily in the field. Also, the oil gel should have a good working viscosity in the melt so it can be easily pumped into the cable.
Filling compounds used to prevent the ingress of water into telecommunications cable must have processing characteristics which allow the material to penetrate and fill the voids between densely packed insulated conductors. Application viscosity is critical and the ability to adjust the viscosity by temperature is limited by potential damage to the insulation on the copper conductors. Once the cable is filled, the filling compound must not flow out at temperatures of up to 80° C., must withstand significant heads of water, should have good craft handling characteristics, must be compatible with other components in the cable system such as splice encapsulants, and should not significantly add to the stiffness of the cable.
Lower molecular weight polymers like KRATON® G1650, G1726, and G1652 polymers are used in the cable filling industry. KRATON® G1650 and G1652 polymers possess good strippability benefits (as measured by oil gel tear strengths), and are of low enough viscosity to pump into the cable and fill all the crevices between bundles of wire in cables. The major problem with KRATON® G1650 and G1652 polymers is that these polymers in oil gel formulations do not perform well at high service temperatures. This is due to the relatively low molecular weight of the polystyrene endblocks.
Higher molecular weight versions like KRATON® G 1651 and G1654 polymers show promise for excellent service temperature performance. The large styrene endblocks are much more resistant to flow (and loss of elasticity), thus giving high service temperature performance. The large endblocks also help produce oil gels which, under some conditions, can be difficult to strip (high tear resistance), and prevent flow at service temperatures. Unfortunately, oil gels based on KRATON® G1651 and G1654 polymers have poor adhesion and their viscosity is too high at application temperatures to allow the gel to flow properly between the bundles of wires in a cable. Therefore, KRATON® G1651 and G1654 polymers is not used extensively in cable filling applications.
This invention provides the advantages of both low molecular weight polymers and higher molecular weight polymers while minimizing their disadvantages. Using the high vinyl content polymers of the present invention in an oil gel application allows oil gel formulators to manufacture gels with high service temperature properties in a strippable and pumpable form. The present wisdom in this art suggests that high service temperatures and a reduction of application viscosity may be mutually exclusive for oil gels. This invention provides a novel way to produce compositions which exhibit both of these characteristics. Using high vinyl content polymers as opposed to the lower vinyl content polymers discussed above fortifies the viscosity/concentration relationship of the polymers, i.e. lower viscosity with other properties remaining about the same.
SUMMARY OF THE INVENTION
This invention provides oil gel compositions which comprise a hydrogenated styrene-butadiene-styrene (SEBS) block copolymer which has an overall weight average molecular weight of from 30,000 to 300,000, (preferably 40,000 to 220,000 and most preferably 60,000 to 220,000), a styrene block weight average molecular weight of from 4,000 to 35,000, (preferably 6000 to 33,000 and most preferably 9000 to 33,000), and a vinyl content of at least 45% by weight (% wt), preferably 45 to 90%, and an oil and, optionally, thickeners such as polyolefin wax, silica gel, fumed silica, fatty acid soaps and extender liquids such as poly(alpha-olefins). For every 100 parts by weight of copolymer, there should be at least 900 parts of oil or a mixture of oil and a polyethylene wax and/or an extender liquid.
DETAILED DESCRIPTION OF THE INVENTION
The endblocks of these novel copolymers are polymer blocks of styrene. Other vinyl aromatic hydrocarbons, including alphamethyl styrene, various alkyl-substituted styrenes, alkoxy-substituted styrenes, vinyl naphthalene, vinyl toluene and the like, can be substituted for styrene and are expressly included in this invention.
The butadiene used herein must produce a polymer block with a high vinyl content. In other words, the percent of 1,2 addition of the butadiene should be at least 45% wt, preferably 45 to 90%, more preferably 60 to 90%, and most preferably 65 to 80%. Below 45% wt, polymer viscosity is similar to conventional polymers and there is no advantage. Above 90% the viscosity decrease has reached a plateau and no longer drops with higher 1,2 content; therefore, there is no further advantage.
The term "vinyl content" refers to the fact that a conjugated diene is polymerized via 1,2-addition (in the case of butadiene--it would be 3,4 addition in the case of isoprene). Although a pure "vinyl" group is formed only in the case of 1,2 addition polymerization of 1,3 butadiene, the effects of 3,4 addition polymerization of isoprene (and similar addition for other conjugated dienes) on the final properties of the block copolymer will be similar. The term "vinyl" refers to the presence of a pendant vinyl group on the polymer chain. The chain branching thus introduced reduces the length of the main polymer backbone, since some of the carbons in the diene are in the pendant groups. The shorter chain length reduces polymer viscosity. The pendant groups reduce ability of the polymer molecules to form crystalline structures.
Anionic polymerization of conjugated diene hydrocarbons with lithium initiators is well known as described in U.S. Pat. No. 4,039,593 and U.S. Pat. No. Re. 27,145 which descriptions are incorporated herein by reference. Polymerization commences with a monolithium, dilithium, or polylithium initiator which builds a living polymer backbone at each lithium site. Typical living polymer structures containing polymerized conjugated diene hydrocarbons are:
X--B--Li
X--A--B--Li
X--A--B--A--Li
Li--B--Y--B--Li
Li--A--B--Y--B--A--Li
wherein B represents polymerized units of one or more conjugated diene hydrocarbons such as butadiene or isoprene, A represents polymerized units of one or more vinyl aromatic compounds such as styrene, X is the residue of a monolithium initiator such as sec-butyllithium, and Y is the residue of a dilithium initiator such as the diadduct of sec-butyllithium and m-diisopropenylbenzene. Some structures, including those pertaining to polylithium initiators or random units of styrene and a conjugated diene, generally have limited practical utility although known in the art.
The anionic polymerization of the conjugated diene hydrocarbons is typically controlled with structure modifiers such as diethylether or ethyl glyme (1,2-diethoxyethane) to obtain the desired amount of 1,2-addition. As described in U.S. Pat. No. Re. 27,145 which is incorporated by reference herein, the level of 1,2-addition of a butadiene polymer or copolymer can greatly affect elastomeric properties after hydrogenation. The 1,2-addition of butadiene polymers significantly and surprisingly influences the polymer as described above. A 1,2-addition of about 40% is achieved during polymerization at 50° C. with about 6% by volume of diethylether or about 200 ppm of ethyl glyme in the final solution. A 1,2 addition of about 47% (within the scope of this invention) is achieved during polymerization by the presence of about 250 ppm of ortho-dimethoxybenzene (ODMB) in the final solution. A 1,2 addition of 78% (within the scope of this invention) is achieved during polymerization by the presence of about 300 ppm of 1,2-diethoxypropane (DEP) in the final solution.
One of the benefits of polymers of high vinyl content as defined in this specification is improved clarity of oil gels containing such polymers. This is a particularly valuable characteristic for oil gels formulated for applications requiring good appearance. The improvement derives from the reduced concentration of crystalline polyethylene which is formed when butadiene polymerizes in the 1,4 (head-to-tail) orientation repeatedly and is hydrogenated to polyethylene. Concentration of polyethylene crystals decreases with increasing 1,2 addition (i.e., vinyl content) and goes to zero above about 55% vinyl content.
In general, the polymers useful in this invention may be prepared by contacting the monomer or monomers with an organoalkali metal compound in a suitable solvent at a temperature within the range from -150° C. to 300° C., preferably at a temperature within the range from 0° C. to 100° C. Particularly effective polymerization initiators are organolithium compounds having the general formula:
RLi
wherein R is an aliphatic, cycloaliphatic, alkyl-substituted cycloaliphatic, aromatic or alkyl-substituted aromatic hydrocarbon radical having from 1 to 20 carbon atoms.
Suitable solvents include those useful in the solution polymerization of the polymer and include aliphatic, cycloaliphatic, alkyl-substituted cycloaliphatic, aromatic and alkyl-substituted aromatic hydrocarbons, ethers and mixtures thereof. Suitable solvents, then, include aliphatic hydrocarbons such as butane, pentane, hexane, heptane and the like, cycloaliphatic hydrocarbons such as cyclohexane, cycloheptane and the like, alkyl-substituted cycloaliphatic hydrocarbons such as methylcyclohexane, methylcycloheptane and the like, aromatic hydrocarbons such as benzene and the alkyl-substituted aromatic hydrocarbons such as toluene, xylene and the like and ethers such as tetrahydrofuran, diethylether, di-n-butyl ether and the like.
The hydrogenation of these polymers may be carried out by a variety of well established processes including hydrogenation in the presence of such catalysts as Raney Nickel, noble metals such as platinum, palladium and the like and soluble transition metal catalysts. Suitable hydrogenation processes which can be used are ones wherein the diene-containing polymer or copolymer is dissolved in an inert hydrocarbon diluent such as cyclohexane and hydrogenated by reaction with hydrogen in the present of a soluble hydrogenation catalysts. Such processes are disclosed in U.S. Pat. Nos. 3,113,986, 4,226,952 and U.S. Pat. No. Reissue 27,145, the disclosures of which are herein incorporated by reference. The polymers are hydrogenated in such a manner as to produce hydrogenated polymers having a residual unsaturation content in polydiene blocks of less than about 1 percent, and preferably as close to 0 percent as possible, of their original unsaturation content prior to hydrogenation. A titanium catalyst such as disclosed in U.S. Pat. No. 5,039,755, which is herein incorporated by reference, may also be used in the hydrogenation process.
The molecular weights of linear polymers or unassembled linear segments of polymers such as mono-, di-, triblock, etc., or the arms of star polymers before coupling are conveniently measured by Gel Permeation Chromatography (GPC), where the GPC system has been appropriately calibrated. For anionically polymerized linear polymers, the polymer is essentially monodisperse (weight average molecular weight/number average molecular weight ratio approaches unity), and it is both convenient and adequately descriptive to report the "peak" molecular weight of the narrow molecular weight distribution observed. Usually, the peak value is between the number and the weight average. The peak molecular weight is the molecular weight of the main species shown on the chromatograph. For polydisperse polymers the weight average molecular weight should be calculated from the chromatograph and used. The materials used in the columns of the GPC are styrene-divinyl benzene gels or silica gels. The solvent is tetrahydrofuran and the detector is a refractive index detector.
The invention accordingly provides an oil gel composition comprising a styrene-alkylene-styrene block copolymer whose polyalkylene blocks comprise ethylene/butylene units and an oil, and optionally may include a polyolefin wax and/or an extender liquid which liquid is a poly(alpha-olefin) and extends and softens the polybutadiene blocks of the copolymer. For every 100 parts by weight (pbw) of copolymer, there should be at least 900 pbw of total polyolefin wax plus oil and/or extender liquid to achieve the low viscosity and economics required for oil gel applications although it is possible to go as low as 300 pbw for some applications. No more than 4900 pbw wax/oil/extender liquid per 100 parts polymer can be used or the polymer will not thicken the composition properly and will not retain oil well enough to prevent oil bleed during service. More preferably, the amount is 1400 to 4850 pbw and most preferably, it is 1600 to 2500. The oils which can be used include, for example, paraffinic oils, mineral oils, naphthenic oils, and those available from Shell Oil Company under its trademark SHELLFLEX®, Kaydol oil produced by Witco, and Fina Chemicals under the trade mark Vestan A360B. Drakeol 34 oil from Penreco and Witco 380P0 oil from Witco can also be used. If it is used, the extender liquid will generally make up at least 5% wt of the total oil/extender liquid portion but no more than about 50% wt because the polymer may not be able to retain larger proportions due to limited compatibility.
The polyolefin wax component of oil gels, if used, generally is low molecular weight polyethylene. Suitable grades are manufactured by Allied under the A-C trade name, by Quantum Chemical under Petrothene, and Eastman Chemical Products under Epolene. The content of polyethylene wax is usually 3 to 10% of the total composition. More than 10% reduces the oil retention capability of the composition and less than 3% increases the cost of the polymer package.
The poly(alpha-olefin) extender liquids useful in the compositions of this invention comprising the block copolymer may be selected from those available by simple trial and error. Examples include those available from Ethyl Corporation under the trade mark "Ethylflo". The extenders preferably have a minimum boiling point higher than the softening point of the block copolymer. Commercially available grades include "Ethylflo 164", "Ethylflo 166", "Ethylflo 168", and "Ethylflo 170".
These compositions are generally prepared by mixing the oil and the polymer together with some kind of mechanical mixing aid and optionally with the aid of a volatile solvent. When the extender liquid is used, it is usually mixed with these components at a temperature not less than the glass transition temperature of the polystyrene blocks of the copolymer. It may be useful to use various additives such as stabilizers, antioxidants, tackifiers, and the like.
EXAMPLES
PP5181 is an SEBS Block copolymer with a high vinyl content. Its molecular characteristics are compared with those of Polymer A in Table 1 below. It can be seen that they are very similar except for the vinyl content. The other polymers have different characteristics.
PP5828, shown below, is similar to Polymer B except 78% of its rubber block is in a 1,2 microstructure, compared to 38% for Polymer B. The flow properties of PP5828 are dramatically better than Polymer B as indicated by solution viscosity (two orders of magnitude lower) and much higher melt flow indices. Similarly, PP5823 (78% 1,2 addition) exhibits much better flow properties than Polymer C, which has 38% 1,2 addition. PP5819 has an intermediate level of 1,2 structure (47%), but is still markedly better in flow properties than Polymer C. The high flow characteristics mean that pumpability of oil gel formulations made from high vinyl polymers is far superior to conventional block polymers.
The higher glass transition temperatures (see Table 2) of the high 1,2 polymers is a natural consequence of high 1,2 structure. They are still well below the approximate low temperature use requirement of -10° C. for cable filling compounds.
              TABLE 1
______________________________________
                              Vinyl   Styrene
                              Content of
                                      content of
                  Block MWs,  butadiene
                                      whole
Polymer
       Polymer MW 1000's      block   polymer
______________________________________
PP5181 205,800    27.5-144.6-33.5
                                75.2% 26.3%
Polymer A
       181,000    29.0-123-29.0
                              38%     32%
PP5828 56,000     10-39-10    78%     29.6%
Polymer B
       67,000     10-47-10    38%     29.9%
PP5823 35,000     6-23-6      78%     29.3%
PP5819 38,000     6-26-6      47%     29.5%
Polymer C
       50,000     7.5-35-7.5  38%     30%
Polymer D
       126,000    19-89-19    35%     30%
______________________________________
              TABLE 2
______________________________________
                                    Glass
                                    Transition
      Toluene                       Temp° C.
      Soln. Visc. Melt Flow Index, g/10 min
                                    Rubber
Polymer
      25° C., cps
                  200° C., 5 kg
                             230° C., 5kg
                                      Block
______________________________________
PP5181
      70 (10% solids)
                  --         --       -38
Polymer
      1850 (10% solids)
                  <1         <1       -58
PP5828
      99 (25% solids)
                  9.7        48.4     -32
Polymer
      9610 (25% solids)
                  <1         <1       -58
B
PP5823
      37 (25% solids)
                  359        >400     -32
PP5819
      389 (25% solids)
                  19.9       83       -52
Polymer
      1670 (25% solids)
                  <1         5.7      -58
C
______________________________________
The oil gel samples for Formulation #1 (below) were prepared by adding 6% by weight of polymer to Kaydol mineral oil in a Silverson mixer @ 100 degrees Centigrade. The samples were mixed until fully dissolved and poured out into a release lined boat to approximately 0.2 inches thick. When problems existed during mixing that prevented good incorporation of the polymer, temperature was raised in the mixer until a uniform mixture was achieved. Samples were then cut and tested for tear resistance in accordance with ASTM method D624.
The oil gel samples for Formulation #2 were prepared by adding 6% by weight of polymer to Kaydol mineral oil in a Silverson mixer @ 100 degrees Centigrade. Additionally, 6% AC9 polyethylene wax was added to the formulation. The samples were mixed until fully dissolved and poured out into a release lined boat to approximately 0.2 inches thick. When problems existed during mixing that prevented good incorporation of the polymer in the oil, the temperature was raised in the mixer until uniform mixing was achieved. Samples were then cut and tested for tear resistance in accordance with ASTM method D624. Melt viscosities were run on selected gels. Additionally, DMA temperature sweeps were run to determine the temperature at which the gel began to fall apart (via elastic modulus loss).
              TABLE 3
______________________________________
       Tear      Tear      Melt
       Strength  Strength  Viscosity
       Formulation
                 Formulation
                           Formulation
                                   Approx. Temp.
       #1        #2        #2      of Elasticity Loss
Polymer
       (lb/in)   (lb/in)   at 350° F.
                                   Formulation #2
______________________________________
Polymer A
       1.937     5.204     15,000 cps
                                   90-95° C.
       1.637
Polymer D
       1.435     3.441       200 cps
                                   85-90° C.
Polymer B
       --        1.017        23 cps
                                   75-80° C.
Polymer C
       0.138     0.967        20 cps
                                   60-70° C.
PP-5181
       0.189     0.884       1200 cps
                                   90-95° C.
______________________________________
 Notes:
 1. Tear Strength determined by ASTM method D624, using 0.2 inch thick oil
 gels. Each value above is the average of 4-8 tests.
 2. Formulation 1 contains 6% polymer, and 94% Kaydol oil.
 3. Formulation 2 contains 6% Polymer, 6% PE Wax (AC9 manufactured by
 Alied), and 88% Kaydol Oil.
 4. The approximate temperature of elasticity loss is determined at the
 temperature at which the elastic modulus of the oil gel (as measured by
 DMA) drops off.
It can clearly be seen in Table 3 that the formulations with the higher molecular weight polymers (A and D) exhibit high tear strength--too high for them to be useful in a cable filling application. They do, however, have a high temperature of elasticity loss and thus should exhibit the high service temperature desired. The lower molecular weight polymer (B and C) formulations have the tear strength indicative of good strippability but their service temperatures are undesirably low. The formulation of this invention with polymer PP5181 has tear strength appropriate for good strippability and a high service temperature (as high as that of A, the high molecular weight polymer) while still maintaining an acceptable viscosity.

Claims (4)

We claim:
1. A strippable, high service temperature oil gel composition which comprises:
(a) 100 parts by weight of a hydrogenated vinyl aromatic hydrocarbon-butadiene-vinyl aromatic hydrocarbon block copolymer which has an overall weight average molecular weight of from 30,000 to 300,000, a vinyl aromatic hydrocarbon block weight average molecular weight of from 4000 to 35,000, and wherein the diene block has a vinyl content of at least 45% by weight, and wherein the copolymer has a glass transition temperature of -30° C. or less, and
(b) at least 900 parts by weight of an oil.
2. The oil gel composition of claim 1 wherein the vinyl aromatic hydrocarbon is styrene.
3. The oil gel composition of claim 2 wherein the vinyl content is from 45 to 90% by weight.
4. The oil gel composition of claim 2 wherein the oil is present in an amount of from 900 to 4900 parts by weight per 100 parts of copolymer.
US08/903,526 1997-07-30 1997-07-30 Oil gel formulations containing high vinyl content hydrogenated styrene-butadiene-styrene block copolymers Expired - Lifetime US5925707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US08/903,526 US5925707A (en) 1997-07-30 1997-07-30 Oil gel formulations containing high vinyl content hydrogenated styrene-butadiene-styrene block copolymers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US08/903,526 US5925707A (en) 1997-07-30 1997-07-30 Oil gel formulations containing high vinyl content hydrogenated styrene-butadiene-styrene block copolymers

Publications (1)

Publication Number Publication Date
US5925707A true US5925707A (en) 1999-07-20

Family

ID=25417649

Family Applications (1)

Application Number Title Priority Date Filing Date
US08/903,526 Expired - Lifetime US5925707A (en) 1997-07-30 1997-07-30 Oil gel formulations containing high vinyl content hydrogenated styrene-butadiene-styrene block copolymers

Country Status (1)

Country Link
US (1) US5925707A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USH1956H1 (en) 1997-07-23 2001-04-03 Shell Oil Company Enhanced hydrogenation catalyst removal from block copolymers by reduction in polymer cement viscosity by increasing the vinyl content of the block copolymers
US6258891B1 (en) * 1998-12-03 2001-07-10 Shell Oil Company Solventless process for making polysiloxane polymers
US20030100662A1 (en) * 2001-11-02 2003-05-29 Bridgestone Corp. Soft gel composition of low permeability
US20030137721A1 (en) * 2000-06-29 2003-07-24 Satoshi Kajiya Optical amplifier device
US20040082693A1 (en) * 2001-02-15 2004-04-29 Xiaorong Wang Soft gel compositions for hot adhesion
US20050065287A1 (en) * 2003-09-24 2005-03-24 Kraton Polymers U.S. Llc Conjugated diene polymers and copolymer blocks having high vinyl content prepared using mixed microstructure control agents and process for preparing same
US20050267259A1 (en) * 2004-05-28 2005-12-01 Xiaorong Wang Soft gel composition of low permeability
US20070021560A1 (en) * 2005-07-15 2007-01-25 Tse Mun F Elastomeric compositions
US20080123810A1 (en) * 2006-11-03 2008-05-29 Kirkpatrick John P Bolus materials for radiation therapy and methods of making and using the same
US7439301B2 (en) 2004-03-03 2008-10-21 Kraton Polymers U.S. Llc Block copolymers having high flow and high elasticity
EP2080780A2 (en) * 2008-01-21 2009-07-22 Alen Chimica s.a.s. Procedure for attaining styrene-ethylene-butadiene-sytrene copolymer products and styrene-ethylene-propylene-styrene copolymer products
US7875670B2 (en) 2002-08-12 2011-01-25 Exxonmobil Chemical Patents Inc. Articles from plasticized polyolefin compositions
US7985801B2 (en) 2002-08-12 2011-07-26 Exxonmobil Chemical Patents Inc. Fibers and nonwovens from plasticized polyolefin compositions
US7998579B2 (en) 2002-08-12 2011-08-16 Exxonmobil Chemical Patents Inc. Polypropylene based fibers and nonwovens
US8003725B2 (en) 2002-08-12 2011-08-23 Exxonmobil Chemical Patents Inc. Plasticized hetero-phase polyolefin blends
US8192813B2 (en) 2003-08-12 2012-06-05 Exxonmobil Chemical Patents, Inc. Crosslinked polyethylene articles and processes to produce same
US8211968B2 (en) 2002-08-12 2012-07-03 Exxonmobil Chemical Patents Inc. Plasticized polyolefin compositions
US8389615B2 (en) 2004-12-17 2013-03-05 Exxonmobil Chemical Patents Inc. Elastomeric compositions comprising vinylaromatic block copolymer, polypropylene, plastomer, and low molecular weight polyolefin
US20130137915A1 (en) * 2009-11-30 2013-05-30 Paul Scherrer Institut Flexible energy filter for ion beam therapy
US10077389B2 (en) 2012-09-25 2018-09-18 Cold Chain Technologies, Inc. Gel comprising a phase-change material, method of preparing the gel, thermal exchange implement comprising the gel, and method of preparing the thermal exchange implement
EP3307822A4 (en) * 2015-06-12 2019-03-06 Kraton Polymers U.S. LLC Heat activated gels for cable filling applications
US10336884B2 (en) 2016-07-13 2019-07-02 Kraton Corporation Block copolymers for gel compositions

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US27145A (en) * 1860-02-14 Mortising-machine
USRE27145E (en) 1969-05-20 1971-06-22 Side-chain
US3700748A (en) * 1970-05-22 1972-10-24 Shell Oil Co Selectively hydrogenated block copolymers
US3827999A (en) * 1973-11-09 1974-08-06 Shell Oil Co Stable elastomeric polymer-oil compositions
US3830767A (en) * 1973-05-02 1974-08-20 Shell Oil Co Block copolymer compositions
US4833193A (en) * 1987-08-14 1989-05-23 Sieverding David L Novel pressure sensitive adhesives
US4880878A (en) * 1987-12-29 1989-11-14 Shell Oil Company Block copolymer blends with improved oil absorption resistance
WO1991005014A1 (en) * 1989-10-05 1991-04-18 Raychem Limited Gels
US5191024A (en) * 1989-05-19 1993-03-02 Japan Synthetic Rubber Co., Ltd. Hydrogenated diene block copolymer and composition comprising the same
WO1993005113A1 (en) * 1991-09-06 1993-03-18 Raychem Limited Gels
WO1993023472A1 (en) * 1992-05-13 1993-11-25 Raychem Limited Gels
EP0580221A1 (en) * 1992-07-21 1994-01-26 Omz S.P.A. Device for operating the door of vehicle door units
US5300582A (en) * 1992-06-04 1994-04-05 Shell Oil Company Coupled elastomeric block copolymers
WO1994018273A1 (en) * 1993-02-01 1994-08-18 Raychem Limited Low-temperature-tolerant gels
JPH06293853A (en) * 1993-04-08 1994-10-21 Kuraray Co Ltd Flexible composition
US5360350A (en) * 1991-08-23 1994-11-01 The Whitaker Corporation Sealant compositions and sealed electrical connectors
US5508334A (en) * 1977-03-17 1996-04-16 Applied Elastomerics, Inc. Thermoplastic elastomer gelatinous compositions and articles

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US27145A (en) * 1860-02-14 Mortising-machine
USRE27145E (en) 1969-05-20 1971-06-22 Side-chain
US3700748A (en) * 1970-05-22 1972-10-24 Shell Oil Co Selectively hydrogenated block copolymers
US3830767A (en) * 1973-05-02 1974-08-20 Shell Oil Co Block copolymer compositions
US3827999A (en) * 1973-11-09 1974-08-06 Shell Oil Co Stable elastomeric polymer-oil compositions
US5508334A (en) * 1977-03-17 1996-04-16 Applied Elastomerics, Inc. Thermoplastic elastomer gelatinous compositions and articles
US4833193A (en) * 1987-08-14 1989-05-23 Sieverding David L Novel pressure sensitive adhesives
US4880878A (en) * 1987-12-29 1989-11-14 Shell Oil Company Block copolymer blends with improved oil absorption resistance
US5191024A (en) * 1989-05-19 1993-03-02 Japan Synthetic Rubber Co., Ltd. Hydrogenated diene block copolymer and composition comprising the same
WO1991005014A1 (en) * 1989-10-05 1991-04-18 Raychem Limited Gels
US5360350A (en) * 1991-08-23 1994-11-01 The Whitaker Corporation Sealant compositions and sealed electrical connectors
WO1993005113A1 (en) * 1991-09-06 1993-03-18 Raychem Limited Gels
WO1993023472A1 (en) * 1992-05-13 1993-11-25 Raychem Limited Gels
US5300582A (en) * 1992-06-04 1994-04-05 Shell Oil Company Coupled elastomeric block copolymers
EP0580221A1 (en) * 1992-07-21 1994-01-26 Omz S.P.A. Device for operating the door of vehicle door units
WO1994018273A1 (en) * 1993-02-01 1994-08-18 Raychem Limited Low-temperature-tolerant gels
JPH06293853A (en) * 1993-04-08 1994-10-21 Kuraray Co Ltd Flexible composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
European Search Report of Mar. 11, 1997. *

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USH1956H1 (en) 1997-07-23 2001-04-03 Shell Oil Company Enhanced hydrogenation catalyst removal from block copolymers by reduction in polymer cement viscosity by increasing the vinyl content of the block copolymers
US6258891B1 (en) * 1998-12-03 2001-07-10 Shell Oil Company Solventless process for making polysiloxane polymers
US20030137721A1 (en) * 2000-06-29 2003-07-24 Satoshi Kajiya Optical amplifier device
US7157521B2 (en) 2001-02-15 2007-01-02 Bridgestone Corporation Soft gel compositions for hot adhesion
US20040082693A1 (en) * 2001-02-15 2004-04-29 Xiaorong Wang Soft gel compositions for hot adhesion
US20030100662A1 (en) * 2001-11-02 2003-05-29 Bridgestone Corp. Soft gel composition of low permeability
US7985801B2 (en) 2002-08-12 2011-07-26 Exxonmobil Chemical Patents Inc. Fibers and nonwovens from plasticized polyolefin compositions
US7875670B2 (en) 2002-08-12 2011-01-25 Exxonmobil Chemical Patents Inc. Articles from plasticized polyolefin compositions
US8217112B2 (en) 2002-08-12 2012-07-10 Exxonmobil Chemical Patents Inc. Plasticized polyolefin compositions
US8211968B2 (en) 2002-08-12 2012-07-03 Exxonmobil Chemical Patents Inc. Plasticized polyolefin compositions
US8003725B2 (en) 2002-08-12 2011-08-23 Exxonmobil Chemical Patents Inc. Plasticized hetero-phase polyolefin blends
US7998579B2 (en) 2002-08-12 2011-08-16 Exxonmobil Chemical Patents Inc. Polypropylene based fibers and nonwovens
US8703030B2 (en) 2003-08-12 2014-04-22 Exxonmobil Chemical Patents Inc. Crosslinked polyethylene process
US8192813B2 (en) 2003-08-12 2012-06-05 Exxonmobil Chemical Patents, Inc. Crosslinked polyethylene articles and processes to produce same
US7166679B2 (en) 2003-09-24 2007-01-23 Kraton Polymers Llc Conjugated diene polymers and copolymer blocks having high vinyl content prepared using mixed microstructure control agents and process for preparing same
US20050065287A1 (en) * 2003-09-24 2005-03-24 Kraton Polymers U.S. Llc Conjugated diene polymers and copolymer blocks having high vinyl content prepared using mixed microstructure control agents and process for preparing same
US7439301B2 (en) 2004-03-03 2008-10-21 Kraton Polymers U.S. Llc Block copolymers having high flow and high elasticity
US7041734B2 (en) 2004-05-28 2006-05-09 Bridgestone Corporation Soft gel composition of low permeability
US20050267259A1 (en) * 2004-05-28 2005-12-01 Xiaorong Wang Soft gel composition of low permeability
US8389615B2 (en) 2004-12-17 2013-03-05 Exxonmobil Chemical Patents Inc. Elastomeric compositions comprising vinylaromatic block copolymer, polypropylene, plastomer, and low molecular weight polyolefin
US8513347B2 (en) 2005-07-15 2013-08-20 Exxonmobil Chemical Patents Inc. Elastomeric compositions
US20070021560A1 (en) * 2005-07-15 2007-01-25 Tse Mun F Elastomeric compositions
US20080123810A1 (en) * 2006-11-03 2008-05-29 Kirkpatrick John P Bolus materials for radiation therapy and methods of making and using the same
EP2080780A3 (en) * 2008-01-21 2009-09-09 Alen Chimica s.a.s. Procedure for attaining styrene-ethylene-butadiene-sytrene copolymer products and styrene-ethylene-propylene-styrene copolymer products
EP2080780A2 (en) * 2008-01-21 2009-07-22 Alen Chimica s.a.s. Procedure for attaining styrene-ethylene-butadiene-sytrene copolymer products and styrene-ethylene-propylene-styrene copolymer products
US20130137915A1 (en) * 2009-11-30 2013-05-30 Paul Scherrer Institut Flexible energy filter for ion beam therapy
US8704201B2 (en) * 2009-11-30 2014-04-22 Paul Scherrer Institut Flexible energy filter for ion beam therapy
US10077389B2 (en) 2012-09-25 2018-09-18 Cold Chain Technologies, Inc. Gel comprising a phase-change material, method of preparing the gel, thermal exchange implement comprising the gel, and method of preparing the thermal exchange implement
US10829675B2 (en) 2012-09-25 2020-11-10 Cold Chain Technologies, Llc Gel comprising a phase-change material, method of preparing the gel, thermal exchange implement comprising the gel, and method of preparing the thermal exchange implement
US11739244B2 (en) 2012-09-25 2023-08-29 Cold Chain Technologies, Llc Gel comprising a phase-change material, method of preparing the gel, thermal exchange implement comprising the gel, and method of preparing the thermal exchange implement
EP3307822A4 (en) * 2015-06-12 2019-03-06 Kraton Polymers U.S. LLC Heat activated gels for cable filling applications
US10336884B2 (en) 2016-07-13 2019-07-02 Kraton Corporation Block copolymers for gel compositions

Similar Documents

Publication Publication Date Title
EP0822227B1 (en) Oil gel formulations containing high vinyl content hydrogenated styrene-butadiene-styrene block copolymers
US5925707A (en) Oil gel formulations containing high vinyl content hydrogenated styrene-butadiene-styrene block copolymers
MXPA97005763A (en) Gel oleous formulations containing hydrogen styrene-butadiene-styrene bottle copolymers, with a high content of vin
AU593666B2 (en) Thermoplastic compositions and process for the preparation thereof
US4880878A (en) Block copolymer blends with improved oil absorption resistance
US3431323A (en) Hydrogenated block copolymers of butadiene and a monovinyl aryl hydrocarbon
KR101389643B1 (en) Novel hydrogenated block copolymer compositions
US4335221A (en) Preparation of mixtures of linear three-block copolymers, and moldings produced therefrom
EP1474481A1 (en) Gels from controlled distribution block copolymers
CA1314279C (en) Polymeric viscosity index improver and oil composition comprising the same
EP0224389A2 (en) Styrene-diene block copolymer compositions
CN106459328B (en) Block copolymers containing a block of the copolymer myrcene
EP0285865A2 (en) Bituminous composition comprising a blend of bitumen and a thermoplastic elastomer
JP2009530473A (en) Novel non-hydrogenated block copolymer composition
RU2257395C2 (en) Composition for cables filling
US5750622A (en) High temperature low viscosity thermoplastic elastomer block copolymer compositions
WO2004052989A1 (en) Styrenic block copolymer compositions to be used for the manufacture of transparent, gel free films
JP2004131707A (en) Block terpolymer and method for producing the same
JP5105107B2 (en) Improved thermoplastic elastomer composition
CN110408220B (en) Block copolymers for gel compositions having improved efficacy
CN107849326B (en) Heat activated gels for cable filling applications
US8552114B2 (en) Miktopolymer compositions
CN100537626C (en) Process for making a coupled low vinyl block copolymer composition and the resulting composition
US6451913B1 (en) Radial hydrogenated block copolymers showing one phase melt behavior

Legal Events

Date Code Title Description
AS Assignment

Owner name: SHELL OIL COMPANY, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHAFER, DAVID L.;HIMES, GLENN R.;MODIC, MICHAEL J.;REEL/FRAME:009889/0352

Effective date: 19970729

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: CHASE MANHATTAN BANK, AS COLLATERAL AGENT, THE, NE

Free format text: SECURITY AGREEMENT;ASSIGNOR:KRATON, POLYMERS U.S. LLC, FORMERLY KNOWN AS SHELL ELASTOMERS LLC;REEL/FRAME:011571/0342

Effective date: 20010228

AS Assignment

Owner name: SHELL ELASTOMERS LLC, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SHELL OIL COMPANY;REEL/FRAME:012090/0627

Effective date: 20010228

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: UBS AG, STAMFORD BRANCH, CONNECTICUT

Free format text: SECURITY INTEREST;ASSIGNOR:KRATON POLYMERS U.S. LLC;REEL/FRAME:014242/0281

Effective date: 20031223

AS Assignment

Owner name: KRATON POLYMERS LLC, TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK;REEL/FRAME:018224/0293

Effective date: 20010228

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: KRATON POLYMERS U.S. LLC, TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:UBS AG, STAMFORD BRANCH;REEL/FRAME:025845/0795

Effective date: 20110211

AS Assignment

Owner name: KRATON POLYMERS U.S.LLC, TEXAS

Free format text: CHANGE OF NAME;ASSIGNOR:SHELL ELASTOMERS LLC;REEL/FRAME:037268/0607

Effective date: 20130924

AS Assignment

Owner name: KRATON POLYMERS U.S. LLC, TEXAS

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE INCORRECT PATENT NUMBER 7720798 AND REPLACE WITH PATENT NUMBER 7220798 PREVIOUSLY RECORDED ON REEL 025845 FRAME 0795. ASSIGNOR(S) HEREBY CONFIRMS THE RELEASE BY SECURED PARTY;ASSIGNOR:USB AG, STAMFORD BRANCH;REEL/FRAME:037312/0070

Effective date: 20110211

AS Assignment

Owner name: BANK OF AMERICA, N.A., TEXAS

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE PATENT NUMBER 8837224 TO PATENT NUMBER 7737224 PREVIOUSLY RECORDED AT REEL: 037448 FRAME: 0453. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY INTEREST;ASSIGNORS:KRATON POLYMERS U.S. LLC;ARIZONA CHEMICAL COMPANY, LLC;REEL/FRAME:037448/0453

Effective date: 20160106

Owner name: BANK OF AMERICA, N.A., TEXAS

Free format text: SECURITY INTEREST;ASSIGNORS:KRATON POLYMERS U.S. LLC;ARIZONA CHEMICAL COMPANY, LLC;REEL/FRAME:037448/0453

Effective date: 20160106

AS Assignment

Owner name: CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS COLLATERAL AGENT, NEW YORK

Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:KRATON POLYMERS U.S. LLC;REEL/FRAME:037457/0843

Effective date: 20160106

Owner name: CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS COLLAT

Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:KRATON POLYMERS U.S. LLC;REEL/FRAME:037457/0843

Effective date: 20160106

AS Assignment

Owner name: KRATON POLYMERS U.S. LLC, TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS COLLATERAL AGENT;REEL/FRAME:059366/0611

Effective date: 20220315

AS Assignment

Owner name: BANK OF AMERICA, N.A., TEXAS

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE PATENT NO. 8837224 TO PATENT NO. 7737224 PREVIOUSLY RECORDED AT REEL: 037448 FRAME: 0453. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNORS:KRATON POLYMERS U.S. LLC;ARIZONA CHEMICAL COMPANY, LLC;REEL/FRAME:060344/0919

Effective date: 20160106