Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS5397046 A
Publication typeGrant
Application numberUS 08/034,234
Publication date14 Mar 1995
Filing date22 Mar 1993
Priority date18 Oct 1991
Fee statusPaid
Also published asCA2119524A1, CA2119524C, DE69406343D1, DE69406343T2, EP0621006A1, EP0621006B1, US5472132, US5584425
Publication number034234, 08034234, US 5397046 A, US 5397046A, US-A-5397046, US5397046 A, US5397046A
InventorsRobert C. Savage, Paul M. Kasarauskas, Joseph F. Zuzick, Jr., Jeffrey J. Blewett
Original AssigneeUnited States Surgical Corporation
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Lockout mechanism for surgical apparatus
US 5397046 A
Abstract
A self contained gas powered endoscopic surgical apparatus is provided for placing lateral lines of surgical fasteners into body tissue. The apparatus includes an anvil member and a surgical fastener cartridge member mounted to the distal end of an elongated endoscopic portion. A tubular collar of the endoscopic portion moves distally to engage the anvil member and bias the anvil member and the cartridge member into cooperative alignment, thereby clamping body tissue to be fastened between the anvil member and the cartridge member. A self contained pneumatic system is disposed in the surgical apparatus and is actuable to eject and/or form the surgical fasteners in the clamped body tissue. The apparatus further comprises a locking member for preventing approximation of the anvil member and the cartridge. In one embodiment a clamping interlock is shown which prevents approximation of the jaws when the jaws are either misaligned or improperly inserted into the instrument. In a second embodiment a clamping interlock is shown which directly engages the tubular collar preventing approximation of the jaws when a cartridge member is not fully inserted. In a third embodiment a clamping interlock is shown which directly engages the tubular collar when an unfired cartridge is not present or properly inserted into the instrument.
Images(31)
Previous page
Next page
Claims(26)
What is claimed is:
1. A surgical apparatus for approximating surgical jaw structure comprising:
a) a handle;
b) an elongated portion defining a longitudinal axis and extending distally from said handle;
c) first jaw means mounted to said elongated portion and having a first tissue engaging surface for supporting tissue;
d) second jaw means, mounted to said elongated portion, having a second tissue engaging surface and a distal end and a proximal end, said second jaw means being mounted with respect to said elongated housing such that at least the distal end of said second jaw means is movable in directions generally transverse to said longitudinal axis between an open position spaced from said first tissue engaging surface and a closed position wherein said second tissue engaging surface is in close cooperative alignment with said first tissue engaging surface;
e) a camming member associated with said elongated portion and engagable with said second jaw means for moving said second jaw means between said open position and said closed position; and
f) lockout means associated with said elongated portion for arresting movement of said camming member, said lockout means including a latch member movably mounted with respect to said elongated housing, said latch member being movable from a locked position engaging said camming member to an unlocked position wherein said latch member is disengaged from said camming member.
2. The surgical apparatus of claim 1 wherein said camming member is axially movable with respect to said second jaw means, said camming member having a distal camming surface and being movable between a first position in which said camming surface is located proximally to the proximal end of said second jaw means, and a second position in which said camming surface is located distally to the proximal end of said second jaw means, said camming member cooperating with said second jaw means such that when said camming member is moved from said first position to said second position, said second jaw means is urged to said closed position.
3. The surgical apparatus of claim 2, wherein said camming member is a tubular collar disposed around at least a portion of said elongated portion.
4. The surgical apparatus of claim 3, wherein said latch member in said locked position engages a notched opening in said collar in said first position.
5. The surgical apparatus of claim 2 wherein said first jaw means comprises:
a cartridge holding a plurality of ejectable surgical fasteners; and
a cam bar adapter removably mounting means for ejecting said surgical fasteners from said cartridge.
6. The surgical apparatus of claim 5 wherein said lockout means arrests movement of said camming member when said cam bar adaptor is located distally of said cam bar adaptor's proximalmost position within said cartridge.
7. The surgical apparatus of claim 5 wherein said actuating means comprises a pneumatic system disposed in said frame and including a self contained supply of pressurized gas and a pneumatic actuator mechanism associated with said gas supply, said pneumatic system adapted to actuate said means for ejecting said surgical fasteners.
8. The surgical apparatus of claim 2 further comprising means for moving said camming member between said first position and said second position which means for moving said camming member includes a manually operated handle and linkage assembly connected to said camming member.
9. The surgical apparatus of claim 1 wherein at least one of said first jaw means and said second jaw means is detachable from said elongated portion.
10. The surgical apparatus of claim 9 wherein said latch member is urged into said unlocked position when said detachable first or second jaw means is fully inserted into said elongated portion.
11. The surgical apparatus of claim 1 wherein said lockout means further comprises a spring mounted with respect to said elongated portion, wherein said spring acts to bias said latch member toward said locked position.
12. The surgical apparatus of claim 1 wherein said second jaw means comprises an anvil member removably mounted to said elongated portion.
13. A surgical apparatus for driving surgical fasteners into body tissue comprising:
a) a handle;
b) an endoscopic portion defining a longitudinal axis and extending distally from said handle, said endoscopic portion including:
i) an elongated housing having a distal portion which includes a member to support a plurality of surgical fasteners for slidable movement generally transverse to said longitudinal axis, said distal portion having a tissue engaging surface for supporting tissue to be fastened,
ii) an anvil member having a fastener forming surface and a distal end and a proximal end, said anvil member being mounted with respect to said elongated housing such that at least the distal end of said anvil member is movable in directions generally transverse to said longitudinal axis between an open position spaced from said tissue engaging surface and a closed position wherein said fastener forming surface is in close cooperative alignment with said tissue engaging surface,
iii) a camming member engagable with said anvil member for moving said anvil member between said open position and said closed position,
iv) means for ejecting said surgical fasteners from said fastener support member, whereby said fasteners engage tissue positionable between said tissue engaging surface and said fastener forming surface, and
v) lockout means engagable with said camming member for arresting movement of said camming member.
14. The surgical apparatus of claim 13 wherein said camming member includes a tubular collar disposed around at least a portion of said housing and said anvil, said tubular collar having a distal camming surface and being movable between a first position in which said camming surface is located proximally to the proximal end of said anvil member, and a second position in which said camming surface is located distally to the proximal end portion of said anvil member, said tubular collar cooperating with said anvil member such that when the collar is moved from said first position to said second position, said anvil member is urged to said closed position.
15. The surgical apparatus of claim 14 wherein said lockout means comprises a latch member mounted with respect to said elongated housing and at least one of said fastener support member and said anvil member is adapted to detachably engage said housing, said latch member being movable from a locked position engaging said collar in said first position to an unlocked position disengaged from said collar.
16. The surgical apparatus of claim 15 wherein said latch member is urged into said unlocked position when said detachable fastener support member or anvil member is fully inserted into said elongated housing.
17. The surgical apparatus of claim 15 wherein said latch member is in said unlocked position when said fastener support member is properly mounted within said elongated housing.
18. The surgical apparatus of claim 14 wherein said fastener support member comprises:
a cartridge holding a plurality of ejectable surgical fasteners; and
a cam bar adapter removably mounting means for ejecting said surgical fasteners from said cartridge.
19. The surgical apparatus of claim 13 wherein said fastener support member is removably mounted to said elongated housing.
20. A lockout mechanism for use with a surgical instrument having a frame portion, an elongated portion extending distally from the frame portion, a first and second jaw mounted with respect to the elongated portion, at least one of which is adapted for detachable engagement with the elongated portion, and means for approximating the jaws, said lockout mechanism comprising: a latch member pivotally mounted on a distal end of the elongated portion, said latch member having a lock member dimensioned and configured to automatically engage and arrest movement of the approximating means when the at least one detachable jaw is not properly engaged with the elongated portion.
21. The lockout mechanism of claim 20, wherein the approximating means comprises a camming member slidably mounted with respect to the elongated portion and having structure engagable with said lock member, said camming member slidable between a first position wherein said first and second jaws are substantially spaced apart to a second position wherein said camming member cams one of said jaws towards said other jaw, said lock member engaging said camming member structure in said first position.
22. The lockout mechanism of claim 21 wherein said lock member engages a notched opening in said camming member structure in said first position to arrest movement of said camming member.
23. The lockout mechanism of claim 22 further comprising a spring member mounted on the frame portion and engaging said latch member, said spring member biasing said latch member towards said camming member.
24. An improved surgical fastening instrument of the type having a frame portion, an elongated portion extending distally from the frame portion, a first and a second jaw mounted with respect to the elongated portion, at least one of which is adapted for carrying ejectable fasteners, means movably mounted within the at least one jaw for ejecting the fasteners, means for approximating the jaws and firing means for activating the eject means, wherein the improvement comprises: a latch member movably mounted on a distal end of the elongated portion and automatically engagable with the approximating means after the instrument has been fired or when the fastener carrying jaw is not operably engaged with the elongated portion and a spring associated with the elongated portion and engagable with said latch member to bias said latch member toward the approximating means.
25. A surgical apparatus for approximating surgical jaw structure comprising:
a) a handle;
b) an elongated portion defining a longitudinal axis and extending distally from said handle;
c) a first jaw mounted to said elongated portion and having a fastener support member;
d) a second jaw mounted to said elongated portion and having an anvil surface, said second jaw being movable between an open position spaced from said fastener support member and a closed position wherein said anvil surface is in close cooperative alignment with said fastener support member;
e) a camming member operatively associated with said elongated portion and engagable with said second jaw for moving said second jaw between said open position and said closed position; and
f) a latch member movably mounted with respect to said elongated portion and engagable with said camming member, said latch member being movable from a locked position engaging said camming member to an unlocked position wherein said latch member is disengaged from said camming member.
26. The surgical apparatus as in claim 25 wherein said fastener support member is removably attached to one of said first and second jaws.
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of application Ser. No. 07/915,425, filed Jul. 17, 1992, now abandoned, which is a continuation-in-part of application Ser. 1991, 07/781,012, filed Oct. 18, 1991 now abandoned.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to surgical stapling apparatus, and more particularly to surgical apparatus which are powered by self contained relatively low pressure gas systems to perform sequential operations such as tissue clamping, staple forming and/or tissue cutting.

2. Description of Related Art

Surgical stapling apparatus is known wherein tissue is first grasped or clamped between opposing jaw structure and then fastened by means of fasteners. In some instruments a knife is provided to cut tissue which has been joined. The fasteners are typically in the form of surgical staples however, two part polymeric type fasteners are also known.

Instruments for this purpose can comprise two elongated fingers which are respectively used to capture or clamp tissue. Typically, one of the fingers carries a disposable cartridge housing a plurality of staples arranged in at least two lateral rows while the other finger comprises an anvil for curling the staple legs into hook form upon their being driven against the anvil. The stapling operation is effected by a pusher which travels longitudinally along the cartridge carrying finger, with the pusher acting upon the staples to place rows of staples in body tissue. A knife may optionally be positioned to operate sequentially immediately behind the pusher and laterally positioned between the staple rows longitudinally cut and/or open the stapled tissue between the rows of staples. Such instruments are disclosed in Bobrov et al. (U.S. Pat. No. 3,079,606) and Green (U.S. Pat. No. 3,490,675). The instruments disclosed therein comprise apparatus for simultaneously making a longitudinal incision and applying a row of staples on both sides of an incision.

A later development disclosed in Green (U.S. Pat. No. 3,499,591) applies a double row of staples on each side of the incision. This is accomplished by a cartridge assembly wherein a cam member moves within a guide path between two sets of staggered staple carrying grooves. Staple drive members located within the grooves each have two staple pusher plates, and sloping surfaces disposed within the guide path so as to be contacted by the longitudinally moving cam and be driven along the groove to effect ejection of two staples.

The cartridge assemblies typically come in a plurality of sizes, each varying in both length and number of staples contained therein. Depending on the procedure to be performed, the surgeon must select the appropriate cartridge assembly. No provision is currently available to adjust the firing means of the instrument itself so that a wide variety of staple driving sequences may be accomplished using a single staple cartridge assembly.

The instruments described above were all designed to be used in surgical procedures wherein surgeons have direct manual access to the operation site. However, in endoscopic or laparoscopic procedures surgery is performed through a small incision or through narrow cannulae inserted through small entrance wounds in the skin. In order to address the specific needs of endoscopic and/or laparoscopic surgical procedures, an endoscopic surgical stapling apparatus such as that shown in Green et al. (U.S. Pat. No. 5,040,715) has been developed. This apparatus is well suited for such procedures and incorporates a distal end having an anvil and staple cartridge assembly and a manually operated handle assembly interconnected by an endoscopic portion which permits the instrument to be inserted into a cannula and be remotely operated by the surgeon.

The instruments discussed above all require some degree of manually applied force in order to clamp, fasten and/or cut tissue. This manual application can prove awkward or difficult depending upon the orientation of the instrument relative to the surgeon, the type of tissue being operated on or the strength of the surgeon. Furthermore, because of the difficulty and expense of cleaning and sterilizing surgical instruments between uses, there is increasing interest in and demand for instruments which are disposable after use in a single surgical procedure rather than permanent and reusable. And because of the greater convenience and ease of using self-powered instruments as well as the more uniform results typically produced by self-powered instruments (as compared especially to manually powered instruments), there is increasing interest in and demand for instruments which are self-powered. Accordingly, there is a need for a self-powered endoscopic surgical apparatus to alleviate these difficulties.

Self contained gas powered surgical staplers are known, as shown, for example, in U.S. Pat. Nos. 3,618,842; 3,643,851; 3,662,939; 3,717,294; 3,815,476; and 3,837,555. Typically, these staplers include a replaceable cylinder which supplies gas (e.g., carbon dioxide or nitrogen) at relatively high pressure (e.g., 800 p.s.i.g.) for powering the instrument. The high pressure gas used in these staplers requires that the staplers be of relatively heavy construction in order to safely accommodate the high pressure involved. Because of their construction, these instruments are relatively expensive to manufacture and therefore generally intended to be relatively permanent and reusable.

Use of a relatively low pressure gas is advantageous to enable a stapler to be made of lighter construction and less expensive materials. This is desirable to lower the cost and make the stapler economically disposable. The stapler must, however, be capable of generating the substantial forces required to form the staples. Typically, the staples are metal wire which is partially formed prior to use and which must be further formed (e.g., crimped against an anvil) by the stapler. To generate the relatively large forces required to form the staples with low pressure gas would ordinarily require a relatively large pneumatic actuator. This is undesirable because a large actuator makes the stapler bulky and difficult to work with. In addition, a large actuator unnecessarily consumes a large amount of gas during the portion of actuator motion when relatively large forces are not required, i.e., during the first part of the actuator stroke when the staple is merely being advanced to the staple forming position. The gas which is thus effectively wasted substantially reduces the number of stapling operations which can be performed by the stapler before its gas supply is exhausted. This substantially shortens the useful life of the stapler if the gas supply is not replaceable, and even if the gas supply is replaceable, it undesirably increases the frequency with which the gas supply must be replaced.

Although it is desirable to perform most of the functions of the stapling apparatus automatically using the self-powering elements in the apparatus, it may also be desirable for the initial function to be at least partly manual. For example, if the initial function is tissue clamping, it is preferably initiated manually so that it can be performed slowly and precisely and the results inspected and corrected if necessary before the automatic self-powered portion of the operating sequence begins. See, for example, U.S. Pat. Nos. 4,349,028 and 4,331,277 to Green.

Accordingly, there is a present need for a self contained gas powered surgical instrument for driving surgical fasteners into body tissue which instrument can be made of lighter materials and can be made disposable after use.

Because endoscopic procedures are more common than laparoscopic procedures, the present invention shall be discussed in terms of endoscopic procedures and apparatus. However, use herein of terms such as "endoscopic", "endoscopically" and "endoscopic portion", among others, should not be construed to limit the present invention to a stapling and cutting apparatus for use only in conjunction with an endoscopic tube. To the contrary, it is believed the present invention may find use in any procedure where access is limited to a small incision, including but not limited to laparoscopic procedures. Also, as used herein the terms "fasteners" and "staples" shall be treated equivalently. Unless otherwise stated, the term "cartridge assembly" shall include at least the cartridge itself and staples or fasteners and staple drive members disposed therein.

3. Objects of the Invention

Accordingly, it is one object of the present invention to provide a self contained gas powered surgical apparatus for driving fasteners into body tissue.

It is another object of the present invention to provide a self contained endoscopic surgical apparatus which is powered by a low pressure pneumatic system contained within the apparatus.

It is yet a further object of the present invention to provide a self contained gas powered surgical apparatus insertable through a small incision or narrow tube for driving surgical fasteners into body tissue and cutting the body tissue between rows of staples.

Another object of the present invention is to provide a self contained gas powered surgical apparatus which is disposable after use.

A further object of the present invention is to provide a self contained gas powered surgical apparatus which may be selectively set to drive surgical fasteners in a variety of sequences.

Another object of the present invention is to provide a self contained gas powered surgical apparatus which is activatable to move through an entire sequence of operation by a single press of the actuator.

A further object of the present invention is to provide a self contained gas powered surgical apparatus having a gas metering element to prevent firing of the staples from the cartridge unless a sufficient quantity of gas is available to move the driving member through a full sequence of operation.

Another object of the present invention is to provide a self contained gas powered surgical apparatus having a clamping lockout mechanism which will prevent clamping of tissue unless the cartridge has been properly inserted in the instrument.

A further object of the present invention is to provide a surgical apparatus having a clamping lockout mechanism which directly engages a camming collar to prevent approximation of an anvil and cartridge.

Another object of the present invention is to provide a surgical apparatus having a clamping lockout mechanism which will prevent clamping of tissue unless an unfired cartridge is fully seated in the instrument.

A further object of the present invention is to provide a self contained gas powered surgical apparatus having sealing structure for inhibiting the escape of gas through the apparatus.

Another object of the present invention is to provide a self contained gas powered surgical apparatus having counter structure for displaying the number of times the instrument has been fired.

A further object of the present invention is to provide a self contained gas powered surgical apparatus with lockout structure to disable the apparatus after a predetermined number of firings.

SUMMARY OF THE INVENTION

These and other objects of the invention are accomplished in accordance with the principles of the invention by providing a self contained endoscopic surgical instrument which is at least partially operable by means of a relatively low pressure pneumatic assembly. Advantageously, the surgical instrument in accordance with an embodiment of the present invention is a surgical stapling apparatus adapted for placing one or more longitudinal rows of staples. This apparatus may further include a knife for making an incision in body tissue between rows of staples. The latter configuration may find particular use of adjoining two hollow organs or in removing an organ, such as the appendix, the gallbladder, etc.

The self contained gas powered surgical instrument of the present invention in an endoscopic stapler configuration comprises a frame; an endoscopic portion defining a longitudinal axis and extending distally from the frame, the endoscopic portion including an elongated housing having a distal member for mounting a cartridge assembly. The cartridge assembly includes a plurality of surgical staples slidably mounted therein and has a tissue engaging surface. An anvil member is also provided and has a staple forming surface and a proximal end mounted to the elongated housing such that the anvil member is movable between an open position and a closed position such that the staple forming surface is in close cooperative alignment with the tissue engaging surface of the cartridge assembly.

The instrument further includes structure for moving the anvil member between the open and the closed positions and structure for ejecting the surgical staples from the cartridge assembly to cause the staples to engage and form on the staple forming surface of the anvil member.

A self contained pneumatic system is disposed in the frame and includes a supply of relatively low pressure gas connected to a pneumatic actuator mechanism. The pneumatic actuator mechanism actuates the structure for ejecting the surgical staples from the cartridge assembly.

The surgical instrument may be constructed either as a reusable unit or as a single use, disposable unit or, alternatively may be formed with a reusable handle portion and replaceable staple carrying cartridges.

The present invention advantageously permits surgeons to perform internal surgical procedures including stapling and/or cutting simply by manually clamping the tissue to be manipulated and pneumatically actuating the jaw members. This results in greater convenience and ease of use of the instrument as well as more uniform actuation of the instrument mechanisms.

The stapler embodiment of this invention is preferably controlled by a manually operable trigger or other similar control. Momentary operation of the trigger initiates an operating cycle of the stapler which normally is automatically completed without continued actuation of the trigger. A safety interlock may also be employed in cooperation with the trigger mechanism to prevent accidental actuation. Preferably the stapler performs only one operating cycle in response to each operation of the control regardless of the length of time the control is operated beyond the time required to initiate an operating cycle. The stapler also cannot begin a new operating cycle until the preceding cycle is complete. Also, a safety mechanism may be incorporated to prevent closure of the jaws if they are misaligned or improperly inserted. In a particularly preferred embodiment of the invention, the operating cycle will not begin unless sufficient gas remains in the reservoir to propel the instrument through a complete cycle. Alternatively, structure may be provided to give a visual or tactile indication of the number of times the instrument has been fired and/or lock out the operating cycle after a given number of firings. Sealing means may be provided to more efficiently seal the apparatus and prevent excess gas from passing through the interior thereof.

In another particularly advantageous embodiment of the invention the surgical element includes adjustment structure which permits the instrument to be selectively preset to fire in a predetermined sequence to drive a given number of staples and/or rows of staples.

In other preferred embodiments of the invention, clamping lockout means are provided to prevent the approximation of an anvil and cartridge or other surgical jaw means when a cartridge is not properly and fully inserted into the instrument. Preferred embodiments of the clamping lockout structure also provide means for preventing the reapproximation of the anvil and cartridge after the instrument has been fired.

Further features of the invention, its nature and various advantages will be more apparent from the accompanying drawing and the following detailed description of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

Preferred embodiments of the invention are described hereinbelow with reference to the drawings. In the drawings and the description which follows, "proximal" means the end closest to the operator and "distal" means the end furthest from the operator.

FIG. 1 is a perspective view of a self contained gas powered endoscopic surgical instrument in accordance with one embodiment of the present invention;

FIG. 2 is an exploded perspective view of the frame and pneumatic assembly of the surgical instrument of FIG. 1;

FIG. 3 is an exploded perspective view of the endoscopic portion of the surgical instrument of FIG. 1;

FIG. 3A is a side plan view in partial cut away of the pusher washers and flange member of the pneumatic system in accordance with one embodiment of the present invention;

FIG. 4 is an exploded perspective view of one embodiment of the anvil and cartridge assembly of the surgical instrument of FIG. 1;

FIG. 5 is a side plan view in cross section taken along line 5--5 of FIG. 1 showing the frame and pneumatic assembly in the unclamped and unfired position;

FIG. 6 is a transverse view in cross section taken along line 6--6 of FIG. 5 oriented toward the proximal end of the instrument showing the frame and pneumatic assembly in the unclamped position;

FIG. 7 is a side plan view in cross section showing the frame and pneumatic assembly in the clamped and unfired position;

FIG. 8 is a transverse view in cross section taken along line 8--8 of FIG. 7 oriented toward the proximal end of the instrument showing the frame and pneumatic assembly in the clamped and unfired position;

FIG. 9 is a top plan view in cross section taken along line 9--9 of FIG. 5 showing the frame and pneumatic assembly of the surgical, instrument;

FIG. 10 is a transverse view in cross section taken along line 10--10 of FIG. 5 oriented toward the distal end of the instrument showing a portion of the frame and pneumatic assembly;

FIG. 11 is a side plan view in cross section showing the frame and pneumatic assembly of the present invention in the clamped and fixed position;

FIG. 12 is a side cut away view in cross section showing the operation of the pneumatic assembly of the present invention as it is fired;

FIG. 13 is a side cut away view in cross section taken along line 13--13 of FIG. 12 showing the valve and gas tube of the pneumatic assembly;

FIG. 14 is a side plan view in cross section showing the frame and pneumatic assembly of a surgical instrument incorporating an adjustable stroke mechanism;

FIG. 15 is a side cut away view in cross section of a surgical instrument incorporating a metering assembly between the valve and piston assembly;

FIG. 16 is a side plan view of a channel member in accordance with one embodiment of the present invention;

FIG. 17 is a transverse view in cross section taken along line 17--17 of FIG. 16 oriented toward the proximal end of the channel member;

FIG. 18 is a transverse view in cross section taken along line 18--18 of FIG. 16 oriented toward the distal end of the channel member;

FIG. 19 is a bottom plan view of an anvil member in accordance with one embodiment of the present invention;

FIG. 20 is a top plan view of the anvil member of FIG. 19;

FIG. 21 is a side view of the anvil member of FIG. 19;

FIG. 22 is a top plan view of a cam bar adapter in accordance with one embodiment of the present invention;

FIG. 23 is a side plan view of the cam bar adapter of FIG. 22;

FIG. 24 is a from plan view of the cam bar adapter taken along line 24--24 of FIG. 22 oriented toward the proximal end of the adapter;

FIG. 25 is a side plan view in cross section of the cartridge housing of FIG. 4;

FIG. 26 is a top plan view of the cartridge housing shown in FIG. 25;

FIG. 27 is a side cut away view in cross section of the cartridge housing of FIG. 25 taken along line 27--27 of FIG. 26;

FIG. 28 is an exploded perspective view of another embodiment of the cartridge assembly of the surgical instrument in accordance with the present invention;

FIG. 29 is a perspective view of the assembled cartridge assembly of FIG. 28;

FIG. 30 is a perspective view in partial cross section of an anvil and cartridge assembly in accordance with the present invention;

FIG. 31 is a perspective view in partial cross section of an anvil in accordance with the embodiment of FIG. 30;

FIGS. 32 through 34 are side plan views in partial cross section of a sequence of operations for the anvil and cartridge assembly of FIG. 30;

FIG. 35 is a perspective view of another self contained gas powered surgical instrument in accordance with the present invention;

FIG. 36 is an exploded perspective view of the handle portion of the self contained gas powered surgical instrument of FIG. 35;

FIG. 37 is an exploded perspective view of the endoscopic portion and jaw structure of the self contained gas powered surgical instrument of FIG. 35;

FIGS. 38 and 39 are side cross-sectional views of the firing trigger with integral lockout in the unfired and fired positions; and

FIGS. 40 and 41 are side views of the cartridge and support structure showing the operation of the clamp lockout structure.

FIG. 42 is a perspective view of one embodiment of the clamp lockout mechanism.

FIGS. 43-44 are side elevation views partially shown in section of the embodiment of FIG. 42 in operation;

FIG. 45 is a side elevation view, partly shown in section of a first preferred clamp lockout mechanism;

FIG. 46 is a cross sectional view taken along lines A--A of FIG. 45;

FIGS. 47-49 are side elevation views partially shown in section showing the operating sequence of the embodiment of FIG. 45;

FIG. 50 is a perspective view of a second preferred embodiment of the clamp lockout mechanism partially shown in section; and

FIGS. 51-53 are side elevation views partially shown in section showing the operation of the embodiment of FIG. 50.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Although the principles of the invention are applicable to other types of self contained gas powered surgical fastening instruments, the invention will be fully understood from the following illustration of its application to endoscopic surgical fastening instruments of the type shown, for example, in Green et al. U.S. Pat. No. 5,040,715. Also, although the invention is applicable to surgical fastening apparatus having other constructions, the invention will be illustratively described in its application to surgical staplers in which a staple cartridge containing a plurality of staples, staple drivers and staple firing means in cooperation with anvil means respectively form opposing jaw structure located on a distal end of the stapler for capturing and joining tissue.

I. Overall Construction and Operation of the Firing Assembly

As shown in FIG. 1, a self contained gas powered endoscopic surgical instrument 50 constructed in accordance with the principles of this invention includes a frame 52 and an endoscopic portion 54. An anvil 56 and cartridge assembly 58 are mounted in a distal end 60 of endoscopic portion 54 and are preferably interchangeable with other anvil/cartridge assemblies (as discussed in greater detail hereinbelow) to perform a wide variety of surgical fastening procedures as needed.

Anvil 56 and cartridge assembly 60 are manually controlled by means of an articulating handle 62 in the frame 52. This handle 62 interconnects with anvil 56 by means of a linkage disposed in endoscopic portion 54 such that when handle 62 is moved from its open position (FIG. 1) to a closed position (FIG. 7), anvil 56 is moved into close approximation with cartridge assembly 58. This operation will be discussed in greater detail below.

Turning now to FIG. 2, an exploded perspective view of the frame and pneumatic system is shown in accordance with the present invention. Frame 52 includes a first housing member 64 and a second housing member 66 enclosing a pneumatic system shown generally at 68. Articulating handle 62 is pivotally connected at a distal end thereof to clamp tube 70 at pivot point 72. Longitudinal grooves 74 formed in both first and second housing members 64, 66 adjacent pivot point 72 slidably receive molded shuttles 76 attached to handle 62 at 72. The molded shuttles 76 are pivotally connected to either side of the pivot point 72 on the distal end of handle 62 and serve to guide the distal end of handle 62 in a longitudinally distal direction as the handle is compressed.

A pair of articulating links 78 interconnect an intermediate portion of handle 62 to a pair of projections 80 formed on an upper surface of housing members 64, 66 respectively. A handle return spring 82 extends between handle 62 and housing members 64, 66 by means of spring anchor pins 84, one of which is disposed in handle 62 and the other extending between projections 80 which also serve to pivotally connect articulating links 78 to projections 80. This spring 82 assists in returning handle 62 from its closed position to its open position.

The proximal end of handle 62 is preferably diagonally formed away from housing members 64, 66 so as to enable the surgeon to more easily release the handle 62 from its closed position. This is done by placing the hand under the proximal end of the handle and lifting. A texturized or serrated portion 86 may advantageously be formed on an under surface of the proximal end of handle 62 to enhance gripping of the handle 62.

Pneumatic system 68 is wholly contained within housing members 64, 66 and includes a container 88 of relatively low pressure gas longitudinally slidably mounted therein. The pressure of the gas in container 88 during operation of the stapler is typically less than about 200 p.s.i.g. and preferably in the range from about 80 p.s.i.g. to about 160 p.s.i.g. Any suitable non-toxic gas can be used including but not limited to halogenated hydrocarbons which are gaseous at room temperature, e.g., fluorinated hydrocarbons such as Freon 12 or chlorinated hydrocarbons such as Freon 152A. Container 88 dispenses the relatively low pressure gas through stem 90, valve 92 and gas tube 94 when the firing trigger 96 is depressed. Spring 97 is positioned between container 88 and valve 92 and serves to hold the container 88 away from valve 92. Valve 92 is fixed within housing members 64, 66 and is longitudinally adjustable by means of set screw 93. (FIG. 13) This feature permits the position of valve 92 to be longitudinally changed to compensate for manufacturers' variations in length among containers 88 between a distal end and the proximal end of stem 90.

Disposed above container 88 within housing members 64, 66 is a pneumatic actuator 98. Actuator 98 includes a pneumatic cylinder 100 which is held in place by opposing pins 99 and which is closed at its proximal end except for ferrule 102 and is open at its distal end, as well as a pneumatic piston 104 mounted for reciprocal motion in cylinder 100 parallel to the longitudinal axis of endoscopic portion 54. Cylinder 100 is preferably circular in transverse cross-section however other shapes would function acceptably well.

Piston 104 is pneumatically sealed to cylinder 100 by "O" ring 106 molded of polyethylene or the like. Gas dispensed from container 88 is supplied to pneumatic actuator 98 via gas tube 94 which admits the gas to cylinder 100 through ferrule 102 behind piston 104 to drive piston 104 distally in the cylinder. The distal end of piston 104 is adapted to engage the firing mechanism of the surgical apparatus as will be described in greater detail below.

Referring to FIGS. 2, 5 and 7, firing trigger 96 is pivotally mounted in a proximal end of housing member 64, 66 by pivot pin 108. Spring 110 is positioned adjacent pin 108 and serves to bias the firing trigger 96 proximally into the prefiring position. A trigger rod 112 extends distally from firing trigger 96 longitudinally to engage piston slide 114 positioned in a lower portion of piston 104. Piston slide 114 comprises a substantially "U"-shaped channel which fits into a corresponding groove 116 formed in piston 104. Piston slide 114 is spring loaded in a proximal direction by spring 118 and includes a transverse projection 120 on a lower distal end thereof which engages the distal end of trigger rod 112.

Referring now to FIGS. 2 and 5-11 and initially to FIGS. 2, 5-8 and 11, a rocking lever 120 is pivotally mounted on transverse slide pin 122 and is adapted for transverse movement relative to slide pin 122 between an engaged position prior to firing (FIGS. 7-9) and a disengaged position when articulating handle 62 is open (FIGS. 5 and 6). Cam slide 124 is vertically mounted in first housing member 64 for reciprocal movement between an upper and lower position (FIGS. 6 and 8 respectively) and serves to move rocking lever 120 between the engaged position (FIG. 8) and the disengaged position (FIG. 6). Thus, until the articulating handle 62 is closed causing cam slide 124 to move rocking lever 120 into the engaged position, the instrument 50 cannot be fired.

Cam slide 124 is normally biased in its upper disengaged position by cam slide spring 126 mounted in vertical groove 128 of first housing member 64 (FIGS. 5 and 6). In this upper position, cam slide 124 extends upward beyond first housing member 64 (FIG. 6) to engage articulating handle 62 as it is moved to a closed position (FIGS. 7 and 8). Cam slide 124 further includes a camming surface 130 which contacts a corresponding camming surface of camming block 132 mounted on slide pin 122. Camming block 132 is loaded against cam slide 124 by slide spring 134 and moves rocking lever 120 transversely on slide pin 122 between an engaged position and a disengaged position. Referring to FIG. 8, as the articulating handle 62 is compressed toward housing members 64, 66 in the direction of arrow 135 it contacts cam slide 124 moving it downward and causes camming surface 130 to move camming block 132 and rocking lever 120 transversely into an engaged position in line with piston 104.

Turning to FIGS. 5, 7-9 and 11, once the articulating handle 62 has been fully compressed (FIGS. 7-9) rocking lever 120 is disposed in alignment with piston slide 114 and can be pivotally moved about transverse slide pin 122 to engage pusher disk 136 at the distal end of container 88. When the instrument is in the clamped configuration, depression of the firing trigger 96 moves trigger rod 112 distally in the longitudinal direction causing piston slide 144 to engage and pivot rocking lever 120 which, in turn, engages pusher disk 136 and moves container 88 longitudinally into contact with valve 92 to dispense gas and propel piston 104 in the distal direction. See FIGS. 11, 12 and 13.

As piston 104 moves distally, rocking lever 120 remains in its pivoted firing position by contact with the bottom surface of piston 104. A gap 138 is formed in the bottom surface of piston 104 near the proximal end thereof which gap effectively allows rocking lever 120 to disengage from piston 104 and pivot back to a position wherein container 88 is released from engagement with valve 92, stopping the flow of gas into pneumatic cylinder 100.

Return springs 140, 142 disposed in endoscopic portion 54 drive piston 104 back to its initial prefired position. A camming surface 144 is formed in a distal end of gap 138 and causes rocking lever 120 to move transversely out of engagement with piston 104 as it returns proximally and the rocking lever 120 moves to its original prefired position (FIG. 7).

FIG. 14 shows an alternate embodiment of the present invention incorporating an adjustment mechanism 146 which permits the instrument 148 to be selectively adjusted to change the length of the firing and return strokes of piston 150. This advantageous feature permits the user to selectively fire a predetermined length of staples using a single instrument. For example, if the user installs a staple cartridge assembly having six rows of staples, each row having a longitudinal length of 60 mm, the instrument is set using adjustment mechanism 146 to fire the staples in the entire length of the cartridge. Cartridges having some lesser length of staples may be inserted and fired depending on the needs of the user.

The adjustment mechanism 146 shown in FIG. 14 includes a belt 152 which travels around a pair of longitudinally disposed pulleys 154, 156. A first linkage rod 158 engages the top portion of belt 152 and extends to a gap adjustment member 160 slidably positioned in piston 150. A second linkage rod 162 engages the bottom portion of belt 152 and extends to a slidable piston stop 164 disposed within pneumatic cylinder 100.

Belt 152 may be rotated in either the clockwise or counterclockwise direction by rotating knob 166 disposed in housing 172 between pulleys 154 and 156. This permits the user to preselect the firing stroke of the instrument 148. For example when belt 152 is rotated counterclockwise, the firing stroke piston stop is being driven proximally by second linkage rod 162 and the gap 168 wherein the rocking lever 120 disengages the pneumatic actuator 98 is correspondingly widened. This permits the user to fire shorter rows of staples without changing cartridge assemblies. Conversely, when belt 152 is rotated in a clockwise direction, the firing stroke is progressively lengthened this allowing the user to fire up to the entire length of the rows of staples in the cartridge assembly.

In the instrument 148 shown in FIG. 14, the firing stroke may be preset to fire either 30 mm or 60 mm rows of staples from a 60 mm length cartridge assembly. These preset positions correspond to camming pins 186 and 170 respectively which serve to disengage first rod linkage 158 from belt 152 so that belt 152 is not rotated during the firing stroke of the pneumatic actuator 98.

Turning now to FIG. 15, another beneficial feature is shown incorporated into the pneumatic system in accordance with the present invention. This feature comprises a pressure sensor 174 disposed in line between the valve 92 and the pneumatic cylinder 100 to sense and/or regulate the gas delivered from container 88 to the cylinder 100. During surgical procedures involving the driving of surgical fasteners and particularly where a knife is used to divide fastened tissue, it is important that when the trigger is depressed there is sufficient gas remaining in the container 88 to complete an entire piston firing stroke. If insufficient gas were available, the piston may not be able to fasten and/or divide the desired length of tissue, necessitating duplication of the procedure. Pressure sensor 174 serves to premeasure the amount of gas necessary to achieve the desired piston stroke before activating to permit the gas to flow into the pneumatic cylinder 100 to drive piston 104.

It is also envisaged that a counter mechanism can be incorporated to operate in conjunction with the pneumatic system 68 in order to monitor the number of firings which the instrument has been subjected to. This number can be visually displayed to the operator so that, for example, after a given number of firings, the instrument can be overhauled or replaced. Similarly, where a relatively small number of firings are available from a single gas container, this counter mechanism will assist the operator in recognizing when the container is nearing exhaustion. In a particularly desirable embodiment, the counter mechanism can be combined with a lockout mechanism which will disable the firing mechanism after a preselected number of firings.

As seen in FIG. 15, upon depressing firing trigger 96, gas is released from container 88 substantially as described hereinabove. However, after leaving stem 90 and passing through nozzle 92, the gas contacts pressure plate 176. Pressure plate 176 is preset by means of spring 178 to keep orifice 180 closed until a predetermined gas pressure is realized at the pressure plate 176. Once this threshold pressure is realized, pressure plate 176 moves out of contact with orifice 180 permitting gas to pass therethrough and into pneumatic cylinder 100 to drive piston 104 distally. In the event that insufficient gas is available to reach this threshold pressure, pressure plate 176 continues to block orifice 180 and the instrument cannot be fired.

Referring now to FIG. 3, there is shown in exploded detail an endoscopic portion 54 in accordance with one embodiment of the present invention. At a proximal end, piston 104 is longitudinally reciprocally slidable through clamp tube 70 and extends into the proximal end of cover tube 182. The distal end of piston 104 is provided with an attachment flange 184 which flange 184 mounts a plurality of pusher washers 186 thereon. These pusher washers 186 are formed in a substantially abbreviated frustoconical cross-section from a resilient material such as, for example, commercial spring steel or type 302 stainless steel. These washers are typically known as Belleville Spring Washers available through SPEC Associated Spring Raymond, Barnes Group Inc. The washers are especially suited for high loads in small spaces and may be combined in varying sequences to achieve numerous load carrying possibilities. In the embodiment of FIG. 3, a total of twelve pusher washers are used substantially as shown in FIG. 3A with duplicate washers arranged in six opposing sets. A spring support washer 188 is positioned on flange 184 distal to pusher washers 186 and serves to engage the proximal ends of inner and outer return springs 140 and 142. Lock washer 189 holds the washers in place on flange 184. Attachment flange 184 has a chamfered distal tip and is configured and dimensioned to be received between the proximal fingers 190 and channel 192.

As shown in FIGS. 3 and 16-18, channel 192 is an elongated structure slidably mounted in endoscopic portion 54 for reciprocal longitudinal motion therein. As mentioned above, channel 192 has fingers 190 at a proximal end thereof to receive attachment flange 184 of piston 104. At a distal end of channel 192 there is provided a fork 194 defining a slot 196 therebetween. Fork 194 has a pair of opposed ramping surfaces, 198 and 200 respectively, the purposes of which will be described in greater detail below. Proximal to fork 194 is abutting structure 202 which structure extends below the lowermost dimension of fork 194.

Referring back to FIG. 3; an extension sleeve 204 is disposed within the cover tube 182 and is fixed on a proximal end thereof to clamp tube 70. Sealing member 206 is mounted on flange 208 of clamp tube 70 and serves to sealably isolate the frame 52 of the instrument 50 from the endoscopic portion 54. Inner and outer return springs, 142 and 140 respectively, are contained within upper extension spacer 210 and lower extension spacer 212 which are, in turn, fixed within the extension sleeve 204. Spring support washer 188 abuts the proximal ends of inner and outer return springs 142 and 140 and, when the instrument is fired, transmits the energy of the compressed springs 142, 140 to the piston 104, returning it to its prefired position.

Support structure 214 is also disposed within extension spacers 210, 212 and function to releasably receive anvil and/or cartridge assemblies in instrument 50. Support structure 214 is retained in place within extension spacers 210, 212 by transverse support key 216. An anvil return spring 218 is affixed to an underside portion of support structure 214 and assists in the retention of the anvil within the instrument.

A collar assembly, shown generally at 220, is attached to the respective distal ends of external sleeve 204 and extension spacers 210, 212. This assembly 220 includes a forward collar tube 222, a collar tube spacer 224 and a rear collar tube 226, each having camming bosses 268, 270 formed on inner surfaces therein as will be described in greater detail below.

In the embodiment of the present invention shown in FIGS. 1-3, the endoscopic portion 54 is rotatable relative to the frame 52 by means of rotation knob 228 (FIGS. 1 and 2). This rotation knob 228 is in the form of an abbreviated frustoconical structure having a bore therethrough dimensioned to receive a proximal end of cover tube 182. At a proximal end of knob 228, knurling 229 may be provided to facilitate rotation. Once connected to cover tube 182, rotation of knob 228 causes the distal working end of the instrument to rotate.

Referring now to FIGS. 4 and 19-27, there is illustrated an anvil 230 and cartridge assembly, shown generally at 232, in accordance with one embodiment of the present invention. Anvil 230 is an elongated piece which is mounted in support 214 by means of proximal legs 250. At its distal end, anvil 230 has an anvil plate 236 with a tissue contacting surface 238 having staple forming depressions 240 (See FIG. 19). At its proximal end, anvil 230 is provided with an upper camming surface 242 and locking surface 244, which surfaces are engagable with corresponding top arcuate camming surface 246 formed in forward collar tube 222. Transverse opposing projections 248 are formed on legs 250 at the proximal end of anvil 230 and provide an engagement point for anvil 230 to be cammed between an open and closed position by the interaction of camming surface 242, locking surface 244 and top arcuate camming surface 246 of collar tube 222. Preferably, the radius of curvature of the top arcuate camming surface 246 is shorter than the radius of curvature of camming surface 242 and equal to the radius of curvature of locking surface 244. This configuration prevents flexing of the camming surface 246 of collar tube 222 and lateral movement of the anvil as it is being cammed closed.

Anvil plate 230 also has a longitudinal center groove 252 to permit passage of a knife 254. Anvil 230 is further provided with parallel aligning surfaces 256 positioned below camming surface 242. These aligning surfaces are dimensioned to fit outside projections 258 on cartridge housing 260 upon closure of the anvil 230. The engagement of the aligning surfaces 256 and the corresponding projections 258 of cartridge housing 260 serves to more accurately and securely align anvil 230 and cartridge housing 260 upon closure. Further visual confirmation of alignment is facilitated by a pair of parallel longitudinal indentations 262 formed in the distal end of anvil 230. These indentations 262 allow the surgeon to view the closed structure of the anvil 230 and cartridge assembly 232 to confirm accurate longitudinal alignment thereof.

Further, as shown in FIG. 21, the horizontal plane formed by tissue contacting surface 238 intersects the horizontal plane formed by the camming portion of the proximal end of anvil 230 at an obtuse angle "α". This angular orientation pre-cambers the anvil 230 and balances the closure force applied by the anvil 230 to the captured tissue.

First and second camming surfaces, 264 and 266 respectively, are formed in a sidewall portion of the proximal end of anvil 230. These camming surfaces engage camming bosses, 268 and 270 respectively, formed on inner opposing sidewalls of collar tube assembly 220. Anvil 230 is inserted into collar tube assembly 220 and projections 248 engage with support structure 214 bring camming surfaces 264 and 266 into engagable alignment with camming bosses 268 and 270. Cartridge assembly 232, discussed in greater detail hereinbelow, is fixedly inserted into collar tube assembly 220 and remains stationary relative to anvil 230.

During fabrication of anvil 230, the anvil blank may advantageously be formed by metal injection molding and thereafter coined and coated as described below. A wide variety of staples and fasteners are contemplated for use with the present apparatus. In a preferred embodiment for use with titanium fasteners, it has been found that forming of the fasteners in the staple forming depressions 240 is facilitated by applying a hard, relatively smooth surface on the staple forming portion of the anvil 230. The preferred method of application of this surface is by electroless plating, with the surface being formed of a metallic alloy such as, for example, nickel, gold, silver, titanium nitride or chromium. Where nickel is used, the applied surface is preferably in the range of 100μ-2000μ in thickness with an optimum thickness of between 200μ-500μ. Ranges for other alloy may vary depending upon their inherent characteristics.

Where nickel is to be applied, the preferred method is an electroless plating method including the steps of: electrocleaning the anvil in a cyanide-containing cleaner, reversing polarity at predetermined intervals, preferably about every 10-15 seconds, at a current of about 50 amps/ft2 ; rinsing thoroughly; rinsing in a solution containing a strong acid, preferably 20% HCL, dipping several times; immersing the anvil in a NiCL strike tank for plating, preferably for two to four minutes at a current of about 50 amps/ft2 ; rinsing; and immersing the anvil in an electroless Ni bath, preferably Enthone 418 or 431, for a time sufficient to achieve the desired plating thickness. For example, at a deposition rate of 0.0005 in/hr, a time of between 30 to 40 minutes would be required to achieve a thickness of about 300μ50μ. Other coating procedures are also contemplated including vapor deposition, etc. and are encompassed by the present invention.

Turning now to FIGS. 4 and 22-27, there is illustrated a replaceable cartridge assembly 232 in accordance with the present invention. The cartridge assembly 232 includes: a cartridge housing 260; a cartridge 272 having a plurality of pushers 274 and staples 276 disposed in longitudinal arrangement therein; and a plurality of cam bars 278 removably disposed in cam bar adapter 280 and a cam bar alignment tab 282 as well as a knife 254 mounted in the cam bar adapter 280.

Referring specifically to FIGS. 25-27, the proximal end of cartridge housing 260 comprises a substantially elongate channel of semi-circular cross-section having a forward and rearward portion 284 and 286 respectively. A transverse locking slot 288 is formed in rearward portion 286 and serves to engage and retain support structure 214. Upon insertion into collar tube assembly, the forward end of support structure 214 is biased by the rearward portion 286 of cartridge housing 260 until the support structure 2 14 engages locking slot 288.

Rearward projection 290 is formed in the base of cartridge housing 260. The function of this projection 290 will be described in greater detail below. Forward of the projection 290 is a bore 292 which receives shear pin 294 formed on cam bar adapter 280 (FIGS. 22-24). A pair of crimps 296 is provided in opposing sidewalls of the rearward portion of the proximal end of the cartridge housing. These crimps 296 provide a friction fit with cam bar adapter 280.

The forward portion 284 of the proximal end of cartridge housing 260 has projections 258 which, upon closure of the cartridge assembly 232 and anvil 230, contact and align with anvil aligning surfaces 256 as described above.

The distal end of the cartridge housing 260 comprises a channel structure of substantially rectangular cross-section. This distal end constitutes the cartridge receiving portion and is dimensioned to receive cartridge 272 therein. Bores 298 and projection 300 serve to engage pins and bores respective in the cartridge 272 so as to align and retain the cartridge 272 within the cartridge receiving portion of the cartridge housing 260.

Referring to FIG. 26, the cartridge receiving portion in the distal end of cartridge housing 260 and the proximal end of cartridge housing 260 are joined at an obtuse angle θ defined by the intersection of the horizontal planes of both the proximal and distal ends of the cartridge housing 260. This angular orientation serves to pre-camber the cartridge assembly and facilitates accurate closure and alignment of the jaw elements as well as more secure retention of subject tissue.

The cartridge 272 includes longitudinal groove structure 302 for receiving and guiding knife 254 and a plurality of pushers 274 abutting staples 276. The staples 276 are advantageously arranged in six longitudinal rows with three rows positioned on either side of groove structure 302.

Two pairs of longitudinal slots are formed in the cartridge housing 260 and are adapted to receive a pair of double cam bars 278 therein. Each pair of cam bars serving to drive three corresponding longitudinal rows of staples. Further, the two pairs of longitudinal slots extend to the end of cartridge 232.

Cam bars 278 are provided with a cam surface 304 in an upper distal end thereof and an overhanging ledge 306 with vertical surface 308 in a lower distal end. This overhanging ledge 306 is dimensioned to extend into the longitudinal slots to a point wherein the vertical surface 308 of the overhanging ledge 306 drops down and abuts the forward edge 310 of the cartridge retaining portion of the cartridge housing 260 when the cam bars 278 move to their distal fired position. At their proximal end, cam bars 278 are provided with hook structure 312 for releasably engaging cam bar adapter 280.

Referring now to FIGS. 22-24, there is shown multiple views of the cam bar adapter 280 in accordance with one embodiment of the present invention. The cam bar adapter 280 comprises a forward section 314 and a rearward section 316. The forward section 314 is substantially rectangular in shape and has a central longitudinal groove 318 formed therein and dimensioned to receive the longitudinal groove structure 302 therein when the cam bar adapter is urged to its forwardmost position. Flanges 320 and shelves 322 serve to removably retain the proximal end of cam bars 278.

The rearward section 316 is rectangular in shape with projections 324 formed in the proximal end thereof. The rearward section is dimensioned to be receivable within the slot formed in fork 194 in channel 192. The projections 324 are dimensioned to engage ramping surface 198 to allow the fork 194 to ride up and over the projections 324 when the fork 194 is moved in the distal direction.

Vertical bore 326 and longitudinal groove 328 are formed in the rearward section 316 and serve to retain and hold the shank of knife 254. Shear pin 294 is integrally formed with cam bar adapter 280 on a bottom surface thereof and, in the prefiring position, is aligned with and receivable into bore 292. Also, in this prefiring position, the rearward section 316 of the cam bar adapter 280 is disposed over rearward projection 290 to effectively shield engagement of abutting structure 202 with projection 290.

Turning now to FIGS. 28-34, there is shown a second preferred embodiment of an anvil and cartridge assembly in accordance with the present invention. Referring to FIGS. 28 and 29, the cartridge assembly 330 comprises a cartridge housing 332 mounting a cartridge 334 containing a plurality of pushers 336 disposed beneath staples 338, in a distal end thereof. A pair of cam bars 340 are positioned in the cartridge housing 332 and are adapted to move longitudinally through parallel longitudinal slots formed in cartridge 334. A camming surface 342 is formed on an upper distal end of cam bars 340 with an overhanging ledge 344 formed on a lower distal end. Vertical ledge 346 is formed proximal to overhanging ledge 344 and is adapted to engage the distal end of cartridge housing 332 when the cam bars 340 are driven to their full distal position. A cam bar alignment tab 348 engages both cam bars 340 and holds them in parallel alignment. A cam bar adapter 350 is adapted to fixedly receive the shank portion of cam bars 340.

Cartridge 334 is designed with three longitudinal rows of staples with each row of staples being offset from adjacent rows as shown in FIG. 28. This embodiment of the present invention does not utilize a knife structure and is designed to place rows of staples in body tissue.

Referring to FIGS. 30-31, an anvil 352 is shown having substantially the same design as anvil 230 described hereinabove with respect to the previous embodiment. The primary difference is that the distal portion 354 of anvil 352 is narrowed to receive and form three longitudinal rows of staples in contrast to the six rows of staples and knife accommodated by anvil 230. Anvil 352 includes a pair of longitudinally extending parallel legs 356 having transverse opposing projections 358. Parallel aligning surfaces 360 are formed in sidewalls of anvil 352 and serve to overfit and align anvil 352 on cartridge housing 332. First and second camming surfaces 362, 364 are formed in sidewalls of anvil 352 proximal to parallel aligning surfaces 360 and serve to engage camming bosses 268, 270 formed in forward collar tube 222 and rear collar tube 224, respectively.

Upper camming surface 366 is formed on an upper surface of anvil 352 proximal to distal end 354 with locking surface 368 formed distally adjacent upper camming surface 366. Both the upper camming surface 366 and the locking surface 368 are adapted to engage and be cammed by top arcuate camming surface 246 formed in the distal end of forward collar tube 222.

FIGS. 35-39 show a further embodiment of the present invention similar to that shown in FIGS. 1-15 with the jaw structure of FIGS. 28-34. Referring to FIGS. 35-36, the handle portion of this embodiment further includes annular seals 101, 103 provided between the distal end of frame 52 and the proximal end of cover tube 182. These seals serve to further inhibit the escape of insufflation gas from the operative site. Seals 107 and 109 are positioned adjacent the proximal and distal ends, respectively, of clamp tube 70 to better seal off insufflation gas from the area of the piston 104.

A counter mechanism is also disposed in handle portion 52 and comprises a counter ratchet 400 attached to trigger rod 112 and a leaf spring 402 mounted in housing 66 so as to engage the teeth on the bottom surface of counter ratchet 400. Numerical indicators are longitudinally disposed on an outer surface of the counter ratchet 400 and correspond to the number of times the instrument has been fired. An access plate 404 having a viewing window 406 therein is positioned in the outside surface of housing 66.

In operation, each time the instrument is fired the leaf spring 402 engages a respective proximally located tooth of the counter ratchet 400, effectively sliding the counter ratchet 400 distally to align the next lower number in viewing window 406. The counter mechanism of this embodiment further includes a locking feature whereby the trigger button 96 is retained in the fired position when the leaf spring 402 engages the most proximal surface of the counter ratchet 400 and prevents the firing rod 112 from returning to its proximal unfired position.

This embodiment of the present invention further includes an integral trigger button rotary safety mechanism comprising a rotary safety shaft 408 disposed within a roller 410. The rotary safety mechanism is rotatably positioned in trigger button 96 with the roller 410 extending out beyond the plane of the back surface of trigger button 96. Projections 412 are eccentrically formed on both sides of rotary safety shaft 408 and extend out beyond the plane of the side surfaces of the trigger button 96. Spring 414 serves to normally bias the rotary safety mechanism with the projections 412 disposed in their distalmost orientation.

Referring now to FIGS. 38 and 39, in the instrument's unfired position (FIG. 38) projections 412 are in their distalmost position and are disposed in direct alignment with the proximal ends of the housing members 64, 66. In this position, the trigger button 96 cannot be accidentally depressed to fire the instrument. In order to disengage the safety mechanism, the roller 410 is moved in the direction of arrow 416 which serves to rotate projections 412 from their distalmost position (FIG. 38) to their proximalmost position (FIG. 39) effectively allowing trigger button 96 to be depressed to fire the instrument. As soon as roller 410 is released, spring 414 returns the safety mechanism to its normal position to prevent subsequent accidental firings.

FIG. 37 shows the endoscopic portion and the jaw portion of the surgical apparatus of FIG. 35. The anvil 418 of this embodiment is provided with a pair of angled proximal legs 420. This feature permits the anvil 418 to be opened wider to more easily receive tissue between the anvil 418 and cartridge 58. The angled proximal legs 420 preferably extend at an angle of between 0 and 30 from the longitudinal plane of the anvil.

One embodiment of a clamp lockout structure is shown in detail in FIGS. 37, 40 and 41 incorporated into the support structure 214 and upper extension spacer 210. The clamp lockout structure comprises a leaf spring 430 having a diagonally downwardly extending projection 432 attached thereto. A slot 434 is formed through the top surface of support structure 214 and is adapted to engage and receive projection 432 whenever the support structure is not longitudinally aligned. This clamp lockout structure is designed and configured to prevent the instrument jaws from closing on tissue unless the cartridge and/or jaw elements are properly emplaced within the apparatus.

In operation in the stapling apparatus of FIG. 37, leaf spring 430 and projection 432 are normally disposed above support structure 214. The proximal ends of the cartridge 334 and the anvil 418 are inserted through collar tube 222 and brought into engagement with the distal end of support structure 214. (See FIG. 40) In the event that the cartridge 334 and/or the anvil 418 are not properly and/or completely inserted into engagement with support structure 214, the resulting angular disposition of the support structure 214 brings slot 434 into alignment with projection 432. (See FIG. 41) As the operator attempts to depress the handle 62, the extension spacer 210 begins to move distally causing projection 432 to enter slot 434 and become entrapped therein effectively preventing any further distal movement of the extension spacer 210 and, in turn, preventing approximation of the anvil 418 and the cartridge 334.

The following embodiments of the clamp lockout structure are described with reference to the endoscopic stapler embodiment of FIGS. 1-4.

Turning now to FIGS. 1-4 and 42-44, a latch mechanism 450 is shown which operates by directly engaging collar tube 220. Latch mechanism 450 includes a basically U-shaped mounting section 452 having a pair of outwardly projecting mounting tabs 454, an elongated rounded nose section 456 and a downwardly projecting lock member 458. Spring 460 is provided to bias latch mechanism 450 radially outward toward collar tube 220. Collar tube 220 is similar to the collar tubes described hereinabove as are the other related parts, such as, for example, the cartridge assembly etc. When used with the latch mechanism embodiments of FIGS. 42-49, collar tube 220 is provided with a notched opening 221. Notch 221 is positioned directly below downwardly extending lock member 458 when anvil 230 (FIG. 4) is in an unapproximated or open position and collar tube 220 is in its proximalmost position.

In operation, as cartridge assembly 232 is slid into collar tube 220, rounded nose portion 456 of latch mechanism 450 rides up an angled rear surface portion 233 of cartridge 232 to completely cam lock member 458 out of engagement with notch 221 in collar tube 220. Lock member 458 moves between a first position wherein no cartridge assembly is present or a present cartridge assembly is improperly inserted (not fully inserted) such that the lock member is engaged with, and locking, collar tube 220 (FIG. 43) and a second position wherein a cartridge is present and fully seated such that the lock member is cammed out of engagement with collar tube 220 (FIG. 44). In this embodiment of the latch mechanism, rear surface portion 233 of cartridge assembly 232 does not contact downwardly projecting lock member 458.

A first preferred embodiment of a clamp lockout structure is shown in detail in FIGS. 45-49. As can best be seen in FIG. 45, latch mechanism 462 generally includes a U-shaped mounting section 464 having a pair of mounting holes 466, an elongated blunted nose section 468 extending outwardly and forwardly from U-shaped mounting section 464 and a downwardly projecting lock member 470 extending radially outward from nose section 468. The lock member 470 has an angled forward portion 472 and a hooked rear portion 474.

Referring to FIGS. 45 and 46, latch mechanism 462 is mounted on support structure 214 by means of holes 466. A spring 476 is suspended from support structure 214 and engages a pair of side projections 478 on latch mechanism 462. Spring 476 normally biases latch mechanism 462 radially outward towards collar tube 220.

In operation, the stapling apparatus incorporating the clamp lockout mechanism of FIG. 45, is initially devoid of cartridge assembly 232. Downwardly projecting lock member 470 is biased by spring 476 into notch 221 of collar tube 220 thus locking collar tube 220 against any relative longitudinal movement. Inserting cartridge assembly 232 into collar tube 220 will cause lock member 470 to be cammed out of engagement with notch 221 thereby freeing collar tube 220 for movement. Specifically, as shown in FIGS. 45 and 47-49, when cartridge assembly 232 is initially slid into collar tube 220, rear surface portion 233 of cartridge 232 abuts and engages nose portion 468 of latch mechanism 462. Sliding cartridge assembly 232 proximally causes blunted nose portion 468 to ride up on rear surface portion 233 drawing lock member 470 radially inward and partially out of collar notch 221. After an initial insertion movement, continued insertion of cartridge assembly 232 (FIGS. 47-48) causes rear surface portion 233 to engage angled forward portion 472 of lock member 470 drawing lock member 470 further inward out of collar notch 221.

When cartridge assembly 232 is fully seated within the instrument, as can be seen in FIG. 49, latch mechanism 462 is fully cammed out of engagement with collar tube 220. At this point anvil 230 and fully seated cartridge assembly 232 can be approximated by sliding now free collar tube 220 distally. Once anvil 230 and cartridge assembly 232 have been approximated the instrument can be fired. It will be noted that latch mechanism 462 remains cammed out of engagement with collar notch 221 in collar tube 220 so long as cartridge assembly 232 remains fully seated within the instrument. Thus anvil 230 and cartridge assembly 232 may be reapproximated even after the instrument has been fired.

Turning now to FIGS. 50-53 a second preferred embodiment of the clamp lockout structure is shown in detail. As can be seen in FIG. 50, clamp lockout structure 480 includes a hooked shaped pawl 482 pivotably mounted on lower extension spacer 210 by means of pin 484. Spring 486 is provided to bias pawl 482 radially inwardly away from collar tube 220. When anvil 230 and cartridge assembly 232 are in the open position, collar notch 221 in collar tube 220 is located directly beneath a downwardly extending hooked front section 488 of pawl 482.

In the absence of a fully inserted and unfired cartridge assembly 232, as can best be seen in FIG. 51, a channel member 192 initially rests upon pawl 482 and outwardly urges pawl 482 in the direction of arrow G into notch 221 to engage or lock up collar tube 220. Thus where an unfired cartridge assembly 232 is not present in the instrument, collar tube 220 is prevented from sliding and thus approximation of anvil and cartridge assembly 232 is prevented.

The operation of the second preferred embodiment of the clamp lockout structure is best illustrated in FIGS. 51-53. As shown in FIG. 52, when cartridge assembly 232 is inserted into collar tube 220, opposed ramping surfaces 198, 200 of channel member 192 ride up and over cam bar adaptor 280 which is initially rearwardly positioned at a proximalmost position within cartridge assembly 220. Channel member 192 is lifted by cam bar adaptor 280 allowing spring 486 to inwardly move pawl 482 out of engagement with notch 221 of collar tube 220. At this point, collar tube 220 is now free to slide back and forth to approximate the anvil 230 and cartridge assembly 232. As indicated hereinbelow, when the instrument is fired, channel member 192 moves distally pushing cam bar adaptor 280 distally ultimately driving staples 276 from cartridge assembly 232 into the anvil 230. Releasing handle 62 causes channel member 192 to move proximally pulling cam bar adaptor 280 proximally. As can be seen in FIG. 53, as cam bar adaptor 280 moves proximally within cartridge assembly 232, cam bar adaptor 280 abuts inwardly crimped edges 296 of cartridge assembly 232 which prevents further proximal movement of cam bar adaptor 280. As the handle 62 is fully released, channel member 192 continues to slide proximally disengaging from cam bar adaptor 280 and dropping down onto pawl 482. After stapling the tissue, anvil 230 and cartridge assembly 232 are opened by sliding collar tube 220 proximally. As the collar tube 220 is slid fully to the rear, notch 221 in collar tube 220 is positioned directly below now outwardly urged pawl 482 which thus reengages notch 221 in collar tube 220. In this manner collar tube 220 is once again "locked out" from operation.

In contrast to the embodiments of FIGS. 43-49, the second preferred embodiment of the clamp lockout structure reengages or relatches collar tube 220 after the instrument has been fired. Specifically, so long as cam bar adaptor 280 is not in a proximal position sufficient to engage and lift the channel member 192, channel member 192 will urge pawl 482 radially outwardly into engagement with notch 221 of collar tube 220 when collar tube 220 is in its rearward or proximal most position.

While the clamp lockout structure embodiments of the present invention are illustrated with respect to the gas powered surgical fastening instrument of FIGS. 1-4, it can be readily appreciated that the latch mechanisms may be applied to any powered or manually operated surgical devices incorporating sliding collar members or other means which approximate an anvil and a detachable cartridge unit, or other similar clamping, grasping or stapling jaw structures.

Additionally, it is contemplated within the scope of the present invention to provide other means for latching mechanisms to directly engage the collar tube, such as, for example, with radially inwardly directed projections, tabs, etc. on the collar tube.

II. Operation of the Instrument

In use, the endoscopic portion of the instrument is inserted into the body, preferably through an endoscopic tube. It is further preferred that the endoscopic tube apparatus be capable of maintaining a sealed pneumoperitoneum, with the internal sealing member of the housing further maintaining this seal despite introduction of the instrument in accordance with the invention into the endoscopic tube. As a practical matter, the jaws of the instrument are closed for insertion into the endoscopic tube, either by pinching the anvil and cartridge prior to insertion or by closing the articulating handle to cam the jaws closed prior to insertion.

After insertion into the endoscopic tube, the endoscopic portion may be rotated in order to appropriately orient the instrument at the stapling site. Rotation of the endoscopic portion relative to the body may be attained by rotating the instrument, as a whole, by rotating the endoscopic portion relative to the frame using rotation knob 228 (See FIG. 1), or by a combination thereof.

Referring to FIGS. 3, 5-8 and 32-34, with the instrument properly oriented so that the tissue to be fastened is disposed between the open jaws of the instrument, i.e., between the tissue contacting surfaces of anvil member 230 and cartridge 302, the jaws are closed to clamp the tissue. In the first embodiment, the surgeon presses down on actuating handle 62, thereby sliding collar tube assembly 220 distally, via clamp tube 70, extension sleeve 204, and extension spacers 210, 212.

Referring to FIGS. 32-34, as collar tube assembly 220 moves distally in the direction of arrow A from a first position where the top arcuate camming surface 246 at the distal end of forward collar tube 222 is proximal to camming surface 242, (FIGS. 32-33), to a second position where the top arcuate camming surface 246 is engaged with locking surface 244, (FIG. 34), the top arcuate camming surface 246 contacts the camming surface of the anvil, thereby forcing the anvil to cam via camming surfaces 264, 266 on camming bosses 268, 270 until the anvil is brought into close cooperative alignment with the cartridge assembly. FIG. 34 illustrates the instrument with the jaws in a closed position.

After closing the instrument jaws, the instrument is ready to be fired. When the surgeon is ready to emplace the staples and cut tissue, firing trigger 96 is depressed to actuate the pneumatic actuator 98 as discussed in detail above. Piston 104, attached to the proximal end of channel 192 is driven distally causing camming surface of forks 194 to ride up and over projection 324 of the cam bar adapter 280 and drive the cam bar adapter in a distal direction. Shear pin 294 is severed and the cam bars and knife are driven longitudinally through the cartridge to sequentially drive and form staples and cut tissue.

As piston 104 contacts return springs 140, 142, pusher washers 186 are compressed on themselves and serve to store energy as the piston moves distally toward the cartridge assembly. This initial compression occurs in the range of between about 20 p.s.i. to about 150 p.s.i. and preferably within a range of about 30 p.s.i. to about 60 p.s.i. Near the end of the distal stroke of the piston 104, this stored energy is released to drive the cam bars 278 through the final distal limits of their travel within the longitudinal slots in the cartridge. At the distal extreme of the longitudinal stroke, the overhanging ledges 306 of cam bars 278 drop over the edge of the cartridge housing thus abutting vertical surface 308 with edge 310.

After firing, return springs 140, 142 engage piston 104 and return it to its original position. The return motion of piston 104 causes rocking lever 120 to be cammed aside by camming surface 144 of piston 104. In the embodiment containing knife 254 discussed above, the cam bars 278 are pulled out of cam bar adapter 280 and remain in position in the longitudinal slots of the cartridge 334. The cam bar adapter, with knife 254 attached, moves proximally within cartridge housing 272 until the outer edges of cam bar adapter 280 impinge on crimps 296.

The cam bar adapter 280 is held in place by crimps 296 while camming surface 200 of fork 194 causes the fork to ride up and disengage with projection 324 of the cam bar adapter. Channel 192 continues to move in the proximal direction until abutting structure 202 is positioned proximally to rearward projection 290 formed in the floor of cartridge housing 260. At this point, the entire cartridge assembly 232 is deactivated.

In the event that the surgeon should accidentally attempt to again fire the instrument without replacing the deactivated cartridge with a new unfired cartridge, the resulting distal longitudinal motion of the channel 192 moves abutting structure 202 into contact with rearward projection 290 effectively preventing further movement of forks 194 toward cam bar adapter 280.

After firing, articulating handle 62 is raised with the assistance of handle return spring 82 which action retracts collar tube assembly 220. This retraction causes anvil 230 to cam out of engagement with cartridge assembly 232. Similarly, raising of articulating handle 62 causes cam slide 124 to move upward disengaging the pneumatic firing mechanism.

In order to replace the cartridge assembly, the instrument is withdrawn from the patient. The cartridge assembly is released and may be removed by pulling it distally out of collar tube assembly 222.

To reinsert a new cartridge assembly, the proximal end of the cartridge assembly is inserted into collar tube assembly 222 until engaging and locking into support structure 214. The instrument is now ready for reinsertion and continued use.

Operation of the instrument with the cartridge and anvil assembly shown in FIGS. 28-31 is substantially similar to that described above. Tubular tissue to be ligated and/or divided is captured within the anvil 352 and the cartridge assembly 330 such that the tissue is transversely oriented therebetween. The cartridge assembly 330 and anvil 352 are approximated by means of camming surfaces 362, 364 and camming bosses 268, 270, as described above. The staples 338 are fired, ligating the tissue.

Unlike the previous embodiment, the cartridge assembly 330 does not include a knife and therefore does not require that the cam bars be retracted by channel 192. In operation, the distal end of channel 192 engages the proximal end of cam bar adapter 350 and drives cam bars 340 to their extreme distal position (FIG. 34). In that position, overhanging ledges 344 drop over the distal end of cartridge housing 332 and remain there. As the piston 104 retracts, channel 192 moves away from cam bar adapter 350 and retracts to a position proximal to rearward project 290, this leaving cam bars 340 and cam bar retainer 350 in the distal position within cartridge assembly 332. Opening, removal and replacement of the deactivated cartridge are effected in substantially the same way as described above with respect to the second alternative embodiment.

It will be understood that various modifications can be made to the various embodiments of the present invention herein disclosed without departing from the spirit and scope thereof. For example, various sizes of the instrument are contemplated, as well as various types of construction materials. Also, various modifications may be made in the configuration of the parts. For example, in the first embodiment the elongated slot for allowing access to the thumbwheel may be placed alternatively in the left body portion or right body portion. Therefore the above description should not be construed as imitating the invention but merely as exemplifications of preferred embodiments thereof. Those skilled in the art will envision other modifications within the scope and spirit of the present invention as defined by the claims appended hereto.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2448741 *25 Apr 19457 Sep 1948American Cystoscope Makers IncEndoscopic surgical instrument
US3079606 *4 Jan 19605 Mar 1963Gritzman Jurji JakovlevichInstrument for placing lateral gastrointestinal anastomoses
US3490675 *10 Oct 196620 Jan 1970United States Surgical CorpInstrument for placing lateral gastrointestinal anastomoses
US3499591 *23 Jun 196720 Sep 1988 Title not available
US3593903 *12 Jul 196820 Jul 1971Vnii Khirurgicheskoi ApparaturSurgical instrument for suturing hollow organs in infants
US3618842 *20 Mar 19709 Nov 1971United States Surgical CorpSurgical stapling cartridge with cylindrical driving cams
US3643851 *25 Aug 196922 Feb 1972United States Surgical CorpSkin stapler
US3662939 *26 Feb 197016 May 1972United States Surgical CorpSurgical stapler for skin and fascia
US3675688 *27 Apr 197011 Jul 1972United States Surgical CorpInstrument for ligating, suturing and dividing organic tubular structures
US3717294 *14 Dec 197020 Feb 1973Surgical CorpCartridge and powering instrument for stapling skin and fascia
US3735762 *29 Dec 197129 May 1973Us Corp Baltimo EInstrument for ligating suturing and dividing organic tubular structures
US3788303 *24 Jan 197229 Jan 1974American Cystoscope Makers IncOrthogonally deflectable endoscope
US3815476 *17 Mar 197111 Jun 1974United States Surgical CorpGas powered driving unit for surgical instrument
US3819100 *29 Sep 197225 Jun 1974United States Surgical CorpSurgical stapling instrument
US3837555 *22 Sep 197224 Sep 1974Surgical CorpPowering instrument for stapling skin and fascia
US3892228 *3 Oct 19731 Jul 1975Olympus Optical CoApparatus for adjusting the flexing of the bending section of an endoscope
US3949924 *18 Oct 197413 Apr 1976United States Surgical CorporationSurgical stapling instrument
US4064881 *1 Jun 197627 Dec 1977Rocket Of London LimitedSurgical clip applicator
US4086926 *8 Oct 19762 May 1978United States Surgical CorporationLigating and dividing organic structures
US4111206 *29 Apr 19765 Sep 1978Vishnevsky Alexandr ASurgical instrument for applying metal staples to organs and tissues and for simultaneous division thereof
US4169476 *12 Aug 19772 Oct 1979Wolf Medical Instruments CorporationApplicator for surgical clip
US4207873 *16 May 197717 Jun 1980American Cystoscope Makers, Inc.Endoscope deflection control
US4273129 *20 Jun 197916 Jun 1981Richard Wolf GmbhForceps for applying clips to fallopian tubes
US4325377 *25 Apr 198020 Apr 1982Richard Wolf GmbhSurgical forceps for applying clips to fallopian tubes
US4331277 *23 May 198025 May 1982United States Surgical CorporationSelf-contained gas powered surgical stapler
US4349028 *3 Oct 198014 Sep 1982United States Surgical CorporationSurgical stapling apparatus having self-contained pneumatic system for completing manually initiated motion sequence
US4383634 *26 May 198117 May 1983United States Surgical CorporationSurgical stapler apparatus with pivotally mounted actuator assemblies
US4429695 *1 Jul 19827 Feb 1984United States Surgical CorporationFor use in fastening living tissue
US4520817 *8 Mar 19824 Jun 1985United States Surgical CorporationSurgical instruments
US4562839 *6 Jan 19837 Jan 1986Blake Joseph W IiiSurgical instrument
US4566620 *19 Oct 198428 Jan 1986United States Surgical CorporationArticulated surgical fastener applying apparatus
US4573468 *26 Aug 19814 Mar 1986United States Surgical CorporationHollow body organ stapling instrument and disposable cartridge employing relief vents
US4573622 *19 Oct 19844 Mar 1986United States Surgical CorporationSurgical fastener applying apparatus with variable fastener arrays
US4580712 *19 Oct 19848 Apr 1986United States Surgical CorporationSurgical fastener applying apparatus with progressive application of fastener
US4606343 *18 Aug 198019 Aug 1986United States Surgical CorporationSelf-powered surgical fastening instrument
US4610383 *14 Oct 19839 Sep 1986Senmed, Inc.Disposable linear surgical stapler
US4633874 *15 Mar 19856 Jan 1987Senmed, Inc.Surgical stapling instrument with jaw latching mechanism and disposable staple cartridge
US4671445 *9 Aug 19849 Jun 1987Baxter Travenol Laboratories, Inc.Flexible surgical stapler assembly
US4688555 *25 Apr 198625 Aug 1987Circon CorporationEndoscope with cable compensating mechanism
US4714187 *26 Nov 198622 Dec 1987United States Surgical CorporationReloading unit for surgical fastening instruments
US4715520 *10 Oct 198529 Dec 1987United States Surgical CorporationSurgical fastener applying apparatus with tissue edge control
US4728020 *30 Aug 19851 Mar 1988United States Surgical CorporationArticulated surgical fastener applying apparatus
US4754909 *5 Jun 19875 Jul 1988Barker John MFlexible stapler
US4784137 *16 Nov 198715 Nov 1988Kulik Yaroslav PSurgical suturing instrument
US4819853 *31 Dec 198711 Apr 1989United States Surgical CorporationSurgical fastener cartridge
US4821942 *11 Jul 198818 Apr 1989Ophthalmic Ventures Limited PartnershipDriver for surgical microstapler
US4841888 *19 Nov 198727 Jun 1989Mills Timothy NSewing machine
US4848637 *26 Aug 198818 Jul 1989Pruitt J CraytonStaple device for use on the mesenteries of the abdomen
US4858608 *21 Aug 198722 Aug 1989Femcare LimitedApplicator
US4869415 *26 Sep 198826 Sep 1989Ethicon, Inc.Energy storage means for a surgical stapler
US4880015 *3 Jun 198814 Nov 1989Nierman David MBiopsy forceps
US4892244 *7 Nov 19889 Jan 1990Ethicon, Inc.Surgical stapler cartridge lockout device
US4941623 *26 Dec 198917 Jul 1990United States Surgical CorporationStapling process and device for use on the mesentery of the abdomen
US4944443 *22 Apr 198831 Jul 1990Innovative Surgical Devices, Inc.Surgical suturing instrument and method
US4955959 *26 May 198911 Sep 1990United States Surgical CorporationLocking mechanism for a surgical fastening apparatus
US4978049 *26 May 198918 Dec 1990United States Surgical CorporationThree staple drive member
US5018657 *9 Jan 198928 May 1991Ethicon, Inc.Pneumatically actuated surgical stapler head
US5040715 *26 May 198920 Aug 1991United States Surgical CorporationApparatus and method for placing staples in laparoscopic or endoscopic procedures
US5047038 *28 Dec 198710 Sep 1991Edward Weck IncorporatedAutomatic hemostatic clip applier
US5071430 *13 Nov 198910 Dec 1991United States Surgical CorporationDriving surgical fasteners
US5147380 *3 Oct 199115 Sep 1992Cordis CorporationBiopsy forceps device having improved locking means
US5170925 *18 Mar 199115 Dec 1992Ethicon, Inc.Laparoscopic stapler with knife means
USRE28932 *8 May 197517 Aug 1976United States Surgical CorporationSurgical stapling instrument
EP0041022A1 *22 May 19812 Dec 1981United States Surgical CorporationSelf-contained gas powered surgical stapler
EP0324166A2 *27 Dec 198819 Jul 1989Edward Weck IncorporatedMethod and apparatus for storing dispensing and applying surgical staples
EP0324637A1 *13 Jan 198919 Jul 1989Ethicon Inc.Surgical stapler pressure regulator
EP0365153A1 *25 Sep 198925 Apr 1990Ethicon Inc.Energy storage means for a surgical stapler
EP0369324A1 *9 Nov 198923 May 1990United States Surgical CorporationSurgical instrument
EP0373762A1 *6 Nov 198920 Jun 1990Ethicon Inc.Surgical stapler cartridge lockout device
EP0399701A1 *10 May 199028 Nov 1990United States Surgical CorporationSurgical stapling apparatus
EP0484677A1 *4 Oct 199113 May 1992United States Surgical CorporationApparatus for placing staples in laparoscopic or endoscopic procedures
EP0552423A2 *16 Oct 199228 Jul 1993United States Surgical CorporationSelf contained gas powered surgical apparatus
GB1352554A * Title not available
GB1452185A * Title not available
GB2022421A * Title not available
GB2048685A * Title not available
GB2165559A * Title not available
SU728848A1 * Title not available
Non-Patent Citations
Reference
1Article, Swain, C. P. and Mills, T. N. "An Endoscopic Sewing Machine", Gastrointestinal Endoscope, 1986, vol. 32, No. 1., pp. 36-38.
2 *Article, Swain, C. P. and Mills, T. N. An Endoscopic Sewing Machine , Gastrointestinal Endoscope, 1986, vol. 32, No. 1., pp. 36 38.
3Swain, C. P., Brown, G. J. and Mills, T. N., "An Endoscopic Stapling Device: The Development of a New Flexible Endoscopically Controlled Device for Placing Multiple Transmural Stapes in Gastrointestinal Tissue," Gastrointestinal Endoscopy, 1989, vol. 35, No. 4, pp. 338-339.
4 *Swain, C. P., Brown, G. J. and Mills, T. N., An Endoscopic Stapling Device: The Development of a New Flexible Endoscopically Controlled Device for Placing Multiple Transmural Stapes in Gastrointestinal Tissue, Gastrointestinal Endoscopy, 1989, vol. 35, No. 4, pp. 338 339.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US5630539 *27 Nov 199520 May 1997United States Surgical CorporationSurgical stapler
US5709334 *25 Jan 199620 Jan 1998United States Surgical CorporationSurgical apparatus for applying surgical fasteners
US5715988 *14 Aug 199510 Feb 1998United States Surgical CorporationSurgical stapler with lockout mechanism
US5762255 *20 Feb 19969 Jun 1998Richard-Allan Medical Industries, Inc.Surgical instrument with improvement safety lockout mechanisms
US5762256 *28 Aug 19959 Jun 1998United States Surgical CorporationSurgical stapler
US5772099 *1 Apr 199630 Jun 1998United States Surgical CorporationSurgical fastening apparatus with alignment pin
US5782396 *20 Oct 199521 Jul 1998United States Surgical CorporationSurgical stapler
US5785232 *17 Apr 199628 Jul 1998Vir EngineeringSurgical stapler
US5865361 *23 Sep 19972 Feb 1999United States Surgical CorporationSurgical stapling apparatus
US5918791 *28 Aug 19976 Jul 1999United States Surgical CorporationSurgical apparatus for applying surgical fasteners
US6032849 *20 Jul 19987 Mar 2000United States SurgicalSurgical stapler
US6079606 *5 Oct 199827 Jun 2000United States Surgical CorporationSurgical stapling apparatus
US624113928 Apr 20005 Jun 2001Keith L. MillimanSurgical stapling apparatus
US63309655 Oct 200018 Dec 2001United States Surgical CorporationSurgical stapling apparatus
US666907310 Dec 200130 Dec 2003United States Surgical CorporationSurgical stapling apparatus
US69531395 Nov 200411 Oct 2005United States Surgical CorporationSurgical stapling apparatus
US697892120 May 200327 Dec 2005Ethicon Endo-Surgery, Inc.Surgical stapling instrument incorporating an E-beam firing mechanism
US698645126 Jul 200017 Jan 2006United States Surgical CorporationSurgical stapler
US698864920 May 200324 Jan 2006Ethicon Endo-Surgery, Inc.Surgical stapling instrument having a spent cartridge lockout
US704435220 May 200316 May 2006Ethicon Endo-Surgery, Inc.Surgical stapling instrument having a single lockout mechanism for prevention of firing
US704435314 Dec 200416 May 2006United States Surgical CorporationSurgical stapler
US70557319 Jul 20036 Jun 2006Ethicon Endo-Surgery Inc.Surgical stapling instrument incorporating a tapered firing bar for increased flexibility around the articulation joint
US70870719 Nov 20018 Aug 2006United States Surgical CorporationArticulating endoscopic surgical apparatus
US709708917 Feb 200529 Aug 2006Tyco Healthcare Group LpSurgical stapling apparatus with locking mechanism
US7121446 *13 Dec 200417 Oct 2006Niti Medical Technologies Ltd.Palm-size surgical stapler for single hand operation
US712825320 Jul 200531 Oct 2006United States Surgical CorporationSurgical stapler
US714052825 Feb 200528 Nov 2006Ethicon Endo-Surgery, Inc.Surgical stapling instrument having an electroactive polymer actuated single lockout mechanism for prevention of firing
US714392417 Feb 20055 Dec 2006Tyco Healthcare Group LpSurgical stapling apparatus with locking mechanism
US715975017 Jun 20049 Jan 2007Tyco Healtcare Group LpSurgical stapling device
US717210417 Feb 20056 Feb 2007Tyco Healthcare Group LpSurgical stapling apparatus
US722596317 Feb 20055 Jun 2007Tyco Healthcare Group LpSurgical stapling apparatus with locking mechanism
US722596423 Mar 20065 Jun 2007Tyco Healthcare Group LpSurgical stapler
US725826223 Mar 200621 Aug 2007Tyco Healthcare Group LpSurgical stapler
US727856230 Oct 20069 Oct 2007United States Surgical CorporationSurgical stapler
US730310719 Jul 20064 Dec 2007United States Surgical CorporationSurgical stapling apparatus
US73089984 Jan 200718 Dec 2007United States Surgical CorporationSurgical stapler
US73288284 Nov 200512 Feb 2008Ethicon Endo-Surgery, Inc,Lockout mechanisms and surgical instruments including same
US7328829 *5 Jun 200612 Feb 2008Niti Medical Technologies Ltd.Palm size surgical stapler for single hand operation
US735444710 Nov 20058 Apr 2008Ethicon Endo-Surgery, Inc.Disposable loading unit and surgical instruments including same
US738069515 Oct 20033 Jun 2008Ethicon Endo-Surgery, Inc.Surgical stapling instrument having a single lockout mechanism for prevention of firing
US738069630 Sep 20043 Jun 2008Ethicon Endo-Surgery, Inc.Articulating surgical stapling instrument incorporating a two-piece E-beam firing mechanism
US740707821 Sep 20055 Aug 2008Ehthicon Endo-Surgery, Inc.Surgical stapling instrument having force controlled spacing end effector
US741610131 Jan 200626 Aug 2008Ethicon Endo-Surgery, Inc.Motor-driven surgical cutting and fastening instrument with loading force feedback
US742213931 Jan 20069 Sep 2008Ethicon Endo-Surgery, Inc.Motor-driven surgical cutting fastening instrument with tactile position feedback
US742496512 Jan 200716 Sep 2008Tyco Healthcare Group LpSurgical stapling device
US74311892 Aug 20067 Oct 2008Ethicon Endo-Surgery, Inc.Pneumatically powered surgical cutting and fastening instrument with mechanical linkage coupling end effector and trigger motion
US743471621 Dec 200614 Oct 2008Tyco Healthcare Group LpStaple driver for articulating surgical stapler
US743820929 Jun 200721 Oct 2008Ethicon Endo-Surgery, Inc.Surgical stapling instruments having a releasable staple-forming pocket
US74416842 Aug 200628 Oct 2008Ethicon Endo-Surgery, Inc.Pneumatically powered surgical cutting and fastening instrument with audible and visual feedback features
US74485252 Aug 200611 Nov 2008Ethicon Endo-Surgery, Inc.Pneumatically powered surgical cutting and fastening instrument with manually operated retraction apparatus
US746484631 Jan 200616 Dec 2008Ethicon Endo-Surgery, Inc.Surgical instrument having a removable battery
US746484931 Jan 200616 Dec 2008Ethicon Endo-Surgery, Inc.Electro-mechanical surgical instrument with closure system and anvil alignment components
US746774029 Sep 200623 Dec 2008Ethicon Endo-Surgery, Inc.Surgical stapling instruments having flexible channel and anvil features for adjustable staple heights
US747281424 Sep 20076 Jan 2009United States Surgical CorporationSurgical stapler
US747281529 Sep 20066 Jan 2009Ethicon Endo-Surgery, Inc.Surgical stapling instruments with collapsible features for controlling staple height
US748789931 Mar 200510 Feb 2009Ethicon Endo-Surgery, Inc.Surgical instrument incorporating EAP complete firing system lockout mechanism
US749403920 Aug 200724 Feb 2009Tyco Healthcare Group LpSurgical stapling device
US750097928 Feb 200710 Mar 2009Ethicon Endo-Surgery, Inc.Surgical stapling device with multiple stacked actuator wedge cams for driving staple drivers
US750679017 Mar 200524 Mar 2009Ethicon Endo-Surgery, Inc.Surgical instrument incorporating an electrically actuated articulation mechanism
US751340814 Jul 20057 Apr 2009Ethicon Endo-Surgery, Inc.Multiple firing stroke surgical instrument incorporating electroactive polymer anti-backup mechanism
US755285421 May 200730 Jun 2009Applied Medical Resources CorporationSurgical stapler with firing lock mechanism
US756599315 Oct 200728 Jul 2009Milliman Keith LSurgical stapling apparatus
US758488031 Oct 20078 Sep 2009Tyco Healthcare Group LpSurgical stapling device
US758817518 Jun 200715 Sep 2009Ethicon Endo-Surgery, Inc.Surgical stapling and cutting instrument with improved firing system
US758817618 Jun 200715 Sep 2009Ethicon Endo-Surgery, Inc.Surgical cutting instrument with improved closure system
US75881776 Oct 200315 Sep 2009Tyco Healthcare Group LpTool assembly for surgical stapling device
US759723020 Aug 20076 Oct 2009Tyco Healthcare Group LpSurgical stapling device
US76075574 Nov 200527 Oct 2009Ethicon Endo-Surgery, Inc.Surgical stapling instruments structured for pump-assisted delivery of medical agents
US76179616 Oct 200317 Nov 2009Tyco Healthcare Group LpTool assembly for surgical stapling device
US762490228 Aug 20081 Dec 2009Tyco Healthcare Group LpSurgical stapling apparatus
US763507430 Aug 200722 Dec 2009Tyco Healthcare Group LpStaple drive assembly
US76374106 Oct 200629 Dec 2009Tyco Healthcare Group LpSurgical instrument including a locking assembly
US76410914 Oct 20055 Jan 2010Tyco Healthcare Group LpStaple drive assembly
US76410933 Oct 20065 Jan 2010Ethicon Endo-Surgery, Inc.Surgical stapling instrument having an electroactive polymer actuated single lockout mechanism for prevention of firing
US76410958 Oct 20085 Jan 2010Tyco Healthcare Group LpStaple driver for articulating surgical stapler
US76583125 Apr 20049 Feb 2010Vidal Claude ASurgical instrument having an articulated jaw structure and a detachable knife
US767033410 Jan 20062 Mar 2010Ethicon Endo-Surgery, Inc.Surgical instrument having an articulating end effector
US76737809 Nov 20059 Mar 2010Ethicon Endo-Surgery, Inc.Articulation joint with improved moment arm extension for articulating an end effector of a surgical instrument
US76737834 Nov 20059 Mar 2010Ethicon Endo-Surgery, Inc.Surgical stapling instruments structured for delivery of medical agents
US769054728 May 20086 Apr 2010Tyco Healthcare Group LpTool assembly for a surgical stapling device
US769486523 Jan 200713 Apr 2010Tyco Healthcare Group LpSurgical stapling apparatus with locking mechanism
US77219353 Oct 200625 May 2010Tyco Healthcare Group LpSurgical stapling device
US77265376 Oct 20031 Jun 2010Tyco Healthcare Group LpSurgical stapler with universal articulation and tissue pre-clamp
US773107330 Jun 20098 Jun 2010Applied Medical Resources CorporationSurgical stapler with firing lock mechanism
US77401592 Aug 200622 Jun 2010Ethicon Endo-Surgery, Inc.Pneumatically powered surgical cutting and fastening instrument with a variable control of the actuating rate of firing with mechanical power assist
US777077412 May 200810 Aug 2010Tyco Healthcare Group LpSurgical stapler
US77800556 Apr 200524 Aug 2010Tyco Healthcare Group LpLoading unit having drive assembly locking mechanism
US778466330 Sep 200531 Aug 2010Ethicon Endo-Surgery, Inc.Surgical stapling instrument having load sensing control circuitry
US77892836 Jun 20087 Sep 2010Tyco Healthcare Group LpKnife/firing rod connection for surgical instrument
US77938141 Dec 200814 Sep 2010Tyco Healthcare Group LpSurgical stapling device
US77990399 Nov 200521 Sep 2010Ethicon Endo-Surgery, Inc.Surgical instrument having a hydraulically actuated end effector
US781989631 Aug 200926 Oct 2010Tyco Healthcare Group LpTool assembly for a surgical stapling device
US78455356 Oct 20067 Dec 2010Tyco Healthcare Group LpSurgical instrument having a plastic surface
US785718331 Mar 200528 Dec 2010Ethicon Endo-Surgery, Inc.Surgical instrument incorporating an electrically actuated articulation mechanism
US785718428 Oct 200928 Dec 2010Tyco Healthcare Group LpTool assembly for surgical stapling device
US786257930 Sep 20054 Jan 2011Ethicon Endo-Surgery, Inc.Electroactive polymer-based articulation mechanism for grasper
US786652527 Aug 200811 Jan 2011Tyco Healthcare Group LpSurgical instrument having a plastic surface
US78665284 Nov 200911 Jan 2011Tyco Healthcare Group LpStaple drive assembly
US787907030 Sep 20051 Feb 2011Ethicon Endo-Surgery, Inc.Electroactive polymer-based actuation mechanism for grasper
US78869527 Feb 200715 Feb 2011Tyco Healthcare Group LpSurgical stapling apparatus with locking mechanism
US78915326 Aug 200822 Feb 2011Tyco Healthcare Group LpSurgical stapler
US78915349 Jul 200922 Feb 2011Tyco Healthcare Group LpSurgical stapling device
US789621423 Sep 20081 Mar 2011Tyco Healthcare Group LpTissue stop for surgical instrument
US791389322 Dec 200929 Mar 2011Tyco Healthcare Group LpSurgical stapler
US791455130 Sep 200529 Mar 2011Ethicon Endo-Surgery, Inc.Electroactive polymer-based articulation mechanism for multi-fire surgical fastening instrument
US793462825 Feb 20083 May 2011Tyco Healthcare Group LpSurgical stapling device
US79346298 Jun 20103 May 2011Applied Medical Resources CorporationSurgical stapler with firing lock mechanism
US79423036 Jun 200817 May 2011Tyco Healthcare Group LpKnife lockout mechanisms for surgical instrument
US795468530 Oct 20087 Jun 2011Tyco Healthcare Group LpArticulation and firing force mechanisms
US796718028 Dec 200928 Jun 2011Tyco Healthcare Group LpSurgical stapling apparatus with locking mechanism
US799746917 Nov 200916 Aug 2011Tyco Healthcare Group LpStaple drive assembly
US80115537 Jun 20106 Sep 2011Mastri Dominick LSurgical stapler
US80159764 Apr 201113 Sep 2011Tyco Healthcare Group LpKnife lockout mechanisms for surgical instrument
US803343813 Oct 200611 Oct 2011Tyco Healthcare Group LpSurgical stapling device
US803344026 Mar 201011 Oct 2011Tyco Healthcare Group LpSurgical stapling device
US803344228 Nov 200711 Oct 2011Tyco Heathcare Group LpTool assembly for a surgical stapling device
US805678813 Jan 201115 Nov 2011Tyco Healthcare Group LpSurgical stapler
US805750829 Mar 200515 Nov 2011Ethicon Endo-Surgery, Inc.Surgical instrument incorporating an electrically actuated articulation locking mechanism
US806157616 Oct 200922 Nov 2011Tyco Healthcare Group LpSurgical instrument
US80615778 Oct 201022 Nov 2011Tyco Healthcare Group LpTool assembly for a surgical stapling device
US80661665 Apr 200729 Nov 2011Tyco Healthcare Group LpSurgical stapling device with dissecting tip
US8066168 *11 Jan 201029 Nov 2011Tyco Healthcare Group LpSurgical instrument having an articulated jaw structure and a detachable knife
US80700333 Jun 20106 Dec 2011Tyco Healthcare Group LpSurgical stapling apparatus
US807486214 May 201013 Dec 2011Tyco Healthcare Group LpKnife/firing rod connection for surgical instrument
US808311830 Jun 200927 Dec 2011Tyco Healthcare Group LpSurgical stapling apparatus
US808756310 Jun 20113 Jan 2012Tyco Healthcare Group LpSurgical stapling apparatus
US809175321 Oct 201010 Jan 2012Tyco Healthcare Group LpSurgical stapling device
US811340818 Jan 201114 Feb 2012Tyco Healthcare Group LpSurgical stapling device
US811820721 Apr 201021 Feb 2012Tyco Healthcare Group LpSurgical stapling device
US812797524 Nov 20096 Mar 2012Tyco Healthcare Group LpStaple drive assembly
US81279768 May 20096 Mar 2012Tyco Healthcare Group LpStapler cartridge and channel interlock
US81327065 Jun 200913 Mar 2012Tyco Healthcare Group LpSurgical stapling apparatus having articulation mechanism
US815714815 Jun 201117 Apr 2012Tyco Healthcare Group LpSurgical stapling apparatus with locking mechanism
US816219716 Aug 201124 Apr 2012Tyco Healthcare Group LpSurgical stapler
US816718621 Jun 20101 May 2012Tyco Healthcare Group LpSurgical stapling device
US819175230 Nov 20105 Jun 2012Tyco Healthcare Group LpSurgical instrument having a plastic surface
US821041631 Oct 20113 Jul 2012Tyco Healthcare Group LpSurgical stapling apparatus
US821553223 Nov 201010 Jul 2012Tyco Healthcare Group LpTissue stop for surgical instrument
US822069029 Sep 200617 Jul 2012Ethicon Endo-Surgery, Inc.Connected surgical staples and stapling instruments for deploying the same
US8225979 *30 Oct 200924 Jul 2012Tyco Healthcare Group LpLocking shipping wedge
US823527414 Oct 20117 Aug 2012Tyco Healthcare Group LpSurgical instrument
US8236010 *23 Mar 20067 Aug 2012Ethicon Endo-Surgery, Inc.Surgical fastener and cutter with mimicking end effector
US82459008 Dec 201021 Aug 2012Tyco Healthcare Group LpSurgical instrument having a plastic surface
US825665614 Nov 20114 Sep 2012Tyco Healthcare Group LpSurgical stapling apparatus
US82725537 Mar 201225 Sep 2012Tyco Healthcare Group LpSurgical stapler
US827659430 Aug 20112 Oct 2012Tyco Healthcare Group LpKnife lockout mechanisms for surgical instrument
US82819723 May 20119 Oct 2012Applied Medical Resources CorporationSurgical stapler with firing lock mechanism
US82819734 Oct 20029 Oct 2012Tyco Healthcare Group LpSurgical stapling device
US82868486 Sep 201116 Oct 2012Tyco Healthcare Group LpSurgical stapling device
US829214827 Apr 201123 Oct 2012Tyco Healthcare Group LpArticulation and firing force mechanisms
US829215122 Dec 201123 Oct 2012Tyco Healthcare Group LpTool assembly for surgical stapling device
US82921527 Jun 201223 Oct 2012Tyco Healthcare Group LpSurgical stapling apparatus
US830804110 Nov 201013 Nov 2012Tyco Healthcare Group LpStaple formed over the wire wound closure procedure
US831707430 Sep 200527 Nov 2012Ethicon Endo-Surgery, Inc.Electroactive polymer-based articulation mechanism for circular stapler
US832245527 Jun 20064 Dec 2012Ethicon Endo-Surgery, Inc.Manually driven surgical cutting and fastening instrument
US83280612 Feb 201011 Dec 2012Covidien LpSurgical instrument for joining tissue
US83280659 Nov 201111 Dec 2012Covidien LpKnife/firing rod connection for surgical instrument
US833675314 Mar 201125 Dec 2012Covidien LpStaple drive assembly
US83367544 Feb 201125 Dec 2012Covidien LpLocking articulation mechanism for surgical stapler
US834237714 Aug 20121 Jan 2013Covidien LpSurgical stapling apparatus
US83423782 Jun 20101 Jan 2013Covidien LpOne handed stapler
US834812323 Nov 20108 Jan 2013Covidien LpSurgical stapling device with dissecting tip
US83481277 Apr 20108 Jan 2013Covidien LpSurgical fastener applying apparatus
US839797218 Mar 201119 Mar 2013Covidien LpShipping wedge with lockout
US840319731 Oct 201126 Mar 2013Covidien LpSurgical instrument having an articulated jaw structure and a detachable knife
US840844226 Sep 20112 Apr 2013Covidien LpTool assembly for a surgical stapling device
US84138686 Jul 20129 Apr 2013Covidien LpSurgical instrument
US841890411 Jan 201216 Apr 2013Covidien LpSurgical stapling device
US841890626 Jun 201216 Apr 2013Covidien LpLocking shipping wedge
US84189076 Oct 201016 Apr 2013Covidien LpSurgical stapler having cartridge with adjustable cam mechanism
US842473915 Sep 201123 Apr 2013Covidien LpSurgical stapling device with independent tip rotation
US845391224 Aug 20124 Jun 2013Covidien LpSurgical stapler
US849615220 Sep 201230 Jul 2013Covidien LpArticulation and firing force mechanisms
US856187428 Jun 201122 Oct 2013Covidien LpSurgical instrument with articulating tool assembly
US85734607 Mar 20135 Nov 2013Covidien LpSurgical instrument
US857346331 Mar 20115 Nov 2013Covidien LpLocking articulation mechanism
US85849216 Oct 200619 Nov 2013Covidien LpSurgical instrument with articulating tool assembly
US859651328 Nov 20073 Dec 2013Covidien LpSurgical stapler with universal articulation and tissue pre-clamp
US86080436 Oct 200617 Dec 2013Covidien LpSurgical instrument having a multi-layered drive beam
US861642725 Sep 201231 Dec 2013Covidien LpTool assembly for surgical stapling device
US862854423 Sep 200814 Jan 2014Covidien LpKnife bar for surgical instrument
US87019596 Jun 200822 Apr 2014Covidien LpMechanically pivoting cartridge channel for surgical instrument
US870196215 Feb 201322 Apr 2014Covidien LpShipping wedge with lockout
US87082105 Oct 200629 Apr 2014Covidien LpMethod and force-limiting handle mechanism for a surgical instrument
US870821331 Jan 200629 Apr 2014Ethicon Endo-Surgery, Inc.Surgical instrument having a feedback system
US872163023 Mar 200613 May 2014Ethicon Endo-Surgery, Inc.Methods and devices for controlling articulation
US874003530 May 20133 Jun 2014Covidien LpSurgical stapler
US87400361 Dec 20113 Jun 2014Covidien LpSurgical instrument with actuator spring arm
US874003928 Jan 20113 Jun 2014Covidien LpTissue stop for surgical instrument
US874653418 Jan 201110 Jun 2014Covidien LpTissue stop for surgical instrument
US876387630 Jun 20111 Jul 2014Covidien LpSurgical instrument and cartridge for use therewith
US877045810 Jul 20128 Jul 2014Covidien LpSurgical instrument having a plastic surface
US877045918 Oct 20048 Jul 2014Covidien LpSurgical stapling device with independent tip rotation
USRE4051419 Dec 200523 Sep 2008United States Surgical CorporationSurgical stapler
CN101327138B20 Jun 20083 Oct 2012伊西康内外科公司Surgical stapling instrument with an anti-back up mechanism
EP2724674A222 Oct 201330 Apr 2014Covidien LPSurgical instrument with rapid post event detection
WO2007141777A2 *3 Jun 200713 Dec 2007Michael AradPalm size surgical stapler for single hand operation
Legal Events
DateCodeEventDescription
14 Sep 2006FPAYFee payment
Year of fee payment: 12
2 Oct 2002REMIMaintenance fee reminder mailed
13 Sep 2002FPAYFee payment
Year of fee payment: 8
11 Sep 1998FPAYFee payment
Year of fee payment: 4
5 Mar 1996CCCertificate of correction
24 May 1993ASAssignment
Owner name: UNITED STATES SURGICAL CORPORATION, CONNECTICUT
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SAVAGE, ROBERT C.;KASARAUSKAS, PAUL M.;ZUZICK, JOSEPH F., JR.;AND OTHERS;REEL/FRAME:006547/0830
Effective date: 19930330