Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS5234000 A
Publication typeGrant
Application numberUS 07/951,611
Publication date10 Aug 1993
Filing date25 Sep 1992
Priority date25 Sep 1992
Fee statusLapsed
Publication number07951611, 951611, US 5234000 A, US 5234000A, US-A-5234000, US5234000 A, US5234000A
InventorsSaid I. Hakky, Perry B. Hudson
Original AssigneeHakky Said I, Hudson Perry B
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Automatic biopsy device housing a plurality of stylets
US 5234000 A
Abstract
An automatic biopsy device for taking plural samples of tissue of a patient. The device is pneumatically operated in response to the depressing of a trigger by the operator and makes use of a removable cassette in which a plurality of stylets are located. The stylets are disposed on a moveable tray within the cassette and are arranged to be selectively positioned within the device for propulsion through a releasably mounted cannula at a high speed into the tissue to be sampled. Each stylet includes a groove adjacent its distal end into which the tissue to be sampled enters when the cannula is propelled into the tissue. Thereafter and in automatic response to the propulsion of the stylet through the cannula into the tissue, the cannula is propelled over the stylet to excise the tissue within the stylet's recess. The propulsion of the stylets and cannula is so rapid that the tissue sampling procedure is virtually pain-free. The stylet and cannula are retracted in response to release of the trigger so that the stylet is withdrawn into the cassette. The cassette is removable from the device and can be taken to a laboratory for analysis of the tissue samples, all the while protecting the tissue samples and the personnel handling them.
Images(6)
Previous page
Next page
Claims(36)
We claim:
1. A device for taking a plurality of samples of tissue from a living being, comprising: a housing having a portion arranged to be held by a person using said device, a cannula having a proximal portion and a distal portion, said cannula being coupled to said housing adjacent said proximal portion of said cannula, a plurality of stylets located in said housing, each of said stylets having a proximal end, a distal end, and a recess located adjacent said distal end, and actuating means for selectively propelling each of said stylets through said cannula and into the body of said being so that a portion of said tissue enters into the recess of said selected stylet, said actuating means further propelling said cannula over said selected stylet to cause said distal portion to excise the portion of tissue within the recess of said selected stylet, said actuating means also being arranged to move said selected stylet and said cannula out of said tissue in the body of said being.
2. The device of claim 1 wherein each of said stylets is brought back into said housing by said actuating means after it has been moved out of said tissue.
3. The device of claim 2 additionally comprising a cassette in which said stylets are located, and wherein each of said stylets is brought back into said cassette by said actuating means after it has been moved out of said tissue.
4. The device of claim 3 wherein said actuating means propels said stylets and said cannula very quickly to minimize pain to said being.
5. The device of claim 3 additionally comprising a tray located within said cassette for holding said stylets thereon.
6. The device of claim 5 wherein said tray is moveable within said cassette under control of said actuating means to bring a selected stylet into axial alignment with said cannula.
7. The device of claim 5 wherein said tray comprises a plurality of grooves and each of said plurality of stylets is positioned in a respective one of said grooves.
8. The device of claim 7 additionally comprising positioning means for moving said tray, said positioning means comprising a plurality of detents, each one of said detents associated with a respective one of said grooves, said positioning means further comprising spring biased member for selectively engaging said detents.
9. The device of claim 3 additionally comprising latching means for releasably securing said cassette to said device.
10. The device of claim 2 wherein said actuating means propels said stylets and said cannula very quickly to minimize pain to said being.
11. The device of claim 1 additionally comprising a cassette in which said stylets are located.
12. The device of claim 11 wherein said actuating means propels said stylets and said cannula very quickly to minimize pain to said being.
13. The device of claim 11 additionally comprising a tray located within said cassette for holding said stylets thereon.
14. The device of claim 13 wherein said tray is moveable within said cassette under control of said actuating means to bring a selected stylet into axial alignment with said cannula.
15. The device of claim 14 wherein said cassette with said tray holding said stylets therein is releasably securable to said housing.
16. The device of claim 15 wherein said cannula is releasably secured to said device.
17. The device of claim 13 wherein said cassette with said tray holding said stylets therein is releasably securable to said housing.
18. The device of claim 13 wherein said tray comprises a plurality of grooves and each of said plurality of stylets is positioned in a respective one of said grooves.
19. The device of claim 11 wherein said cannula is releasably secured to said device.
20. The device of claim 11 wherein said cassette comprises a base and a cover.
21. The device of claim 1 wherein said actuating means propel said stylets and said cannula very quickly to minimize pain to said being.
22. The device of claim 1 wherein said actuating means comprises triggering means located on said portion of said housing.
23. The device of claim 22 wherein said actuating means operates pneumatically operative in response to said triggering means.
24. The device of claim 23 wherein said actuating means comprises a first pneumatic cylinder being arranged to be coupled to said stylets and a second pneumatic cylinder coupled to said cannula.
25. The device of claim 24 wherein said actuating means additionally comprises a first reversing valve coupled to said first pneumatic cylinder and a second reversing valve coupled to said second pneumatic cylinder.
26. The device of claim 24 wherein said propulsion of said cannula over said selected stylet occurs in automatic response to the propulsion of said stylet to a predetermined position within said cannula.
27. The device of claim 22 wherein said actuating means comprises a first pneumatic cylinder being arranged to be selectively coupled to said stylets and a second pneumatic cylinder coupled to said cannula.
28. The device of claim 27 wherein said actuating means additionally comprises a first reversing valve coupled to said first pneumatic cylinder and a second reversing valve coupled to said second pneumatic cylinder.
29. The device of claim 27 wherein said propulsion of said cannula over said selected stylet occurs in automatic response to the propulsion of said stylet to a predetermined position within said cannula.
30. The device of claim 29 additionally comprising switch means activated by the movement of said selected stylet to a predetermined position with respect to said cannula to cause said second pneumatic cylinder to operate to propel said cannula over said selected stylet.
31. The device of claim 1 wherein said actuating means operates pneumatically.
32. The device of claim 1 wherein said propulsion of said cannula over said selected stylet occurs in automatic response to the propulsion of said stylet to a predetermined position within said cannula.
33. The device of claim 32 additionally comprising switch means activated by the movement of said selected stylet to a predetermined position with respect to said cannula to cause said actuating means to operate to propel said cannula over said selected stylet.
34. The device of claim 1 additionally comprising a tray located within said housing for holding said stylets thereon.
35. The device of claim 34 wherein said tray is moveable within said housing under control of said actuating means to bring a selected stylet into axial alignment with said cannula.
36. The device of claim 1 wherein said cannula is releasably secured to said device.
Description
FIELD OF THE INVENTION

The present invention relates to biopsy devices and more particularly to a powered automatic biopsy device which is capable of taking a plurality of biopsies in rapid sequence.

In the study of tissue, a biopsy, which is a sample of tissue extracted from the body, is taken. One common biopsy device used today includes a needle or stylet into which an indentation or recess has been cut. The stylet is manually inserted into the tissue to be sampled and a hollow tube or cannula, with a very sharp cutting edge, is then slid over the stylet so that a sample of tissue is excised and entrapped within the recess when the cutting edge of the cannula extends past the recess.

Another manual device also includes the cannula and stylet, which are manually pushed into the body to penetrate the organ whose tissue is to be sampled. The surgeon, then using two hands, must retract the cannula so that the indentation in the stylet is exposed. The cannula is pushed forward again so that its cutting edge can excise a plug of tissue. The cannula and stylet are then removed from the body. The excised tissue is placed in a fluid solution to protect it and keep it from drying out so that the tissue may later be tested.

Mechanically operated biopsy device are disclosed in the patent literature. For example, in U.S. Pat. No. 4,917,100 (Nottke) there is disclosed a spring operated device including a needle or stylet having a groove therein and which is located within a cannula.

Another spring loaded biopsy device is disclosed in U.S. Pat. No. 4,976,269 (Mehl). This device uses a gun shaped handle with a trigger which automatically projects the cannula forward to excise the plug of tissue. First the gun is cocked and then the stylet and cannula are inserted into the body so that they penetrate the organ of which a tissue sample is desired. When the trigger is pulled the cannula withdraws a sufficient distance to expose the recess in the stylet. The spring mechanism then forces the cannula forward so that its cutting edge can excise a plug of tissue which is held in the recess in the stylet. This device can be operated by a single hand of the surgeon. Also, the stylet with the tissue sample can be removed while the cannula remains in place inside the organ for other samples.

The aforementioned manual and spring loaded devices have several important shortcomings. In particular, the manual devices must be manipulated by the surgeon using two hands which are often wet and slippery during the operation. The spring loaded gun devices are difficult to operate during surgery, not only because the hands of the surgeon may be wet and slippery, but also because considerable force is required to compress the powerful springs used in the device.

Many surgical procedures now require a plurality of biopsy samples to be taken. For example, up to six or more samples of tissue are required when testing the tissues of the prostrate gland and other body organs. In order to take multiple tissue samples using the prior art manual biopsy devices, each time a sample is taken, the device must be removed, and a new puncturing of the organ made. This action is tedious and time consuming. Moreover, multiple manual penetrations of the organ are typically somewhat painful. Moreover, such penetrations are subject to bleeding and infection.

Although the device of the Mehl patent allows the cannula to remain in the organ between samples, the stylet itself must be manually removed from the biopsy device so that the test sample can be removed, which is again tedious and time consuming. The stylet is then manually inserted back into the biopsy device and through the cannula into the organ.

Another and significant drawback of the prior art is that the stylets bearing the tissue samples must be manually handled. This exposes those persons handling the stylets to danger of infection, e.g., HIV infection.

Finally, with present devices, the stylets and samples are handled on an individual basis. The tissue samples are often damaged or destroyed due to improper handling. There is also possibility of loss or mislabelling of the samples.

A need thus exists for an powered biopsy device which can take a plurality of tissue samples painlessly in rapid sequence, and wherein stylets bearing the tissue samples taken are automatically placed into a case which can be removed from the device for study in such a way that the handling personnel and the samples are protected.

OBJECTS OF THE INVENTION

Accordingly, it is the general object of this invention to provide a biopsy device which overcomes the shortcomings of the prior art.

It is a further object of this invention to provide an automatic biopsy device which applies power to the stylet and cannula for rapid insertion and removal from the tissue being sampled.

It is still a further object of this invention to provide an automatic biopsy device which is capable of taking a plurality of tissue samples in rapid succession.

It is yet a further object of this invention to provide an automatic biopsy device which controls the penetration of the stylet and cannula into the organ being sampled.

It is yet a further object of the instant invention to provide an automatic biopsy device which does not require manual penetration of the organ whose tissue is being sampled.

It is yet a further object of this invention to provide an automatic biopsy device which does not require the manual handling of each individual stylet after the sample has been taken.

It is yet a further object of this invention to provide an automatic biopsy device which provides for protected and safe handling of the stylets and biopsy samples after the samples have been taken thereby.

SUMMARY OF THE INVENTION

These and other objects of this invention are achieved by providing a device for taking a plurality of samples of tissue from a living being. The device comprises a housing having a portion arranged to be held by a person using the device, a cannula having a proximal portion and a distal portion and being coupled to the housing. A plurality of stylets are located in the housing, with each of the stylets having a proximal end, a distal end, and a recess located adjacent the distal end.

An actuating system, e.g., a pair of pneumatic cylinders, associated valves, and an operating trigger, are provided for selectively propelling each of the stylets through the cannula and into the body of the being, e.g., in response to the depression of the trigger, so that a portion of the tissue enters into the recess of the selected stylet. The actuating system propels, e.g., in automatic response, the cannula over the selected stylet to cause the distal portion of the cannula to excise the portion of tissue within the recess of the selected stylet.

The actuating system is also arranged, e.g., upon release of the trigger, to move the selected stylet and the cannula out of tissue in the body of the being.

In accordance with one preferred aspect of this invention the stylets are propelled into the tissue being sampled at a high rate of speed and the cannula is propelled over the stylets at a high rate of speed. These actions tend to minimize, if not eliminate, pain to the patient.

In accordance with another preferred aspect of the invention the stylets are located within a cassette which is releasably secured to the device. The stylets with the tissue samples therein are retracted by the device into the cassette for removal as a unit therefrom for testing so that the samples and personnel handling them are protected.

DESCRIPTION OF THE DRAWING

Other objects and many of the attendant advantages of this invention will be readily appreciated when the same becomes better understood by reference to the following detailed description, when considered in connection with the accompanying drawing, wherein:

FIG. 1 is a side elevational view, partially in section, of the automatic biopsy device of the present invention;

FIG. 2 is an enlarged sectional view of the device taken along the line 2--2 of FIG. 1;

FIG. 3 is an enlarged exploded isometric view of the stylet cassette, the stylet, and the cannula of the device of FIG. 1;

FIG. 4 is an enlarged top plan view, partially in section, of the distal end of the device of FIG. 1;

FIG. 5 is as an enlarged sectional view of the device taken along the line 5--5 of FIG. 1 and showing in phantom lines a stylet cassette which has been removed from the device;

FIG. 6 is a sectional view of the distal end of the device taken along the line 6--6 of FIG. 2; and

FIG. 7 is a schematic diagram of the pneumatic system which powers the device of FIG. 1.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring now to the various figures of the drawing where in like reference characters refer to like parts, there is shown an automatic biopsy instrument or device 20 constructed in accordance with the instant invention. The device 20 is arranged to be held in the hand of a surgeon or other medical person to take plural tissue samples from a patient for study. The device 20 basically comprises a gun-shaped housing 22, formed of any suitable material, e.g., aluminum, having a body portion 24 for releasable mounting therein a cassette 26. At the distal end of the housing is a cannula assembly 28. This assembly basically comprises an elongated tube having a distal end in the form of a cutting edge. The proximal end of the cannula assembly comprises a block which serves to releasably mount the cannula assembly on the device 20.

The device is arranged so that it can be readily manipulated by the surgeon so that the cannula 28A is inserted within the body of the patient, either percutaneously, or through a body lumen or orifice, e.g., transrectally, transuretherally, etc., to the site of the internal tissue to be sampled. To that end, the device's housing 22 includes a handle 30 located below the body portion 24 so that it can be readily held in the surgeon's hand to orient the device, as desired, and to operate it.

The cassette 26 will be described in detail later. Suffice it for now to state that the cassette is a generally U-shaped structure having a hollow interior into which a tray 32 is located. The tray 32 is arranged to hold a plurality of needle-like members or "stylets" 34A-34F. Each stylet includes a pointed distal end having an elongated notch or recess adjacent thereto. The recess is arranged to receive a portion of tissue to be excised so that when the cannula is slid thereover (as will be described later) the tissue within the recess is cut or sliced away from the remaining tissue of the patient's body and is held within the recess.

In particular, and as will also be described in detail later, the tray bearing the stylets is arranged to be moved to a position within the housing so that a stylet is aligned with the cannula 28A. Thereafter the device is operated to cause that stylet to be extended, e.g., propelled, almost instantaneously out of the free end of the cannula 28A into the tissue to be sampled to enable a portion of that tissue to enter the notch in the stylet's distal end. Thereafter, and automatically, the cannula is extended, e.g., propelled, almost instantaneously over the extended stylet so that the portion of the tissue within the stylet's recess is excised, i.e., sheared off by the passing cannula. The device is then operated to retract both the stylet and the cannula from the tissue being sampled, with the stylet with the tissue sample therein being retracted into the cassette.

In accordance with the preferred embodiment of this invention, device 20 may be used to sequentially take tissue samples by the use of respective stylets, and to withdraw those stylets into the cassette, until all of the desired samples are taken. At that time the cassette may be removed from the device 20 and transported to a laboratory for analysis of the tissue samples. A new cassette having a tray of fresh stylets may then be inserted into the device and a new cannula mounted on the device to replace the used cannula. Since only the cannula and the stylets contact the patient, and since these components are replaced, the device 20 is now ready for reuse on another patient.

The extension and retraction of the stylets 34A-34F and the cannula 28 are accomplished in the disclosed embodiment by a pneumatic drive system 40. That system is merely exemplary and is shown in the schematic diagram of FIG. 7. As can be seen therein the system 40 basically comprises first and second pneumatic cylinders 42 and 44 respectively. The cylinders are driven by a compressed gas, e.g., carbon dioxide. The first cylinder 42 includes a piston 46 which is coupled to a catch 50 (to be described later) for selectively engaging the proximal end of each stylet 24A-24F to effect the extension and retraction of the engaged stylet. The second cylinder 44 includes piston 48 which is coupled to a carrier 52 (to be described later). The carrier 52 supports the cannula assembly 28 and particularly its mounting block thereon to effect the extension and retraction of the cannula with respect to the housing.

As will be described later, the tray 32 is arranged to be sequentially moved with respect to the housing when the cassette is mounted within the housing to bring selected ones of the stylets into alignment with the cannula 28 so that they can be extended therethrough by the operation of the cylinder 42, and then the cannula is automatically extended over the extended stylet by the operation of the cylinder 44.

The movement of the piston 46 of the cylinder 42 in the distal direction to cause the extension of a selected stylet out of the cassette and through the cannula 28A to penetrate or pierce the tissue to be sampled is effected by providing the compressed gas into the proximal end 42A of the pneumatic cylinder housing 42 via an input line 52. The movement of the piston in the proximal direction to cause the retraction of the stylet back through the cannula 28 and into the cassette 26 is effected by providing the compressed gas into the distal end 42B of the pneumatic cylinder 42 via another input line 54.

In order to control which of the input lines 52 or 54 provides the compressed gas to the cylinder 42, a reversing valve 56 and associated components (to be described later) are provided within the housing. The operation of the reversing valve 56 is controlled by a manually actuatable trigger or button 58 located on the device's handle 30. The trigger is coupled to the valve 56 and is arranged so that when it is depressed the valve 56 switches from the state shown in FIG. 7 to the state allowing the compressed gas (from a source to be described later) to enter into input line 52. This action immediately causes the piston 46 and the stylet coupled thereto to move in the distal direction to extend the distal end of the stylet and its associated recess out of the free end of the cannula and into the tissue of the patient.

The movement of the piston 48 of the cylinder 44 in the proximal direction to extend the cannula over now extended stylet to excise the portion of the tissue within the stylet's groove is effected by providing compressed gas into the proximal end 44A of the second pneumatic cylinder 44 via an input line 60. This extension of the cannula over the extended stylet occurs automatically virtually immediately after the stylet has been extended into the tissue to be sampled (as will be described later).

The movement of the piston 48 in the proximal direction to cause the retraction of the cannula out of the tissue of the patient is effected by providing the compressed gas into the distal end 44B of the cylinder via another input line 62.

In order to control which of the input lines 60 or 62 provides the compressed gas to the cylinder 44, a second reversing valve 64, is provided. The valve 64 is mounted at the distal end of the device 20 and includes a plunger 66 which is arranged to be engaged by a pivotal lever arm 68.

The lever arm is mounted at the distal end of the housing adjacent the cannula-supporting carrier 52 and is arranged to be engaged by the catch 50 on the piston rod 46A when the piston rod of cylinder 42 is propelled outward, i.e. once the stylet has been extended into the tissue to be excised. This action causes the pivotally arm 68 to swing into engagement with the plunger 66, thereby depressing the plunger and causing the reversing valve 64 connected thereto to assume the state wherein the compressed gas is provided via line 60 into the proximal end 44A of the cylinder 44. Accordingly, the piston 48 is automatically immediately propelled in the proximal direction, thereby carrying the carriage 52 with the cannula assembly 28 mounted thereon outward over the extended stylet to excise the tissue within the stylet's groove.

When the trigger 58 is released, the compressed gas is permitted to flow through the reversing valve 56 into the line 54, whereupon the piston 46 of the cylinder 42 is propelled in the proximal direction, thereby retracting the stylet back into the housing. When the catch 50 on the piston reaches the location of the lever arm 68 it releases that arm, whereupon the plunger 66 is freed and the second reversing valve 64 immediately changes state so that the compressed carbon dioxide is provided via line 62 into the proximal end of the second cylinder 44. This action propels the piston 48 of that cylinder in the proximal direction, thereby retracting the carrier and the cannula mounted thereon. When the pistons of both cylinders are fully retracted, that is they are in the position shown in FIG. 2 and 7, the cannula will have been withdrawn from the tissue site. Moreover, the stylet which has the tissue sample in its groove will now be completely retracted within a groove (to be described later) in the tray 32 within the cassette 26. The device 20 is now ready to take another tissue sample via the extension of the next stylet and followed by the extension of the cannula assembly 28 over that stylet.

The compressed gas for the system 40 is provided from any suitable source, e.g., a compressed CO2 cylinder 80, via an adjustable valve 82. The outlet of the valve 82 is connected to a metering device 84 via a line or conduit 86. The output of the metering device 84 is provided via line or conduit 88 to the input of a T-coupling 90. A filter 92 (FIG. 1) is preferably included in the conduit 88. The T-coupling includes a pair of output lines 94 and 96, which are connected to the inputs of the reversing valves 56 and 64, respectively.

In FIG. 7 the solid diagonal lines in the reversing valves 56 and 64 represent the quiescent state of those valves, i.e., the state of the device when it is ready to take a tissue sample, prior to the depressing of the trigger 58. In such a state the pistons 46 and 48 are located to the rear (proximally) in the pneumatic cylinders 42 and 44, respectively. The dotted diagonal lines in the reversing valves represent the connections made when the trigger is depressed and the plunger 66 is pushed forward by the lever arm 68. Each of the reversing valves includes at least one gas release path which are designated by the solid vertical lines in those valves to allow the existing gas in the pneumatic cylinders 42 and 44 to be released therefrom so as not to oppose the movement of the pistons 46 and 48, respectively, either in the forward (distal) or the backward (proximal) direction. This is of considerable importance to ensure that the pistons move virtually instantaneously.

The details of the stylets 34A-34C and the cannula 28 will now be described with reference to FIG. 3. As can be seen therein each stylet is an elongated needle or rod-like member having a distal end which is sharpened, i.e., cut at an angle, to provide a piercing point 100. An elongated recess or groove 102 is provided in the stylet adjacent its piercing tip 100. The groove 102 serves as the repository for the tissue to be excised. The proximal end of the stylet includes a block of 104. The block 104 is arranged to be selectively received within a groove 106 in the catch 50. When the block is within that groove the movement of the piston rod 46A either proximally or distally causes the concomitant movement of the stylet therewith.

The stylet and cannula can be formed of any suitable material. In accordance with the preferred embodiment invention the each is formed of stainless steel.

The cannula assembly 28 basically comprises an elongated tubular member having a free distal end 110 cut at an angle to the longitudinal axis of the cannula to form a sharp cutting edge. The proximal end of the cannula assembly 28 is in the form of the heretofore mentioned mounting block 108. The block 108 is formed of any suitable material, e.g., plastic, and includes a flared inlet toward 112 at its proximal face and which communicates with the hollow interior of the tubular cannula 28A. Each corner of the block 108 includes a recess 114 therein which is arranged to receive respective edges of upstanding walls 52A of the cannula carrier 52 (see FIG. 4) to hold the cannula in place on the carrier. A set screw 116 is provided in one of the walls 52A of the carrier 52 to engage the block 108 to lock the cannula assembly 28 on the carrier 52.

The carrier 52 is mounted on a pair of rod-like guide rails 118 to enable the carrier to be slid along the rails, i.e., reciprocated, by the movement of the piston of cylinder 44. The guide rails 118 are mounted within the housing via a bracket 120 and associated screws 122. The cannula 28A extends out of the housing of via a slot 124 in the front end thereof when the cannula assembly is mounted on the carrier 52.

As mentioned earlier, the cassette 26 includes a tray 32 therein. As can be seen clearly in FIG. 3, the tray 32 includes plural grooves 130 disposed in a side-by-side array along the length of the tray i.e., from its distal end to its proximal end. Each groove 130 is arranged to receive a respective one of the stylets 34A-34F therein. The tray includes a large planar tab or projection 132 extending outward from one side thereof. The projection 132 is arranged to be received within respective portions of the cassette to facilitate the positioning of the tray with respect to the cassette (as will be described later). As will also be described later the tray is arranged to be moved to sequentially align its grooves 130 with the cannula assembly 28 so that the stylet in each of the grooves can be selectively brought into alignment with the passageway through cannula 28A for passage therethrough into the tissue to be sampled.

The cassette 26 basically comprises a generally U-shaped member having a lower body portion or base 140 formed of any suitable material, e.g., aluminum, and a cover, e.g., clear plexiglass, 142 releasably secured thereover via plural threaded fasteners 144. The cassette includes an open side 146, i.e., the base 140 doesn't include an upstanding sidewall on that side so that the cover 142 is spaced over the base. This open side serves as the entrance for inserting a tray full of stylets into the cassette. In particular, tray 32 is arranged to be inserted within the cassette 26 through the open end 146 of the cassette so that the tab 132 of the tray extends through a slot 148 in the sidewall of the base 140 and into a pair of guide slots 150. The guide slots are provided on opposite sides of the slot 148 to receive the projection 132 of the tray 32 when the tray is located within the cassette 26. When the tray is fully within the cassette the cove 142 of the cassette completely overlays every groove 130 of the tray.

The tray 32 is arranged to be moved laterally out of the cassette, that is through the open end 146, by pressing on the edge of the tab 132 once the cassette is in place within the device's housing. This aligns the groove 130 holding the stylet 34F, i.e., the first stylet to be ejected, with the catch 50 on the piston rod 46A and with the entrance port 112 on the cannula assembly 28. The device is now ready to take a tissue sample using stylet 34F as described earlier. Once that has been accomplished the device moves the tray into the cassette until that the next groove, i.e., the groove holding stylet 34E, is in axial alignment with the cannula 28 so that stylet 34E can be extended thereout to take a second tissue sample. Each operation of the device to take a sample results in the movement of the tray to a new position to bring the next stylet into alignment with the cannula for propulsion therethrough to take the next tissue sample.

The means for moving the tray 32 to sequentially align the stylets with the cannula 28 basically comprises a spring based pusher plate 152 (FIGS. 2 and 5). The plate 152 is arranged to engage the edge 32A of the tray disposed opposite to the projection 132. The pusher plate 152 is mounted on a pair of transversely extending rods 154 mounted in the housing. A pair of tension springs 156 are mounted within the housing secured to the plate 152 to bias the plate into an engagement with the edge 32A of the tray to sequentially carry the tray deeper into the cassette 26 after each tissue sampling operation. To that end, a ratchet mechanism is provided to hold the tray against the bias of the springs 156 so that the next successive grooves 130 having a stylet therein will be aligned with the cannula 28 after the previously stylet has taken a tissue sample.

The ratchet mechanism basically comprises a lever arm 160 mounted on a pivot rod 162 in the housing. The lever 160 includes a pawl-like projection or hook 164 arranged to sequentially engage respective detentes or grooves 166 in the proximal edge of the tray 32. Each groove has a respective detent or groove associated therewith. A biasing spring 168 is connected to the lever 160 and to the housing to tend to pull the pawl-like hook 164 into the detente or groove 66 aligned therewith. This action prevents the tray from moving with respect to the cassette notwithstanding the bias force provided by the pusher plate 152. A set screw 170 is provided in the lever arm 160 adjacent its connection to the spring 168. The set screw is arranged to abut an upstanding post 172 in the housing to enable the precise adjustment of the lever arm 160 to ensure that it operates properly with respect to the tray.

When a tray with each of its grooves having a stylet is located within the cassette and cassette is inserted into the device 20 and the projection 132 pressed to extend the tray partially outside of the cassette's open side, as described earlier, the pawl-like hook 164 of the lever arm 160 engages the detente or groove 166 of the tray closest to the projection 132. This action aligns the stylet 34F the passageway through cannula 28A. At this time, the block 104 at the proximal end of the stylet 34F will be located within the groove 106 in the catch 50 at the distal end of the piston rod 46A. Thus, the operation of the cylinder 42, as described heretofore, will propel the stylet 34F down its groove 130 so that the stylet's piercing tip 100 enters the flared entrance port 112 in the cannula. The continued motion of the piston in the distal direction causes the stylet to pass through the cannula's passageway and out its sharp end 110 to pierce the tissue to be sampled. Once the stylet has moved to the position wherein it is extended as far as it needs to be so that the tissue to be sampled will be in the stylet's groove, the cylinder 44 is automatically operated to immediately slide the cannula over the extended stylet to excise that tissue sample. These sequential extension actions occur at high speed (virtually instantaneously), so that the patient does not experience any pain or trauma. In this regard in accordance with a preferred aspect of this invention, the cylinders 42 and 44 are arranged to propel the stylet and cannula at speeds greater than the speed at which the body transmits pain impulses, e.g., at speeds in excess of 5-6 meters per second.

After the tissue within the stylet has been excised and the device's trigger released both the stylet and the cannula are retracted, as described heretofore. When the stylet 34F is retracted back into the housing it re-enters the groove 130 in the tray from which it was ejected. As can be seen clearly in FIGS. 3 and 4. The catch 50 includes a spur 180 thereon. This spur 180 is arranged to momentarily engage a leaf spring 182 mounted on the pivot lever 160 to momentarily pivot the lever 160 in the clockwise direction as view in FIG. 2, whereupon the pawl-like hook 164 moves out of the first of the detentes or grooves 166, whereupon the bias provided by the plate 152 slides the tray 32 one groove into the cassette, i.e., until the pawl-like extension 164 enters into the second detente or recess 166, whereupon the stylet 34E will be aligned with the cannula. At this time the block 104 of the stylet 34A will be within the groove 106 of the catch 50, so that when the operator depresses the trigger 58 the stylet 34E will be propelled out of the device in the same manner as described heretofore to take a second tissue sample.

As can be seen in FIG. 4, a pivotable, spring biased bar 184 is mounted within the housing to overlay the groove 130 in the tray that is then aligned with the cannula's passageway to prevent the stylet located in that groove from jumping out of the groove when the stylet is propelled forward. The pivoting bar 184 is biased by a tension spring 186 and is mounted on a bracket 188 located over the proximal end of the tray 32. The bar 184 is pivotable about a screw 190 so that it can be pivoted out of the way of the catch 50 passing thereby when the device is in the state shown in FIG. 4, i.e., when the stylet is extended fully out of the cannula so that the catch 50 engages the pivot arm 68. The biasing spring 186 returns the lever arm 184 to the position overlying the groove when the catch 50 has been retracted to the proximal position shown in FIG. 2.

As will be appreciated by those skilled in the art each time that the trigger 58 is released to enable the retraction of the stylet back into its associated groove in the tray, the spur 180 on the catch 50 will monetarily engages the spring 182 to thereby release the pawl-like hook 164 from the associated groove or detente 166 and thereby enable the pusher bar to move the tray one groove further into the cassette to align the next stylet with the cannula.

The cassette 26 is arranged to be releasably secured within the device's housing by means of a pair of latch assemblies 202 and 204. These assemblies are best seen in FIG. 2. Each latch assembly is of identical construction. The latch assembly 202 is mounted on one side of the device's housing 24 immediately adjacent the handle 30, while the latch assembly 204 is mounted on the housing portion of 24 adjacent the cannula assembly 28. The latch assembly 202 is arranged to releasable engage a flanged tab 206 screwed onto one end of the sidewall of the cassette body, while the latch assembly 204 is adapted to engage a similarly constructed tab 208 screwed on the sidewall at the other end of the cassette body. Each latch assembly basically comprises a sliding catch 208, an actuating pin 210, a biasing spring 212, and a cover plate 214 having a slot 216 therein. The catch 208 of assembly 202 includes a groove 218 adapted to receive the flanged portion of the tab 206 therein to hold the cassette in place. While the catch 208 of assembly 204 includes a similar groove to receive the flanged portion of tab 208. Thus, as should be appreciated by those skilled in the art when the cassette is inserted into the housing the flanged portion of tabs 206 and 208 ride along the tapered surface of the catches 208 of assemblies 202 and 204, respectively, thereby pushing those catches to the left and right, respectively, as shown in FIG. 2 until the flanges of the tabs 206 enter their recesses 218. At this time the biasing springs will hold the catches in place. In order to remove the cassette from the housing, all that is required is to push the pin 210 to the left as shown in FIG. 2 against the bias of spring 212, thereby releasing the flange of tab 206 from the groove 218. The latch assembly 204 is released from the flange of tab 208 in a similar manner so that the cassette can be grasped by the user and pulled out of the device's housing.

The overall operation of the automatic biopsy device 20 to take plural tissue samples will now be discussed. To that end, a cassette having fresh stylets therein is inserted into the housing by operating the latches 202 and 204. The stylet bearing tray is then pushed partially out of the cassette by pressing on its projection 132 against the bias of the biasing plate so that the pawl-like hook 164 mates with the detent of the groove 130 in which the first stylet to be ejected, i.e., stylet 34F, is located.

The surgeon then manipulates the device 20 by its handle 30 so that the free end of the cannula 28A inserted in the patient's body is located at a position adjacent the tissue to be sampled. It should be pointed out at this juncture that when the device 20 is to be introduced through a lumen or other opening in the patient's body, e.g., transurethrally, transrectally, a tubular shield 10, (shown by the phantom lines in FIG. 1) is placed over the cannula 28A to protect the patient from its sharp end 110.

The aiming of the tip of the cannula to the desired position and orientation is preferably effected by use of ultrasound or any other form of imaging.

Some present medical procedures call for multiple, e.g., six, biopsy samples of a patient. The device 20 of this invention enables the surgeon to take such samples without having to withdraw the device from the patient's body or to reload it with stylets. In this regard, with the device disclosed herein the surgeon can quickly and easily take up to six tissue samples by merely aiming instrument and pressing its trigger for each sample to be taken. Moreover, the stylets are quite long, e.g., 170 mm, and are arranged to extend out of the cannula by a substantial distance, so that the tip 110 of the cannula need not be manually inserted in the organ to be tested, as has characterized the prior art. Thus, in a number of cases and depending upon the length of the stylet used, there may be no need to manually puncture the organ or tissue from which the sample is to be taken, i.e., the tip of the cannula need not be manual pushed by the surgeon into the organ or tissue. Instead, the pneumatic cylinder will provide such action at high speed thereby reducing pain or trauma.

For the taking of biopsies through the surface of the body, e.g., to biopsy organs such as the liver or kidney, the local area of the body surface is first anesthetized and the skin and underlying tissue is pierced by manually pressing the cannula 28 so that its piercing tip 110 enters into the patient's body to a location adjacent the tissue/organ to be sampled. The device may then be operated as described earlier, i.e., depressing the trigger 58 in sequence to cause the stylets 34A to 34F to take tissue samples in sequence. This operation can accomplished virtually as fast as the trigger can be depressed, released, redepressed, re-released, and so on.

After all the biopsies have been taken, the cassette 26 may be removed from the device 20 by releasing latching members 202 and 204. The removed cassette, with its tray of tissue bearing stylets, can then be transported to the laboratory safely (shown by the phantom lines in FIG. 5) and without the danger of injury to personnel or to the tissue samples. Moreover, the cassette can be immersed in a fluid which prevent the samples from drying out prior to testing. If additional tissue samples are needed of the patient a new cassette can be inserted in the device while the device remains in place with the cannula extending into the patient's body.

The cassette, its tray and the stylets held therein, and the cannula assembly are preferably in the form of a replaceable, disposable kit arranged for use with the automatic biopsy device 20 described heretofore. Thus, no manual handling of the stylets is required, and they can be maintained in sterile condition.

As stated previously, the embodiment shown herein uses a pneumatic system, operated by compressed carbon dioxide, to drive the stylets and cannula forward and then in reverse. However, the invention will work just as well with other gases or with other types of powered drives, such as hydraulic or electric. Furthermore, although the embodiment disclosed herein shows a cassette tray with six stylets for the taking of six biopsies, cassettes with more or less stylets can be provided. Moreover, the length of the stylets may be selected to control the depth of penetration provided thereby. Thus, for some applications shorter stylets may be used and for other applications longer stylets may be used.

As should be appreciated from the foregoing, an automatic biopsy device of this invention enables a surgeon, using one hand, to take a plurality of biopsies in rapid sequence by successively depressing a trigger. The device may be powered by electric, pneumatic, hydraulic or other means. At the conclusion of the taking of the biopsies, the cassette with the stylets 34A-34F having tissue samples 200 therein can be removed by merely releasing the latches 202 and 204. The cassette can then be taken to the laboratory for study and analysis, with the cassette's body protecting the samples and the personnel handling the samples.

Moreover, the device 20 of this invention does not require the manual piercing of the tissue to take the specimen and assures that the biopsy is taken at the proper location, because the length of the stylets determine the penetration into the body and into the organ to be sampled. This is particularly advantageous because existing devices do not protect against under-insertion of the stylet, which results in a sampling of the wrong tissues, or over-insertion of the stylets which can cause damage to the organ.

Without further elaboration the foregoing will so fully illustrate our invention that others may by applying current or future knowledge, readily adapt the same for use under the various conditions of service.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3949747 *3 Oct 197413 Apr 1976Hevesy William KBiopsy set
US4476864 *29 Sep 198216 Oct 1984Jirayr TezelCombined multiple punch and single punch hair transplant cutting device
US4766907 *15 Oct 198630 Aug 1988Groot William J DeApparatus and method for performing a biopsy and a device for manipulating same
US4907599 *15 Aug 198813 Mar 1990Hart Enterprises, Inc.Soft tissue core biopsy instrument
US4946035 *17 Nov 19897 Aug 1990Ivy Laboratories, Inc.Implanter applicator
US5012818 *4 May 19897 May 1991Joishy Suresh KTwo in one bone marrow surgical needle
US5133359 *8 Feb 199128 Jul 1992Du-Kedem Technologies Ltd.Hard tissue biopsy instrument with rotary drive
US5143084 *16 Nov 19901 Sep 1992Spacelabs, Inc.Disposable cartridge for sampling and analyzing body fluids
US5156160 *22 Jun 199020 Oct 1992Bennett Lavon LAdjustable biopsy device capable of controlling tissue sample size collected thereby
EP0269164A1 *6 Nov 19871 Jun 1988Staalkat B.V.Tattooing device
Non-Patent Citations
Reference
1Quinton Instruments "Operator Manual: Model 7 mm Hydraulic Biopsy Instrument" pp. 1-15, Seattle, Washington, Jun. 1976.
2 *Quinton Instruments Operator Manual: Model 7 mm Hydraulic Biopsy Instrument pp. 1 15, Seattle, Washington, Jun. 1976.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US5526822 *24 Mar 199418 Jun 1996Biopsys Medical, Inc.Method and apparatus for automated biopsy and collection of soft tissue
US5542432 *1 Feb 19946 Aug 1996Symbiosis CorporationEndoscopic multiple sample bioptome
US5564436 *21 Sep 199515 Oct 1996Hakky; Said I.Automatic rotating cassette multiple biopsy device
US5649547 *10 Feb 199522 Jul 1997Biopsys Medical, Inc.Methods and devices for automated biopsy and collection of soft tissue
US5775333 *13 May 19967 Jul 1998Ethicon Endo-Surgery, Inc.Apparatus for automated biopsy and collection of soft tissue
US5810744 *18 Nov 199722 Sep 1998Boston Scientific CorporationInstrument for collecting multiple biopsy specimens
US5871453 *29 Aug 199616 Feb 1999Boston Scientific CorporationMoveable sample tube multiple biopsy sampling device
US5928164 *9 Jan 199827 Jul 1999Ethicon Endo-Surgery, Inc.Apparatus for automated biopsy and collection of soft tissue
US5944673 *14 May 199831 Aug 1999Ethicon Endo-Surgery, Inc.Biopsy instrument with multi-port needle
US5951488 *3 Dec 199614 Sep 1999Symbiosis CorporationEndoscopic multiple sample bioptome
US5954670 *26 Feb 199821 Sep 1999Baker; Gary H.Mandrel-guided tandem multiple channel biopsy guide device and method of use
US5964716 *14 May 199812 Oct 1999Ethicon Endo-Surgery, Inc.Method of use for a multi-port biopsy instrument
US5980469 *9 Jan 19989 Nov 1999Ethicon Endo-Surgery, Inc.Method and apparatus for automated biopsy and collection of soft tissue
US6017316 *18 Jun 199725 Jan 2000Biopsys MedicalVacuum control system and method for automated biopsy device
US6022324 *2 Jan 19988 Feb 2000Skinner; Bruce A. J.Biopsy instrument
US6053877 *17 Nov 199825 Apr 2000Boston Scientific CorporationMovable sample tube multiple biopsy sampling device
US6142957 *27 Jan 19977 Nov 2000Boston Scientific CorporationMultiple biopsy sampling device
US61936714 May 199827 Feb 2001Symbiosis CorporationEndoscopic multiple sample bioptome with enhanced biting action
US6273861 *1 Sep 199814 Aug 2001Scimed Life Systems, Inc.Pneumatically actuated tissue sampling device
US63157377 Feb 200013 Nov 2001Biopsy Needle Limited PartnershipBiopsy needle for a biopsy instrument
US642848621 Dec 20006 Aug 2002Ethicon Endo-Surgery, Inc.Methods and devices for automated biopsy and collection of soft tissue
US6551255 *3 May 200122 Apr 2003Sanarus Medical, Inc.Device for biopsy of tumors
US656198820 Nov 200013 May 2003Symbiosis CorporationEndoscopic multiple sample bioptome with enhanced biting action
US666555418 Nov 199916 Dec 2003Steve T. CharlesMedical manipulator for use with an imaging device
US66730238 Mar 20026 Jan 2004Stryker Puerto Rico LimitedMicro-invasive breast biopsy device
US667666916 Jan 200213 Jan 2004Microdexterity Systems, Inc.Surgical manipulator
US67028059 Nov 20009 Mar 2004Microdexterity Systems, Inc.Manipulator
US671277311 Sep 200030 Mar 2004Tyco Healthcare Group LpBiopsy system
US672310622 Nov 199920 Apr 2004Microdexterity Systems, Inc.Surgical manipulator
US722642411 Feb 20035 Jun 2007Ethicon Endo-Surgery, Inc.Methods and devices for automated biopsy and collection of soft tissue
US731167222 Apr 200325 Dec 2007Sanarus Medical, Inc.Device for biopsy of tumors
US740214012 Feb 200422 Jul 2008Sanarus Medical, Inc.Rotational core biopsy device with liquid cryogen adhesion probe
US757555620 Nov 200718 Aug 2009Ethicon Endo-Surgery, Inc.Deployment device interface for biopsy device
US759179030 Jul 200722 Sep 2009Stryker Puerto Rico LimitedMicro-invasive device
US761147522 Jul 20083 Nov 2009Sanarus Technologies, LlcRotational core biopsy device with liquid cryogen adhesion probe
US762538313 Jan 20041 Dec 2009Microdexterity Systems, Inc.Surgical manipulator
US764846624 Oct 200719 Jan 2010Ethicon Endo-Surgery, Inc.Manually rotatable piercer
US779441131 Oct 200714 Sep 2010Devicor Medical Products, Inc.Methods and devices for automated biopsy and collection of soft tissue
US780683520 Nov 20075 Oct 2010Devicor Medical Products, Inc.Biopsy device with sharps reduction feature
US782874817 Aug 20069 Nov 2010Devicor Medical Products, Inc.Vacuum syringe assisted biopsy device
US785470717 Apr 200721 Dec 2010Devicor Medical Products, Inc.Tissue sample revolver drum biopsy device
US785803820 Nov 200728 Dec 2010Devicor Medical Products, Inc.Biopsy device with illuminated tissue holder
US78671735 Aug 200511 Jan 2011Devicor Medical Products, Inc.Biopsy device with replaceable probe and incorporating vibration insertion assist and static vacuum source sample stacking retrieval
US789224327 Apr 200722 Feb 2011Microdexterity Systems, Inc.Surgical manipulator
US789681725 Jul 20071 Mar 2011Devicor Medical Products, Inc.Biopsy device with manually rotated sample barrel
US79188034 Aug 20095 Apr 2011Devicor Medical Products, Inc.Methods and devices for automated biopsy and collection of soft tissue
US791880416 Jun 20065 Apr 2011Devicor Medical Products, Inc.Biopsy device with vacuum assisted bleeding control
US793878620 Nov 200710 May 2011Devicor Medical Products, Inc.Vacuum timing algorithm for biopsy device
US795030623 Feb 200731 May 2011Microdexterity Systems, Inc.Manipulator
US798104920 Nov 200719 Jul 2011Devicor Medical Products, Inc.Engagement interface for biopsy system vacuum module
US79810506 Feb 200719 Jul 2011Devicor Medical Products, Inc.Methods and devices for automated biopsy and collection of soft tissue
US80027135 Mar 200323 Aug 2011C. R. Bard, Inc.Biopsy device and insertable biopsy needle module
US80121021 Mar 20076 Sep 2011C. R. Bard, Inc.Quick cycle biopsy system
US80167721 Mar 200713 Sep 2011C. R. Bard, Inc.Biopsy device for removing tissue specimens using a vacuum
US803862712 Jan 201018 Oct 2011Devicor Medical Products, Inc.Biopsy device with translating valve mechanism
US804328713 May 200525 Oct 2011Kimberly-Clark Inc.Method of treating biological tissue
US805261430 Dec 20098 Nov 2011C. R. Bard, Inc.Biopsy device having a vacuum pump
US80526158 Jul 20058 Nov 2011Bard Peripheral Vascular, Inc.Length detection system for biopsy device
US805261620 Nov 20078 Nov 2011Devicor Medical Products, Inc.Biopsy device with fine pitch drive train
US80969577 Mar 200617 Jan 2012Kimberly-Clark Inc.Method for removing material from a patient's body
US810988517 Mar 20037 Feb 2012C. R. Bard, Inc.Biopsy device for removing tissue specimens using a vacuum
US812857716 Jan 20076 Mar 2012Tyco Healthcare Group LpBiopsy system
US81577448 Jul 200517 Apr 2012Bard Peripheral Vascular, Inc.Tissue sample flushing system for biopsy device
US81628515 Oct 201024 Apr 2012C. R. Bard, Inc.Biopsy needle system having a pressure generating unit
US81727731 Mar 20078 May 2012C. R. Bard, Inc.Biopsy device and biopsy needle module that can be inserted into the biopsy device
US8187204 *14 Feb 200829 May 2012Suros Surgical Systems, Inc.Surgical device and method for using same
US82015637 Mar 200619 Jun 2012Kimberly-Clark, Inc.Method for introducing materials into a body
US82022291 Oct 200719 Jun 2012Suros Surgical Systems, Inc.Surgical device
US82315452 Nov 200931 Jul 2012Scion Medical Technologies, LlcRotational core biopsy device with liquid cryogen adhesion probe
US82359133 Dec 20107 Aug 2012Devicor Medical Products, Inc.Biopsy device with translating valve member
US824122613 Jan 201014 Aug 2012Devicor Medical Products, Inc.Biopsy device with rotatable tissue sample holder
US825191620 Nov 200728 Aug 2012Devicor Medical Products, Inc.Revolving tissue sample holder for biopsy device
US825191717 Aug 200728 Aug 2012C. R. Bard, Inc.Self-contained handheld biopsy needle
US826258510 Aug 200611 Sep 2012C. R. Bard, Inc.Single-insertion, multiple sampling biopsy device with linear drive
US826258623 Oct 200711 Sep 2012C. R. Bard, Inc.Large sample low aspect ratio biopsy needle
US826786810 Aug 200618 Sep 2012C. R. Bard, Inc.Single-insertion, multiple sample biopsy device with integrated markers
US828257410 Aug 20069 Oct 2012C. R. Bard, Inc.Single-insertion, multiple sampling biopsy device usable with various transport systems and integrated markers
US828389025 Sep 20099 Oct 2012Bard Peripheral Vascular, Inc.Charging station for battery powered biopsy apparatus
US83666368 Jul 20055 Feb 2013Bard Peripheral Vascular, Inc.Firing system for biopsy device
US843082429 Oct 200930 Apr 2013Bard Peripheral Vascular, Inc.Biopsy driver assembly having a control circuit for conserving battery power
US845453120 Nov 20074 Jun 2013Devicor Medical Products, Inc.Icon-based user interface on biopsy system control module
US845453211 Nov 20104 Jun 2013Devicor Medical Products, Inc.Clutch and valving system for tetherless biopsy device
US848059520 Nov 20079 Jul 2013Devicor Medical Products, Inc.Biopsy device with motorized needle cocking
US84859875 Oct 200716 Jul 2013Bard Peripheral Vascular, Inc.Tissue handling system with reduced operator exposure
US84859891 Sep 200916 Jul 2013Bard Peripheral Vascular, Inc.Biopsy apparatus having a tissue sample retrieval mechanism
US849160422 Dec 201023 Jul 2013Microdexterity Systems, Inc.Manipulator
US850554519 Jun 201213 Aug 2013Kimberly-Clark, Inc.Method of and device for introducing materials into a body
US851803613 Nov 200727 Aug 2013Kimberly-Clark Inc.Electrosurgical tissue treatment method
US856833511 Feb 201129 Oct 2013Devicor Medical Products, Inc.Biopsy device with vacuum assisted bleeding control
US8591435 *11 Mar 201126 Nov 2013Devicor Medical Products, Inc.Methods and devices for biopsy and collection of soft tissue
US859720517 Jul 20123 Dec 2013C. R. Bard, Inc.Biopsy device
US859720612 Oct 20093 Dec 2013Bard Peripheral Vascular, Inc.Biopsy probe assembly having a mechanism to prevent misalignment of components prior to installation
US869079316 Mar 20098 Apr 2014C. R. Bard, Inc.Biopsy device having rotational cutting
US870262129 Apr 201122 Apr 2014C.R. Bard, Inc.Quick cycle biopsy system
US870262210 Aug 201122 Apr 2014C.R. Bard, Inc.Quick cycle biopsy system
US870262318 Dec 200822 Apr 2014Devicor Medical Products, Inc.Biopsy device with discrete tissue chambers
US870892815 Apr 200929 Apr 2014Bard Peripheral Vascular, Inc.Biopsy apparatus having integrated fluid management
US870892912 Mar 201329 Apr 2014Bard Peripheral Vascular, Inc.Biopsy apparatus having integrated fluid management
US870893013 Mar 201329 Apr 2014Bard Peripheral Vascular, Inc.Biopsy apparatus having integrated fluid management
US872156328 Aug 201213 May 2014C. R. Bard, Inc.Single-insertion, multiple sample biopsy device with integrated markers
US872800328 Aug 201220 May 2014C.R. Bard Inc.Single insertion, multiple sample biopsy device with integrated markers
US872800412 Apr 201220 May 2014C.R. Bard, Inc.Biopsy needle system having a pressure generating unit
US874089712 Aug 20133 Jun 2014Kimberly-Clark, Inc.Electrosurgical tissue treatment method and device
US877120022 Aug 20128 Jul 2014C.R. Bard, Inc.Single insertion, multiple sampling biopsy device with linear drive
US879027614 Mar 201329 Jul 2014Devicor Medical Products, Inc.Methods and devices for biopsy and collection of soft tissue
US880819714 Mar 201319 Aug 2014Bard Peripheral Vascular, Inc.Biopsy driver assembly having a control circuit for conserving battery power
US880819914 Mar 201319 Aug 2014Devicor Medical Products, Inc.Methods and devices for biopsy and collection of soft tissue
US880820024 Oct 201219 Aug 2014Suros Surgical Systems, Inc.Surgical device and method of using same
US884554819 Apr 201230 Sep 2014Devicor Medical Products, Inc.Cutter drive assembly for biopsy device
US88584637 Nov 201314 Oct 2014C. R. Bard, Inc.Biopsy device
US88646808 Jul 200521 Oct 2014Bard Peripheral Vascular, Inc.Transport system for biopsy device
US88646821 May 201321 Oct 2014Devicor Medical Products, Inc.Clutch and valving system for tetherless biopsy device
US888275514 Apr 200511 Nov 2014Kimberly-Clark Inc.Electrosurgical device for treatment of tissue
US890594317 May 20129 Dec 2014Devicor Medical Products, Inc.Biopsy device with rotatable tissue sample holder
US89113817 Jun 201216 Dec 2014Devicor Medical Products, Inc.Biopsy device with translating valve member
US892652727 Mar 20126 Jan 2015Bard Peripheral Vascular, Inc.Tissue sample flushing system for biopsy device
US893223322 May 200613 Jan 2015Devicor Medical Products, Inc.MRI biopsy device
US895120813 Aug 201210 Feb 2015C. R. Bard, Inc.Self-contained handheld biopsy needle
US895120918 Apr 201210 Feb 2015C. R. Bard, Inc.Biopsy device and insertable biopsy needle module
US89563067 May 201017 Feb 2015Devicor Medical Products, Inc.Biopsy device with integral vacuum assist and tissue sample and fluid capturing canister
US896143010 Sep 201224 Feb 2015C.R. Bard, Inc.Single-insertion, multiple sampling biopsy device usable with various transport systems and integrated markers
US89682125 Jun 20133 Mar 2015Devicor Medical Products, Inc.Biopsy device with motorized needle cocking
US89797696 Feb 201317 Mar 2015Devicor Medical Products, Inc.Biopsy device with vacuum assisted bleeding control
US899244026 Sep 201131 Mar 2015Bard Peripheral Vascular, Inc.Length detection system for biopsy device
US900513630 Sep 201314 Apr 2015Devicor Medical Products, Inc.Biopsy device with vacuum assisted bleeding control
US903963420 Nov 200726 May 2015Devicor Medical Products, Inc.Biopsy device tissue sample holder rotation control
US907250229 Dec 20117 Jul 2015C. R. Bard, Inc.Disposable biopsy unit
US90953267 Dec 20074 Aug 2015Devicor Medical Products, Inc.Biopsy system with vacuum control module
US916174321 Apr 201420 Oct 2015C. R. Bard, Inc.Quick cycle biopsy system
US917364112 Aug 20093 Nov 2015C. R. Bard, Inc.Biopsy apparatus having integrated thumbwheel mechanism for manual rotation of biopsy cannula
US9259195 *17 Jun 200416 Feb 2016Koninklijke Philips N.V.Remotely held needle guide for CT fluoroscopy
US926548525 Feb 201423 Feb 2016Devicor Medical Products, Inc.Biopsy device with integral vacuum assist and tissue sample and fluid capturing canister
US928294928 Sep 201215 Mar 2016Bard Peripheral Vascular, Inc.Charging station for battery powered biopsy apparatus
US934545720 Nov 200724 May 2016Devicor Medical Products, Inc.Presentation of biopsy sample by biopsy device
US93454587 Oct 201424 May 2016Bard Peripheral Vascular, Inc.Transport system for biopsy device
US939299912 Dec 201419 Jul 2016Devicor Medical Products, Inc.MRI biopsy device
US941481411 Nov 201416 Aug 2016Devicor Medical Products, Inc.Biopsy device with rotatable tissue sample holder
US94210023 Jun 201523 Aug 2016C. R. Bard, Inc.Disposable biopsy unit
US943340324 Apr 20136 Sep 2016Devicor Medical Products, Inc.Icon-based user interface on biopsy system control module
US943963123 Dec 201413 Sep 2016C. R. Bard, Inc.Biopsy device and insertable biopsy needle module
US943963221 Jan 201513 Sep 2016C. R. Bard, Inc.Self-contained handheld biopsy needle
US94568098 Dec 20144 Oct 2016Bard Peripheral Vascular, Inc.Tissue sample flushing system for biopsy device
US946842428 Aug 201418 Oct 2016Devicor Medical Products, Inc.Cutter drive assembly for biopsy device
US946842512 Jan 201618 Oct 2016Devicor Medical Products, Inc.Biopsy device with integral vacuum assist and tissue sample and fluid capturing canister
US947457331 Dec 201325 Oct 2016Avent, Inc.Electrosurgical tissue treatment device
US950445315 Jun 201629 Nov 2016Devicor Medical Products, Inc.MRI biopsy device
US956604515 Oct 201414 Feb 2017Bard Peripheral Vascular, Inc.Tissue handling system with reduced operator exposure
US963877030 Dec 20052 May 2017Devicor Medical Products, Inc.MRI biopsy apparatus incorporating an imageable penetrating portion
US96555998 Oct 201523 May 2017C. R. Bard, Inc.Biopsy apparatus having integrated thumbwheel mechanism for manual rotation of biopsy cannula
US975710015 Sep 201612 Sep 2017Devicor Medical Products, Inc.Biopsy device with integral vacuum assist and tissue sample and fluid capturing canister
US20020177837 *24 Apr 200228 Nov 2002Barnitz James C.Cassettes supporting intracranial perfusions
US20030195436 *22 Apr 200316 Oct 2003Sanarus Medical IncorporatedDevice for biopsy of tumors
US20040019299 *11 Feb 200329 Jan 2004Ritchart Mark A.Methods and devices for automated biopsy and collection of soft tissue
US20040024385 *27 Mar 20035 Feb 2004Microdexterity Systems, Inc.Manipulator
US20040059254 *22 Sep 200325 Mar 2004Stryker Puerto Rico LimitedMicro-invasive breast biopsy device
US20040162564 *13 Jan 200419 Aug 2004Microdexterity Systems, Inc.Surgical manipulator
US20050075581 *22 Apr 20037 Apr 2005Jeffrey SchwindtPneumatic circuit
US20050165328 *5 Mar 200328 Jul 2005Norbert HeskeBiopsy device and biopsy needle module that can be inserted into the biopsy device
US20050177211 *14 Apr 200511 Aug 2005Baylis Medical Company Inc.Electrosurgical device for treatment of tissue
US20050182394 *12 Feb 200418 Aug 2005Spero Richard K.Rotational core biopsy device with liquid cryogen adhesion probe
US20050203439 *17 Mar 200315 Sep 2005Norbert HeskeVacuum biopsy device
US20050209530 *20 May 200522 Sep 2005Stryker Puerto Rico LimitedMicro-invasive tissue removal device
US20060149147 *17 Jun 20046 Jul 2006Yanof Jeffrey HRemotely held needle guide for ct fluoroscopy
US20060167377 *24 Mar 200627 Jul 2006Ritchart Mark AMethods and devices for automated biopsy and collection of soft tissue
US20060206129 *7 Mar 200614 Sep 2006Baylis Medical Company Inc.Tissue removal apparatus
US20060206130 *7 Mar 200614 Sep 2006Baylis Medical Company Inc.Tissue removal apparatus
US20060206131 *7 Mar 200614 Sep 2006Baylis Medical Company Inc.Method for introducing materials into a body
US20060206133 *7 Mar 200614 Sep 2006Baylis Medical Company Inc.Method for removing material from a patient's body
US20070032741 *5 Aug 20058 Feb 2007Hibner John ABiopsy device with replaceable probe and incorporating vibration insertion assist and static vacuum source sample stacking retrieval
US20070032742 *16 Jun 20068 Feb 2007Monson Gavin MBiopsy Device with Vacuum Assisted Bleeding Control
US20070032743 *17 Aug 20068 Feb 2007Hibner John AVacuum Syringe Assisted Biopsy Device
US20070055173 *23 Aug 20058 Mar 2007Sanarus Medical, Inc.Rotational core biopsy device with liquid cryogen adhesion probe
US20070156064 *6 Feb 20075 Jul 2007Ritchart Mark AMethods and Devices for Automated Biopsy and Collection of Soft Tissue
US20070239067 *17 Apr 200711 Oct 2007Hibner John ATissue Sample Revolver Drum Biopsy Device
US20070250078 *27 Apr 200725 Oct 2007Microdexterity Systems, Inc.Surgical manipulator
US20070255172 *5 Jun 20071 Nov 2007Stryker Puerto Rico LimitedMicro-invasive nucleotomy device and method
US20080004545 *25 Jul 20073 Jan 2008Garrison William ATrigger Fired Radial Plate Specimen Retrieval Biopsy Instrument
US20080065062 *13 Nov 200713 Mar 2008Baylis Medical Company Inc.Electrosurgical tissue treatment method
US20080071193 *8 Jul 200520 Mar 2008Claus ReuberLength Detection System for Biopsy Device
US20080103411 *26 Dec 20071 May 2008Sanarus Medical Inc.Device for Biopsy of Tumors
US20080132804 *24 Oct 20075 Jun 2008Stephens Randy RRemote Thumbwheel For Surgical Biopsy Device
US20080154151 *31 Oct 200726 Jun 2008Ritchart Mark AMethods and Devices for Automated Biopsy and Collection of Soft Tissue
US20080183099 *8 Jul 200531 Jul 2008Martin Bondo JorgensenTissue Sample Flushing System for Biopsy Device
US20080195066 *20 Nov 200714 Aug 2008Speeg Trevor W VRevolving Tissue Sample Holder For Biopsy Device
US20080281225 *22 Jul 200813 Nov 2008Spero Richard KRotational Core Biopsy Device With Liquid Cryogen Adhesion Probe
US20080306406 *10 Aug 200611 Dec 2008C.R. Bard Inc.Single-Insertion, Multiple Sampling Biopsy Device With Linear Drive
US20080319341 *10 Aug 200625 Dec 2008C.R. Bard Inc.Single-Insertion, Multiple Sample Biopsy Device with Integrated Markers
US20090088664 *14 Feb 20082 Apr 2009Miller Michael ESurgical device and method for using same
US20090131817 *20 Nov 200721 May 2009Speeg Trevor W VDeployment device interface for biopsy device
US20090131820 *20 Nov 200721 May 2009Speeg Trevor W VIcon-Based User Interface On Biopsy System Control Module
US20090131821 *20 Nov 200721 May 2009Speeg Trevor W VGraphical User Interface For Biopsy System Control Module
US20090131823 *20 Nov 200721 May 2009Andreyko Michael JBiopsy Device With Illuminated Tissue Holder
US20090227893 *10 Aug 200610 Sep 2009C.R. Bard Inc.Single-insertion, multiple sampling biopsy device usable with various transport systems and integrated markers
US20100030108 *23 Oct 20074 Feb 2010C.R. Bard, Inc.Large sample low aspect ratio biopsy needle
US20100049087 *2 Nov 200925 Feb 2010Sanarus Technologies, LlcRotational Core Biopsy Device with Liquid Cryogen Adhesion Probe
US20100063415 *4 Aug 200911 Mar 2010Ritchart Mark AMethods and devices for automated biopsy and collection of soft tissue
US20100106053 *5 Oct 200729 Apr 2010Videbaek KarstenTissue handling system with reduced operator exposure
US20100113971 *12 Jan 20106 May 2010Ethicon Endo-Surgery, Inc.Biopsy Device with Translating Valve Mechanism
US20100113973 *13 Jan 20106 May 2010Ethicon Endo-Surgery, Inc.Biopsy Device with Rotatable Tissue Sample Holder
US20100160824 *18 Dec 200824 Jun 2010Parihar Shailendra KBiopsy Device with Discrete Tissue Chambers
US20100210966 *8 Jul 200519 Aug 2010Bard Peripheral Vascular, Inc.Firing System For Biopsy Device
US20100228146 *7 May 20109 Sep 2010Hibner John ABiopsy Device With Integral vacuum Assist And Tissue Sample And Fluid Capturing Canister
US20100234760 *17 Aug 200716 Sep 2010Dan AlmazanSelf-contained Handheld Biopsy Needle
US20100275718 *29 Apr 20094 Nov 2010Microdexterity Systems, Inc.Manipulator
US20110021946 *5 Oct 201027 Jan 2011C.R. Bard, Inc.Biopsy needle system having a pressure generating unit
US20110054350 *1 Sep 20093 Mar 2011Videbaek KarstenBiopsy apparatus having a tissue sample retrieval mechanism
US20110071433 *3 Dec 201024 Mar 2011Devicor Medical Products, Inc.Biopsy device with translating valve member
US20110077551 *25 Sep 200931 Mar 2011Videbaek KarstenCharging station for battery powered biopsy apparatus
US20110087131 *12 Oct 200914 Apr 2011Videbaek KarstenBiopsy probe assembly having a mechanism to prevent misalignment of components prior to installation
US20110088500 *22 Dec 201021 Apr 2011Microdexterity Systems, Inc.Manipulator
US20110105945 *29 Oct 20095 May 2011Videbaek KarstenBiopsy driver assembly having a control circuit for conserving battery power
US20110105946 *31 Oct 20095 May 2011Sorensen Peter LBiopsy system with infrared communications
US20110144532 *11 Feb 201116 Jun 2011Devicor Medical Products, Inc.Biopsy device with vacuum assisted bleeding control
US20110160611 *11 Mar 201130 Jun 2011Devicor Medical Products, Inc.Methods and devices for biopsy and collection of soft tissue
US20110208085 *29 Apr 201125 Aug 2011C.R. Bard, Inc.Quick cycle biopsy system
US20150141867 *17 Nov 201421 May 2015Devicor Medical Products, Inc.Biopsy device with translating valve member
USD64097725 Sep 20095 Jul 2011C. R. Bard, Inc.Charging station for a battery operated biopsy device
USRE4613516 Jul 20126 Sep 2016Devicor Medical Products, Inc.Vacuum syringe assisted biopsy device
EP1834590A3 *20 Mar 199528 Nov 2007Ethicon Endo-Surgery, Inc.Apparatus for automated biopsy and collection of soft tissue
EP3103397A1 *30 Mar 200714 Dec 2016Bard Peripheral Vascular Inc.Tissue sample collection system with visual sample inspection
WO1995025465A2 *20 Mar 199528 Sep 1995Biopsys Medical, Inc.Automated biopsy apparatus
WO1995025465A3 *20 Mar 199515 Feb 1996Biopsys Medical IncAutomated biopsy apparatus
WO1996024289A2 *8 Feb 199615 Aug 1996Biopsys Medical, Inc.Methods and devices for automated biopsy and collection of soft tissue
WO1996024289A3 *8 Feb 199631 Oct 1996Biopsys Medical IncMethods and devices for automated biopsy and collection of soft tissue
WO1997010752A1 *6 Mar 199627 Mar 1997Hakky Said IAutomatic biopsy device
WO1998033435A1 *27 Jan 19986 Aug 1998Boston Scientific CorporationPneumatically actuated tissue sampling device
WO1999034734A130 Dec 199815 Jul 1999Biopsy Needle Limited PartnershipBiopsy instrument
WO2002085430A2 *24 Apr 200231 Oct 2002Neuron Therapeutics, Inc.Cassettes supporting intracranial perfusions
WO2002085430A3 *24 Apr 200220 Feb 2003Neuron Therapeutics IncCassettes supporting intracranial perfusions
WO2007019152A3 *2 Aug 20063 Jan 2008Ethicon Endo Surgery IncBiopsy device with replaceable probe and incorporating vibration insertion assist and static vacuum source sample stacking retrieval
WO2007025106A2 *23 Aug 20061 Mar 2007Sanarus Medical, Inc.Rotational core biopsy device with liquid cryogen adhesion probe
WO2007025106A3 *23 Aug 200625 Oct 2007Stephen L DaleoRotational core biopsy device with liquid cryogen adhesion probe
WO2007112751A2 *30 Mar 200711 Oct 2007Sonion Roskilde A/STissue sample collection system with visual sample inspection
WO2007112751A3 *30 Mar 20078 May 2008Sonion Roskilde AsTissue sample collection system with visual sample inspection
Classifications
U.S. Classification600/567, 600/564, 606/171
International ClassificationA61B10/00, A61B10/02, A61B17/00
Cooperative ClassificationA61B2017/00539, A61B2010/0208, A61B10/0275
European ClassificationA61B10/02P6N
Legal Events
DateCodeEventDescription
18 Mar 1997REMIMaintenance fee reminder mailed
22 May 1997SULPSurcharge for late payment
22 May 1997FPAYFee payment
Year of fee payment: 4
12 Jan 1998ASAssignment
Owner name: 3H INCORPORATED, FLORIDA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HAKKI, A-HAMID;HUDSON, PERRY B.;HAKKY, SAID;REEL/FRAME:008896/0866
Effective date: 19971222
8 Jun 2000ASAssignment
Owner name: HAKKY, SAID I., FLORIDA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:3H, INC.;REEL/FRAME:010859/0612
Effective date: 20000530
Owner name: HUDSON, PERRY B., FLORIDA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:3H, INC.;REEL/FRAME:010859/0612
Effective date: 20000530
6 Mar 2001REMIMaintenance fee reminder mailed
12 Aug 2001LAPSLapse for failure to pay maintenance fees
16 Oct 2001FPExpired due to failure to pay maintenance fee
Effective date: 20010810