US4985705A - Method and apparatus for compiling and evaluating local traffic data - Google Patents

Method and apparatus for compiling and evaluating local traffic data Download PDF

Info

Publication number
US4985705A
US4985705A US07/328,891 US32889189A US4985705A US 4985705 A US4985705 A US 4985705A US 32889189 A US32889189 A US 32889189A US 4985705 A US4985705 A US 4985705A
Authority
US
United States
Prior art keywords
signal
frequency
radar sensor
output signal
processing unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US07/328,891
Inventor
Walter Stammler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Telefunken Systemtechnik AG
Original Assignee
Telefunken Systemtechnik AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telefunken Systemtechnik AG filed Critical Telefunken Systemtechnik AG
Assigned to LICENTIA PATENT-VERWALTUNGS-GMBH reassignment LICENTIA PATENT-VERWALTUNGS-GMBH ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: STAMMLER, WALTER
Assigned to TELEFUNKEN SYSTEMTECHNIK GMBH reassignment TELEFUNKEN SYSTEMTECHNIK GMBH ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: LICENTIA PATENT-VERWAL TUNGS-GMBH
Application granted granted Critical
Publication of US4985705A publication Critical patent/US4985705A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/015Detecting movement of traffic to be counted or controlled with provision for distinguishing between two or more types of vehicles, e.g. between motor-cars and cycles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/583Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/91Radar or analogous systems specially adapted for specific applications for traffic control
    • G01S13/92Radar or analogous systems specially adapted for specific applications for traffic control for velocity measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/003Transmission of data between radar, sonar or lidar systems and remote stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/415Identification of targets based on measurements of movement associated with the target
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions

Definitions

  • the present invention relates to a method of compiling and evaluating local traffic data, and to an apparatus for implementing the method. More particularly, the invention is directed to a method and apparatus of the type wherein a radar sensor is connected to an evaluation device by way of a transmission device; wherein the radar sensor emits a continuous signal at a constant frequency and amplitude and at a fixed, vertical angle of incidence ⁇ and, as soon as a moving object passes the radar beam with a speed component in the direction of the beam, receives part of the signal reflected at the object and shifted in frequency due to the Doppler effect; wherein the two signals are mixed to generate a first output signal at the difference frequency; and wherein the evaluation unit includes a pre-connected lowpass filter in order to avoid spectral convolutions, an analog-digital converter, and a subsequently connected digital signal processing device.
  • Methods and apparatuses of this type are employed, for example, to monitor and control or statistically compile information on the traffic flow on limited-access highways, inter-urban highways, and/or in intra-city traffic. They can also be used for track-bound traffic, such as for railroads, and for automatic warehousing or in industrial processing, for example to monitor and control automatic production lines.
  • This object can be attained by forming the frequency spectrum of an output signal, which results when the radar signal and reflected radar signal are mixed, in a digital signal processing device, by determining the frequency at the maximum amplitude in this spectrum, and deriving the speed of the object from this frequency.
  • FIG. 1 is a schematic block diagram of a super-regional system for monitoring and controlling the traffic flow on limited-access highways.
  • FIG. 2 is a schematic block diagram of a traffic sensor circuit group having a plurality of traffic measurement branch circuits, each of which responds to traffic in a respective lane.
  • FIG. 3 is a detailed block circuit diagram of a traffic measurement branch circuit which can be employed in the circuit of FIG. 2.
  • FIG. 4 is a side view illustrating a road with a vehicle, an overhead radar sensor, and associated circuitry.
  • FIG. 5 is a vertical sectional view of the radiation field of the radar sensor in FIG. 4.
  • FIG. 6 is a detailed block circuit diagram of an evaluation unit employed in a traffic measurement branch circuit.
  • FIG. 7 is a detailed block circuit diagram of another embodiment of a traffic measurement branch circuit which can be employed in the circuit of FIG. 2, and which additionally permits information regarding the direction of movement of the monitored objects to be transmitted and evaluated.
  • FIG. 8 is a graph illustrating an example of a frequency spectrum obtained for a "VW-Rabbit.”
  • FIG. 1 A regional system for monitoring and controlling traffic flow, for example on limited-access highways, is shown in FIG. 1 and includes a local traffic control and monitor system 20.
  • System 20 has local traffic monitors 1, which are distributed at selected points of the highway network (for example, in the region of highway intersections or triangles or in the region of entrance and exit ramps) and which monitor the local traffic flow there. Preferably, this monitoring takes place separately for each traffic lane.
  • the monitoring devices may be of a conventional type, such as induction loops, but preferably traffic sensor circuit groups 1a through 1n according to the invention are employed. A traffic sensor circuit group will be described in more detail later.
  • traffic monitors 1 may be located adjacent traffic displays 8 so that information can be conveyed to drivers.
  • the monitors 1 stationed close to the local road station 3 of the limited-access highway are connected, via a data transmitting device such as a bus 2 (RS 485) operating with a protocol according to IEC/TC57 (International Electrotechnical Commission/Traffic Code 57), with the local road station 3.
  • Local road station 3 is responsible for these monitors and is composed essentially of a control module 30 which is connected, for example via a V.24 interface, with a modem 31.
  • Control module 30 may include a computer.
  • control module 30 can be connected, via a further V.24 interface, to a terminal or a computer 32 (e.g. a personal computer).
  • Bus 2 may be additionally connected with variable traffic displays 8 which display, for example on the basis of the traffic information transmitted from the responsible local road station 3 via bus 2, the official traffic signals adapted to the traffic situation.
  • Traffic displays 8 may be traditional green-yellow-red stop lights, and/or more sophisticated displays which provide other information for drivers.
  • further sensors, beacons, transmitters and/or receivers 9 may be connected to bus 2 so as to compile meteorological data for this sub-region of the limited-access highway network and report it to road station 3.
  • Sensors 9 may, for example, provide information about visibility, temperature, wind velocity, precipitation, snow, ice, wetness, etc.
  • Further sensors may include sensors which monitor the traffic and/or transmit actual information to a receiver positioned in each vehicle and/or receive data from the transmitter of a vehicle.
  • the millimeter wave Doppler sensor presented here is the basis for such a combination of traffic monitor and transmitter/receiver.
  • the emitted continuous wave signal may be coded to transmit e.g. actual traffic information to the receiver in a vehicle passing by.
  • sub-regional system 22A includes the local system 20 shown in FIG. 1 along with other local systems (not explicitly shown).
  • Sub-regional system 22A also includes a further data transmission device such as an already-installed limited-access highway emergency telephone network 4A and a regional sub-exchange 5A.
  • the road stations 3 of the individual local systems for the sub-region of the limited-access highway network served by sub-regional system 22A are connected via network 4A to the regional sub-exchange 5A.
  • Sub-exchange 5A in the next-higher or regional stage, is connected via a further data transmission device such as the public telephone network 6 with a central exchange 7.
  • the regional system also includes other sub-regional systems in addition to sub-regional system 22A.
  • sub-regional system 22B which is also connected to central exchange 7 by public telephone network 6, includes regional sub-exchange 5B, highway emergency telephone network 4B, and a plurality of local systems (not shown) corresponding to local system 20.
  • This hierarchial division into a plurality of stages ensures that, upon malfunction of individual components or transmission lines in the system, the other components are able to continue operating without interference or with only a slight adverse effect.
  • traffic displays 8 may include signs (not illustrated) with individual panels which can be illuminated to provide messages regarding traffic congestion, construction, accidents, etc., via the systems generating the traffic signals.
  • roadside beacons or transmitters connected to bus 2 may transmit these data to a receiver in a vehicle passing by.
  • the regional sub-exchanges may forward up-to-date traffic reports to local radio stations (not shown) which broadcast the reports without delay to traffic participants (that is, drivers).
  • traffic participants that is, drivers
  • information might be transmitted directly to drivers by way of displays (not shown) associated directly with traffic monitors 1.
  • the power supply for the local road station and for the local traffic monitors described here may be based either on the 110 V/220 V AC mains-supply, or on a rechargeable battery (e.g., for mobile applications, such as intra-urban traffic counting), or on a solar generator.
  • the central power supply provides the various radar sensors (FIG. 2) with a supply voltage U 4 (FIG. 3), via cable.
  • the supply voltage U 4 is preferably a low DC voltage.
  • FIG. 2 shows the traffic sensor signal group 1a according to the invention for locally monitoring traffic flow.
  • the traffic sensor signal group 1a includes a plurality of individual traffic measurement branch circuits (branch circuit 10 1 , 11 1 , 12 1 , to branch circuit 10 8 , 11 8 , 12 8 ) according to the invention, each for implementing the inventive method, with indices 1 and 8 being exemplary indications of eight such individual branch circuits.
  • Each one of these individual traffic measurement branch circuits monitors one traffic lane.
  • the top branch circuit (for example) shown in FIG. 2 is composed of:
  • a radar sensor 10 1 (also see FIG. 4) attached at a height h, for example at a pole on the side of the limited-access highway or to an overhead traffic sign bridge.
  • the radar sensor 10 1 is mounted at an angle of incidence ⁇ with respect to the vertical and is directed down onto the vehicular objects;
  • an evaluation unit 12 1 which evaluates the output signal D 1 of radar sensor 10 1 and determines therefrom the up-to-date traffic data (speed, average speed, vehicle length, spacing between vehicles, vehicle type, etc.).
  • bus 13 is connected with a data collector 14, for example a microcomputer.
  • data collector 14 In addition to storing the data, data collector 14 primarily serves to control and monitor the eight individual branch circuits (data monitoring, error checking, etc.) and to communicate with the control module 30 (see FIG. 1) of the associated road station 3 (see FIG. 1). Additionally, the regional sub-exchanges (e.g., reference number 5A in FIG.
  • locally or centrally generated information can be transmitted via the individual branch circuits 10 1 , 11 1 , 12 1 , . . . , 10 8 , 11 8 , 12 8 directly to drivers by additionally including the traffic displays 8 in the branch circuits.
  • Such information may include information regarding traffic conditions, possible detours, danger spots, construction sites, etc.
  • an additional memory 15 may be connected to ECB bus 13 for storage of the data generated in the individual branch circuits. This is of particular advantage if a traffic sensor circuit group 1a is not part of a regional system but is employed as an independent, autonomous system, for example, for counting the traffic at an intra-city intersection.
  • FIG. 3 is a block circuit diagram showing in detail the basic structure of (for example) the traffic measurement branch circuit which includes radar sensor 10 1 , transmission circuit 11 1 , and evaluation unit 12 1 .
  • transmission circuit 11 1 includes a remote end circuit 110 1 which is located near radar sensor 10 1 and a near end circuit 112 1 which is located near evaluation unit 12 1 .
  • the radar sensor 10 1 is a millimeter wavelength transceiver composed of a local oscillator 100 1 , a coupling network 101 1 , a duplexer 102 1 , a mixer 103 1 , and a transmit/receive antenna 104 1 .
  • the duplexer operates according to the principle explained by Sloan D. Robertson in “Recent Advances in Finline Circuits,” IRE Trans. on MTT-4, 1956, pp. 263-267.
  • Antenna 10 41 also receives part of the signals reflected by vehicles passing the radar beam. Due to the Doppler effect, these signals are shifted in frequency.
  • an output signal D 1 at the difference frequency is generated by the mixer 103 1 . This is the so-called Doppler echo or Doppler signal.
  • the frequency f 0 61.25 GHz makes it possible to combine, in a particularly advantageous manner, high absorption by the atmosphere (20 dB/km) with the compactness of millimeter wavelength components.
  • the entire radar sensor 10 1 together with the remote end circuit 110 1 of the transmission circuit 11 1 fits into a cube-shaped housing (see FIG. 4) having edge lengths of about 15 cm.
  • FIG. 3 indicates that the transmission circuit 11 includes the transmission of the supply voltage U 4 from the central power supply (FIG. 1) to the radar sensor and to the remote end transmission circuit.
  • a DC/DC-converter generates the required voltages U 5 and U 6 from the DC voltage U 4 .
  • Preferably U 4 is 24 V to employ rechargeable batteries in the case of mobile applications.
  • the voltage U 4 is provided over the same cable, where the signals are transmitted as well.
  • the transmitting power is less than 10 mW.
  • the beam characteristic preferably has a horizontal aperture angle of 3° and a vertical aperture angle of 13° (see FIG. 5, which illustrates a vertical sectional view of the radiation field of the radar sensor 10 1 ).
  • the radar sensor 10 1 is disposed, for example, on a traffic signal bridge at a height h (for example, h ⁇ 5.5 m) above the lane to be monitored.
  • the radiation field of radar sensor 10 1 is oriented at an angle ⁇ (measured with respect to the vertical) toward the associated traffic lane.
  • a vehicle, marked "object" in FIG. 4 traveling at a speed v reflects part of the radiation emanating from radar sensor 10 1 in the direction of the sensor.
  • the frequency f of the Doppler echo will be the following: ##EQU1## where c is the speed of light.
  • the angle of incidence ⁇ here corresponds to the angle between the radar beam and the speed vector v of the vehicle passing the radar beam.
  • deviations from the ideal case described here will occur.
  • deviations may be present in the form of measurable frequency shifts which are not based on the Doppler effect, or in the form of amplitude fluctuations (down to complete absorption of the signal by the vehicles passing the radar beam).
  • amplitude fluctuations down to complete absorption of the signal by the vehicles passing the radar beam.
  • the radiation field of radar sensor 10 1 may either be directed--as shown in FIG. 4--toward the front of the vehicles (a positive ⁇ value) or toward the rear of the vehicles (a negative ⁇ value, shown with dashed lines in FIG. 4). Due to different degrees of shading (that is, different signal strengths in the reflected radar signals and different shadow lengths at the beginning or end of the vehicle) by different vehicles, different errors in the vehicle length measurement result for these two possible orientations.
  • Transmission circuit 11 1 in FIG. 3 is composed of the remote end circuit 110 1 on the side of the radar sensor 10 1 (which, in FIG. 4, is accommodated in a common housing with radar sensor 10 1 ), the near end circuit 112 1 , and a transmission cable 111 1 which connects the remote end circuit 110 1 to the near end circuit 112 1 (see also FIG. 4).
  • a single local road station 3 FIGGS. 1 and 4
  • transmission unit 11 1 also furnishes the direct operating voltage (typically +24 V) required to operate radar sensor 10 1 and supplied by the local control module 30.
  • the Doppler echo D 1 is amplified (reference number 1100 1 ) and bandpass filtered (reference number 1101 1 ).
  • the amplified and filtered signal to be transmitted is frequency modulated by a modulator 1103 1 .
  • the signal is demodulated with the aid of a demodulator 1120 1 in near end circuit 112 1 on the side of the evaluation unit 12 1 .
  • near end circuit 112 1 of transmission device 11 1 on the side of the evaluation unit 12 1 , there is disposed a corresponding evaluation circuit 1121 1 .
  • Evaluation circuit 1121 1 checks for the correct transmission of pilot signal P 1 and, in the case of an error, reports such an error to data collector 14 via a direct connection 16 1 to the associated ECB bus 13.
  • pilot signal P 1 is coupled to the noise signal level generated by radar sensor 10 1 so that, if sensor 10 1 malfunctions and there thus is no noise signal, no pilot signal P 1 is transmitted either, enabling evaluation circuit 1121 1 to immediately send an error report to data collector 14.
  • the components disposed on the side of the evaluation unit and belonging to four of the eight traffic measurement branch circuits associated with one data collector 14 are combined on a single card (not illustrated).
  • evaluation unit 12 1 of FIG. 3 is composed of an anti-aliasing lowpass filter 121 1 for the avoidance of spectral aliasing, an analog/digital converter 123 1 , and a digital signal processing unit 124 1 .
  • analog/digital converter 123 1 is preceded by a variable gain amplifier 122 1 whose gain is set so that, in spite of different attachment heights of radar sensors 10 1 , . . . , 10 8 , the Doppler signals can be normalized to a standard height.
  • anti-aliasing lowpass filter 121 1 is preceded by a switch 120 1 which makes it possible to feed a test signal T 1 into evaluation unit 12 1 instead of the Doppler echoes D 1 .
  • the test signal T 1 is preferably generated by digital signal processing unit 124 1 . This signal enables evaluation unit 12 1 to undergo a self-test.
  • the output of digital signal processing unit 124 1 is connected with the standard ECB bus 13.
  • evaluation unit 12 1' Like the evaluation unit 12 1 shown in FIG. 3, the embodiment of evaluation unit 12 1' shown in FIG. 6 includes a switch 120 1 for feeding in the test signal T 1 instead of the Doppler echo D 1 , an anti-aliasing lowpass filter 121 1 , a variable gain amplifier 122 1 , an analog/digital converter 123 1 , and digital signal processing device 124 1 .
  • the lowpass filter 121 1 of evaluation unit 12 1' is preferably provided in the form of a digital filter (such as a switch/capacitor filter), and evaluation unit 12 1' additionally includes a clock pulse generator 125 1 which is provided to adapt the cut-off frequency of lowpass filter 121 1 to the existing speed range.
  • an additional signal R 2 (which will be discussed in more detail later) is fed into digital signal processing device 124 1 .
  • This additional signal is derived from a further Doppler echo R 1 , as will be discussed, and includes as its information the direction of movement of the vehicles.
  • Digital signal processing device 124 1 is composed of four networked digital signal processors 1240-1243 (e.g. NEC 7720) which operate in parallel, an adapter 1244 for connecting the signal processors 1240 to 1243 to standard ECB bus 13, a clock pulse generator 1245 for the generation of a test signal, an alarm generator 1246 for reporting errors, e.g. to a light emitting diode (not illustrated) on the face plate (not illustrated) of the digital signal processing unit 124 1 and/or to the data collector 14 (FIG. 2), and switches 1247 for compensating the deviation of the actually set angle of incidence ⁇ from the optimum angle of incidence of about 53°.
  • NEC 7720 networked digital signal processors 1240-1243
  • an adapter 1244 for connecting the signal processors 1240 to 1243 to standard ECB bus 13
  • a clock pulse generator 1245 for the generation of a test signal
  • an alarm generator 1246 for reporting errors, e.g. to a light emitting diode (not illustrated) on the
  • the arrangement according to the invention shown in FIG. 7 differs from the arrangement according to the invention shown in FIG. 3 in that:
  • the mixer 103 1' in the radar sensor 10 1' , furnishes two Doppler signals D 1 and R 1 whose phase position relative to each other provides information about the direction of travel or movement of the object.
  • a method for providing such a mixer has been proposed by Manfred Boheim in "Aberichte Engineeringen auf dem Gebit der Doppler-Sensoren” ["Present-Day Developments in the Field of Doppler Sensors” ], Conference Proceedings MIOP 87, Vol. 3, Sect. 9B-4, edited by Network GmbH, Hagenburg, West Germany, 1987; ISBN 3-924 651-09-4.
  • phase comparator 1105 1 the phase of each oscillation of Doppler signal D 1 is compared by a phase comparator 1105 1 with that of R 1 .
  • the result (“leading" or “trailing") of this phase comparison is coded as a 1-bit signal R 2 and transmitted to evaluation unit 12 1' via an additional conductor 1111 1 in transmission circuit 11 1' ;
  • the Doppler signal to be transmitted and evaluated is obtained by summation circuit 1106 1 which adds the two phase shifted Doppler signals D 1 and R 1 (D 1 +R 1 ).
  • the (analog) Doppler echo generated by radar sensor 10 1 is initially amplified by an amplifier 1100 1 disposed in the remote end circuit 110 1 .
  • the amplified signal is then filtered by a bandpass filter 1101 1 , provided with the pilot signal P 1 by an adder 1104 1 , and frequency modulated by modulator 1103 1 .
  • the frequency modulated signal is demodulated by demodulator 1120 1 in near end circuit 112 1 .
  • the demodulated signal is separated by lowpass filter 121 1 from the remaining signals (e.g. the pilot signal P 1 ) and limited in bandwidth to half the sampling frequency and, after amplification by amplifier 122 1 , is digitized by analog/digital converter 123 1 .
  • the digital signal is then fed into the digital signal processing device 124 1 .
  • the frequency spectrum is formed from these digitalized Doppler echoes D 1 . Then the frequency having the maximum amplitude in this spectrum is determined and, from this frequency, the speed of the vehicle is derived with the aid of Equation (1).
  • f 0 61.25 GHz
  • c 300,000 km/s
  • speed v ⁇ 207 km/h produce a frequency range for Doppler echoes D 1 from 0 to about 14.25 kHz.
  • a frequency range for the Doppler echoes D 1 requires a minimum sampling rate of 28.5 kHz (and preferably 32 kHz) for analog/digital converter 123 1 .
  • the dynamic of the Doppler echo is a function of the distance between the radar sensor and the reflecting object, i.e. the vehicle, and of the effective radar sensitive cross section of the vehicles to be recorded. Typically, a dynamic range of about 60 dB can be expected.
  • the frequency spectrum is formed either by autocorrelation of Doppler echo D 1 with subsequent spectral transformation or by relay correlation of Doppler echo D 1 with subsequent spectral transformation and advantageously by direct spectral transformation, preferably by way of a discrete Fourier transformation (DFT), particularly with the use of the fast Fourier transformation method (FFT).
  • DFT discrete Fourier transformation
  • FFT fast Fourier transformation method
  • the methods employed here ensure that signal intervals having a relatively low signal to noise ratio will not worsen the measuring result.
  • the reason is that a linear (frequency) transformation is performed here, and the actual Doppler frequency is that frequency which has the maximum amplitude in the spectrum.
  • the speed of the vehicle can be derived from the frequency having the maximum amplitude in the spectrum.
  • a relay correlation estimate ##EQU6## may be employed as well. Since the sgn-function assumes the values +1 and -1, the relay correlation merely requires additions and subtractions, however no multiplications. For a wide class of signals it can be shown that d xx (m) is proportional to c xx (m). (For reference see Walter Stammler and Helmut Brehm, "Correlation Estimation for Spherically Invariant Speech Model Signals" in MELECON 85, Volume II, Digital Signal Processing; Elsevier Science Publ., North Holland, 1985, pp. 127-130).
  • the deviation is advantageously measured after the radar sensor 10 1 is installed and is compensated by correspondingly setting angle compensation switches 1247 (see FIG. 6), indicating the difference
  • the direction of movement of the vehicles can be determined with the aid of the circuitry shown in FIG. 7 by generating an additional Doppler echo R 1 which is shifted in phase relative to the first Doppler echo D 1 .
  • the phase position of the two signals is compared by phase comparator 1105 1 , and the phase position determined for each period is subsequently coded with one bit.
  • the direction of movement of the vehicles is derived in digital signal processing device 124 1 (see FIG. 6) from the succession of the individual bits by signal processor 1240.
  • the method according to the invention serves to determine the beginning and end of individual Doppler echoes. This permits, inter alia, the length of a vehicle to be derived from the speed of the vehicle and from the duration of the Doppler echo connected therewith.
  • the signal duration measurement is based on a measurement of the envelope of the Doppler signal.
  • the existing energy of the Doppler echoes is determined in a window which shifts over time, and this energy is compared with a first and a second threshold value. If the energy exceeds the first threshold for the first time at a point in time, this is determined and defined to be the beginning of the Doppler echo. If the energy falls below the second threshold at a later point in time, this is determined and defined to be the end of the Doppler echo.
  • the second threshold is not reached temporarily in the meantime due to unfavorable reflection conditions in the vehicle (no reflection component in the direction of the sensor, complete absorption of the radar radiation by the object, etc.), an advantageous feature of the invention provides that this is not evaluated to be the end of the signal.
  • the height of the threshold values may be adapted to the existing noise level (for example, the thresholds are raised if there is heavy rain or snowfall) so as to reduce the number of error detections.
  • the two threshold values may be selected to be at different magnitudes.
  • L represents the length of the vehicle
  • v represents the speed of the vehicle
  • T represents the signal duration of Doppler echo D 1 .
  • the peak value of the frequency spectrum is significantly smaller for rain clutter than for a vehicle.
  • the input data for the fast Fourier transformation process can be additionally weighted with a window function, for example in order to give greater consideration in the calculation to the restarting points lying in the center region of the window than the restarting points along its edges ("windowing").
  • the four signal processors 1240 to 1243 of FIG. 6 perform the following functions:

Abstract

A method for compiling and evaluating local traffic data based on a real time evaluation of Doppler echoes on a digital basis, wherein initially the frequency spectrum of the Doppler echo is formed, then the frequency of the maximum amplitude in this spectrum is identified, and the speed of the vehicle is determined from this frequency. The length of the vehicle can also be determined from the speed of the vehicle and from the Doppler echo signal duration. An apparatus for implementing the method includes a millimeter wavelength radar sensor, a transmission unit, and an evaluation unit operating with digital signal processing.

Description

CROSS REFERENCE TO RELATED APPLICATION
This application claims the priority of application Ser. No. P 38 10 357.5, filed Mar. 26th, 1988 in the Federal Republic of Germany, the subject matter of which is incorporated herein by reference.
BACKGROUND OF THE INVENTION
The present invention relates to a method of compiling and evaluating local traffic data, and to an apparatus for implementing the method. More particularly, the invention is directed to a method and apparatus of the type wherein a radar sensor is connected to an evaluation device by way of a transmission device; wherein the radar sensor emits a continuous signal at a constant frequency and amplitude and at a fixed, vertical angle of incidence α and, as soon as a moving object passes the radar beam with a speed component in the direction of the beam, receives part of the signal reflected at the object and shifted in frequency due to the Doppler effect; wherein the two signals are mixed to generate a first output signal at the difference frequency; and wherein the evaluation unit includes a pre-connected lowpass filter in order to avoid spectral convolutions, an analog-digital converter, and a subsequently connected digital signal processing device.
Methods and apparatuses of this type are employed, for example, to monitor and control or statistically compile information on the traffic flow on limited-access highways, inter-urban highways, and/or in intra-city traffic. They can also be used for track-bound traffic, such as for railroads, and for automatic warehousing or in industrial processing, for example to monitor and control automatic production lines.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a method of the above-mentioned type with which it is possible to compile and evaluate such traffic data as accurately and quickly as possible.
This object can be attained by forming the frequency spectrum of an output signal, which results when the radar signal and reflected radar signal are mixed, in a digital signal processing device, by determining the frequency at the maximum amplitude in this spectrum, and deriving the speed of the object from this frequency.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a schematic block diagram of a super-regional system for monitoring and controlling the traffic flow on limited-access highways.
FIG. 2 is a schematic block diagram of a traffic sensor circuit group having a plurality of traffic measurement branch circuits, each of which responds to traffic in a respective lane.
FIG. 3 is a detailed block circuit diagram of a traffic measurement branch circuit which can be employed in the circuit of FIG. 2.
FIG. 4 is a side view illustrating a road with a vehicle, an overhead radar sensor, and associated circuitry.
FIG. 5 is a vertical sectional view of the radiation field of the radar sensor in FIG. 4.
FIG. 6 is a detailed block circuit diagram of an evaluation unit employed in a traffic measurement branch circuit.
FIG. 7 is a detailed block circuit diagram of another embodiment of a traffic measurement branch circuit which can be employed in the circuit of FIG. 2, and which additionally permits information regarding the direction of movement of the monitored objects to be transmitted and evaluated.
FIG. 8 is a graph illustrating an example of a frequency spectrum obtained for a "VW-Rabbit."
DESCRIPTION OF THE PREFERRED EMBODIMENT
A regional system for monitoring and controlling traffic flow, for example on limited-access highways, is shown in FIG. 1 and includes a local traffic control and monitor system 20. System 20 has local traffic monitors 1, which are distributed at selected points of the highway network (for example, in the region of highway intersections or triangles or in the region of entrance and exit ramps) and which monitor the local traffic flow there. Preferably, this monitoring takes place separately for each traffic lane. The monitoring devices may be of a conventional type, such as induction loops, but preferably traffic sensor circuit groups 1a through 1n according to the invention are employed. A traffic sensor circuit group will be described in more detail later. In addition to their monitoring function, in principle traffic monitors 1 may be located adjacent traffic displays 8 so that information can be conveyed to drivers.
The monitors 1 stationed close to the local road station 3 of the limited-access highway are connected, via a data transmitting device such as a bus 2 (RS 485) operating with a protocol according to IEC/TC57 (International Electrotechnical Commission/Traffic Code 57), with the local road station 3. Local road station 3 is responsible for these monitors and is composed essentially of a control module 30 which is connected, for example via a V.24 interface, with a modem 31. Control module 30 may include a computer. For configuration or test purposes, control module 30 can be connected, via a further V.24 interface, to a terminal or a computer 32 (e.g. a personal computer).
Bus 2 may be additionally connected with variable traffic displays 8 which display, for example on the basis of the traffic information transmitted from the responsible local road station 3 via bus 2, the official traffic signals adapted to the traffic situation. Traffic displays 8 may be traditional green-yellow-red stop lights, and/or more sophisticated displays which provide other information for drivers. Moreover, further sensors, beacons, transmitters and/or receivers 9 may be connected to bus 2 so as to compile meteorological data for this sub-region of the limited-access highway network and report it to road station 3. Sensors 9 may, for example, provide information about visibility, temperature, wind velocity, precipitation, snow, ice, wetness, etc. Further sensors may include sensors which monitor the traffic and/or transmit actual information to a receiver positioned in each vehicle and/or receive data from the transmitter of a vehicle. The millimeter wave Doppler sensor presented here is the basis for such a combination of traffic monitor and transmitter/receiver. The emitted continuous wave signal may be coded to transmit e.g. actual traffic information to the receiver in a vehicle passing by.
In a higher-order stage, sub-regional system 22A includes the local system 20 shown in FIG. 1 along with other local systems (not explicitly shown). Sub-regional system 22A also includes a further data transmission device such as an already-installed limited-access highway emergency telephone network 4A and a regional sub-exchange 5A. The road stations 3 of the individual local systems for the sub-region of the limited-access highway network served by sub-regional system 22A are connected via network 4A to the regional sub-exchange 5A. Sub-exchange 5A, in the next-higher or regional stage, is connected via a further data transmission device such as the public telephone network 6 with a central exchange 7. It will be apparent that the regional system also includes other sub-regional systems in addition to sub-regional system 22A. For example, sub-regional system 22B, which is also connected to central exchange 7 by public telephone network 6, includes regional sub-exchange 5B, highway emergency telephone network 4B, and a plurality of local systems (not shown) corresponding to local system 20.
This hierarchial division into a plurality of stages ensures that, upon malfunction of individual components or transmission lines in the system, the other components are able to continue operating without interference or with only a slight adverse effect.
Such a super-regional system for monitoring and control accomplishes essentially the following:
(1) monitor traffic flow (average speed, number, and type of vehicles) and meteorological conditions (visibility, temperature, wind velocity, precipitation/snow, ice/wetness, etc.), particularly at critical points of the limited-access highway network;
(2) immediately transmit the compiled data to the responsible regional sub-exchange (e.g., 5A), for example by way of the emergency highway telephone network (e.g., 4A) installed parallel to the highways themselves;
(3) cause the regional sub-exchange (e.g., 5A) to adapt the changeable traffic displays 8 in the respective local system (e.g., 20) for the limited-access highway network on the basis of the evaluation of these data, and possibly to transmit additional messages and information for drivers if the traffic displays 8 are appropriately configured. For example, in addition to telling drivers when to stop or go, traffic displays 8 may include signs (not illustrated) with individual panels which can be illuminated to provide messages regarding traffic congestion, construction, accidents, etc., via the systems generating the traffic signals. Moreover roadside beacons or transmitters connected to bus 2 (FIG. 2) may transmit these data to a receiver in a vehicle passing by.
In addition, the regional sub-exchanges (e.g., 5A) may forward up-to-date traffic reports to local radio stations (not shown) which broadcast the reports without delay to traffic participants (that is, drivers). In a modified system, such information might be transmitted directly to drivers by way of displays (not shown) associated directly with traffic monitors 1.
Advisably, communications procedures between the individual parts of the system and the protocols employed are defined in conformance with IEC/TC57. The power supply for the local road station and for the local traffic monitors described here may be based either on the 110 V/220 V AC mains-supply, or on a rechargeable battery (e.g., for mobile applications, such as intra-urban traffic counting), or on a solar generator. The central power supply provides the various radar sensors (FIG. 2) with a supply voltage U4 (FIG. 3), via cable. The supply voltage U4 is preferably a low DC voltage.
FIG. 2 shows the traffic sensor signal group 1a according to the invention for locally monitoring traffic flow. The traffic sensor signal group 1a includes a plurality of individual traffic measurement branch circuits ( branch circuit 101, 111, 121, to branch circuit 108, 118, 128) according to the invention, each for implementing the inventive method, with indices 1 and 8 being exemplary indications of eight such individual branch circuits. Each one of these individual traffic measurement branch circuits monitors one traffic lane. The top branch circuit (for example) shown in FIG. 2 is composed of:
(1) a radar sensor 101 (also see FIG. 4) attached at a height h, for example at a pole on the side of the limited-access highway or to an overhead traffic sign bridge. The radar sensor 101 is mounted at an angle of incidence α with respect to the vertical and is directed down onto the vehicular objects;
(2) a transmission circuit 111 which carries the current supply lines (not shown) for radar sensor 101 and which transmits output signal D1 to an evaluation unit 121 ; and
(3) an evaluation unit 121 which evaluates the output signal D1 of radar sensor 101 and determines therefrom the up-to-date traffic data (speed, average speed, vehicle length, spacing between vehicles, vehicle type, etc.).
In the illustrated embodiment, eight such individual branch circuits have their outputs connected to a common, standard ECB bus 13 (the respective transmission circuits 111 to 118 are also connected directly to bus 13). Bus 13 is connected with a data collector 14, for example a microcomputer. In addition to storing the data, data collector 14 primarily serves to control and monitor the eight individual branch circuits (data monitoring, error checking, etc.) and to communicate with the control module 30 (see FIG. 1) of the associated road station 3 (see FIG. 1). Additionally, the regional sub-exchanges (e.g., reference number 5A in FIG. 1) receive instructions from the responsible control module 3 to send new parameter values and so forth to data collector 14, which analyzes this information and forwards it accordingly to one, several, or all of the individual branch circuits 101, 111, 121, . . . , 108, 118, 128. The communication between the computers involved (5A, 7, 14, 30) is based on the IEC/TC57 standard (see "International Electrotechnical Commission Technical Committee No. 57: Telecontrol, Teleprotection and Associated Telecommunications for Electric Power Systems," Part 5-2: LINK Transmission Procedures Revision 6, October 1987).
In a further embodiment (not illustrated), locally or centrally generated information can be transmitted via the individual branch circuits 101, 111, 121, . . . , 108, 118, 128 directly to drivers by additionally including the traffic displays 8 in the branch circuits. Such information, for example, may include information regarding traffic conditions, possible detours, danger spots, construction sites, etc.
Furthermore, an additional memory 15 may be connected to ECB bus 13 for storage of the data generated in the individual branch circuits. This is of particular advantage if a traffic sensor circuit group 1a is not part of a regional system but is employed as an independent, autonomous system, for example, for counting the traffic at an intra-city intersection.
FIG. 3 is a block circuit diagram showing in detail the basic structure of (for example) the traffic measurement branch circuit which includes radar sensor 101, transmission circuit 111, and evaluation unit 121. As will be discussed in more detail later, transmission circuit 111 includes a remote end circuit 1101 which is located near radar sensor 101 and a near end circuit 1121 which is located near evaluation unit 121.
The radar sensor 101 is a millimeter wavelength transceiver composed of a local oscillator 1001, a coupling network 1011, a duplexer 1021, a mixer 1031, and a transmit/receive antenna 1041. The duplexer operates according to the principle explained by Sloan D. Robertson in "Recent Advances in Finline Circuits," IRE Trans. on MTT-4, 1956, pp. 263-267.
Via antenna 1041, radar sensor 101 transmits a continuous unmodulated sinusoidal millimeter wavelength signal generated by local oscillator 1001 at a frequency f0 =61.25 GHz. Antenna 1041 also receives part of the signals reflected by vehicles passing the radar beam. Due to the Doppler effect, these signals are shifted in frequency. By directly mixing such a reflected signal with a part of the transmitted signal that has been coupled out by way of coupling network 1011, an output signal D1 at the difference frequency is generated by the mixer 1031. This is the so-called Doppler echo or Doppler signal.
The frequency f0 =61.25 GHz makes it possible to combine, in a particularly advantageous manner, high absorption by the atmosphere (20 dB/km) with the compactness of millimeter wavelength components. Thus the entire radar sensor 101 together with the remote end circuit 1101 of the transmission circuit 111 fits into a cube-shaped housing (see FIG. 4) having edge lengths of about 15 cm. FIG. 3 indicates that the transmission circuit 11 includes the transmission of the supply voltage U4 from the central power supply (FIG. 1) to the radar sensor and to the remote end transmission circuit. A DC/DC-converter generates the required voltages U5 and U6 from the DC voltage U4. Preferably U4 is 24 V to employ rechargeable batteries in the case of mobile applications. The voltage U4 is provided over the same cable, where the signals are transmitted as well.
In order to avoid clutter effects due to rain or snow, transmission and reception are polarized in different directions. The transmitting power is less than 10 mW. The beam characteristic preferably has a horizontal aperture angle of 3° and a vertical aperture angle of 13° (see FIG. 5, which illustrates a vertical sectional view of the radiation field of the radar sensor 101).
As is shown in FIG. 4, the radar sensor 101 is disposed, for example, on a traffic signal bridge at a height h (for example, h≈5.5 m) above the lane to be monitored. The radiation field of radar sensor 101 is oriented at an angle α (measured with respect to the vertical) toward the associated traffic lane. A vehicle, marked "object" in FIG. 4, traveling at a speed v reflects part of the radiation emanating from radar sensor 101 in the direction of the sensor. In the ideal case, the frequency f of the Doppler echo will be the following: ##EQU1## where c is the speed of light. According to the laws of geometry, the angle of incidence α here corresponds to the angle between the radar beam and the speed vector v of the vehicle passing the radar beam.
In practice, however, deviations from the ideal case described here will occur. For example, such deviations may be present in the form of measurable frequency shifts which are not based on the Doppler effect, or in the form of amplitude fluctuations (down to complete absorption of the signal by the vehicles passing the radar beam). These effects are caused primarily by the overlapping of signals reflected at different locations of the vehicle where geometry and reflection characteristic differ, or by the finite expanse of the radar radiation field in the direction of movement of the vehicles.
For the selection of the angle of incidence α, two effects must be considered which cannot be optimized simultaneously. High accuracy in the vehicle length measurement and a reliable separation of successive vehicles are realized with large angles of incidence α (extreme case: the radiation field is oriented perpendicularly downwardly). However, the width of the frequency spectrum of a Doppler echo (and thus the inaccuracy of the frequency measurement) generally increases as α increases. According to Equation (1), this results in the accuracy of the determination of the vehicle speed being reduced when the angle of incidence α is selected to be large.
Optimization of the two contradictory effects results in an angle of incidence of about 53°. Here, the radiation field of radar sensor 101 may either be directed--as shown in FIG. 4--toward the front of the vehicles (a positive α value) or toward the rear of the vehicles (a negative α value, shown with dashed lines in FIG. 4). Due to different degrees of shading (that is, different signal strengths in the reflected radar signals and different shadow lengths at the beginning or end of the vehicle) by different vehicles, different errors in the vehicle length measurement result for these two possible orientations.
Transmission circuit 111 in FIG. 3 is composed of the remote end circuit 1101 on the side of the radar sensor 101 (which, in FIG. 4, is accommodated in a common housing with radar sensor 101), the near end circuit 1121, and a transmission cable 1111 which connects the remote end circuit 1101 to the near end circuit 1121 (see also FIG. 4). In this way it is possible to employ a single local road station 3 (FIGS. 1 and 4) to monitor even expansive local areas of the limited-access highway network, in which more than eight lanes must be monitored and which thus require the use of more than eight devices according to the present invention. Examples of such expansive local areas of the highway network include highway intersections or triangles or large-area entrance and exit ramps. Preferably, transmission unit 111 also furnishes the direct operating voltage (typically +24 V) required to operate radar sensor 101 and supplied by the local control module 30.
In remote end circuit 1101, the Doppler echo D1 is amplified (reference number 11001) and bandpass filtered (reference number 11011). To minimize the influence of attenuation, noise, and/or network hum in the transmission of the Doppler echo, the amplified and filtered signal to be transmitted is frequency modulated by a modulator 11031. After transmission via cable 1111, the signal is demodulated with the aid of a demodulator 11201 in near end circuit 1121 on the side of the evaluation unit 121.
Additionally, in a preferred embodiment, a pilot signal P1, for example at a frequency f=16 kHz is generated by an oscillator 11021 in remote end circuit 1101 and is added (reference number 11041) to the Doppler echoes D1. In near end circuit 1121 of transmission device 111, on the side of the evaluation unit 121, there is disposed a corresponding evaluation circuit 11211. Evaluation circuit 11211 checks for the correct transmission of pilot signal P1 and, in the case of an error, reports such an error to data collector 14 via a direct connection 161 to the associated ECB bus 13. Preferably, pilot signal P1 is coupled to the noise signal level generated by radar sensor 101 so that, if sensor 101 malfunctions and there thus is no noise signal, no pilot signal P1 is transmitted either, enabling evaluation circuit 11211 to immediately send an error report to data collector 14.
In a preferred embodiment of the invention, the components disposed on the side of the evaluation unit and belonging to four of the eight traffic measurement branch circuits associated with one data collector 14 are combined on a single card (not illustrated).
Finally, evaluation unit 121 of FIG. 3 is composed of an anti-aliasing lowpass filter 1211 for the avoidance of spectral aliasing, an analog/digital converter 1231, and a digital signal processing unit 1241. In a preferred embodiment, analog/digital converter 1231 is preceded by a variable gain amplifier 1221 whose gain is set so that, in spite of different attachment heights of radar sensors 101, . . . , 108, the Doppler signals can be normalized to a standard height.
Additionally, anti-aliasing lowpass filter 1211 is preceded by a switch 1201 which makes it possible to feed a test signal T1 into evaluation unit 121 instead of the Doppler echoes D1. The test signal T1 is preferably generated by digital signal processing unit 1241. This signal enables evaluation unit 121 to undergo a self-test. The output of digital signal processing unit 1241 is connected with the standard ECB bus 13.
Like the evaluation unit 121 shown in FIG. 3, the embodiment of evaluation unit 121' shown in FIG. 6 includes a switch 1201 for feeding in the test signal T1 instead of the Doppler echo D1, an anti-aliasing lowpass filter 1211, a variable gain amplifier 1221, an analog/digital converter 1231, and digital signal processing device 1241. The lowpass filter 1211 of evaluation unit 121' is preferably provided in the form of a digital filter (such as a switch/capacitor filter), and evaluation unit 121' additionally includes a clock pulse generator 1251 which is provided to adapt the cut-off frequency of lowpass filter 1211 to the existing speed range. Furthermore an additional signal R2 (which will be discussed in more detail later) is fed into digital signal processing device 1241. This additional signal is derived from a further Doppler echo R1, as will be discussed, and includes as its information the direction of movement of the vehicles.
Digital signal processing device 1241 is composed of four networked digital signal processors 1240-1243 (e.g. NEC 7720) which operate in parallel, an adapter 1244 for connecting the signal processors 1240 to 1243 to standard ECB bus 13, a clock pulse generator 1245 for the generation of a test signal, an alarm generator 1246 for reporting errors, e.g. to a light emitting diode (not illustrated) on the face plate (not illustrated) of the digital signal processing unit 1241 and/or to the data collector 14 (FIG. 2), and switches 1247 for compensating the deviation of the actually set angle of incidence α from the optimum angle of incidence of about 53°.
The arrangement according to the invention shown in FIG. 7 differs from the arrangement according to the invention shown in FIG. 3 in that:
(1) the mixer 1031', in the radar sensor 101', furnishes two Doppler signals D1 and R1 whose phase position relative to each other provides information about the direction of travel or movement of the object. A method for providing such a mixer has been proposed by Manfred Boheim in "Aktuelle Entwicklungen auf dem Gebit der Doppler-Sensoren" ["Present-Day Developments in the Field of Doppler Sensors" ], Conference Proceedings MIOP 87, Vol. 3, Sect. 9B-4, edited by Network GmbH, Hagenburg, West Germany, 1987; ISBN 3-924 651-09-4. For this purpose, in remote end circuit 1101' of transmission circuit 111' the phase of each oscillation of Doppler signal D1 is compared by a phase comparator 11051 with that of R1. The result ("leading" or "trailing") of this phase comparison is coded as a 1-bit signal R2 and transmitted to evaluation unit 121' via an additional conductor 11111 in transmission circuit 111' ; and
(2) The Doppler signal to be transmitted and evaluated is obtained by summation circuit 11061 which adds the two phase shifted Doppler signals D1 and R1 (D1 +R1).
Returning to the basic embodiment shown in FIG. 3 of a traffic measurement branch circuit, the method according to the invention is performed as follows: The (analog) Doppler echo generated by radar sensor 101 is initially amplified by an amplifier 11001 disposed in the remote end circuit 1101. The amplified signal is then filtered by a bandpass filter 11011, provided with the pilot signal P1 by an adder 11041, and frequency modulated by modulator 11031. After transmission over cable 1111, the frequency modulated signal is demodulated by demodulator 11201 in near end circuit 1121. In evaluation unit 121, the demodulated signal is separated by lowpass filter 1211 from the remaining signals (e.g. the pilot signal P1) and limited in bandwidth to half the sampling frequency and, after amplification by amplifier 1221, is digitized by analog/digital converter 1231. The digital signal is then fed into the digital signal processing device 1241.
According to the invention, in signal processing unit 1241 the frequency spectrum is formed from these digitalized Doppler echoes D1. Then the frequency having the maximum amplitude in this spectrum is determined and, from this frequency, the speed of the vehicle is derived with the aid of Equation (1).
In practice, f0 =61.25 GHz, c=300,000 km/s, and speed v<207 km/h produce a frequency range for Doppler echoes D1 from 0 to about 14.25 kHz. According to the sampling theorem, such a frequency range for the Doppler echoes D1 requires a minimum sampling rate of 28.5 kHz (and preferably 32 kHz) for analog/digital converter 1231.
The dynamic of the Doppler echo is a function of the distance between the radar sensor and the reflecting object, i.e. the vehicle, and of the effective radar sensitive cross section of the vehicles to be recorded. Typically, a dynamic range of about 60 dB can be expected.
In preferred embodiments of the inventive method, the frequency spectrum is formed either by autocorrelation of Doppler echo D1 with subsequent spectral transformation or by relay correlation of Doppler echo D1 with subsequent spectral transformation and advantageously by direct spectral transformation, preferably by way of a discrete Fourier transformation (DFT), particularly with the use of the fast Fourier transformation method (FFT).
In contrast to conventional methods such as, for example, counting the zero crossings of a Doppler echo or measuring the period duration of several oscillations, the methods employed here ensure that signal intervals having a relatively low signal to noise ratio will not worsen the measuring result. The reason is that a linear (frequency) transformation is performed here, and the actual Doppler frequency is that frequency which has the maximum amplitude in the spectrum. With the aid of Equation (1), the speed of the vehicle can be derived from the frequency having the maximum amplitude in the spectrum.
The computation of the frequency spectrum |X(ejω)|2 for an input sequence x(n) and for an angular frequency ω=2π·f can be based either:
(A) on the Fourier transform ##EQU2## of the real finite length sequence x(n), 0≦n≦n-1 (this is the so called "periodogram method" [for reference see Alan V. Oppenheim and Ronald W. Schafter, "Digital Signal Processing," Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1975, pp. 541-548] or discreet spectral transformation of the signal), or
(B) on the Fourier transform ##EQU3## of the biased autocorrelation estimate ##EQU4##
The relation between IN (ω) and X(ejω) is given by the formula ##EQU5## (for reference see also Alan V. Oppenheim and Ronald W. Schafer, "Digital Signal Processing"; Prentice-Hall Inc., Englewood Cliffs, N.J., 1975, pp. 541-548).
Instead of an autocorrelation estimate a relay correlation estimate ##EQU6## may be employed as well. Since the sgn-function assumes the values +1 and -1, the relay correlation merely requires additions and subtractions, however no multiplications. For a wide class of signals it can be shown that dxx (m) is proportional to cxx (m). (For reference see Walter Stammler and Helmut Brehm, "Correlation Estimation for Spherically Invariant Speech Model Signals" in MELECON 85, Volume II, Digital Signal Processing; Elsevier Science Publ., North Holland, 1985, pp. 127-130).
Here the Fourier transformation is performed by means of the Fast Fourier Transform- (FFT-) Algorithm. A computer program for the FFT has been published, e.g., by Douglas F. Elliott, "Handbook of Digital Signal Processing", Academic Press Inc., 1987, pp. 600-604. Since in the case of direct spectral transformation the input data sequence may be rather long compared to the FFT-length N, we need to divide the complete data sequence into K segments of length N. Then for each of K segments a FFT of length N is computed and each of the squared output values is averaged over the segments. This method is called "averaging periodograms" and is described, e.g., by Alan V. Oppenheim and Ronald W. Schafer, "Digital Signal Processing," Prentice-Hall Inc., 1975, pp. 541-548. An example of a frequency spectrum obtained with FFT-length N=128 for a "VW-Rabbit" is shown in FIG. 8.
Preferably, the Fourier analysis is performed with N=128 points, which results in an interval width in the speed range of about 3.6 km/h, that is, in an accuracy in the speed determination of about ±1.8 km/h. In case the actual angle α (see FIG. 4) of the installed radar sensor 101 differs from the optimum angle α=53°, the calculated speed must be corrected accordingly (with about 2.3% for a deviation of about 1°). To be able to take this into account, the deviation is advantageously measured after the radar sensor 101 is installed and is compensated by correspondingly setting angle compensation switches 1247 (see FIG. 6), indicating the difference
Δα=α-α                             (7)
between the measured actual angle α and the desired angle α. This difference Δαis read in by the processing unit 1242, which evaluates a factor ##EQU7## necessary to correct the speed value v, obtained from the Doppler frequency f according to equation (1): ##EQU8##
As an advantageous feature of the method, the direction of movement of the vehicles can be determined with the aid of the circuitry shown in FIG. 7 by generating an additional Doppler echo R1 which is shifted in phase relative to the first Doppler echo D1. For each period of the two signals, the phase position of the two signals is compared by phase comparator 11051, and the phase position determined for each period is subsequently coded with one bit. Then the direction of movement of the vehicles is derived in digital signal processing device 1241 (see FIG. 6) from the succession of the individual bits by signal processor 1240.
Additionally, the method according to the invention serves to determine the beginning and end of individual Doppler echoes. This permits, inter alia, the length of a vehicle to be derived from the speed of the vehicle and from the duration of the Doppler echo connected therewith.
The signal duration measurement is based on a measurement of the envelope of the Doppler signal. The existing energy of the Doppler echoes is determined in a window which shifts over time, and this energy is compared with a first and a second threshold value. If the energy exceeds the first threshold for the first time at a point in time, this is determined and defined to be the beginning of the Doppler echo. If the energy falls below the second threshold at a later point in time, this is determined and defined to be the end of the Doppler echo. If the second threshold is not reached temporarily in the meantime due to unfavorable reflection conditions in the vehicle (no reflection component in the direction of the sensor, complete absorption of the radar radiation by the object, etc.), an advantageous feature of the invention provides that this is not evaluated to be the end of the signal. Moreover, the height of the threshold values may be adapted to the existing noise level (for example, the thresholds are raised if there is heavy rain or snowfall) so as to reduce the number of error detections. Also the two threshold values may be selected to be at different magnitudes.
As has already been mentioned above, it is possible to determine the length of the vehicle from the speed of the vehicle and from the signal duration of the Doppler echo connected therewith; this is done according to the following equation:
L=v·T-L.sub.R -L.sub.S                            (10)
Here L represents the length of the vehicle, v represents the speed of the vehicle, and T represents the signal duration of Doppler echo D1. This result considers the finite expanse of the radar spot LR and the length correction LS due to shading effects, which may falsify the actual length of the vehicle.
For limousines LR +LS =0.8 m was found from statistical evaluations. Here shading effects are almost negligeable. The value of LR depends of course on the actual antenna diagram. The beam characteristics shown in FIG. 5 (Isolines) confirm a value of 0.7-0.9 m for LR.
For trucks LR +LS is chosen as a function of the average signal power SIGPOW. As an example the relation ##EQU9## and with constant values C0, C1, C3 may be used advantageously. This formula considers the fact that for high vehicles (which are recognized by high signal power) shading effects are stronger than for low vehicles.
Due to the previously determined values (v, T, L) and further information (signal energy, statistical parameters for the previous signal curve), it is then possible to classify the signals to reduce error detections (e.g. as a result of heavy rain or snowfall) to a minimum. Clutter due to rain or showfall can be characterized by the following features:
(1) low Doppler frequency and as a result low speed;
(2) short signal duration and as a consequence of (1) and (2) short length of the measured object;
(3) pulse like signal envelopes, i.e. the signal energy occurring in a window exceeds the first threshold several times, but always for a short duration. The maximum length of a level crossing interval is rather small for rain clutter;
(4) the peak value of the frequency spectrum is significantly smaller for rain clutter than for a vehicle.
As an example, a decision for rain or snowfall will be made if the following logical function, derived for the features given above, is true:
(SPEPEAK<C1)∪
((VELOC<C2)∩(LENGTH<C3))∪
((VELOC<C6)∩(LENGTH≧C3)∩(SPEPEAK<C4)∩(LCINT<C5))∪
((C6≦VELOC<C2)∩(C3≦LENGTH<C7)∩(SPEPEAK<C8))
with constant thresholds
C6<C2
C8<C4
C3<C7
and with the abbreviations
SPEPEAK--Peak value of the frequency spectrum;
LCINT--Duration of the maximum level crossing interval;
VELOC--Speed of the object; and
LENGTH--Length of the object.
To be able, in a further step, to make a distinction between a truck and an automobile on the basis of the length of the vehicle and/or the signal amplitude, it is of advantage to compensate for the different installation and attachment heights of the individual radar sensors. With reference to FIG. 3, for example, such compensation can be accomplished with the aid of amplifier 1221 in evaluation unit 121. The calculations can then be performed on the basis of a standardized installation height.
To improve the signal evaluation, the input data for the fast Fourier transformation process can be additionally weighted with a window function, for example in order to give greater consideration in the calculation to the restarting points lying in the center region of the window than the restarting points along its edges ("windowing").
Experimental results from limited-access highways have shown that the standard deviation of the error of calculated vehicle lengths is about 45 cm and the standard deviation of the error in the calculated vehicle speeds for speeds around 100 km/h is about 1.7 km/h.
In detail, the four signal processors 1240 to 1243 of FIG. 6 perform the following functions:
(a) Signal processor 1240:
(1) evaluation of the noise level:
(2) measurement of the envelope of the Doppler echo: and
(3) determination of the direction of movement of the vehicle.
(b) Signal processor 1241:
(1) fast Fourier transformation (FFT) of the Doppler echo; and
(2) "windowing."
(c) Signal processor 1242:
(1) spectral averaging of the frequency spectra obtained by way of the FFT;
(2) determination of the vehicle speed;
(3) determination of the vehicle length;
(4) suppression of clutter due to rain and/or snow; and
(5) compensation of the deviation of the set angle of incidence α from the optimum angle of incidence (α=53°).
(d) Signal processor 1243:
(1) classification of the vehicles;
(2) average speed of the vehicles; and
(3) generation of test functions and evaluation of self-test of the digital signal processing device.
Compared to conventional methods (induction loops, etc.), the use of a radar sensor (e.g., 101) results in the following advantages:
(1) installation is possible without work on the roadway (compared to loops);
(2) longer service life since there is no wear due to traffic,
(3) mobile compilation of traffic data is possible (attachment to whip masts and radiation emanating from the side of the roadway, etc.);
(4) use is possible in construction sites, particularly if, in the course of the construction work, the road covering must be destroyed or the traffic lanes moved;
(5) no tuning during operation ("start-up measurements") and no later readjustment is necessary; and
(6) it is possible to expand the system for communication with the vehicles.
The completely digital realization of the Doppler signal evaluation process results in the following advantages:
(1) very high accuracy in the determination of the vehicle speed;
(2) reliable signal classification by inclusion of time, frequency, and amplitude criteria;
(3) reproducibility of the results;
(4) no adjustment work whatsoever due to aging or temperature drifts, and thus reduced maintenance costs;
(5) inclusion of intelligent monitoring and control functions;
(6) simple adaptation to special uses by modification of the sampling rate and changing the evaluation or output programs. No changes in hardware should be necessary; most likely, only a change in the software will be needed; and
(7) the possibility of taking over control parameters or decision criteria from superior offices.
Additionally, the following advantages result from the selected and described system configuration, composed of a radar sensor, a transmission unit, a digital signal processing unit, and a data collector:
(1) usability as an isolated system (with local memory) or as part of a network;
(2) great distances from the road station to the attachment of the radar sensor are permissible; that is, the number of road stations 3 required for a network can be reduced; and
(3) monitoring and control of all system components from the data collector 14.
It is understood that the present invention can be expanded and modified, and can be adapted to its different applications without this having to be described in greater detail here.
For example, it is possible to create different signal processor configuration with different signal processors to solve the same problems as does the configuration shown in FIG. 6.
It is also possible, in order to suppress clutter and/or other noise signals, to evaluate Doppler echoes at regular intervals where these Doppler echoes do not originate due to reflections from vehicles and to subtract the resulting frequency spectra from the frequency spectra which were obtained on the basis of reflections from vehicles.
Finally, it is possible to store the time sequences of the associated Doppler echoes (patterns) in an additional memory (not shown) of digital signal processing device 1241, and to compare the measured time sequences of the Doppler echoes with these stored patterns. This would make it possible to identify the vehicle type, and to reduce the number of error detections due to temporary breaks in the Doppler echo during the signal duration.
It will be understood that the above description of the present invention is susceptible to various modifications, changes, and adaptations, and the same are intended to be comprehended within the meaning and range of equivalents of the appended claims.

Claims (31)

What I claim is:
1. A method of locally compiling and evaluating traffic data, comprising the steps of:
(a) using a radar sensor to emit a continuous signal at a constant frequency and amplitude, the signal being emitted from the radar sensor as a radar beam having a fixed angle of incidence with respect to the vertical;
(b) if an object intersects the radar beam and has as speed component in the direction of the radar beam, using the radar sensor to receive part of a signal reflected by the object, the signal reflected by the object being shifted in frequency with respect to the signal emitted by the radar sensor due to the Doppler effect;
(c) mixing the emitted signal and the reflected signal in the radar sensor to provide a first output signal at the difference frequency;
(d) conveying the first output signal to an evaluation unit using a transmission circuit which connects the radar sensor to the evaluation unit, the evaluation unit including lowpass filter means for avoiding spectral aliasing, the lowpass filter means receiving the first output signal, a signal processing unit, and an analog/digital converter connected between the lowpass filter means and the signal processing unit;
(e) using the signal processing unit to detect the beginning and end of the first output signal, by determining the energy of the first output signal occurring in a window which shifts over time, and by comparing the determined energy with first and second threshold values, the first time the determined energy exceeds the first threshold value identifying the beginning of the first output signal and the time thereafter when the determined energy falls below the second threshold value identifying the end of the first output signal;
(f) using the signal processing unit to form the frequency spectrum of the first output signal;
(g) determining the frequency at the maximum amplitude in the frequency spectrum; and
(h) deriving the speed of the object from at least one parameter, the at least one parameter including the frequency determined in step (f).
2. The method of claim 1, wherein brief excursions of the determined energy below the second threshold level within a predetermined time period are ignored while the end of the first output signal is being identified.
3. The method of claim 1, wherein the first output signal has an average noise level, and wherein the magnitudes of the first and second threshold values are adapted to the existing average noise level.
4. The method of claim 1, wherein the magnitudes of the first and second threshold values are selected to be different.
5. The method of claim 1, further comprising the step of using the signal processing unit to determine the length of the object from the speed derived in step (g) and from the duration of the first output signal.
6. The method of claim 5, wherein the radar beam provides a radar spot in the direction of movement of the object, and wherein the step of using the signal processing unit to determine the length of the object is accomplished by determining the length of the object from the speed derived in step (g), from the duration of the first output signal, and from the expanse of the radar spot in the direction of movement of the object.
7. The method of claim 5, wherein the step of using the signal processing unit to determine the length of the object further comprises reducing errors in the determination of the length of the object due to shading by a correction value which has been statistically determined on the basis of measurements of a plurality of objects.
8. An apparatus for locally compiling and evaluating traffic data, comprising:
radar sensor means for emitting a continuous signal at a constant frequency and amplitude, the signal being emitted as a radar beam having a fixed angle of incidence with respect to the vertical, the radar sensor means additionally including means for receiving part of a signal reflected by an object if the object intersects the radar beam and has a speed component in the direction of the radar beam, the signal reflected by the object being shifted in frequency with respect to the emitted signal due to the Doppler effect, the radar sensor means further including means for mixing the emitted signal and the reflected signal to provide a first output signal at the difference frequency, the radar sensor means being mounted at predetermined height;
a transmission circuit connected to the radar sensor means to convey the first output signal; and
evaluation unit means, connected to the transmission circuit, for forming the frequency spectrum of the first output signal, for determining the frequency at the maximum amplitude in the frequency spectrum, and for deriving the speed of the object from at least one parameter, the at least one parameter including the frequency at the maximum in the frequency spectrum, the evaluation unit means including lowpass filter means for avoiding spectral aliasing, the lowpass filter means receiving the first output signal, a variable gain amplifier connected to the lowpass filter means, the gain of the amplifier being set in dependence on the predetermined height of the radar sensor means, a signal processing unit, and an analog/digital converter connected between the variable gain amplifier and the signal processing unit.
9. The apparatus of claim 8, wherein the lowpass filter means in the evaluation unit means is a digital filter.
10. The apparatus of claim 9, wherein the digital filter is a switch/capacitor filter.
11. The apparatus of claim 8, wherein the signal processing unit comprises means for compensating for any deviation between the fixed angle of incidence of the radar beam and a predetermined angle of incidence.
12. A method of locally compiling and evaluating traffic data, comprising the steps of:
(a) using a radar sensor to emit a continuous signal at a constant frequency and amplitude, the signal being emitted from the radar sensor as a radar beam having a fixed angle of incidence with respect to the vertical;
(b) if an object intersects the radar beam and has as speed component in the direction of the radar beam, using the radar sensor to receive part of a signal reflected by the object, the signal reflected by the object being shifted in frequency with respect to the signal emitted by the radar sensor due to the Doppler effect, the object having object-specific features;
(c) mixing the emitted signal and the reflected signal in the radar sensor to provide a first output signal at the difference frequency;
(d) conveying the first output signal to an evaluation unit using a transmission circuit which connects the radar sensor to the evaluation unit, the evaluation unit including lowpass filter means for avoiding spectral aliasing, the lowpass filter means receiving the first output signal, a signal processing unit, and an analog/digital converter connected between the lowpass filter means and the signal processing unit;
(e) using the signal processing unit to form the frequency spectrum of the first output signal;
(f) determining the frequency at the maximum amplitude in the frequency spectrum;
(g) deriving the speed of the object from at least one parameter, the at least one parameter including the frequency determined in step (f); and
(h) reducing the number of errors that may occur due to clutter by checking the first output signal with the aid of a predetermined sampling scheme for the existence of object-specific features, and by comparing the result of the checking with predetermined values to determine whether the first output signal was caused by clutter or by an object participating in the traffic.
13. The method of claim 12, wherein step (e) is conducted by autocorrelation of the first output signal and subsequent spectral transformation.
14. The method of claim 12, wherein step (e) is conducted by relay correlation of the first output signal and subsequent spectral transformation.
15. The method of claim 12, wherein step (e) is conducted by direct spectral transformation of the first output signal.
16. The method of claim 15, wherein the direct spectral transformation is accomplished using a discrete Fourier transformation.
17. The method of claim 15, wherein the direct spectral transformation is accomplished using the fast Fourier transformation method.
18. The method of claim 12, wherein the object moves at a speed within a predetermined expected range, wherein the lowpass filter means has a cut-off frequency, wherein the analog/digital converter has a sampling rate, and further comprising the step of adapting the cut-off frequency and sampling rate to the predetermined expected range of the speed.
19. The method of claim 12, wherein the at least one parameter of step (g) additionally includes the fixed angle of step (a).
20. The method of claim 12, wherein step (c) further comprises generating a second output signal having a phase position that is a function of the direction of movement of the object, and wherein the method further comprises the steps of comparing the phase positions of the first and second output signals for each period of the first and second output signals, coding the result of the comparing step for each period of the first and second output signals with a bit, and using the signal processing unit to derive the direction of movement of the object from a succession of bits.
21. An apparatus for locally compiling and evaluating traffic data, comprising:
radar sensor means for emitting a continuous signal at a constant frequency and amplitude, the signal being emitted as a radar beam having a fixed angle of incidence with respect to the vertical, the radar sensor means additionally including means for receiving part of a signal reflected by an object if the object intersects the radar beam and has a speed component in the direction of the radar beam, the signal reflected by the object being shifted in frequency with respect to the emitted signal due to the Doppler effect, the radar sensor means further including means for mixing the emitted signal and the reflected signal to provide a first output signal at the difference frequency;
a transmission circuit connected to the radar sensor means to convey the first output signal; and
evaluation unit means, connected to the transmission circuit, for forming the frequency spectrum of the first output signal, for determining the frequency at the maximum amplitude in the frequency spectrum, and for deriving the speed of the object from at least one parameter, the at least one parameter including the frequency at the maximum in the frequency spectrum, the evaluation unit means including lowpass filter means for avoiding spectral aliasing, the lowpass filter means receiving the first output signal, a signal processing unit, and an analog/digital converter connected between the lowpass filter means and the signal processing unit,
wherein the signal processing unit includes clock pulse generator means for generating a test signal at predetermined time intervals, means for detecting errors in the test signal, and alarm generator means for reporting detected errors in the test signal.
22. The apparatus of claim 21, further comprising solar cell array means for furnishing power to operate the radar sensor means.
23. The apparatus of claim 21, wherein the radar sensor means, transmission circuit, and evaluation circuit means are employed in a local, autonomous system for at least one of traffic detecting, guidance, and control.
24. A method of locally compiling and evaluating traffic data, comprising the steps of:
(a) using a radar sensor to emit a continuous signal at a constant frequency and amplitude, the signal being emitted from the radar sensor as a radar beam having a fixed angle of incidence with respect to the vertical;
(b) if an object intersects the radar beam and has as speed component in the direction of the radar beam, using the radar sensor to receive part of a signal reflected by the object, the signal reflected by the object being shifted in frequency with respect to the signal emitted by the radar sensor due to the Doppler effect;
(c) mixing the emitted signal and the reflected signal in the radar sensor to provide a first output signal at the difference frequency;
(d) conveying the first output signal to an evaluation unit using a transmission circuit which connects the radar sensor to the evaluation unit, the evaluation unit including lowpass filter means for avoiding spectral aliasing, the lowpass filter means receiving the first output signal, a signal processing unit, and an analog/digital converter connected between the lowpass filter means and the signal processing unit;
(e) using the signal processing unit to form the frequency spectrum of the first output signal;
(f) determining the frequency at the maximum amplitude in the frequency spectrum;
(g) deriving the speed of the object from at least one parameter, the at least one parameter including the frequency determined by step (f); and
(h) using the signal processing unit to monitor the functionability of the evaluation unit by periodically feeding a test signal into the lowpass filter means instead of the first output signal, the test signal having a predetermined frequency, amplitude, and duration.
25. The method of claim 24, further comprising the step of using the signal processing unit to classify objects according to length.
26. The method of claim 25, further comprising the step of using the signal processing unit to classify objects according to the amplitude of the respective first output signal.
27. The method of claim 24, further comprising the step of using the signal processing unit to classify objects according to the amplitude of the respective first output signal.
28. An apparatus for locally compiling and evaluating traffic data, comprising:
radar sensor means for emitting a continuous signal at a constant frequency and amplitude, the signal being emitted as a radar beam having a fixed angle of incidence with respect to the vertical, the radar sensor means additionally including means for receiving part of a signal reflected by an object if the object intersects the radar beam and has a speed component in the direction of the radar beam, the signal reflected by the object being shifted in frequency with respect to the emitted signal due to the Doppler effect, the radar sensor means further including means for mixing the emitted signal and the reflected signal to provide a first output signal at the difference frequency;
a transmission circuit connected to the radar sensor means to convey the first output signal; and
evaluation unit means, connected to the transmission circuit, for forming the frequency spectrum of the first output signal, for determining the frequency at the maximum amplitude in the frequency spectrum, and for deriving the speed of the object from at least one parameter, the at least one parameter including the frequency at the maximum in the frequency spectrum, the evaluation unit means including lowpass filter means for avoiding spectral aliasing, the lowpass filter means receiving the first output signal, a signal processing unit, and an analog/digital converter connected between the lowpass filter means and the signal processing unit,
wherein the transmission circuit includes a remote end circuit portion which is disposed adjacent the radar sensor means and which includes means for superimposing a pilot tone on the first output signal if the noise level at the output of the radar sensor means exceeds a predetermined threshold level, and wherein the transmission circuit additionally includes a near end circuit portion which is disposed adjacent the evaluation unit and which includes means for detecting the presence of the pilot tone and for generating a detection signal that is conveyed to the evaluation unit means.
29. The apparatus of claim 28, wherein the transmission circuit further comprises means for transmitting energy to operate the radar sensor means.
30. The apparatus of claim 28, wherein the transmission circuit further comprises a transmission cable having a length up to about one to two kilometers.
31. The apparatus of claim 28, wherein the transmission circuit further comprises a transmission cable having a length that is greater than about one kilometer.
US07/328,891 1988-03-26 1989-03-27 Method and apparatus for compiling and evaluating local traffic data Expired - Fee Related US4985705A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3810357A DE3810357A1 (en) 1988-03-26 1988-03-26 METHOD FOR LOCAL TRAFFIC DATA ACQUISITION AND EVALUATION AND DEVICE FOR CARRYING OUT THE METHOD
DE3810357 1988-03-26

Publications (1)

Publication Number Publication Date
US4985705A true US4985705A (en) 1991-01-15

Family

ID=6350802

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/328,891 Expired - Fee Related US4985705A (en) 1988-03-26 1989-03-27 Method and apparatus for compiling and evaluating local traffic data

Country Status (4)

Country Link
US (1) US4985705A (en)
EP (1) EP0335009A3 (en)
JP (1) JPH01285000A (en)
DE (1) DE3810357A1 (en)

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5337082A (en) * 1992-12-07 1994-08-09 Whelen Technologies, Inc. Traffic management system
US5465289A (en) * 1993-03-05 1995-11-07 E-Systems, Inc. Cellular based traffic sensor system
US5572450A (en) * 1995-06-06 1996-11-05 Worthy; David G. RF car counting system and method therefor
US5663720A (en) * 1995-06-02 1997-09-02 Weissman; Isaac Method and system for regional traffic monitoring
US5729214A (en) * 1996-01-02 1998-03-17 Moore; Steven Jerome Condition reactive display medium
WO1998035330A1 (en) * 1997-02-05 1998-08-13 Siemens Aktiengesellschaft Motor vehicle detector
EP0866434A1 (en) * 1997-02-19 1998-09-23 MANNESMANN Aktiengesellschaft Device to collect data about moving objects
US5889477A (en) * 1996-03-25 1999-03-30 Mannesmann Aktiengesellschaft Process and system for ascertaining traffic conditions using stationary data collection devices
US6011515A (en) * 1996-10-08 2000-01-04 The Johns Hopkins University System for measuring average speed and traffic volume on a roadway
US6043774A (en) * 1998-03-25 2000-03-28 Honeywell Inc. Near-range proximity sensor having a fast-tracking analog
US6104984A (en) * 1998-06-26 2000-08-15 The United States Of America As Represented By The Secretary Of The Navy Automated method of frequency determination in software metric data through the use of the multiple signal classification (MUSIC) algorithm
US6236933B1 (en) * 1998-11-23 2001-05-22 Infomove.Com, Inc. Instantaneous traffic monitoring system
US6317058B1 (en) 1999-09-15 2001-11-13 Jerome H. Lemelson Intelligent traffic control and warning system and method
US6384739B1 (en) 1999-05-10 2002-05-07 Bellsouth Intellectual Property Corporation Traffic monitoring system and method
US6505114B2 (en) 2001-02-06 2003-01-07 Sergio Luciani Traffic monitoring system and method
EP1431776A1 (en) * 2002-12-21 2004-06-23 Volkswagen Aktiengesellschaft Method for the determination of the length of an object with a radar system
US20040140927A1 (en) * 2002-10-29 2004-07-22 Marc-Michael Meinecke Length measurement with radar
US20050080552A1 (en) * 2000-08-28 2005-04-14 Trafficsoft, Inc. (Formerly Estimotion Inc.) Method and system for modeling and processing vehicular traffic data and information and applying thereof
US20050248469A1 (en) * 1999-04-19 2005-11-10 Dekock Bruce W System for providing traffic information
US20060033642A1 (en) * 2004-08-10 2006-02-16 Speedinfo Self-powered vehicle speed sensor
US20060074546A1 (en) * 1999-04-19 2006-04-06 Dekock Bruce W System for providing traffic information
US20060122846A1 (en) * 2002-08-29 2006-06-08 Jonathan Burr Apparatus and method for providing traffic information
US20060217885A1 (en) * 2005-03-24 2006-09-28 Mark Crady User location driven identification of service vehicles
GB2425421A (en) * 2005-03-23 2006-10-25 David Drewette Road based vehicle speed sensor
US20070176792A1 (en) * 2004-03-02 2007-08-02 Butzer George L Traffic Control Device Transmitter, Receiver, Relay and Display System
US20070208501A1 (en) * 2006-03-03 2007-09-06 Inrix, Inc. Assessing road traffic speed using data obtained from mobile data sources
US20070208492A1 (en) * 2006-03-03 2007-09-06 Inrix, Inc. Dynamic time series prediction of future traffic conditions
US20070208498A1 (en) * 2006-03-03 2007-09-06 Inrix, Inc. Displaying road traffic condition information and user controls
US20070208493A1 (en) * 2006-03-03 2007-09-06 Inrix, Inc. Identifying unrepresentative road traffic condition data obtained from mobile data sources
US20070208495A1 (en) * 2006-03-03 2007-09-06 Chapman Craig H Filtering road traffic condition data obtained from mobile data sources
US20070208496A1 (en) * 2006-03-03 2007-09-06 Downs Oliver B Obtaining road traffic condition data from mobile data sources
US20070208497A1 (en) * 2006-03-03 2007-09-06 Inrix, Inc. Detecting anomalous road traffic conditions
US20070208494A1 (en) * 2006-03-03 2007-09-06 Inrix, Inc. Assessing road traffic flow conditions using data obtained from mobile data sources
US20080046165A1 (en) * 2006-08-18 2008-02-21 Inrix, Inc. Rectifying erroneous road traffic sensor data
US20080071466A1 (en) * 2006-08-18 2008-03-20 Inrix, Inc. Representative road traffic flow information based on historical data
WO2008055338A1 (en) * 2006-11-07 2008-05-15 Dan Manor Monopulse traffic sensor and method
US20080275639A1 (en) * 2007-05-01 2008-11-06 Kyungso Yun Method of selecting route and terminal thereof
US20080278366A1 (en) * 2007-05-07 2008-11-13 Andreas Behrens Method and Device for Determining the Vehicle Class of Vehicles
US20100076878A1 (en) * 2006-09-12 2010-03-25 Itis Holdings Plc Apparatus and method for implementing a road pricing scheme
US20100120436A1 (en) * 2004-07-09 2010-05-13 Itis Uk Limited System and method for geographically locating a cellular phone
CN101231341B (en) * 2007-01-26 2010-09-08 中国科学院上海微系统与信息技术研究所 Integration vehicle flowrate radar installations directly detecting and measuring speed
US7908080B2 (en) 2004-12-31 2011-03-15 Google Inc. Transportation routing
US7912628B2 (en) 2006-03-03 2011-03-22 Inrix, Inc. Determining road traffic conditions using data from multiple data sources
US20110106416A1 (en) * 2009-04-22 2011-05-05 Christopher Laurence Scofield Predicting expected road traffic conditions based on historical and current data
US20130214962A1 (en) * 2012-02-22 2013-08-22 Fujitsu Limited Apparatus and method for traffic lane detection
US8700296B2 (en) 2006-03-03 2014-04-15 Inrix, Inc. Dynamic prediction of road traffic conditions
US9304197B2 (en) 2012-08-14 2016-04-05 Jenoptik Robot Gmbh Method for classifying moving vehicles by tracking a position value of the vehicle
US9341707B2 (en) 2012-08-14 2016-05-17 Jenoptik Robot Gmbh Method for classifying moving vehicles
US9418545B2 (en) 2011-06-29 2016-08-16 Inrix Holding Limited Method and system for collecting traffic data
CN106249205A (en) * 2016-08-11 2016-12-21 河海大学 A kind of cognitive blind balance method for radar channel amplitude Yu phase only pupil filter
CN106324612A (en) * 2015-06-30 2017-01-11 佳能株式会社 Length measuring apparatus and method of manufacturing article
US9798985B2 (en) 2009-02-02 2017-10-24 Inrix Holdings Limited Apparatus and methods for providing journey information
US9958280B2 (en) 2011-08-16 2018-05-01 Inrix, Inc. Assessing inter-modal passenger travel options
US10049569B2 (en) 2005-10-31 2018-08-14 Wavetronix Llc Detecting roadway targets within a multiple beam radar system
US10109186B2 (en) * 2015-03-06 2018-10-23 Q-Free Asa Vehicle detection
US10321275B1 (en) * 2016-09-22 2019-06-11 Amazon Technologies, Inc. Multi-frequency user tracking system
USRE48781E1 (en) 2001-09-27 2021-10-19 Wavetronix Llc Vehicular traffic sensor
US11180025B2 (en) 2005-11-17 2021-11-23 Invently Automotive Inc. Electric vehicle power management system
US11186175B2 (en) 2005-11-17 2021-11-30 Invently Automotive Inc. Vehicle power management system
US11207980B2 (en) 2005-11-17 2021-12-28 Invently Automotive Inc. Vehicle power management system responsive to traffic conditions
US11214144B2 (en) 2005-11-17 2022-01-04 Invently Automotive Inc. Electric vehicle power management system
US11345236B2 (en) 2005-11-17 2022-05-31 Invently Automotive Inc. Electric vehicle power management system
US11351863B2 (en) 2005-11-17 2022-06-07 Invently Automotive Inc. Vehicle power management system

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3902582C2 (en) * 1989-01-28 1998-07-09 Daimler Benz Aerospace Ag Process for local traffic data acquisition and evaluation
DE4128560A1 (en) * 1991-08-28 1993-03-04 Telefunken Systemtechnik METHOD FOR DETERMINING THE SPEED OF A MOVING OBJECT BY MEANS OF AT LEAST ONE DOPPLER RADAR SENSOR, AND DEVICE FOR CARRYING OUT THE METHOD
DE4225466C2 (en) * 1992-08-01 1995-08-31 Franz J Gebert Method for recording traffic data and device for transmitting speed change sign information
FR2695742B1 (en) * 1992-09-15 1994-10-21 Thomson Csf System for calculating at least one vehicle traffic control parameter.
NL9300672A (en) * 1993-04-20 1994-11-16 Gatsometer Bv Method and apparatus for speed measurements
EP0621573A1 (en) * 1993-04-20 1994-10-26 Gatsometer B.V. method and device for speed measurement
DE4325672A1 (en) * 1993-07-30 1995-05-04 Siemens Ag Method for speed measurement and classification of vehicles using a traffic radar device
FR2718874B1 (en) * 1994-04-15 1996-05-15 Thomson Csf Traffic monitoring method for automatic detection of vehicle incidents.
DE19648130A1 (en) * 1996-11-21 1998-06-18 Probst Max Josef Traffic information system using roadside devices
DE10039422C2 (en) * 2000-08-11 2002-08-01 Siemens Ag Methods and devices for operating a PMD system
JP4479349B2 (en) * 2004-05-27 2010-06-09 日本電気株式会社 Radar equipment
NL1027018C2 (en) * 2004-09-10 2006-03-13 Gatsometer Bv Method and system for observing with radar the passing of a point to be monitored on a road through a vehicle.
EP1916642A1 (en) * 2006-10-24 2008-04-30 Dambach-Werke GmbH Traffic detecting device
JP4994852B2 (en) * 2007-01-15 2012-08-08 三菱電機株式会社 Automotive radar equipment
JP5570266B2 (en) * 2010-03-26 2014-08-13 東日本高速道路株式会社 Traveling vehicle number measuring device and program
AT512767B1 (en) 2012-03-26 2015-05-15 Sierzega Elektronik Gmbh Method and device for radar traffic detection
CN106093895B (en) * 2016-06-03 2018-06-19 山东省科学院自动化研究所 A kind of method of estimation of pulse Doppler radar amplitude jitter
CN106093896B (en) * 2016-06-03 2018-06-19 山东省科学院自动化研究所 A kind of quick detection and the method for estimating pulse Doppler radar pulse jitter
CN109814102B (en) * 2019-01-31 2020-10-27 厦门精益远达智能科技有限公司 Single lane superelevation monitoring method, device, equipment and storage medium
CN110007284B (en) * 2019-04-10 2023-01-31 南京航空航天大学 Pulse system 1-bit radar nonlinear target reconstruction problem dimension reduction method
CN114005277B (en) * 2019-11-18 2023-03-24 腾讯科技(深圳)有限公司 Information extraction method and device of Internet of vehicles and readable medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3181156A (en) * 1962-10-15 1965-04-27 Sylvania Electric Prod Method and apparatus for processing signals
US4023017A (en) * 1974-05-28 1977-05-10 Autostrade, S.P.A. Electronic traffic control system
US4057756A (en) * 1975-04-03 1977-11-08 The Solartron Electronic Group Ltd. Signal processors

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH633637A5 (en) * 1978-10-03 1982-12-15 Patelhold Patentverwertung METHOD OF MEASURING THE SPEED OF A MOVING OBJECT.
US4231039A (en) * 1978-12-28 1980-10-28 Glymar Radar speedometer
DE3035374A1 (en) * 1980-09-19 1982-05-19 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt VEHICLE DOPPLER RADAR DEVICE
CH654670A5 (en) * 1981-06-22 1986-02-28 Zellweger Uster Ag Method and device for evaluating signals of a doppler radar speed measuring device.
US4591823A (en) * 1984-05-11 1986-05-27 Horvat George T Traffic speed surveillance system
JPS6295482A (en) * 1985-10-23 1987-05-01 Matsushita Electric Ind Co Ltd On-vehicle speed measuring method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3181156A (en) * 1962-10-15 1965-04-27 Sylvania Electric Prod Method and apparatus for processing signals
US4023017A (en) * 1974-05-28 1977-05-10 Autostrade, S.P.A. Electronic traffic control system
US4057756A (en) * 1975-04-03 1977-11-08 The Solartron Electronic Group Ltd. Signal processors

Non-Patent Citations (14)

* Cited by examiner, † Cited by third party
Title
"International Electrotechnical Commission Technical Committee No. 57: Telecontrol, Teleprotection and Associated Telecommunications for Electric Power Systems", Part 5-2: Link Transmission Procedures Revision 6, Oct. 1987.
Alan V. Oppenheim and Ronald W. Schafter, "Digital Signal Processing", Prentice-Hall Inc., Englewood Cliffs, N.J., 1975, pp. 541-548.
Alan V. Oppenheim and Ronald W. Schafter, Digital Signal Processing , Prentice Hall Inc., Englewood Cliffs, N.J., 1975, pp. 541 548. *
Douglas F. Elliott, "Handbook of Digital Signal Processing", Academic Press Inc., 1987, pp. 600-604.
Douglas F. Elliott, Handbook of Digital Signal Processing , Academic Press Inc., 1987, pp. 600 604. *
Electronic Design, "Newscope Speeders Beware The Cops Can Take You Out", vol. 25, Dec. 20, 1977, p. 19.
Electronic Design, Newscope Speeders Beware The Cops Can Take You Out , vol. 25, Dec. 20, 1977, p. 19. *
International Electrotechnical Commission Technical Committee No. 57: Telecontrol, Teleprotection and Associated Telecommunications for Electric Power Systems , Part 5 2: Link Transmission Procedures Revision 6, Oct. 1987. *
Skolnik, M. I., "Introduction to Radar Systems", 2nd Edition, 1980, McGraw-Hill, pp. 70-81.
Skolnik, M. I., Introduction to Radar Systems , 2nd Edition, 1980, McGraw Hill, pp. 70 81. *
Sloan D. Robertson, "Recent Advances in Finline Circuits", IRE Trans. on MTT-4, 1956, pp. 263-267.
Sloan D. Robertson, Recent Advances in Finline Circuits , IRE Trans. on MTT 4, 1956, pp. 263 267. *
Walter Stammler and Helmut Brehm, "Correlation Estimation for Spherically Invariant Speech Model Signals", in MELECON 85, vol. II, Digital Signal Processing; Elsevier Science Publ., North Holland, 1985, pp. 127-130.
Walter Stammler and Helmut Brehm, Correlation Estimation for Spherically Invariant Speech Model Signals , in MELECON 85, vol. II, Digital Signal Processing; Elsevier Science Publ., North Holland, 1985, pp. 127 130. *

Cited By (123)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5337082A (en) * 1992-12-07 1994-08-09 Whelen Technologies, Inc. Traffic management system
US5465289A (en) * 1993-03-05 1995-11-07 E-Systems, Inc. Cellular based traffic sensor system
US5663720A (en) * 1995-06-02 1997-09-02 Weissman; Isaac Method and system for regional traffic monitoring
US5572450A (en) * 1995-06-06 1996-11-05 Worthy; David G. RF car counting system and method therefor
US5729214A (en) * 1996-01-02 1998-03-17 Moore; Steven Jerome Condition reactive display medium
US5889477A (en) * 1996-03-25 1999-03-30 Mannesmann Aktiengesellschaft Process and system for ascertaining traffic conditions using stationary data collection devices
US6011515A (en) * 1996-10-08 2000-01-04 The Johns Hopkins University System for measuring average speed and traffic volume on a roadway
US6417783B1 (en) * 1997-02-05 2002-07-09 Siemens Aktiengesellschaft Motor vehicle detector
WO1998035330A1 (en) * 1997-02-05 1998-08-13 Siemens Aktiengesellschaft Motor vehicle detector
EP0866434A1 (en) * 1997-02-19 1998-09-23 MANNESMANN Aktiengesellschaft Device to collect data about moving objects
US6043774A (en) * 1998-03-25 2000-03-28 Honeywell Inc. Near-range proximity sensor having a fast-tracking analog
US6104984A (en) * 1998-06-26 2000-08-15 The United States Of America As Represented By The Secretary Of The Navy Automated method of frequency determination in software metric data through the use of the multiple signal classification (MUSIC) algorithm
US6236933B1 (en) * 1998-11-23 2001-05-22 Infomove.Com, Inc. Instantaneous traffic monitoring system
US20050248469A1 (en) * 1999-04-19 2005-11-10 Dekock Bruce W System for providing traffic information
US20060074546A1 (en) * 1999-04-19 2006-04-06 Dekock Bruce W System for providing traffic information
US20060058941A1 (en) * 1999-04-19 2006-03-16 Dekock Bruce W System for providing traffic information
US6384739B1 (en) 1999-05-10 2002-05-07 Bellsouth Intellectual Property Corporation Traffic monitoring system and method
US6317058B1 (en) 1999-09-15 2001-11-13 Jerome H. Lemelson Intelligent traffic control and warning system and method
US6633238B2 (en) 1999-09-15 2003-10-14 Jerome H. Lemelson Intelligent traffic control and warning system and method
US20060069496A1 (en) * 2000-08-28 2006-03-30 Israel Feldman Method and system for modeling and processing vehicular traffic data and information and applying thereof
US8918278B2 (en) 2000-08-28 2014-12-23 Inrix Global Services Limited Method and system for modeling and processing vehicular traffic data and information and applying thereof
US20050080552A1 (en) * 2000-08-28 2005-04-14 Trafficsoft, Inc. (Formerly Estimotion Inc.) Method and system for modeling and processing vehicular traffic data and information and applying thereof
US9324232B2 (en) 2000-08-28 2016-04-26 INRX Gloabal Services Limited Method and system for modeling and processing vehicular traffic data and information and applying thereof
US9552725B2 (en) 2000-08-28 2017-01-24 Inrix Global Services Limited Method and system for modeling and processing vehicular traffic data and information and applying thereof
US20060111833A1 (en) * 2000-08-28 2006-05-25 Israel Feldman Method and system for modeling and processing vehicular traffic data and information and applying thereof
US6505114B2 (en) 2001-02-06 2003-01-07 Sergio Luciani Traffic monitoring system and method
USRE48781E1 (en) 2001-09-27 2021-10-19 Wavetronix Llc Vehicular traffic sensor
US20060122846A1 (en) * 2002-08-29 2006-06-08 Jonathan Burr Apparatus and method for providing traffic information
US20040140927A1 (en) * 2002-10-29 2004-07-22 Marc-Michael Meinecke Length measurement with radar
US6943727B2 (en) * 2002-10-29 2005-09-13 Volkswagen Ag Length measurement with radar
EP1431776A1 (en) * 2002-12-21 2004-06-23 Volkswagen Aktiengesellschaft Method for the determination of the length of an object with a radar system
US7518531B2 (en) * 2004-03-02 2009-04-14 Butzer George L Traffic control device transmitter, receiver, relay and display system
US20070176792A1 (en) * 2004-03-02 2007-08-02 Butzer George L Traffic Control Device Transmitter, Receiver, Relay and Display System
US20100120436A1 (en) * 2004-07-09 2010-05-13 Itis Uk Limited System and method for geographically locating a cellular phone
US20110171961A1 (en) * 2004-07-09 2011-07-14 Itis Uk Limited System and method for geographically locating a cellular phone
US20110159875A1 (en) * 2004-07-09 2011-06-30 Itis Uk Limited System and method for geographically locating a cellular phone
US9155060B2 (en) 2004-07-09 2015-10-06 INRX Global Services Limited System and method for geographically locating a cellular phone
US9026114B2 (en) 2004-07-09 2015-05-05 INRX Global Services Limited System and method for geographically locating a cellular phone
US8818380B2 (en) 2004-07-09 2014-08-26 Israel Feldman System and method for geographically locating a cellular phone
WO2006031334A2 (en) * 2004-08-10 2006-03-23 Speedinfo, Llc A self-powered vehicle speed sensor
US7558695B2 (en) * 2004-08-10 2009-07-07 Speedinfo, Llc Self-powered vehicle speed sensor
US20060033642A1 (en) * 2004-08-10 2006-02-16 Speedinfo Self-powered vehicle speed sensor
WO2006031334A3 (en) * 2004-08-10 2006-10-05 Speedinfo Llc A self-powered vehicle speed sensor
US9945686B2 (en) 2004-12-31 2018-04-17 Google Llc Transportation routing
US8606514B2 (en) 2004-12-31 2013-12-10 Google Inc. Transportation routing
US8798917B2 (en) 2004-12-31 2014-08-05 Google Inc. Transportation routing
US9709415B2 (en) 2004-12-31 2017-07-18 Google Inc. Transportation routing
US7908080B2 (en) 2004-12-31 2011-03-15 Google Inc. Transportation routing
US9778055B2 (en) 2004-12-31 2017-10-03 Google Inc. Transportation routing
US11092455B2 (en) 2004-12-31 2021-08-17 Google Llc Transportation routing
GB2425421A (en) * 2005-03-23 2006-10-25 David Drewette Road based vehicle speed sensor
US8370054B2 (en) 2005-03-24 2013-02-05 Google Inc. User location driven identification of service vehicles
US20060217885A1 (en) * 2005-03-24 2006-09-28 Mark Crady User location driven identification of service vehicles
US10276041B2 (en) 2005-10-31 2019-04-30 Wavetronix Llc Detecting roadway targets across beams
US10049569B2 (en) 2005-10-31 2018-08-14 Wavetronix Llc Detecting roadway targets within a multiple beam radar system
US11351863B2 (en) 2005-11-17 2022-06-07 Invently Automotive Inc. Vehicle power management system
US11345236B2 (en) 2005-11-17 2022-05-31 Invently Automotive Inc. Electric vehicle power management system
US11214144B2 (en) 2005-11-17 2022-01-04 Invently Automotive Inc. Electric vehicle power management system
US11207980B2 (en) 2005-11-17 2021-12-28 Invently Automotive Inc. Vehicle power management system responsive to traffic conditions
US11186175B2 (en) 2005-11-17 2021-11-30 Invently Automotive Inc. Vehicle power management system
US11180025B2 (en) 2005-11-17 2021-11-23 Invently Automotive Inc. Electric vehicle power management system
US8909463B2 (en) 2006-03-03 2014-12-09 Inrix, Inc. Assessing road traffic speed using data from multiple data sources
US7813870B2 (en) 2006-03-03 2010-10-12 Inrix, Inc. Dynamic time series prediction of future traffic conditions
US7912627B2 (en) 2006-03-03 2011-03-22 Inrix, Inc. Obtaining road traffic condition data from mobile data sources
US20110082636A1 (en) * 2006-03-03 2011-04-07 Inrix, Inc. Dynamic time series prediction of future traffic conditions
US7912628B2 (en) 2006-03-03 2011-03-22 Inrix, Inc. Determining road traffic conditions using data from multiple data sources
US20070208498A1 (en) * 2006-03-03 2007-09-06 Inrix, Inc. Displaying road traffic condition information and user controls
US20070208493A1 (en) * 2006-03-03 2007-09-06 Inrix, Inc. Identifying unrepresentative road traffic condition data obtained from mobile data sources
US20070208495A1 (en) * 2006-03-03 2007-09-06 Chapman Craig H Filtering road traffic condition data obtained from mobile data sources
US8014936B2 (en) 2006-03-03 2011-09-06 Inrix, Inc. Filtering road traffic condition data obtained from mobile data sources
US8065073B2 (en) 2006-03-03 2011-11-22 Inrix, Inc. Dynamic time series prediction of future traffic conditions
US8090524B2 (en) 2006-03-03 2012-01-03 Inrix, Inc. Determining road traffic conditions using data from multiple data sources
US7899611B2 (en) 2006-03-03 2011-03-01 Inrix, Inc. Detecting anomalous road traffic conditions
US8160805B2 (en) 2006-03-03 2012-04-17 Inrix, Inc. Obtaining road traffic condition data from mobile data sources
US8190362B2 (en) 2006-03-03 2012-05-29 Inrix, Inc. Displaying road traffic condition information and user controls
US8275540B2 (en) 2006-03-03 2012-09-25 Inrix, Inc. Dynamic time series prediction of traffic conditions
US20070208501A1 (en) * 2006-03-03 2007-09-06 Inrix, Inc. Assessing road traffic speed using data obtained from mobile data sources
US8483940B2 (en) 2006-03-03 2013-07-09 Inrix, Inc. Determining road traffic conditions using multiple data samples
US9449508B2 (en) 2006-03-03 2016-09-20 Inrix, Inc. Filtering road traffic condition data obtained from mobile data sources
US20110029224A1 (en) * 2006-03-03 2011-02-03 Inrix, Inc. Assessing road traffic flow conditions using data obtained from mobile data sources
US7831380B2 (en) 2006-03-03 2010-11-09 Inrix, Inc. Assessing road traffic flow conditions using data obtained from mobile data sources
US8615354B2 (en) 2006-03-03 2013-12-24 Inrix, Inc. Displaying road traffic condition information and user controls
US8682571B2 (en) 2006-03-03 2014-03-25 Inrix, Inc. Detecting anomalous road traffic conditions
US8700296B2 (en) 2006-03-03 2014-04-15 Inrix, Inc. Dynamic prediction of road traffic conditions
US20070208496A1 (en) * 2006-03-03 2007-09-06 Downs Oliver B Obtaining road traffic condition data from mobile data sources
US20070208492A1 (en) * 2006-03-03 2007-09-06 Inrix, Inc. Dynamic time series prediction of future traffic conditions
US9280894B2 (en) 2006-03-03 2016-03-08 Inrix, Inc. Filtering road traffic data from multiple data sources
US8880324B2 (en) 2006-03-03 2014-11-04 Inrix, Inx. Detecting unrepresentative road traffic condition data
US20070208497A1 (en) * 2006-03-03 2007-09-06 Inrix, Inc. Detecting anomalous road traffic conditions
US20100185382A1 (en) * 2006-03-03 2010-07-22 Inrix, Inc. Displaying road traffic condition information and user controls
US20070208494A1 (en) * 2006-03-03 2007-09-06 Inrix, Inc. Assessing road traffic flow conditions using data obtained from mobile data sources
US7908076B2 (en) 2006-08-18 2011-03-15 Inrix, Inc. Representative road traffic flow information based on historical data
US20080046165A1 (en) * 2006-08-18 2008-02-21 Inrix, Inc. Rectifying erroneous road traffic sensor data
US7706965B2 (en) 2006-08-18 2010-04-27 Inrix, Inc. Rectifying erroneous road traffic sensor data
US20080071466A1 (en) * 2006-08-18 2008-03-20 Inrix, Inc. Representative road traffic flow information based on historical data
US20110202266A1 (en) * 2006-08-18 2011-08-18 Inrix, Inc. Representative road traffic flow information based on historical data
US8700294B2 (en) 2006-08-18 2014-04-15 Inrix, Inc. Representative road traffic flow information based on historical data
US20100076878A1 (en) * 2006-09-12 2010-03-25 Itis Holdings Plc Apparatus and method for implementing a road pricing scheme
US7501976B2 (en) 2006-11-07 2009-03-10 Dan Manor Monopulse traffic sensor and method
US20080129546A1 (en) * 2006-11-07 2008-06-05 Eis Electronic Integrated Systems Inc. Monopulse traffic sensor and method
WO2008055338A1 (en) * 2006-11-07 2008-05-15 Dan Manor Monopulse traffic sensor and method
CN101231341B (en) * 2007-01-26 2010-09-08 中国科学院上海微系统与信息技术研究所 Integration vehicle flowrate radar installations directly detecting and measuring speed
US8566025B2 (en) 2007-05-01 2013-10-22 Lg Electronics Inc. Method of selecting route and terminal using the same
US8150609B2 (en) * 2007-05-01 2012-04-03 Lg Electronics Inc. Method of selecting route and terminal thereof
US20080275639A1 (en) * 2007-05-01 2008-11-06 Kyungso Yun Method of selecting route and terminal thereof
US20080275640A1 (en) * 2007-05-01 2008-11-06 Kyungso Yun Method of selecting route and terminal using the same
US20080278366A1 (en) * 2007-05-07 2008-11-13 Andreas Behrens Method and Device for Determining the Vehicle Class of Vehicles
US9798985B2 (en) 2009-02-02 2017-10-24 Inrix Holdings Limited Apparatus and methods for providing journey information
US20110106416A1 (en) * 2009-04-22 2011-05-05 Christopher Laurence Scofield Predicting expected road traffic conditions based on historical and current data
US9257041B2 (en) 2009-04-22 2016-02-09 Inrix, Inc. Predicting expected road traffic conditions based on historical and current data
US9418545B2 (en) 2011-06-29 2016-08-16 Inrix Holding Limited Method and system for collecting traffic data
US9958280B2 (en) 2011-08-16 2018-05-01 Inrix, Inc. Assessing inter-modal passenger travel options
US20130214962A1 (en) * 2012-02-22 2013-08-22 Fujitsu Limited Apparatus and method for traffic lane detection
US9134408B2 (en) * 2012-02-22 2015-09-15 Fujitsu Limited Apparatus and method for traffic lane detection
US9304197B2 (en) 2012-08-14 2016-04-05 Jenoptik Robot Gmbh Method for classifying moving vehicles by tracking a position value of the vehicle
US9341707B2 (en) 2012-08-14 2016-05-17 Jenoptik Robot Gmbh Method for classifying moving vehicles
US20190019406A1 (en) * 2015-03-06 2019-01-17 Q-Free Asa Vehicle detection
US10504363B2 (en) * 2015-03-06 2019-12-10 Q-Free Asa Vehicle detection
US10109186B2 (en) * 2015-03-06 2018-10-23 Q-Free Asa Vehicle detection
CN106324612A (en) * 2015-06-30 2017-01-11 佳能株式会社 Length measuring apparatus and method of manufacturing article
CN106249205A (en) * 2016-08-11 2016-12-21 河海大学 A kind of cognitive blind balance method for radar channel amplitude Yu phase only pupil filter
CN106249205B (en) * 2016-08-11 2018-08-14 河海大学 A kind of cognition blind balance method for radar channel amplitude and phase only pupil filter
US10321275B1 (en) * 2016-09-22 2019-06-11 Amazon Technologies, Inc. Multi-frequency user tracking system

Also Published As

Publication number Publication date
EP0335009A2 (en) 1989-10-04
EP0335009A3 (en) 1990-07-11
JPH01285000A (en) 1989-11-16
DE3810357A1 (en) 1989-10-05

Similar Documents

Publication Publication Date Title
US4985705A (en) Method and apparatus for compiling and evaluating local traffic data
US5987374A (en) Vehicle traveling guidance system
US5402346A (en) System for the calculation of at least one vehicular traffic check parameter
US5525996A (en) Police traffic radar for calculating and simultaneously displaying fastest target speed
US5528245A (en) Police traffic radar using double balanced mixer for even order harmonic suppression
US5666101A (en) High-efficiency apparatus for measuring operational parameters and times of vehicles running around a racetrack
US5691724A (en) Police traffic radar using FFT processing to find fastest target
US6472978B1 (en) Traffic system to prevent from accidents
AU768163B2 (en) Method and apparatus for controlling trains by determining direction taken by a train through a railroad switch
US6011515A (en) System for measuring average speed and traffic volume on a roadway
US8963770B2 (en) Method and device for determining the distance between a radio beacon and an onboard unit
US6348889B1 (en) Radar apparatus
US5117301A (en) System for transmitting information to moving object
US4278975A (en) Navigation-monitoring apparatus
CN100533505C (en) Method and apparatus for detecting vehicle carriageway
US3824592A (en) Method and apparatus for measuring and indicating the distance, distance variation, or both between an automotive vehicle and an obstacle
US5790052A (en) Method for determining the position of a vehicle on a road
CN103884317A (en) Real-time monitoring system for settlement of roadbed of high-speed rail
CN110363995B (en) Vehicle existence comprehensive detection system and detection method thereof
EP0271842B1 (en) Roadside beacon system
US5914683A (en) Ultra high resolution ranging unit
CA1252856A (en) Navigation, communication, and surveillance system based on dme
US4698636A (en) Ground speed determining radar system
Düll et al. Collision avoidance system for automobiles
KR20040007377A (en) A multi-detection area radar for measuring the traffic information

Legal Events

Date Code Title Description
AS Assignment

Owner name: LICENTIA PATENT-VERWALTUNGS-GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:STAMMLER, WALTER;REEL/FRAME:005093/0844

Effective date: 19890413

AS Assignment

Owner name: TELEFUNKEN SYSTEMTECHNIK GMBH, SEDANSTRASSE 10, D-

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:LICENTIA PATENT-VERWAL TUNGS-GMBH;REEL/FRAME:005548/0513

Effective date: 19901130

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
FP Lapsed due to failure to pay maintenance fee

Effective date: 19950118

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362