US4968261A - Electrical connector - Google Patents

Electrical connector Download PDF

Info

Publication number
US4968261A
US4968261A US07/473,889 US47388990A US4968261A US 4968261 A US4968261 A US 4968261A US 47388990 A US47388990 A US 47388990A US 4968261 A US4968261 A US 4968261A
Authority
US
United States
Prior art keywords
insulating block
metal shell
electrical connector
connector
set forth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US07/473,889
Inventor
Yasuyuki Mizunuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DDK Ltd
Original Assignee
DDK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DDK Ltd filed Critical DDK Ltd
Assigned to DAIICHI DENSHI KOGYO KABUSHIKI KAISHA reassignment DAIICHI DENSHI KOGYO KABUSHIKI KAISHA ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: MIZUNUMA, YASUYUKI
Application granted granted Critical
Publication of US4968261A publication Critical patent/US4968261A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/648Protective earth or shield arrangements on coupling devices, e.g. anti-static shielding  
    • H01R13/658High frequency shielding arrangements, e.g. against EMI [Electro-Magnetic Interference] or EMP [Electro-Magnetic Pulse]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/70Coupling devices
    • H01R12/7005Guiding, mounting, polarizing or locking means; Extractors
    • H01R12/7011Locking or fixing a connector to a PCB
    • H01R12/7017Snap means
    • H01R12/7029Snap means not integral with the coupling device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/70Coupling devices
    • H01R12/7005Guiding, mounting, polarizing or locking means; Extractors
    • H01R12/7011Locking or fixing a connector to a PCB
    • H01R12/7047Locking or fixing a connector to a PCB with a fastener through a screw hole in the coupling device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/70Coupling devices
    • H01R12/71Coupling devices for rigid printing circuits or like structures
    • H01R12/712Coupling devices for rigid printing circuits or like structures co-operating with the surface of the printed circuit or with a coupling device exclusively provided on the surface of the printed circuit
    • H01R12/716Coupling device provided on the PCB
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/70Coupling devices
    • H01R12/71Coupling devices for rigid printing circuits or like structures
    • H01R12/72Coupling devices for rigid printing circuits or like structures coupling with the edge of the rigid printed circuits or like structures
    • H01R12/722Coupling devices for rigid printing circuits or like structures coupling with the edge of the rigid printed circuits or like structures coupling devices mounted on the edge of the printed circuits
    • H01R12/724Coupling devices for rigid printing circuits or like structures coupling with the edge of the rigid printed circuits or like structures coupling devices mounted on the edge of the printed circuits containing contact members forming a right angle

Landscapes

  • Details Of Connecting Devices For Male And Female Coupling (AREA)

Abstract

An electrical connector having a noise-proof metal shell includes a particular construction of the metal shell capable of maintaining reliable connecting condition between the metal shell and grounding elements without causing any faulty connection therebetween even if the connector is used under a condition prone to vibration or suffered from shrinkage occuring in an insulating block of the connector due to aging.

Description

BACKGROUND OF THE INVENTION
This invention relates to an electrical connector having a noise-proof metal shell, and more particularly to an electrical connector having an improved connection between a noise-proof metal shell and a grounding element to be connected to a ground.
A connector having at contacts 1 a metal shell 2 for preventing inductive interference as shown in FIG. 1 has been used as a so-called "interface connector" for connecting a printed circuit board and an input circuit in a so-called office automation appliance such as a personal computer.
Such a connector generally includes the desired number of the contacts 1 having L-shaped contact tails 1a and fixed in an L-shaped insulating block 3, and hexagonal studs 4 threadedly engaging connecting pieces 5a of L-shaped grounding elements 5 to embrace a mounting flange 2a of the metal shell 2 and connecting pieces 3a of the insulating block 3. In using the connector, it is fixed to a printed circuit board 6 in the following manner.
First, the contact tails 1a of the contacts 1 are inserted into soldering apertures 7 formed in a circuited pattern 6a of the printed circuit board 6 as shown in FIG. 1. Thereafter, fixing pieces 5b of the grounding elements 5 and the printed circuit board 6 together with a fixing piece 3b of the insulating block 3 are clamped by means of set screws 8 and nuts 9 so that these members are embraced by the nuts 9 and heads of the set screws. In this manner, the metal shell 2 is connected to the ground pattern 6b of the printed circuit board 6 for use.
Moreover, each hexagonal stud 4 is often formed with an internal thread (not shown) in an end which is not connected to the grounding element 5. The internal threads of the hexagonal studs 4 are adapted to threadedly engage screw thread members (not shown) rotatably provided on a mating connector (not shown) so that the hexagonal studs 4 are frequently used as part of locking means for preventing dislodgment of these connectors.
With this connector of the prior art, the metal shell 2 is readily removed from the connector by loosening the hexagonal studs 4 so that it is very convenient for maintenance, inspection and cleaning for the contacts 1. In case of being used under a condition prone to vibration, however, there is a risk of the hexagonal studs 4 being loosened during use. Moreover, a plastic material of the insulating block 3 may shrink due to aging to loosen the tightness of the hexagonal studs 4. Therefore, connection between the metal shell 2 and the grounding elements 5 for grounding the metal shell 2 may become faulty with the result that the noise preventing effect is reduced and the reliability in operation is lost.
Instead of the locking means of the threaded engaging hexagonal studs 4 as shown in FIGS. 1 and 2, another means may be used for preventing dislodgment of the connector. In this case, a metal shell of a connector is provided with locking members formed with openings in which hook pieces fixed to a mating connector are latched. In this case, the locking members may be formed by extending the mounting flange 2a outwardly of hexagonal studs 4 or by providing an additional member constituting the locking members. In any case, such a construction will provide a longer connector which does not fulfill the requirement of miniaturization of connectors with the recent tendency of electronic appliances to be miniaturized.
In case of using the hexagonal studs 4, moreover, arranging and tightening steps of the screw members are required which make difficult automatic assembling of connectors and do not meet the requirement to reduce the number of parts.
SUMMARY OF THE INVENTION
It is an object of the invention to provide an electrical connector having a connecting construction which does not cause any faulty connection between a metal shell and grounding elements even under a circumstance likely to undergo vibrations and even if the insulating block shrinks by aging.
It is another object of the invention to provide an improved connecting construction between a metal shell and grounding elements of an electrical connector to realize the miniaturization of the connector having locking means using plate-shaped locking arms for preventing dislodgment between the connector and a mating connector.
It is a further object of the invention to provide an improved connecting construction between a metal shell and grounding elements of an electrical connector which does not require arranging and tightening steps for screws and is capable of automatic assembly.
In order to accomplish these objects, in an electrical connector including a metal shell for shielding contacts and grounding elements to be connected to the metal shell through a portion of an insulating block for fixing the contacts, according to the invention the connector comprises connecting tongues formed on the metal shell, and connecting pieces provided on the grounding elements and formed with slits, each of the connecting tongues being inserted into the, slit of each of the grounding elements and connected thereto, the insulating block being formed with through-apertures with clearances with the connecting tongues and said connecting pieces of the grounding elements when they are inserted into the through-apertures of the insulating block, thereby connecting the metal shell and the grounding elements by the connection between the connecting tongues and the connecting pieces of the grounding elements inserted in the through-apertures of the insulating block.
With the above arrangement according to the invention, as the through-apertures of the insulating block have sufficient clearances relative to the connecting pieces of the grounding elements and the connecting tongues of the metal shell connected in the through-apertures, the connections between the metal shell and the grounding elements are not detrimentally affected by contraction or expansion of the insulating block due to aging even if it would occur. Therefore, no faulty connection is caused between the metal shell and grounding elements.
Moreover, in instances where the metal shell includes locking arms as locking means for preventing dislodgment between the connector and a mating connector, such locking arms can be formed integrally with the metal shell together with the connecting tongues by pressforming, with resulting lower manufacturing cost. Furthermore, the connecting tongues and the locking arms extending in opposite directions can be provided at the same level on the metal shell, so that the locking means of the locking arms contribute to the reliable connection between the connector and a mating connector without increasing the length of the connector.
In manufacturing the connector according to the invention, all that, is required for connecting the metal shell and grounding element is simple press-fitting without requiring any steps of arranging and screwing set screws. Therefore, automatic assembling of the connectors according to the invention can be easily carried out.
The invention will be more fully understood by referring to the following detailed specification and claims taken in connection with the appended drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a perspective view of a connector of the prior art viewed from a rear side of the connector;
FIG. 2 is a sectional view of the connector of the prior art shown in FIG. 1;
FIGS. 3 and 4 are a perspective view and a partial sectional view for explaining a connector of one embodiment according to the invention; and
FIGS. 5, 6a, 6b, 7 and 8 are views for explaining other embodiments of the invention, respectively.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
FIG. 3 is a partial exploded perspective view illustrating one embodiment of a connector according to the invention and FIG. 4 is a sectional view of a part of the connector shown in FIG. 3 under a connected condition, wherein like components have been designated by the same reference numerals as those in FIGS. 1 and 2.
Referring to FIGS. 3 and 4, the connector includes contacts 1 having contact tails la and fixed to an insulating block 3 and a metal shell 2 having a mounting flange 2a. The mounting flange 2a is formed with connecting tongues 10 which are formed, for example, by slitting the mounting flange 2a and raising and turning the slit portions surrounded by slits in an inserting direction of the connector into a mating connector. In this case, the mounting flange 2a has locking arms 16 as locking means for preventing dislodgment between the connector and a mating connector. Each of the connecting tongues 10 includes a corrugated portion 10a. Each of the grounding elements 5 comprises a connecting piece 5a, a fixing piece 5b and a connecting piece 5c which is in parallel with the fixing piece 5b and lies in a plane rotated through 90° relative to a surface of the connecting tongue 10.
The connecting piece 5c is formed with a U-shaped slit 11 extending in an inserting direction (shown by an arrow in the drawing) of the connecting tongue 10 and having a length and a width required for positive connection between the connecting piece 5c and the connecting tongue 10. The width of the U-shaped slit 11 is generally less than distances between crests of waves of the corrugated portion 10a of the connecting tongue 10.
In an actual example, a grounding element 5 included a connecting piece 5c made of phosphor bronze and having a thickness of about 0.7 mm and a width of about 3 mm. The connecting piece 5c was formed with a U-shaped slit 11 having a width of about 0.6 mm. On the other hand, a mounting flange 2a having connecting tongues 10 was made of a steel plate having a thickness of 0.5 mm. In this case, a good connection was obtained when distances between crests of waves of corrugated portions 10a of the mounting flange 2a were about 0.85 mm. The grounding elements 5 and the connecting tongues 10 were plated with nickel.
Referring to FIGS. 3 and 4, the insulating block 3 is formed with cross-shaped through-apertures 12 each consisting of a horizontal aperture capable of receiving therein the connecting piece 5c of the grounding element 5 settled on a fixing piece 3b of the insulating block 3 with sufficient clearances, and a vertical aperture capable of receiving therein the connecting tongue 10 of the metal shell 2 with sufficient clearances. A thickness of the connecting pieces 3a of the insulating block 3 is selected so as not permit the connecting pieces 5c inserted in the cross-shaped through-apertures 12 to extend beyond a surface of the insulating block 3 on which the metal shell 2 is mounted. The connector is assembled in the following manner and shaped or transported.
First, the connecting pieces 5c of the grounding elements 5 are inserted into the horizontal apertures of the cross-shaped through-apertures 12 formed in the connecting pieces 3a of the insulating block 3 as shown in FIG. 4. Then, the connecting tongues 10 of the metal shell 2 are inserted into the vertical apertures of the cross-shaped through-apertures until the surface of the mounting flange 2a of the metal shell 2 abuts against a surface of the connecting pieces 3a of the insulating U-shaped slits 11 of the connecting pieces 5c positioned in a plane rotated through 90° relative to the connecting tongues 10 in a manner forcing the U-shaped slits 11 of the connecting pieces 5c to expand against the elasticity of the connecting pieces 5c.
Therefore, the connecting tongues 10 are in intimate contact with the connecting pieces 5c with the aid of the crests of the corrugated portions 10a of the connecting tongues 10. At the same time, moreover, elastic forces caused thereat securely hold the connecting tongues 10 to prevent their dislodgment therefrom. Further, the cross-shaped apertures 12 have sufficient clearances with the connecting tongues 10 and the connecting pieces 5c so as not to permit at least tip ends of these members to contact inner surfaces of the cross-shaped through-apertures 12. Therefore, even if the insulating block 3 contracts, the connection is not detrimentally affected by such a contraction of the block 3.
Accordingly, a reliable connection is obtained between the metal shell 2 and the grounding elements 5 without any wobbling of these members. Such an unstable connection is caused in the connector of the prior art by movement of the mounting flange 2a allowed by play between the screw threads of the hexagonal studs 4 and the threaded apertures of the mounting flange 2a resulting from loosening of the tightened hexagonal studs 4 caused by vibration and shrinkage of the insulating block 3 by aging.
In a modification of the above embodiment, a side of the U-shaped slit 11 of the connecting piece 5c of each of the grounding elements 5 is formed with a recess 17 to be fitted with one wave of the corrugated portion 10a of the connecting tongue 10 for the purpose of increasing the holding force of the metal shell 2 as shown in FIG. 8.
Moreover, as shown in FIG. 5, sides of the U-shaped slit 11 may be formed with alternate recesses and protrusions as 13 to form an undulate slit corresponding to the corrugations of the portion 10a of the connecting tongue 10. This modification has an advantage in manufacture in that the connecting tongues 10 and the grounding elements 5 are made only by punching by means of a press without requiring a step of forming corrugated portions 10a of the connecting tongue 10.
In this embodiment, furthermore, as shown in FIG. 4, the grounding element may be tapered so that a bottom of the connecting piece 5c thereof is in contact with inner surfaces of the through-aperture 12 to cause a slight restraining force for preventing displacement of the grounding element 5. Such a displacement of the grounding element 5 will cause misalignment of apertures of the fixing pieces 5b of the grounding element 5 and the fixing piece 3b of the insulating block 3 for passing a set screw therethrough to make difficult the assembling the connector.
In the connector according to the invention, moreover, the metal shell 2 is fixed to the insulating block 3 with unobjectionable forces by means of fitting of the corrugated portions 10a of the connecting pieces 10 with the U-shaped slits 11 of the grounding elements 5. If it is desirable to more dynamically reinforce, a fixing construction may be employed as shown in FIGS. 6a and 6b or 7. The metal shell 2 is formed with tabs 14 and the insulating block 3 is formed with notches 15 corresponding to the tabs 14 as shown in FIG. 6a so that the metal shell 2 is more firmly fixed to the insulating block 3 by fitting the tabs 14 in the notches 15 and bending the tabs along the block 3 as shown in the partial sectional view of FIG. 6b. As an alternative, the metal shell 2 is formed with tabs 14 on all or part of its circumference so that the metal shell 2 is more firmly fixed to the insulating block 3 by bending the tabs 14 onto side edges of the block 3 as shown in FIG. 7.
While the invention has been particularly shown and described with reference to preferred embodiments thereof, it will be understood by those skilled in the art that the foregoing and other changes in form and details can be made therein without departing from the spirit and scope of the invention.

Claims (9)

What is claimed is:
1. In an electrical connector including an insulating block and a metal shell for shielding contacts and grounding elements to be connected to the metal shell through a portion of said insulating block, said contacts being secured in the insulating block, the improvement comprising, connecting tongues formed on the metal shell, and connecting pieces provided on the grounding elements and formed with slits, each of the connecting tongues being inserted into the slit of one of the grounding elements and connected thereto, and said insulating block being formed with through-apertures with clearances for said connecting tongues and said connecting pieces of the grounding elements when said connecting tongues and connecting pieces are inserted into the through-apertures of the insulating block, thereby connecting the metal shell and the grounding elements by the connection between the connecting tongues and the connecting pieces inserted in the through-apertures of the insulating block.
2. An electrical connector as set forth in claim 1, wherein a portion of each of the connecting tongues to be inserted into the slit of each of the grounding elements is a corrugated portion.
3. An electrical connector as set forth in claim 2, wherein a side of the slit of each grounding element is formed with at least one recess in which one crest of the corrugated portion of one of the connecting tongues is fitted.
4. An electrical connector as set forth in claim 1, wherein sides of the slit of each of the connecting pieces are alternately formed with recesses and protrusions to form an undulate slit.
5. An electrical connector as set forth in claim 1, wherein a width of a bottom of each connecting piece is slightly larger than a width of the respective through-aperture of the insulating block on a side where each connecting piece is inserted in its respective through-aperture, thereby press-fitting each connecting piece into the through-aperture with a slight force.
6. An electrical connector as set forth in claim 1, wherein each of said through-apertures of the insulating block is a cross-shaped aperture in cross-section consisting of an aperture for receiving the connecting piece of each grounding element and an aperture for receiving the connecting tongue of the metal shell.
7. An electrical connector as set forth in claim 1, wherein said metal shell includes locking arms for preventing dislodgment between the connector and a mating connector, said connecting tongues being formed by partially slitting the locking arms and raising the slit portions.
8. An electrical connector as set forth in claim 1, wherein said metal shell is formed with tabs which are bent onto side edges of the insulating block, thereby assisting in firmly fixing the metal shell to the insulating block.
9. An electrical connector as set forth in claim 1, wherein said insulating block is formed with notches and said metal shell is formed with tabs corresponding to the notches of the insulating block, said tabs being fitted in the notches of the insulating block and bent along the block, thereby assisting in firmly fixing the metal shell to the insulating block.
US07/473,889 1989-02-15 1990-02-02 Electrical connector Expired - Fee Related US4968261A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1989016476U JPH02108277U (en) 1989-02-15 1989-02-15
JP1-16476 1989-02-15

Publications (1)

Publication Number Publication Date
US4968261A true US4968261A (en) 1990-11-06

Family

ID=11917331

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/473,889 Expired - Fee Related US4968261A (en) 1989-02-15 1990-02-02 Electrical connector

Country Status (2)

Country Link
US (1) US4968261A (en)
JP (1) JPH02108277U (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994013039A1 (en) * 1992-11-30 1994-06-09 Berg Technology, Inc. Reverse din connector assembly
US5356300A (en) * 1993-09-16 1994-10-18 The Whitaker Corporation Blind mating guides with ground contacts
EP0635905A1 (en) * 1993-07-22 1995-01-25 Molex Incorporated Grounding electrical connector
US5547385A (en) * 1994-05-27 1996-08-20 The Whitaker Corporation Blind mating guides on backwards compatible connector
US5562496A (en) * 1994-05-26 1996-10-08 The Whitaker Corporation Surface mount electrical connector with improved grounding element
US5876222A (en) * 1997-11-07 1999-03-02 Molex Incorporated Electrical connector for printed circuit boards
EP0984515A1 (en) * 1998-09-04 2000-03-08 Harting KGaA Shielded electrical connector
US6287146B1 (en) * 1999-02-04 2001-09-11 Molex Incorporated Grounded electrical connector with tail aligner
US6305953B1 (en) * 2000-10-24 2001-10-23 Hon Hai Precision Ind. Co., Ltd. Electrical connector with improved grounding structure for shielding shell thereof
US7249982B1 (en) * 2006-04-13 2007-07-31 Richards Manufacturing Co. Obstruction assembly for use with disconnectable joints and methods of using the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2523696Y2 (en) * 1991-04-15 1997-01-29 矢崎総業株式会社 Printed circuit board connector
JP2531600Y2 (en) * 1991-08-06 1997-04-02 日本航空電子工業株式会社 Board connection connector
JP6727756B2 (en) * 2015-03-13 2020-07-22 スリーエム イノベイティブ プロパティズ カンパニー Cable assembly with connector and connector assembly

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994013039A1 (en) * 1992-11-30 1994-06-09 Berg Technology, Inc. Reverse din connector assembly
EP0635905A1 (en) * 1993-07-22 1995-01-25 Molex Incorporated Grounding electrical connector
US5356300A (en) * 1993-09-16 1994-10-18 The Whitaker Corporation Blind mating guides with ground contacts
US5562496A (en) * 1994-05-26 1996-10-08 The Whitaker Corporation Surface mount electrical connector with improved grounding element
US5547385A (en) * 1994-05-27 1996-08-20 The Whitaker Corporation Blind mating guides on backwards compatible connector
US5876222A (en) * 1997-11-07 1999-03-02 Molex Incorporated Electrical connector for printed circuit boards
EP0984515A1 (en) * 1998-09-04 2000-03-08 Harting KGaA Shielded electrical connector
US6305983B1 (en) 1998-09-04 2001-10-23 Harting Kgaa Screened electrical plug connector
US6287146B1 (en) * 1999-02-04 2001-09-11 Molex Incorporated Grounded electrical connector with tail aligner
US6305953B1 (en) * 2000-10-24 2001-10-23 Hon Hai Precision Ind. Co., Ltd. Electrical connector with improved grounding structure for shielding shell thereof
US7249982B1 (en) * 2006-04-13 2007-07-31 Richards Manufacturing Co. Obstruction assembly for use with disconnectable joints and methods of using the same

Also Published As

Publication number Publication date
JPH02108277U (en) 1990-08-28

Similar Documents

Publication Publication Date Title
US5249983A (en) Electrical connector for printed wiring board
US4968261A (en) Electrical connector
US5228873A (en) Metallic-shell-equipped electrical connector
EP0623248B1 (en) An electrical connector with plug contact elements of plate material
US5241451A (en) Modular electronic assemblies using compressible electrical connectors
JP4030129B2 (en) Compliant part for electrical terminals mounted on circuit board
US5727970A (en) Interface connector
US5108312A (en) Snap eyelet for mounting and grounding an electrical connector to a circuit board
US11381012B2 (en) Electrical connector and electrical connector assembly
US5419713A (en) Electrical connector with self-retained boardlock
US6149444A (en) Electrical connector with grounding means
US10320124B1 (en) Electrical connector with internal terminals having opposite sides located from connector internal sidewalls
KR101121696B1 (en) Fixture and electrical connector using the fixture
US6080012A (en) Electrical connector having a retention mechanism
US6065977A (en) Device for connecting circuit boards to each other
JPH1012292A (en) Control unit
US6106332A (en) Board lock for electrical connector
US7059875B2 (en) Ground metal fitting and ground structure for jacks of electronic devices
US20060128213A1 (en) Connector and nut holding structure for connector
US6159043A (en) Boardlock for an electrical connector
US6146172A (en) Electrical connector
EP3669424B1 (en) Connector for printed circuit board
US6024613A (en) Socket contact and method for producing the same
US6068510A (en) Electrical card connector
JP4017431B2 (en) Coaxial connector

Legal Events

Date Code Title Description
AS Assignment

Owner name: DAIICHI DENSHI KOGYO KABUSHIKI KAISHA, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:MIZUNUMA, YASUYUKI;REEL/FRAME:005253/0321

Effective date: 19900130

CC Certificate of correction
FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20021106