US4906812A - Fiber optic laser joining apparatus - Google Patents

Fiber optic laser joining apparatus Download PDF

Info

Publication number
US4906812A
US4906812A US07/288,220 US28822088A US4906812A US 4906812 A US4906812 A US 4906812A US 28822088 A US28822088 A US 28822088A US 4906812 A US4906812 A US 4906812A
Authority
US
United States
Prior art keywords
optical fiber
workpiece
housing
laser beam
output end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US07/288,220
Inventor
Herman A. Nied
Marshall G. Jones
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Priority to US07/288,220 priority Critical patent/US4906812A/en
Assigned to GENERAL ELECTRIC COMPANY reassignment GENERAL ELECTRIC COMPANY ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: JONES, MARSHALL G., NIED, HERMAN A.
Priority to GB8928137A priority patent/GB2226266A/en
Priority to JP1324175A priority patent/JPH02200388A/en
Priority to DE19893941558 priority patent/DE3941558A1/en
Priority to FR8916927A priority patent/FR2640899A1/fr
Priority to IT2285689A priority patent/IT1236985B/en
Application granted granted Critical
Publication of US4906812A publication Critical patent/US4906812A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/005Soldering by means of radiant energy
    • B23K1/0056Soldering by means of radiant energy soldering by means of beams, e.g. lasers, E.B.
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/035Aligning the laser beam
    • B23K26/037Aligning the laser beam by pressing on the workpiece, e.g. pressing roller foot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0665Shaping the laser beam, e.g. by masks or multi-focusing by beam condensation on the workpiece, e.g. for focusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/142Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor for the removal of by-products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1462Nozzles; Features related to nozzles
    • B23K26/1464Supply to, or discharge from, nozzles of media, e.g. gas, powder, wire
    • B23K26/1476Features inside the nozzle for feeding the fluid stream through the nozzle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/22Spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1687Laser beams making use of light guides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/20Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
    • B29C66/21Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being formed by a single dot or dash or by several dots or dashes, i.e. spot joining or spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/47Joining single elements to sheets, plates or other substantially flat surfaces
    • B29C66/472Joining single elements to sheets, plates or other substantially flat surfaces said single elements being substantially flat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8141General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined
    • B29C66/81411General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat
    • B29C66/81415General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat being bevelled
    • B29C66/81419General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat being bevelled and flat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/818General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the cooling constructional aspects, or by the thermal or electrical insulating or conducting constructional aspects of the welding jaws or of the clamps ; comprising means for compensating for the thermal expansion of the welding jaws or of the clamps
    • B29C66/8181General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the cooling constructional aspects, or by the thermal or electrical insulating or conducting constructional aspects of the welding jaws or of the clamps ; comprising means for compensating for the thermal expansion of the welding jaws or of the clamps characterised by the cooling constructional aspects
    • B29C66/81811General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the cooling constructional aspects, or by the thermal or electrical insulating or conducting constructional aspects of the welding jaws or of the clamps ; comprising means for compensating for the thermal expansion of the welding jaws or of the clamps characterised by the cooling constructional aspects of the welding jaws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/84Specific machine types or machines suitable for specific applications
    • B29C66/861Hand-held tools

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Laser Beam Processing (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Laser Surgery Devices (AREA)

Abstract

Fiber optic laser apparatus for spot welding, brazing, or soldering comprises an optical fiber for transmitting a laser beam to a workpiece, and a tool disposed at an output end of the optical fiber for mechanically engaging and applying pressure to the workpiece. The output end of the optical fiber is supported within a longitudinal bore of the tool with the tip of the fiber closely adjacent to an opening in a workpiece-engaging end of the tool. The diverging laser beam from the end of the optical fiber projects a spot onto the workpiece through the opening with sufficient power to cause melting without the necessity for a lens system for focusing of the laser beam.

Description

BACKGROUND OF THE INVENTION
This invention relates generally to apparatus for joining materials as by spot welding, brazing or soldering, and more particular to apparatus for joining materials using a laser beam.
Although materials joining processes such as spot welding, brazing, or soldering are well known and are used extensively for joining parts including electrical components, it has been difficult to apply such joining processes to the microelectronics industry for joining small microelectronic parts. One reason has been the difficulties in precisely controlling the power applied to the parts and in confining the heating to a localized region of the parts so that the parts are joined without damage to the parts or to other materials or components in their vicinity.
Normal brazing and soldering processes require that an electrode which has been resistance heated be brought into mechanical contact with the parts and held in contact with the parts long enough to enable sufficient heat to be transferred by conduction to effect joining. With a heated electrode, it is very difficult to confine the heating to a localized area or to control the amount of heat which is transferred to components in the vicinity of the electrode, particularly when the parts being joined are located in a confined area. In a resistance spot welding process, a split electrode, as of copper, is frequently used to pass electrical current through two parts which are held in mechanical contact with one another. The current produces resistance heating and joins the parts. As with brazing and soldering, it is difficult in a spot welding process to control precisely the amount of heating or to confine the heat affected area of the parts sufficiently to avoid damage.
Apparatus employing laser beams are known for performing various material treating processes such as cutting, drilling, welding, brazing, marking, or localized heat treating. Typical of these apparatus are those disclosed in commonly assigned U.S. Pat. Nos. 4,564,736, 4,676,586, and 4,681,396 wherein an optical fiber is employed for transmitting a laser beam from a remote source to a processing region of a workpiece. In these apparatus, the output end of the optical fiber is supported in an output coupler adjacent to the workpiece. The output coupler includes a lens system for focusing the diverging laser beam emitted from the end of the optical fiber to a small spot on the workpiece. The output coupler does not contact the workpiece, but is merely used for focusing the laser energy onto the workpiece. Thus, the apparatus and processes disclosed in the parents are non-contact ones, which is generally true of other known laser materials processes, such as laser welding. Although laser processes can be precisely controlled so as to provide a desired localized deposition of high energy, the absence of mechanical contact between the tool which supplies the laser beam and a workpiece is disadvantageous in laser joining processes such as laser welding, since it requires that external positioning devices or fixtures be employed to hold two workpieces to be joined in mechanical contact. This may render automation of the joining process difficult and inconvenient. Moreover, in some applications, as, for example, where it is necessary to join parts which are located in a confined space, it is impractical to employ external positioning devices or fixtures to hold the parts together, and this may preclude joining the parts using a laser process.
It is desirable to afford a fiber optic laser joining apparatus which voids the foregoing and other problems of known laser joining apparatus, and which facilitates the joining of microelectronic components reliably, rapidly, and without damage to the components or to other components in their vicinity. It is to these ends that the present invention is directed.
SUMMARY OF THE INVENTION
The invention affords highly advantageous laser joining apparatus which is capable of joining small or microsized components, such as microelectronic components, reliably and rapidly without damaging either the components or other parts or materials in their vicinity. The invention is particularly advantageous in affording a workpiece-contacting tool disposed on an output end of an optical fiber which carries the laser beam to the workpiece. The tool is adaptable either to an automated joining process or is useful as a hand-held tool, and enables mechanical pressure to be applied to workpieces being joined so that they may be held in contact during the joining process. Accordingly, the invention is useful for spot welding, brazing, or soldering processes which require that two parts being joined be held in mechanical contact. Advantageously, this avoids the necessity for fixtures or other external positioning devices for holding the workpieces to be joined, and enables the joining of workpieces which are located in a confined space. The invention enables the amount of power applied to the workpieces to be precisely controlled and confined to a small localized region, thereby avoiding damage either to the workpieces or to surrounding materials.
Briefly stated, in one aspect the invention affords laser joining apparatus which comprises an optical fiber for transmitting a laser beam, and means for injecting the laser beam into an input end of the optical fiber. Disposed at the output end of the fiber is an elongated housing which has means for engaging and exerting pressure on a workpiece, such as a component or part which is to be joined to another component or part. The housing has an opening in its end which engages the workpiece, and the output end of the optical fiber is supported within the housing with respect to the opening so that a diverging portion of the laser beam which is emitted from the optical fiber is projected through the opening onto the workpiece.
In contrast to other known laser materials processing apparatus as disclosed, for example, in the above-referenced patents, the invention does not employ lens systems at the output end of the optical fiber for focusing the diverging laser beam which is emitted from the output end of the fiber. Rather, the diverging laser beam itself is projected onto the workpiece and used directly for applying optical energy to the workpiece for heating it. This simplifies the workpiece-engaging tool of the invention considerably and enables it to be very slender so that it can access components located in a confine space.
The output end of the optical fiber may be supported within the tool housing so that the fiber is parallel to the longitudinal axis of the housing and to the workpiece, and such that the top if the fiber core is positioned adjacent to the opening in the end of the housing and a predetermined distance from the workpiece. The opening in the housing may communicate with a chamber within the housing defined partially by a protective window, e.g., quartz, disposed between the fiber top and the opening for protecting the fiber top from material splashes or the like produced during the joining process. Passages in the housing may communicate with the chamber to enable a processing gas, such as an inert gas, to flow through the chamber and past the quartz window. The processing gas serves to envelop the region of the workpiece exposed to the chamber via the opening in the housing. This affords an inert atmosphere for the portion of the workpiece within the opening, and the gas flow through the chamber enables varporized products of the welding process to be carried away. This assists in keeping the quartz window clean and depresses the plume, thereby improving the coupling efficiency between the laser beam and the workpiece.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a diagrammatic view illustrating fiber optic laser joining apparatus in accordance with the invention;
FIG. 2 is a cross-sectional view taken approximately along the line 2--2 of a workpiece-engaging tool of the apparatus of FIG. 1; and
FIG. 3 is a cross-sectional view of the tool of FIG. 1 taken approximately along the line 3--3.
DESCRIPTION OF THE PREFERRED EMBODIMENT
The invention is particularly well adapted for joining workpieces, such as microelectronic components, in a spot welding process and will be described in that context. As will be appreciated, however, this is illustrative of only one utility of the invention.
FIG. 1 illustrates diagrammatically a fiber optic laser joining apparatus 10 in accordance with the invention. As shown, the apparatus may comprise a laser 12, which may be a solid state pulsed or continuous wave neodymium:YAG laser or the like, (e.g. a visible or ultraviolet source) having an output beam which is coupled into an optical fiber 14 by means of a coupler 16 for transmission of the beam to a tool 18. Tool 18 serves as a holder for the optical fiber and as a device for applying a force to a workpiece, as will be described shortly.
Optical fiber 14 may be a single thin (0.1-1.5 mm diameter) optical fiber comprising a quartz core 20 covered by a cladding 22, as of silicone or glass, and having an outer protective jacket or sheath 24, as of nylon. Coupler 16 may be similar to the couplers disclosed in the afore-referenced patents, the disclosures of which are incorporated by reference herein, and may comprise a holder for the input end of the optical fiber and a lens for focusing the laser beam onto the quartz core at the input end. As described in the afore-referenced patents, the laser beam may be injected into the optical fiber by focusing the laser beam to a small spot on the fiber core such that the diameter of the spot is less than the diameter of the core and such that the included angle of the focused beam is less than the numerical aperture of the fiber. The laser beam is transmitted through the optical fiber and is emitted from the bottom 30 of the fiber core at the output end of fiber as a diverging beam 32 (indicated by dotted lines in the figure).
As show in the figures, tool 18 may comprise an elongated generally cylindrical outer housing 40 and an inner cylindrical support member 42 which has an axial bore 44. Housing 40 may be formed of a metal, a plastic or a high temperature ceramic. Member 42 is preferably of a non-metallic material, such as quartz or plastic. The axial bore receives the output end of the optical fiber 14, and means (not illustrated), such as clamps, etc. may be included for fixing the optical fiber in the bore. The lower (in FIG. 1) end region of the outer housing may taper, as shown at 46, to a flat end 48 which is adapted to engage a first workpiece 50. The flat end 48 of the housing, which is substantially normal to the longitudinal axis of the housing, enables pressure to the applied to workpiece 50, as to hold it pressed against a second workpiece 52, for example.
A top-slotted annular bushing 56 having an opening 58 therethrough may be press fitted into flat end 48 of the housing so that the opening 58 is coaxial with respect to bore 44 of the inner support member 42 of the tool. The slotted top portion of the bushing may provide radially extending support portions 60, as best illustrated in FIG. 3, which support and retain a protective window 62, as of quartz, in a corresponding cutout in the lower end of the member 42, as shown. The protective window and the opening 58 in the bushing define a chamber in the lower end of the tool adjacent to the surface of workpiece 50. The chamber may communicate by means of sector-shaped channels 66 located in the opening areas between the radially extending support portions 60 at the top of the bushing and in the end of member 42 with a plurality of longitudinally extending arc-shaped passages 70 (best illustrated in FIGS. 2 and 3) formed on the inner surface of housing 40 between the housing and support member 42. Each passage 70 symmetrically disposed about the longitudinal axis, and four corresponding channels 66.
One or more of the passages 70 may be connected to a source 72 of gas, such as inert gas, as shown in FIG. 1. The gas from source 72 flows through the passages and channels, as shown by the arrows, and may be used to purge the chamber in the bushing during a welding, brazing or soldering process, as will be described in more detail shortly.
As shown in FIG. 1, the output end of the optical fiber 14 is supported within the bore 44 of member 42 such that it is coaxial with housing 40 and such that the fiber is normal to the flat end 48 of the holder. The end region of the optical fiber may be prepared to reduce losses, as described in the afore-referenced U.S. Pat. No. 4,564,736, for example, by stripping the cladding 22 and jacket 24 from the end of the fiber to expose a predetermined length of fiber core 22, and by further stripping the jacket from the cladding 22, as by approximately the same predetermined amount. Preferably, the tip 30 of the fiber core is cut and polished flat so that the cut and polished face is normal to the longitudinal axis of the fiber. The fiber tip may be placed in contact with protective window 62 or spaced slightly therefrom as shown in the figure. The fiber may be supported in bore 44 of inner member 42 with the jacket contacting the surface of the bore. It is desirable that member 42 not contact the fiber core 20 in order to avoid leakage of the laser beam being transmitted through the fiber into the member.
As the laser beam exits from the bottom 30 of the optical fiber, it diverges as shown by the dotted lines 32 in FIG. 1 and is projected onto the surface of workpiece 50 through opening 58 in the bushing. The optical energy impinging upon the surface of the workpiece may cause melting of the workpiece and the formation of a molten weld pool 80, as shown. The degree of heating of the workpiece is a function of the power density of the optical energy applied to the workpiece, and this may be controlled in a number of different ways. Among other things, the power density is a function of the laser power and of the spot size of the laser beam projected onto the workpiece. Since the laser beam emitted from the optical fiber diverges, the power density therefore varies with distance of the optical fiber top from the workpiece. Thus, one way to control power density is to vary the location of the top 30 of the optical fiber relative to the end 48 of the tool housing, and the tool 18 may be constructed to enable adjustment of the fiber location in the bore. While physically positioning the tip of the fiber relative to the workpiece permits control of power density, this is not a convenient way of controlling power density. It is desirable to maintain a reasonable working distance between the workpiece and the bottom of the optical fiber, and it is also desirable to keep this distance small in order to maximize the power density on the surface of the workpiece while providing a convenient way of precisely controlling the power density.
Commonly assigned U.S. application Ser. No. 136,071, filed Dec. 21, 1987 discloses a non-contacting lensless output coupler for a fiber optic laser materials processing apparatus. This application teaches that the diverging portion of a laser beam from the output end of an optical fiber is characterized by an exit cone angle which is approximately equal to the entrance cone angle of the laser beam injected into the input end of the optical fiber. Since the power density is a function of the projected beam spot size, which in turn is a function of the divergence or exit cone angle of the laser beam, power density may be controlled by controlling the entrance cone angle of the laser beam injected into the optical fiber by coupler 16, as well as by controlling the power in the laser beam injected into the optical fiber. In addition, the bottom 30 of the optical fiber core may be shaped, if desired, to provide a convex lens effect for focusing of the laser beam emitted from the fiber. A lens system could also be incorporated into the tool 18 for focusing the laser beam emitted from the fiber, but this would complicate the structure.
In operation, tool 18 is employed for engaging one of the workpieces being joined, in the manner shown in FIG. 1, and for applying the desired pressure for joining. For spot welding two workpieces, it is necessary to provide sufficient compressive pressure between the two workpieces to reduce the thermal resistance at their contact surfaces. The tool also directs the laser beam to a desired location on the workpiece and permits precise control of the locations where the workpieces are joined. The tool is somewhat analogous to a resistance heated electrode, but avoids the disadvantages of such electrodes in heating surrounding components. While applying pressure with the tool, laser 12 may then be pulsed to inject energy via coupler 16 into the optical fiber. The laser beam is transmitted through the optical fiber to its output end. The diverging beam from the tip of the output fiber is projected onto the workpiece through opening 58 in the bushing.
Purging gas from source 72 flows through passages 70 and through the chamber in the bushing above opening 58. Preferably, the gas flow is at a relatively high velocity to assist in cooling the tool (heating may occur from workpiece contact) and in affording protection to the optical components by removing vaporized products produced during the joining process which would otherwise be deposited onto the protective window 62 and attenuate the laser energy. The gas flow is also beneficial in depressing the plume and affording good coupling efficiency.
The energy applied to the workpiece may be controlled in the manner previously described by controlling the power injected into the optical fiber, including the laser pulse rate. Between pulses, the infrared radiation emitted from the surface of the workpiece may be sensed to determine its temperature. This facilitates control of the amount of power applied to the workpiece and, accordingly, the degree of melting or heating of the workpiece. The infrared radiation may be sensed in different ways. For example, the radiation may be sensed from the underside of workpiece 52 (in FIG. 1) by a sensor such as infrared detector or camera (not illustrated). Also, tool 18 may be provided with a second optical fiber which views the projected beam spot within opening 58 on the surface of the workpiece and transmits the infrared energy to a remote sensor.
As will be appreciated from the foregoing, tool 18 serves as a holder for the output end of the optical fiber which enables the laser beam to be directed rather precisely to a desired location on a workpiece, and serves as a tool for applying mechanical pressure to workpieces to be joined simultaneously with the application of laser energy. Accordingly, it functions somewhat like a conventional spot welding electrode. As will further be appreciated, tool 18 may be used for joining workpieces in an automated system, in a robotic welder or the like, as well as a hand-held tool. Since the tool does not require focusing optics at the output end of the optical fiber, the tool housing may be very slender to facilitate access to parts located at a confined space. As compared to conventional resistance-type spot welding devices, the invention enables sufficient interface loads to be applied to a workpiece surface to effect joining while affording minimum wear to the tool as compared to conventional spot welding electrodes.
While a preferred embodiment of the invention has been shown and described, it will be appreciated by those skilled in the art that changes may be made in this embodiment without departing from the principles and spirit of the invention, the scope of which is defined in the appended claims.

Claims (20)

What is claimed is:
1. Laser joining apparatus for spot welding, brazing or soldering comprising an optical fiber for transmitting a laser beam; means for injecting the laser beam into an input end of the optical fiber for transmission therethrough; an elongated housing having means for engaging and exerting pressure on a workpiece, the engaging means having an opening therein; and means within the housing for supporting an output end of the optical fiber with respect to the opening, the optical fiber being positioned such that a diverging portion of the laser beam emitted from the optical fiber is projected directly from the output end of the optical fiber through the opening onto the workpiece.
2. The apparatus of claim 1, wherein the engaging means comprises a flat end of the housing disposed substantially normal to a longitudinal axis of the housing, and a bushing disposed within the flat end for engagement with the workpiece, said opening being formed in the bushing.
3. The apparatus of claim 2 further comprising a window disposed between the end of the optical fiber and the bushing, the window and the opening in the bushing defining therebetween a chamber adjacent to a surface of the workpiece.
4. The apparatus of claim 3 further comprising means for passing a gas through said chamber.
5. The apparatus of claim 4, wherein said bushing has a slotted portion which contacts the window, and wherein said gas passing means comprises passages formed within the housing so as to communicate with the chamber via the slotted portion of the bushing.
6. The apparatus of claim 5, wherein said passages comprise a plurality of arc-shaped longitudinally extending passages formed between an inner surface of the housing and said member which supports the optical fiber, and a source of inert gas connected to at least one of said passages.
7. The apparatus of claim 6, wherein the supporting means comprises an elongated support member having a longitudinal bore and being disposed within the housing such that the bore is coaxial with the longitudinal axis of the housing, and wherein the output end of the optical fiber is received and supported in the bore.
8. The apparatus of claim 7, wherein the window is supported by the slotted portion of the bushing within a cutout in the optical fiber support member adjacent to the output end of the optical fiber.
9. The apparatus of claim 7, wherein the optical fiber has a core which is covered by a cladding and an outer jacket about the cladding, and wherein a first portion at the output end of the optical fiber is stripped to expose the core and a second portion adjacent to the first portion is stripped to expose the cladding.
10. The apparatus of claim 9, wherein the fiber core has a tip from which the laser beam is emitted, and the bottom is polished flat and disposed adjacent to the window.
11. The apparatus of claim 1, wherein the injecting means comprises means for controlling the power density of the laser beam emitted from the output end of the optical fiber.
12. Laser joining apparatus comprising an optical fiber having an input end and an output end for transmitting a laser beam therethrough; a tool disposed at the output end of the optical fiber, the tool including an elongated housing having a flat end for engaging and for applying pressure to a first workpiece in contact with a second workpiece, the flat end having an opening therein; and means for supporting the optical fiber within the housing with the output end of the fiber positioned adjacent to the opening and a predetermined distance from the first workpiece so that a diverging portion of the laser beam emitted from the output end of the optical fiber directly projects a beam spot through the opening onto the workpiece.
13. The apparatus of claim 12, wherein the housing has a chamber therein communicating with the opening and disposed between the opening and the output end of the optical fiber, and wherein means is included for passing a gas through the chamber.
14. The apparatus of claim 12, wherein the chamber is formed in an annular bushing disposed in the flat end of the housing, the bushing having a slotted portion which communicates with gas passages formed within the housing.
15. The apparatus of claim 14, wherein the slotted portion of the bushing supports a protective window adjacent to the end of the optical fiber between said end and the chamber.
16. The apparatus of claim 15, wherein the optical fiber supporting means comprises an elongated support member having a longitudinal bore disposed within the housing such that the bore is coaxial with a longitudinal axis of the housing, the passages being formed between an inner surface of the housing and an outer surface of the support member, and wherein said window is supported on the slotted portion of the bushing with a cutout formed in the support member.
17. The apparatus of claim 16, wherein the support member and window are formed of material selected from the group consisting of quartz and plastic.
18. The apparatus of claim 13, wherein the gas passing means comprise means for providing a flow of gas through the chamber with a sufficient velocity to remove vaporization products.
19. The apparatus of claim 13, wherein said gas comprises an inert gas.
20. Pulsed laser processing apparatus comprising an optical fiber for transmitting a laser beam; means for injecting the laser beam into an input end of the optical fiber for transmission therethrough; an elongated housing having means for engaging and exerting pressure on a workpiece, the engaging means having an opening therein; means within the housing for supporting an output end of the optical fiber with respect to the opening, the output end being positioned such that a diverging portion of the laser beam emitted from the optical fiber is directly projected through the opening onto the workpiece for heating the workpiece to the processing temperature; and means for infrared sensing the magnitude of the temperature at the workpiece by synchronization of laser pulsing and infrared sensing.
US07/288,220 1988-12-22 1988-12-22 Fiber optic laser joining apparatus Expired - Fee Related US4906812A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US07/288,220 US4906812A (en) 1988-12-22 1988-12-22 Fiber optic laser joining apparatus
GB8928137A GB2226266A (en) 1988-12-22 1989-12-13 Laser joining apparatus
JP1324175A JPH02200388A (en) 1988-12-22 1989-12-15 Laser connection device
DE19893941558 DE3941558A1 (en) 1988-12-22 1989-12-16 LASER CONNECTING DEVICE WITH OPTICAL FIBER
FR8916927A FR2640899A1 (en) 1988-12-22 1989-12-20
IT2285689A IT1236985B (en) 1988-12-22 1989-12-22 LASER JOINT APPARATUS WITH OPTICAL FIBER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US07/288,220 US4906812A (en) 1988-12-22 1988-12-22 Fiber optic laser joining apparatus

Publications (1)

Publication Number Publication Date
US4906812A true US4906812A (en) 1990-03-06

Family

ID=23106251

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/288,220 Expired - Fee Related US4906812A (en) 1988-12-22 1988-12-22 Fiber optic laser joining apparatus

Country Status (6)

Country Link
US (1) US4906812A (en)
JP (1) JPH02200388A (en)
DE (1) DE3941558A1 (en)
FR (1) FR2640899A1 (en)
GB (1) GB2226266A (en)
IT (1) IT1236985B (en)

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4032860A1 (en) * 1990-10-12 1992-04-16 Zeiss Carl Fa POWER-CONTROLLED CONTACT APPLICATOR FOR LASER RADIATION
US5142118A (en) * 1991-05-14 1992-08-25 Progressive Tool & Industries Co. Laser welding unit
EP0507268A2 (en) * 1991-04-01 1992-10-07 Miyachi Technos Corporation Laser output unit
US5247155A (en) * 1990-08-09 1993-09-21 Cmb Foodcan Public Limited Company Apparatus and method for monitoring laser material processing
US5250781A (en) * 1990-11-16 1993-10-05 Mitsubishi Denki Kabushiki Kaisha Laser bonding apparatus
EP0584356A1 (en) * 1992-01-17 1994-03-02 S.L.T. Japan Co, Ltd. Method of soldering
WO1995000279A1 (en) * 1993-06-17 1995-01-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process and device for metallizing a contact area
DE4331827C1 (en) * 1993-09-18 1995-01-19 Fraunhofer Ges Forschung Method and device for producing a locking feature for screwed connections
US5407119A (en) * 1992-12-10 1995-04-18 American Research Corporation Of Virginia Laser brazing for ceramic-to-metal joining
US5422456A (en) * 1993-08-31 1995-06-06 Dahm; Jonathan S. Orbital head laser welder
WO1996025263A2 (en) * 1995-02-15 1996-08-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for bonding a flexible substrate to a chip
US5591358A (en) * 1994-03-23 1997-01-07 Progressive Tool & Industries Co. Apparatus for clamping and laser welding
US5601738A (en) * 1993-07-15 1997-02-11 Medizinisches Laserzentrum Lubeck Gmbh Method and apparatus for treating material with a laser
US5897796A (en) * 1997-06-16 1999-04-27 Chrysler Corporation Method and apparatus for in-situ laser welding of hemmed joints
WO2000041834A1 (en) * 1999-01-18 2000-07-20 Pac Tech - Packaging Technologies Gmbh Method and device for thermally connecting the contact surfaces of two substrates
US20030037434A1 (en) * 2000-09-04 2003-02-27 Dowa Mining Co., Ltd. Method of manufacturing a metal-ceramic circuit board
US20030127441A1 (en) * 2002-01-07 2003-07-10 Haight Richard A. Debris minimization and improved spatial resolution in pulsed laser ablation of materials
US20030128962A1 (en) * 2002-01-04 2003-07-10 Sommer Phillip R. Fiber optic cable preparation method and apparatus for an intergrated optical fiber processing system
US6593540B1 (en) 2002-02-08 2003-07-15 Honeywell International, Inc. Hand held powder-fed laser fusion welding torch
US6621045B1 (en) * 2002-07-25 2003-09-16 Matsushita Electric Industrial Co., Ltd. Workpiece stabilization with gas flow
WO2004014598A1 (en) * 2002-08-05 2004-02-19 Linde Aktiengesellschaft Process gas and method for laser hard soldering
WO2004014599A1 (en) * 2002-08-05 2004-02-19 Linde Aktiengesellschaft Process gas and method for laser hard soldering
WO2004056524A1 (en) * 2002-12-20 2004-07-08 Koninklijke Philips Electronics N.V. A method and a device for laser spot welding
EP1475219A2 (en) * 2003-05-05 2004-11-10 Thomas Dr. Ebert Tool provided with a laserbeam for joining synthetic materials by the use of a filler material
US20050023256A1 (en) * 2003-07-31 2005-02-03 Srikanth Sankaranarayanan 3-D adaptive laser powder fusion welding
US20050056628A1 (en) * 2003-09-16 2005-03-17 Yiping Hu Coaxial nozzle design for laser cladding/welding process
US20050103756A1 (en) * 2003-11-13 2005-05-19 Baker Martin C. Hand-held laser welding wand filler media delivery systems and methods
US20050109744A1 (en) * 2002-02-08 2005-05-26 Baker Martin C. Hand-held laser welding wand having internal coolant and gas delivery conduits
EP0896898B1 (en) * 1997-08-12 2006-04-19 Schefenacker Vision Systems Germany GmbH Supporting means, especially for vehicle rear lights
US20060175307A1 (en) * 2005-02-04 2006-08-10 Honeywell International, Inc. Hand-held laser welding wand with improved optical assembly serviceability features
US20070170158A1 (en) * 2003-09-09 2007-07-26 Greig Christian F System and method for laser welding foils
US20080030713A1 (en) * 2002-11-18 2008-02-07 Panomics, Inc. Uncaging devices
FR2923168A1 (en) * 2007-11-06 2009-05-08 Air Liquide Welding France Sa Head useful in laser machine for focusing laser beam, comprises a device e.g. an optical lens for focusing beam, a unit for supplying pressurized gas, a nozzle with outlet opening, a pressure chamber, and a pressure compensation chamber
DE102008002910A1 (en) * 2008-06-26 2010-01-07 Reis Lasertec Gmbh Method and device for connecting components by means of laser radiation
US8290006B1 (en) 2011-10-25 2012-10-16 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Dynamically variable spot size laser system
US20140001162A1 (en) * 2012-06-28 2014-01-02 Eiji Tanaka Bonding head
US20150048071A1 (en) * 2012-03-14 2015-02-19 Amada Company, Limited Coaxial nozzle of laser beam machine
US20160121427A1 (en) * 2014-10-31 2016-05-05 Prima Power Laserdyne, Llc Cross jet laser welding nozzle
US20160137544A1 (en) * 2014-11-19 2016-05-19 Boe Technology Group Co., Ltd. Water jet laser cutting device and cutting method
US9475151B1 (en) * 2012-10-30 2016-10-25 Western Digital (Fremont), Llc Method and apparatus for attaching a laser diode and a slider in an energy assisted magnetic recording head
US20160346858A1 (en) * 2014-02-13 2016-12-01 Tyco Electronics (Shanghai) Co. Ltd. Laser Soldering System
US20180141163A1 (en) * 2016-11-23 2018-05-24 Rohinni, LLC. Top-Side Laser for Direct Transfer of Semiconductor Devices
US10361176B2 (en) 2015-03-20 2019-07-23 Rohinni, LLC Substrate with array of LEDs for backlighting a display device
US10504767B2 (en) 2016-11-23 2019-12-10 Rohinni, LLC Direct transfer apparatus for a pattern array of semiconductor device die
US11069551B2 (en) 2016-11-03 2021-07-20 Rohinni, LLC Method of dampening a force applied to an electrically-actuatable element
US11094571B2 (en) 2018-09-28 2021-08-17 Rohinni, LLC Apparatus to increase transferspeed of semiconductor devices with micro-adjustment
US11627667B2 (en) 2021-01-29 2023-04-11 Orbotech Ltd. High-resolution soldering

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4217326A1 (en) * 1991-08-10 1993-02-11 Man Technologie Gmbh Specimen heating during free fall testing - comprises applying incident heat energy on specimen during weightlessness using heating means arranged independently of specimen
DE4200492C2 (en) * 1991-10-04 1995-06-29 Ghassem Dipl Ing Azdasht Device for electrically connecting contact elements
DE4205747C1 (en) * 1992-02-25 1993-07-08 Siemens Ag, 8000 Muenchen, De Soldering two copper@ parts using laser beam - in which hard solder between parts acts as coupling medium for the laser beam to avoid heat distortion of the copper parts
DE4329708C2 (en) * 1993-09-02 1997-02-13 David Finn Connection method and apparatus
DE4415035C2 (en) * 1994-04-29 1996-11-28 Audi Ag Device for producing sheet metal connections by seam welding using a laser beam
JP3800251B2 (en) * 1995-10-02 2006-07-26 ソニー株式会社 Soldering apparatus and soldering method
DE19749909C2 (en) * 1996-12-10 2000-08-31 Fraunhofer Ges Forschung Device for establishing connections between two contact elements by means of laser energy
DE10030291B4 (en) * 1999-06-30 2004-08-19 Audi Ag Method for connecting components of an optical waveguide
KR100445584B1 (en) * 2001-12-21 2004-08-25 재단법인 포항산업과학연구원 Device and method of laser spot welding
US7332689B2 (en) * 2002-02-26 2008-02-19 Boston Scientific Scimed, Inc. Tacking method and apparatus
CN108602157B (en) * 2016-03-17 2022-08-30 松下知识产权经营株式会社 Optical fiber coupling device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3383491A (en) * 1964-05-05 1968-05-14 Hrand M. Muncheryan Laser welding machine
US3622743A (en) * 1969-04-28 1971-11-23 Hrand M Muncheryan Laser eraser and microwelder
US4121087A (en) * 1977-11-18 1978-10-17 Rockwell International Corporation Method and apparatus for controlling laser welding
US4564736A (en) * 1984-05-07 1986-01-14 General Electric Company Industrial hand held laser tool and laser system
US4578554A (en) * 1984-04-30 1986-03-25 Teledyne, Inc. Laser welding apparatus
US4676586A (en) * 1982-12-20 1987-06-30 General Electric Company Apparatus and method for performing laser material processing through a fiber optic
US4681396A (en) * 1984-10-09 1987-07-21 General Electric Company High power laser energy delivery system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58209493A (en) * 1982-05-28 1983-12-06 Nippon Univac Kk Light welding device
US4761054A (en) * 1984-10-04 1988-08-02 Mitsubishi Denki Kabushiki Kaisha Infrared fiber cable
FR2605176B1 (en) * 1986-10-09 1994-04-01 Peugeot Automobiles WIRED WIRING PROCESS AND TOOL FOR IMPLEMENTING THE SAME

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3383491A (en) * 1964-05-05 1968-05-14 Hrand M. Muncheryan Laser welding machine
US3622743A (en) * 1969-04-28 1971-11-23 Hrand M Muncheryan Laser eraser and microwelder
US4121087A (en) * 1977-11-18 1978-10-17 Rockwell International Corporation Method and apparatus for controlling laser welding
US4676586A (en) * 1982-12-20 1987-06-30 General Electric Company Apparatus and method for performing laser material processing through a fiber optic
US4578554A (en) * 1984-04-30 1986-03-25 Teledyne, Inc. Laser welding apparatus
US4564736A (en) * 1984-05-07 1986-01-14 General Electric Company Industrial hand held laser tool and laser system
US4681396A (en) * 1984-10-09 1987-07-21 General Electric Company High power laser energy delivery system

Cited By (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5247155A (en) * 1990-08-09 1993-09-21 Cmb Foodcan Public Limited Company Apparatus and method for monitoring laser material processing
DE4032860A1 (en) * 1990-10-12 1992-04-16 Zeiss Carl Fa POWER-CONTROLLED CONTACT APPLICATOR FOR LASER RADIATION
US5360426A (en) * 1990-10-12 1994-11-01 Carl-Zeiss-Stiftung Force-controlled contact applicator for laser radiation
US5302801A (en) * 1990-11-16 1994-04-12 Mitsubishi Denki Kabushiki Kaisha Laser bonding apparatus
US5250781A (en) * 1990-11-16 1993-10-05 Mitsubishi Denki Kabushiki Kaisha Laser bonding apparatus
EP0507268A3 (en) * 1991-04-01 1993-03-10 Miyachi Technos Corporation Laser output unit
EP0507268A2 (en) * 1991-04-01 1992-10-07 Miyachi Technos Corporation Laser output unit
US5142118A (en) * 1991-05-14 1992-08-25 Progressive Tool & Industries Co. Laser welding unit
DE4216014A1 (en) * 1991-05-14 1992-11-19 Progressive Tool & Ind Co LASER WELDING DEVICE
EP0584356A4 (en) * 1992-01-17 1994-07-06 Slt Japan Kk Method of brazing
EP0584356A1 (en) * 1992-01-17 1994-03-02 S.L.T. Japan Co, Ltd. Method of soldering
US5407119A (en) * 1992-12-10 1995-04-18 American Research Corporation Of Virginia Laser brazing for ceramic-to-metal joining
WO1995000279A1 (en) * 1993-06-17 1995-01-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process and device for metallizing a contact area
US5653381A (en) * 1993-06-17 1997-08-05 Fraunhofer-Gesellschaft Zur Forderung der Angerwandten Forshung E.V. Process and apparatus for producing a bonded metal coating
US5601738A (en) * 1993-07-15 1997-02-11 Medizinisches Laserzentrum Lubeck Gmbh Method and apparatus for treating material with a laser
US5422456A (en) * 1993-08-31 1995-06-06 Dahm; Jonathan S. Orbital head laser welder
US5563391A (en) * 1993-08-31 1996-10-08 Dahm; Jonathan S. Orbital head laser welder
DE4331827C1 (en) * 1993-09-18 1995-01-19 Fraunhofer Ges Forschung Method and device for producing a locking feature for screwed connections
US5591358A (en) * 1994-03-23 1997-01-07 Progressive Tool & Industries Co. Apparatus for clamping and laser welding
WO1996025263A3 (en) * 1995-02-15 1996-09-26 Fraunhofer Ges Forschung Process for bonding a flexible substrate to a chip
WO1996025263A2 (en) * 1995-02-15 1996-08-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for bonding a flexible substrate to a chip
US6478906B1 (en) 1995-02-15 2002-11-12 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E. V. Method for bonding a flexible substrate to a chip
US5897796A (en) * 1997-06-16 1999-04-27 Chrysler Corporation Method and apparatus for in-situ laser welding of hemmed joints
EP0896898B1 (en) * 1997-08-12 2006-04-19 Schefenacker Vision Systems Germany GmbH Supporting means, especially for vehicle rear lights
WO2000041834A1 (en) * 1999-01-18 2000-07-20 Pac Tech - Packaging Technologies Gmbh Method and device for thermally connecting the contact surfaces of two substrates
US6713714B1 (en) 1999-01-18 2004-03-30 Pac Tech-Packaging Technologies Gmbh Method and device for thermally connecting the contact surfaces of two substrates
US20060242826A1 (en) * 2000-03-21 2006-11-02 Dowa Mining Co., Ltd. Method of manufacturing a metal-ceramic circuit board
US20030037434A1 (en) * 2000-09-04 2003-02-27 Dowa Mining Co., Ltd. Method of manufacturing a metal-ceramic circuit board
US7487585B2 (en) 2000-09-04 2009-02-10 Dowa Metaltech Co., Ltd. Method of manufacturing a metal-ceramic circuit board
US7348493B2 (en) 2000-09-04 2008-03-25 Dowa Mining Co., Ltd. Metal-ceramic circuit board
US20050138799A1 (en) * 2000-09-04 2005-06-30 Dowa Mining Co., Ltd. Method of manufacturing a metal-ceramic circuit board
US6938333B2 (en) * 2000-09-04 2005-09-06 Dowa Mining Co., Ltd. Method of manufacturing a metal-ceramic circuit board
US20030128962A1 (en) * 2002-01-04 2003-07-10 Sommer Phillip R. Fiber optic cable preparation method and apparatus for an intergrated optical fiber processing system
US20030127441A1 (en) * 2002-01-07 2003-07-10 Haight Richard A. Debris minimization and improved spatial resolution in pulsed laser ablation of materials
US9102008B2 (en) 2002-01-07 2015-08-11 International Business Machine Corporation Debris minimization and improved spatial resolution in pulsed laser ablation of materials
US20090107964A1 (en) * 2002-01-07 2009-04-30 International Business Machines Corporation Debris minimization and improved spatial resolution in pulsed laser ablation of materials
US7994450B2 (en) * 2002-01-07 2011-08-09 International Business Machines Corporation Debris minimization and improved spatial resolution in pulsed laser ablation of materials
US7012216B2 (en) * 2002-02-08 2006-03-14 Honeywell International Hand-held laser welding wand having internal coolant and gas delivery conduits
US6593540B1 (en) 2002-02-08 2003-07-15 Honeywell International, Inc. Hand held powder-fed laser fusion welding torch
US20050109744A1 (en) * 2002-02-08 2005-05-26 Baker Martin C. Hand-held laser welding wand having internal coolant and gas delivery conduits
US6774338B2 (en) 2002-02-08 2004-08-10 Honeywell International, Inc. Hand held powder-fed laser fusion welding torch
US20030213786A1 (en) * 2002-02-08 2003-11-20 Baker Martin C. Hand held powder-fed laser fusion welding torch
US6621045B1 (en) * 2002-07-25 2003-09-16 Matsushita Electric Industrial Co., Ltd. Workpiece stabilization with gas flow
WO2004014599A1 (en) * 2002-08-05 2004-02-19 Linde Aktiengesellschaft Process gas and method for laser hard soldering
WO2004014598A1 (en) * 2002-08-05 2004-02-19 Linde Aktiengesellschaft Process gas and method for laser hard soldering
US7551271B2 (en) * 2002-11-18 2009-06-23 Panomics, Inc. Uncaging devices
US20080030713A1 (en) * 2002-11-18 2008-02-07 Panomics, Inc. Uncaging devices
WO2004056524A1 (en) * 2002-12-20 2004-07-08 Koninklijke Philips Electronics N.V. A method and a device for laser spot welding
US20060249487A1 (en) * 2002-12-20 2006-11-09 Koninklijke Philips Electronics N.V. Method and a device for laser spot welding
EP1475219A3 (en) * 2003-05-05 2005-01-19 Thomas Dr. Ebert Tool provided with a laserbeam for joining synthetic materials by the use of a filler material
EP1475219A2 (en) * 2003-05-05 2004-11-10 Thomas Dr. Ebert Tool provided with a laserbeam for joining synthetic materials by the use of a filler material
US20050023256A1 (en) * 2003-07-31 2005-02-03 Srikanth Sankaranarayanan 3-D adaptive laser powder fusion welding
US20070170158A1 (en) * 2003-09-09 2007-07-26 Greig Christian F System and method for laser welding foils
US20050056628A1 (en) * 2003-09-16 2005-03-17 Yiping Hu Coaxial nozzle design for laser cladding/welding process
US7038162B2 (en) 2003-11-13 2006-05-02 Honeywell International, Inc. Hand-held laser welding wand filler media delivery systems and methods
US20050103756A1 (en) * 2003-11-13 2005-05-19 Baker Martin C. Hand-held laser welding wand filler media delivery systems and methods
WO2005053897A1 (en) * 2003-11-24 2005-06-16 Honeywell International Inc. Hand-held laser welding assembly having internal coolant and gas delivery conduits
US7550693B2 (en) 2005-02-04 2009-06-23 Honeywell International Inc. Hand-held laser welding wand with improved optical assembly serviceability features
US20060175307A1 (en) * 2005-02-04 2006-08-10 Honeywell International, Inc. Hand-held laser welding wand with improved optical assembly serviceability features
FR2923168A1 (en) * 2007-11-06 2009-05-08 Air Liquide Welding France Sa Head useful in laser machine for focusing laser beam, comprises a device e.g. an optical lens for focusing beam, a unit for supplying pressurized gas, a nozzle with outlet opening, a pressure chamber, and a pressure compensation chamber
DE102008002910A1 (en) * 2008-06-26 2010-01-07 Reis Lasertec Gmbh Method and device for connecting components by means of laser radiation
US8290006B1 (en) 2011-10-25 2012-10-16 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Dynamically variable spot size laser system
US10328524B2 (en) * 2012-03-14 2019-06-25 Amada Company, Limited Coaxial nozzle of laser beam machine
US20150048071A1 (en) * 2012-03-14 2015-02-19 Amada Company, Limited Coaxial nozzle of laser beam machine
US9446477B2 (en) * 2012-06-28 2016-09-20 Shibuya Kogyo Co., Ltd. Bonding head
US20140001162A1 (en) * 2012-06-28 2014-01-02 Eiji Tanaka Bonding head
US9475151B1 (en) * 2012-10-30 2016-10-25 Western Digital (Fremont), Llc Method and apparatus for attaching a laser diode and a slider in an energy assisted magnetic recording head
US20160346858A1 (en) * 2014-02-13 2016-12-01 Tyco Electronics (Shanghai) Co. Ltd. Laser Soldering System
US11351622B2 (en) * 2014-02-13 2022-06-07 Te Connectivity Corporation Laser soldering system
US20160121427A1 (en) * 2014-10-31 2016-05-05 Prima Power Laserdyne, Llc Cross jet laser welding nozzle
US10335899B2 (en) * 2014-10-31 2019-07-02 Prima Power Laserdyne Cross jet laser welding nozzle
US20160137544A1 (en) * 2014-11-19 2016-05-19 Boe Technology Group Co., Ltd. Water jet laser cutting device and cutting method
US11562990B2 (en) 2015-03-20 2023-01-24 Rohinni, Inc. Systems for direct transfer of semiconductor device die
US11515293B2 (en) 2015-03-20 2022-11-29 Rohinni, LLC Direct transfer of semiconductor devices from a substrate
US10490532B2 (en) 2015-03-20 2019-11-26 Rohinni, LLC Apparatus and method for direct transfer of semiconductor devices
US11488940B2 (en) 2015-03-20 2022-11-01 Rohinni, Inc. Method for transfer of semiconductor devices onto glass substrates
US10566319B2 (en) 2015-03-20 2020-02-18 Rohinni, LLC Apparatus for direct transfer of semiconductor device die
US10615152B2 (en) 2015-03-20 2020-04-07 Rohinni, LLC Semiconductor device on glass substrate
US10615153B2 (en) 2015-03-20 2020-04-07 Rohinni, LLC Apparatus for direct transfer of semiconductor device die
US10622337B2 (en) 2015-03-20 2020-04-14 Rohinni, LLC Method and apparatus for transfer of semiconductor devices
US10636770B2 (en) 2015-03-20 2020-04-28 Rohinni, LLC Apparatus and method for direct transfer of semiconductor devices from a substrate and stacking semiconductor devices on each other
US10910354B2 (en) 2015-03-20 2021-02-02 Rohinni, LLC Apparatus for direct transfer of semiconductor device die
US10361176B2 (en) 2015-03-20 2019-07-23 Rohinni, LLC Substrate with array of LEDs for backlighting a display device
US11152339B2 (en) 2015-03-20 2021-10-19 Rohinni, LLC Method for improved transfer of semiconductor die
US11069551B2 (en) 2016-11-03 2021-07-20 Rohinni, LLC Method of dampening a force applied to an electrically-actuatable element
US11462433B2 (en) 2016-11-23 2022-10-04 Rohinni, LLC Direct transfer apparatus for a pattern array of semiconductor device die
US10504767B2 (en) 2016-11-23 2019-12-10 Rohinni, LLC Direct transfer apparatus for a pattern array of semiconductor device die
US10471545B2 (en) * 2016-11-23 2019-11-12 Rohinni, LLC Top-side laser for direct transfer of semiconductor devices
US20180141163A1 (en) * 2016-11-23 2018-05-24 Rohinni, LLC. Top-Side Laser for Direct Transfer of Semiconductor Devices
US11094571B2 (en) 2018-09-28 2021-08-17 Rohinni, LLC Apparatus to increase transferspeed of semiconductor devices with micro-adjustment
US11728195B2 (en) 2018-09-28 2023-08-15 Rohinni, Inc. Apparatuses for executing a direct transfer of a semiconductor device die disposed on a first substrate to a second substrate
US11627667B2 (en) 2021-01-29 2023-04-11 Orbotech Ltd. High-resolution soldering

Also Published As

Publication number Publication date
GB8928137D0 (en) 1990-02-14
IT1236985B (en) 1993-05-12
IT8922856A1 (en) 1991-06-22
FR2640899A1 (en) 1990-06-29
DE3941558A1 (en) 1990-06-28
GB2226266A (en) 1990-06-27
JPH02200388A (en) 1990-08-08
IT8922856A0 (en) 1989-12-22

Similar Documents

Publication Publication Date Title
US4906812A (en) Fiber optic laser joining apparatus
US4578554A (en) Laser welding apparatus
US4673795A (en) Integrated robotic laser material processing and imaging system
US4710605A (en) Laser nibbling of optical waveguides
US4676586A (en) Apparatus and method for performing laser material processing through a fiber optic
US4510005A (en) Method and apparatus for reshaping and polishing an end face of an optical fiber
US5245682A (en) Fiber optic delivered beam quality control system for power lasers
US5268556A (en) Laser welding methods
KR20040073591A (en) Method and apparatus for increasing welding rates for high aspect ratio welds
JPS6257267A (en) Optical fiber beam feeder for high power laser
WO2002074479A1 (en) Improved process and apparatus for friction stir welding
US6103988A (en) Apparatus and method for bonding optical elements by non-contact soldering
CN103658987A (en) Soldering iron
US20010045108A1 (en) Method for molding a shaped optical fiber tip
JPH02151047A (en) Bonding device
WO2000066345A3 (en) Method of clamping thermoplastic pieces and heat control for laser welding
US20210278603A1 (en) Laser welding of optical fibers in perforated elements and associated optical elements
JPH09178977A (en) Laser beam projection connector for optical fiber
EP0423994B1 (en) Automated laser fusion for high strength optical fiber splicing
JP3040720B2 (en) Laser processing head and laser processing method
US20020139781A1 (en) Method and apparatus for brazing and thermal processing
US6291795B1 (en) Unfocused laser beam delivery system
EP0372850A1 (en) Improvements in or relating to the heating of substances
JPH05245681A (en) Laser beam machine
JP2004105973A (en) Automatic laser beam welding apparatus

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: GENERAL ELECTRIC COMPANY, A CORP. OF NY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:NIED, HERMAN A.;JONES, MARSHALL G.;REEL/FRAME:004999/0204

Effective date: 19881215

Owner name: GENERAL ELECTRIC COMPANY, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NIED, HERMAN A.;JONES, MARSHALL G.;REEL/FRAME:004999/0204

Effective date: 19881215

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
FP Lapsed due to failure to pay maintenance fee

Effective date: 19940306

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362