US4616705A - Mini-well temperature profiling process - Google Patents

Mini-well temperature profiling process Download PDF

Info

Publication number
US4616705A
US4616705A US06/843,858 US84385886A US4616705A US 4616705 A US4616705 A US 4616705A US 84385886 A US84385886 A US 84385886A US 4616705 A US4616705 A US 4616705A
Authority
US
United States
Prior art keywords
temperature
cable
conduit
heater
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US06/843,858
Inventor
George L. Stegemeier
Peter Van Meurs
Cor F. H. Van Egmond
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell USA Inc
Original Assignee
Shell Oil Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Oil Co filed Critical Shell Oil Co
Priority to US06/843,858 priority Critical patent/US4616705A/en
Assigned to SHELL OIL COMPANY reassignment SHELL OIL COMPANY ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: STEGEMEIER, GEORGE L., VAN EGMOND, COR F. H., VAN MEURS, PETER
Application granted granted Critical
Publication of US4616705A publication Critical patent/US4616705A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B23/00Apparatus for displacing, setting, locking, releasing, or removing tools, packers or the like in the boreholes or wells
    • E21B23/14Apparatus for displacing, setting, locking, releasing, or removing tools, packers or the like in the boreholes or wells for displacing a cable or cable-operated tool, e.g. for logging or perforating operations in deviated wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B19/00Handling rods, casings, tubes or the like outside the borehole, e.g. in the derrick; Apparatus for feeding the rods or cables
    • E21B19/22Handling reeled pipe or rod units, e.g. flexible drilling pipes
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B36/00Heating, cooling, insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
    • E21B36/04Heating, cooling, insulating arrangements for boreholes or wells, e.g. for use in permafrost zones using electrical heaters
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/06Measuring temperature or pressure
    • E21B47/07Temperature

Definitions

  • the invention relates to a well-treating or operating process for measuring patterns or profiles of temperatures with distances within intervals of subterranean earth formations which can be long, deep and hot. More particularly, the invention relates to installing and operating equipment for obtaining such information in an economically feasible manner, particularly while a well is being operated as a temperature observation well or is being heated or utilized in a manner affecting the temperature in and around the well.
  • U.S. Pat. No. 2,676,489 described measuring both the temperature gradient and differential at locations along a vertical line in order to locate the tops of zones of setting cement.
  • U.S. Pat. No. 3,026,940 discloses the need for heating wells for removing paraffin or asphalt or stimulating oil production and describes the importance of knowing and controlling the temperature around the heater. It uses a surface located heater arranged to heat portions of oil being heated by a sub-surface heater, with the control needed to obtain the desired temperature at the surface located heater being applied to the sub-surface heater.
  • U.S. Pat. No. 3,090,233 describes a means for measuring temperatures within a small reaction zone, such as one used in a pilot plant.
  • a chain drive mechanism pushes and pulls a measuring means such as a thermocouple into and out of a tube extending into the reaction zone while indications are provided of the temperature and position within the tube.
  • the present invention amounts to a modification of the system described in U.S. Pat. No. 3,090,233.
  • the prior system mechanically pushed and pulled a relatively stiff measuring assembly and suggested no way in which a temperature sensing means, such as a thermocouple, could be moved for significant distances up and down within a well.
  • a temperature sensing means such as a thermocouple
  • the present invention relates to a process for treating and/or operating a well while measuring temperatures in or around a well within subterranean intervals which can be hundreds of feet long, thousands of feet deep, and hot enough to require pyrometric measurements.
  • a long, substantially straight measuring means conduit is extended within the well from a surface location to the interval to be measured.
  • a flexible weighting member, an electrically responsive temperature sensing means, a spoolable heat stable cable for telemetering the sensing means signals and a means for spooling in and paying out the telemetering cable are arranged and interconnected so that the gravitational force on the weighting means is capable of substantially straightening the bends in the telemetering cable, and pulling the temperature sensing means and telemetering cable downward within the measuring means conduit without significantly cold working the cable during the bending and straightening of it.
  • the spooling means is operated so that the temperature sensing means is pulled downward within the measuring interval by gravity and is pulled upward within that interval by spooling the telemetering cable onto a drum.
  • the rate of the movement is controlled so that electrical temperature responses are telemetering from the temperature sensing unit while that unit is, to the extent desired, in substantial temperature equilibrium with the temperatures encountered within the measuring interval. Indications are made of temperature corresponding to the telemetered electrical responses and temperature measuring locations corresponding to the position of the temperature sensing means, which position corresponds to the extent of the unspooling of the telemetering cable from the spooling means.
  • FIG. 1 is a schematic illustration of the system of the present invention installed in a mini-well or measuring means conduit extending alongside a string of casing cemented within a well.
  • FIG. 2 is an enlarged view of a section of that mini-well.
  • FIG. 3 is a block diagram of circuits for controlling the operations of the spooling means shown in FIG. 1.
  • FIG. 4 is a schematic illustration of an alternative arrangement in which a measuring means conduit of the present invention is used as both a mini-well and a guide column for a heater cable.
  • FIG. 1 shows a borehole 1 in which a string of casing 2 is installed and grouted by cement 3.
  • a way may, for example, be a temperature observation well, a well in which a heater is being operated to mobilize a viscous oil or to coke a portion of the coil in a reservoir to form a sand consolidated zone or an electrode to which electrical current is to be flowed through the reservoir, or the like.
  • a slender measuring means conduit 4 is extended along the casing 2 into and through a "logging" interval to be measured.
  • the conduit 4 is preferably spoolable and is strapped to a pipe string such as casing 2 and surrounded by a body of cement, such as cement 3, which surrounds the casing to ensure a substantially uniform heat transport to or from the earth formation and avoid the flow of fluid into or out of the casing.
  • the measuring means conduit is preferably tightly closed by a bottom located seal 5 which can be, for example, a cap, a plug, a weld, a body of cement, or the like.
  • a temperature sensing assembly comprising a flexible weighting member or "flexible sinker bar” 6, a thermocouple hot junction 7 and a thermocouple signal telemetering cable 8 (more clearly depicted in FIG. 2) are disposed within the measuring means conduit 4.
  • the flexible weighting member or flexible sinker bar 6 comprises a series of sinker bar beads (i.e., short weights) 6A slidably connected around a flexible line 6B, and kept separated from each other by bead stops 6C, which are fixedly attached to line 6B.
  • the telemetering cable 8 for transmitting the electrical responses from the thermocouple hot junction preferably comprises the thermocouple wires, or conductive wires having similar thermal electrical characteristics, insulated by nonconductive solid material which is suitably heat stable for use at the temperature being measured.
  • thermocouples were first developed for use in pyrometry they are now competitive with resistance thermometers and various expansion and pressure types of thermometers, for measuring lower ranges of temperatures, and with radiation methods for measuring very high temperatures.
  • the position of a temperature sensing means 7 within the interval to be measured corresponds to the extent the cable 8 is unspooled from the cable spooling means 9.
  • the cable spooling means control 10 controls the rate at which the temperature sensing means is moved within the interval being measured.
  • the controls are arranged to adjust the speed and torque of the spooling drive motor.
  • the travel rates are preferably variable from about 3 to 2,000 inches per minute.
  • the unspooling rate should, of course, be kept slow enough to avoid spiraling or kinking of the telemetry cable.
  • a particularly suitable logging rate is about 6 inches per minute which provides a traverse of 300 feet of subterranean earth formation interval in about 10 hours.
  • the electrical response temperatures are transmitted (for example, by a mercury slip-ring assembly) to measurement indicating units.
  • the measuring means conduit is preferably a spoolable continuous stainless steel tube, preferably one which has an inner diameter of about 5/16ths to 9/16ths of an inch and is, or is substantially equivalent to, a grade 316 stainless steel.
  • the measuring means conduit is preferably attached, for example, by strapping, along the exterior of a tubing or casing string. The points of the attachment should be located at the largest diameters of such a pipe string, e.g., at the pipe collars, to keep the measuring means conduit as straight as possible, particularly with respect to avoiding a spiraling around a casing or tubing to which the measuring means conduit is attached.
  • the sinker bar beads such as beads 6A used in a conduit of the preferred size preferably have an outer diameter of about 3/16ths to 7/16ths inch and a length of about 1 to 6 inches.
  • the flexible sinker line 6B is preferably a flexible line such as a 1/16ths inch aircraft wire and the bead stops 6C are preferably small pieces of small tubing such as 1/8th-inch tubing crimped tightly onto the sinker line in positions that keep the beads separated by about 1/2-inch.
  • the components of the combination comprising a flexible weighting member like flexible sinker 6, an electrically responsive temperature sensing means like thermocouple junction 7, a metal sheathed telemetering cable like cable 8 and a means for spooling the telemetering cable like spooling means 9, should have chemical and physical properties and interconnections arranged so that gravity acting on the sinker bar is capable of pulling the sensing means downward through the measuring interval while substantially straightening the bends imparted by the drum of the spooling means.
  • a measuring means conduit comprising a 3/8ths-inch inside diameter by 1/2-inch outside diameter 316 stainless steel tube, a flexible sinker bar comprising 80 beads which are 2 inches long by 1/4th-inch diameter (providing a total weight of about 2 pounds and a length of about 17 feet), where the cable for telemetering electrical temperature responses is a steel sheathed 1/16ths-inch diameter cable which is spooled on a spooling means having a drum diameter of about 19 inches.
  • the cold working of the telemetering cable is only about 0.3 percent.
  • the measuring means conduit deviation from a generally vertical line is practically nil
  • the temperature sensing means not only moves smoothly downward in response to gravity (with no evidence of interference due to friction) but no significant load due to friction is apparent while raising the system by spooling it onto the spooling means drum.
  • FIG. 3 shows the main circuitry components for controlling a cable spooling means such as means 9 of FIG. 1.
  • a data logger is arranged to receive depth and temperature signals and transmit coded control commands to a logging rate and direction control circuit, which in turn activates a motor control circuit to provide direction and rate signals to the spooling means motor.
  • a depth encoder derives thermocouple position indicating signals from the extent at which the telemetering cable 8 is unspooled. The binary coded decimal depth signals are converted to hexadecimal depth signals which are supplied to the data logger, along with the temperature signals from the thermocouple.
  • the data logger is arranged to provide data and receive commands, via a telephone modem, to and from on site and/or remote locations.
  • the available keyboard commands include logging control direction, logging speed and data regarding depth and temperature.
  • the logging speed for the temperature sensing assembly is set to provide relatively rapid traverses of the interval in order to detect any developing hot spots anywhere along the intervals before any significant damage has occurred.
  • the heater temperature reaches or approaches the selected heating temperature the logging speed can be reduced to a rate conducive to maintaining a thermal-equilibrium between the sensing means and the borehole temperature.
  • the use of the telephone modem is also particularly advantageous in mountainous terrain where radio communications or personnel monitoring is difficult or impractical.
  • the present system can be used for a central control of a large number of heat injectors in a field scale operation.
  • FIG. 4 shows an alternative arrangement of a placement and use of a measuring means conduit, in accordance with the present invention.
  • the system shown in FIG. 4 is a formation-tailored method and means for uniformly heating a long subterranean interval at high temperature. It is described in a commonly assigned application, Ser. No. 597,764 filed Apr. 6, 1984. The disclosures of that application are incorporated herein by reference.
  • the measuring means conduit is arranged to serve as a heater cable guide column. It is pulled from an air motor driven guide column spool through the interior of a stationary drum and into a well casing by the weight of a guide column sinker bar.
  • a pair of heater cables each comprising a conductive metal core surrounded by mineral insulation encased in a stainless steel sheath are connected to a pair of metal sheathed, mineral insulated, power supply cables and lengths of those cables which are sufficient to allow the heater cables to extend through the casing to the zone to be heated are wound around a rotating cable guide mounted on the stationary drum through which the tubular guide column is extended.
  • the heater cables are spliced together with an end piece splice which is connected to the guide column.
  • turns of the heater cables followed by turns of the power supply cables are removed and fed into the casing in the form of spiraling coils in which the turns have a suitable wave length.
  • the coils of the cables press outward against the inner wall of the casing and much, if not all, of their weight tends to be supported by the friction between them and the wall.
  • a guide column comprising the measuring means conduit of the present invention is run-in, it is preferably hung from a wellhead hanger, which can be like those conventionally used for hanging strings of continuous tubing.
  • a pressure greater than atmosphere is to be generated within the casing containing the measuring means conduit, the temperature sensing assembly of the present invention can be fed in through a lubricator, which can be like those conventionally used.
  • the lubricator should, of course, be arranged so that the friction imparted by it does not prevent the gravity-actuated downward travel of the temperature sensing means.

Abstract

In treating a well, automatically controlled measurements of temperature with depth within a subterranean interval which can be longer than hundreds of feet, deeper than thousands of feet and hotter than 600° C., are made by extending a slender measuring means conduit through the well and the zone to be measured and arranging an electrically responsive temperature sensing means and a means for spooling a metal sheathed telemetering cable for the electrical temperature responses so that the sensing means is lowered through the measuring conduit by gravity and raised within the conduit by spooling and temperatures and/or temperature with depths are measured while the sensing means temperature is substantially in equilibrium with the temperatures in the interval being measured.

Description

This is a continuation of application Ser. No. 658,238, filed Oct. 5, 1984, now abandoned.
BACKGROUND OF THE INVENTION
The invention relates to a well-treating or operating process for measuring patterns or profiles of temperatures with distances within intervals of subterranean earth formations which can be long, deep and hot. More particularly, the invention relates to installing and operating equipment for obtaining such information in an economically feasible manner, particularly while a well is being operated as a temperature observation well or is being heated or utilized in a manner affecting the temperature in and around the well.
Various temperature measuring processes have been described in patents. U.S. Pat. No. 2,676,489 described measuring both the temperature gradient and differential at locations along a vertical line in order to locate the tops of zones of setting cement. U.S. Pat. No. 3,026,940 discloses the need for heating wells for removing paraffin or asphalt or stimulating oil production and describes the importance of knowing and controlling the temperature around the heater. It uses a surface located heater arranged to heat portions of oil being heated by a sub-surface heater, with the control needed to obtain the desired temperature at the surface located heater being applied to the sub-surface heater.
Various temperature measuring systems involving distinctly different types of sensing and indicating means for use in wells have also been described in U.S. patents. For example, patents such as U.S. Pat. Nos. 2,099,687; 3,487,690; 3,540,279; 3,609,731; 3,595,082 and 3,633,423 describe acoustic thermometer means for measuring temperature by its effect on a travel time of acoustic impulses through solid materials such as steel. U.S. Pat. No. 4,430,974 describes a measuring system in which a plurality of long electrical resistance elements are grouted in place within a well and sequentially connected to a resistance measuring unit to measure temperature or fluid flow.
U.S. Pat. No. 3,090,233 describes a means for measuring temperatures within a small reaction zone, such as one used in a pilot plant. A chain drive mechanism pushes and pulls a measuring means such as a thermocouple into and out of a tube extending into the reaction zone while indications are provided of the temperature and position within the tube.
In some respects, the present invention amounts to a modification of the system described in U.S. Pat. No. 3,090,233. The prior system mechanically pushed and pulled a relatively stiff measuring assembly and suggested no way in which a temperature sensing means, such as a thermocouple, could be moved for significant distances up and down within a well. But, Applicants have discovered with a certain combination of elements measurements can be made within subterranean earth formation intervals while are relatively very deep, very long, and very hot. This requires a combination of a long measuring means conduit, an electrically responsive temperature sensing means which telemeters electrical responses along a metal sheathed telemetering cable which is heat stable, a flexible weighting means connected below the sensing means and a means for spooling the telemetering cable and requires that those elements be arranged to have physical and chemical properties which are properly interrelated. In addition, Applicants found that in contrast to previously described methods for measuring sub-surface temperatures within wells, the presently described interrelated combination of elements is particularly beneficial in being capable of providing substantially equilibrated temperature measurements from all points along a long interval of subterranean earth formations without involving any more man hours than are needed for the quick scan of a computer printout. In contrast, the prior methods for obtaining such temperature logs have required continual attendance, and delayed well operation, for days or weeks.
SUMMARY OF THE INVENTION
The present invention relates to a process for treating and/or operating a well while measuring temperatures in or around a well within subterranean intervals which can be hundreds of feet long, thousands of feet deep, and hot enough to require pyrometric measurements. A long, substantially straight measuring means conduit is extended within the well from a surface location to the interval to be measured. A flexible weighting member, an electrically responsive temperature sensing means, a spoolable heat stable cable for telemetering the sensing means signals and a means for spooling in and paying out the telemetering cable are arranged and interconnected so that the gravitational force on the weighting means is capable of substantially straightening the bends in the telemetering cable, and pulling the temperature sensing means and telemetering cable downward within the measuring means conduit without significantly cold working the cable during the bending and straightening of it. The spooling means is operated so that the temperature sensing means is pulled downward within the measuring interval by gravity and is pulled upward within that interval by spooling the telemetering cable onto a drum. The rate of the movement is controlled so that electrical temperature responses are telemetering from the temperature sensing unit while that unit is, to the extent desired, in substantial temperature equilibrium with the temperatures encountered within the measuring interval. Indications are made of temperature corresponding to the telemetered electrical responses and temperature measuring locations corresponding to the position of the temperature sensing means, which position corresponds to the extent of the unspooling of the telemetering cable from the spooling means.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a schematic illustration of the system of the present invention installed in a mini-well or measuring means conduit extending alongside a string of casing cemented within a well.
FIG. 2 is an enlarged view of a section of that mini-well.
FIG. 3 is a block diagram of circuits for controlling the operations of the spooling means shown in FIG. 1.
FIG. 4 is a schematic illustration of an alternative arrangement in which a measuring means conduit of the present invention is used as both a mini-well and a guide column for a heater cable.
DESCRIPTION OF THE INVENTION
FIG. 1 shows a borehole 1 in which a string of casing 2 is installed and grouted by cement 3. Such a way may, for example, be a temperature observation well, a well in which a heater is being operated to mobilize a viscous oil or to coke a portion of the coil in a reservoir to form a sand consolidated zone or an electrode to which electrical current is to be flowed through the reservoir, or the like.
A slender measuring means conduit 4 is extended along the casing 2 into and through a "logging" interval to be measured. The conduit 4 is preferably spoolable and is strapped to a pipe string such as casing 2 and surrounded by a body of cement, such as cement 3, which surrounds the casing to ensure a substantially uniform heat transport to or from the earth formation and avoid the flow of fluid into or out of the casing. The measuring means conduit is preferably tightly closed by a bottom located seal 5 which can be, for example, a cap, a plug, a weld, a body of cement, or the like.
A temperature sensing assembly comprising a flexible weighting member or "flexible sinker bar" 6, a thermocouple hot junction 7 and a thermocouple signal telemetering cable 8 (more clearly depicted in FIG. 2) are disposed within the measuring means conduit 4. The flexible weighting member or flexible sinker bar 6 comprises a series of sinker bar beads (i.e., short weights) 6A slidably connected around a flexible line 6B, and kept separated from each other by bead stops 6C, which are fixedly attached to line 6B.
The telemetering cable 8 for transmitting the electrical responses from the thermocouple hot junction preferably comprises the thermocouple wires, or conductive wires having similar thermal electrical characteristics, insulated by nonconductive solid material which is suitably heat stable for use at the temperature being measured. As known to those skilled in the art, although thermocouples were first developed for use in pyrometry they are now competitive with resistance thermometers and various expansion and pressure types of thermometers, for measuring lower ranges of temperatures, and with radiation methods for measuring very high temperatures.
The position of a temperature sensing means 7 within the interval to be measured corresponds to the extent the cable 8 is unspooled from the cable spooling means 9. The cable spooling means control 10 controls the rate at which the temperature sensing means is moved within the interval being measured.
In general, the controls are arranged to adjust the speed and torque of the spooling drive motor. The travel rates are preferably variable from about 3 to 2,000 inches per minute. The unspooling rate should, of course, be kept slow enough to avoid spiraling or kinking of the telemetry cable. A particularly suitable logging rate is about 6 inches per minute which provides a traverse of 300 feet of subterranean earth formation interval in about 10 hours. The electrical response temperatures are transmitted (for example, by a mercury slip-ring assembly) to measurement indicating units.
The measuring means conduit is preferably a spoolable continuous stainless steel tube, preferably one which has an inner diameter of about 5/16ths to 9/16ths of an inch and is, or is substantially equivalent to, a grade 316 stainless steel. The measuring means conduit is preferably attached, for example, by strapping, along the exterior of a tubing or casing string. The points of the attachment should be located at the largest diameters of such a pipe string, e.g., at the pipe collars, to keep the measuring means conduit as straight as possible, particularly with respect to avoiding a spiraling around a casing or tubing to which the measuring means conduit is attached.
The sinker bar beads such as beads 6A used in a conduit of the preferred size preferably have an outer diameter of about 3/16ths to 7/16ths inch and a length of about 1 to 6 inches. In such an arrangement, the flexible sinker line 6B is preferably a flexible line such as a 1/16ths inch aircraft wire and the bead stops 6C are preferably small pieces of small tubing such as 1/8th-inch tubing crimped tightly onto the sinker line in positions that keep the beads separated by about 1/2-inch.
In general, the components of the combination comprising a flexible weighting member like flexible sinker 6, an electrically responsive temperature sensing means like thermocouple junction 7, a metal sheathed telemetering cable like cable 8 and a means for spooling the telemetering cable like spooling means 9, should have chemical and physical properties and interconnections arranged so that gravity acting on the sinker bar is capable of pulling the sensing means downward through the measuring interval while substantially straightening the bends imparted by the drum of the spooling means. Applicants have found, by means of well tests, that such an arrangement and interconnection of properties is exemplified by a measuring means conduit comprising a 3/8ths-inch inside diameter by 1/2-inch outside diameter 316 stainless steel tube, a flexible sinker bar comprising 80 beads which are 2 inches long by 1/4th-inch diameter (providing a total weight of about 2 pounds and a length of about 17 feet), where the cable for telemetering electrical temperature responses is a steel sheathed 1/16ths-inch diameter cable which is spooled on a spooling means having a drum diameter of about 19 inches.
With respect to such a combination of items the cold working of the telemetering cable (due to being bent around the spooling means drum) is only about 0.3 percent. Where the measuring means conduit deviation from a generally vertical line (with respect to spiraling or substantially reversing turns, such as "dog legs") is practically nil, the temperature sensing means not only moves smoothly downward in response to gravity (with no evidence of interference due to friction) but no significant load due to friction is apparent while raising the system by spooling it onto the spooling means drum. Tests have indicated that where the same combination of items is used in a measuring means conduit having spiraling deviations from the vertical, although the downward motion may be satisfactory, the pulling up of the system may place a load on the telemetering cable amounting to more than its tensile strength, due to friction.
FIG. 3 shows the main circuitry components for controlling a cable spooling means such as means 9 of FIG. 1. As will be apparent to those skilled in the art, substantially all of the indicated components can be the same as, or like, components which are commercially available. A data logger is arranged to receive depth and temperature signals and transmit coded control commands to a logging rate and direction control circuit, which in turn activates a motor control circuit to provide direction and rate signals to the spooling means motor. A depth encoder derives thermocouple position indicating signals from the extent at which the telemetering cable 8 is unspooled. The binary coded decimal depth signals are converted to hexadecimal depth signals which are supplied to the data logger, along with the temperature signals from the thermocouple.
The data logger is arranged to provide data and receive commands, via a telephone modem, to and from on site and/or remote locations. The available keyboard commands include logging control direction, logging speed and data regarding depth and temperature. Thus, the system can automatically accumulate temperature measurements at a continuous or intermittent rate which is slow enough to ensure substantial equilibrium between the sensing unit and the surrounding temperature without any interruption of the well operation or any significant amount of time of the operating personnel. Where a subterranean interval is to be heated at a relatively high temperature, the present process can be particularly valuable. The measuring conduit means conduit is extended throughout the interval near the heater to be used. While operating the heater to bring it up to the selected heating temperature the logging speed for the temperature sensing assembly is set to provide relatively rapid traverses of the interval in order to detect any developing hot spots anywhere along the intervals before any significant damage has occurred. When the heater temperature reaches or approaches the selected heating temperature the logging speed can be reduced to a rate conducive to maintaining a thermal-equilibrium between the sensing means and the borehole temperature.
The use of the telephone modem is also particularly advantageous in mountainous terrain where radio communications or personnel monitoring is difficult or impractical. The present system can be used for a central control of a large number of heat injectors in a field scale operation.
FIG. 4 shows an alternative arrangement of a placement and use of a measuring means conduit, in accordance with the present invention. The system shown in FIG. 4 is a formation-tailored method and means for uniformly heating a long subterranean interval at high temperature. It is described in a commonly assigned application, Ser. No. 597,764 filed Apr. 6, 1984. The disclosures of that application are incorporated herein by reference.
As shown in FIG. 4, the measuring means conduit is arranged to serve as a heater cable guide column. It is pulled from an air motor driven guide column spool through the interior of a stationary drum and into a well casing by the weight of a guide column sinker bar. A pair of heater cables each comprising a conductive metal core surrounded by mineral insulation encased in a stainless steel sheath are connected to a pair of metal sheathed, mineral insulated, power supply cables and lengths of those cables which are sufficient to allow the heater cables to extend through the casing to the zone to be heated are wound around a rotating cable guide mounted on the stationary drum through which the tubular guide column is extended. The heater cables are spliced together with an end piece splice which is connected to the guide column. As the guide conduit is lowered into the casing, turns of the heater cables followed by turns of the power supply cables are removed and fed into the casing in the form of spiraling coils in which the turns have a suitable wave length. When the downward travel of the guide column is terminated, the coils of the cables press outward against the inner wall of the casing and much, if not all, of their weight tends to be supported by the friction between them and the wall.
In such an arrangement, in accordance with the present process, after a guide column comprising the measuring means conduit of the present invention has been run-in, it is preferably hung from a wellhead hanger, which can be like those conventionally used for hanging strings of continuous tubing. If a pressure greater than atmosphere is to be generated within the casing containing the measuring means conduit, the temperature sensing assembly of the present invention can be fed in through a lubricator, which can be like those conventionally used. The lubricator should, of course, be arranged so that the friction imparted by it does not prevent the gravity-actuated downward travel of the temperature sensing means.

Claims (5)

What is claimed is:
1. In a process in which an elongated electrical resistance heater is installed and operated within a well for substantially uniformly heating an interval of subterranean earth formations which interval is longer than about 100 feet and is heated to a temperature between about 600° C. and a temperature damaging to the well or earth formation, an improvement for installing and operating the heater and measuring the pattern of temperature with depth along the heater, comprising:
positioning a spooled electrical heater and a spooled tubular stainless steel measuring conduit having an internal diameter of from about 5/16ths to 9/16ths inch at the well site and unspooling the heater and conduit substantially simultaneously into the well while periodically attaching the heater to the conduit so that the conduit supports the weight of the heater;
interconnecting a flexible weighting member, a thermocouple and a metal-sheathed cable for telemetering thermocouple responses, with those elements having outer diameters small enough to slide freely within the measuring conduit;
arranging the telemetering cable and a means for spooling and unspooling the metal-sheathed cable so that (a) the gravitational force on the weighting means is capable of pulling the thermocouple and cable downward within the measuring conduit means while the cable is being unspooled and substantially straightening the bends imparted to the cable by the spooling means drum and (b) the correlation between the gravitational force on the weighing means and the diameter of the spooling means is such that the cold working of the cable is not more than about 0.3 percent;
arranging the metal-sheathed cable spooling means for unattended automatic operation capable of moving the thermocouple through the interval being heated at a rate of about 3 to 2000 inches per minute capable of maintaining a substantial thermal equilibrium between the thermocouple and the temperature within the well; and
operating the heater while measuring the pattern of temperature with depth throughout the interval.
2. The process of claim 1 in which the cable spooling means is operated automatically.
3. The process of claim 1 in which the bottom of the measuring means conduit is fluid-tightly sealed.
4. The process of claim 1 in which the thermocouple temperature sensing means is initially cycled through said zone at relatively high rates to detect any developing hot spots and is later cycled at rates such that it remains in substantial thermal equilibrium with the surrounding temperature.
5. The process of claim 1 in which the thermocouple temperature sensing means is unattended and is automatically moved through the interval being heated at a rate keeping said means in substantial thermal equilibrium with the surrounding materials.
US06/843,858 1984-10-05 1986-03-24 Mini-well temperature profiling process Expired - Fee Related US4616705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US06/843,858 US4616705A (en) 1984-10-05 1986-03-24 Mini-well temperature profiling process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US65823884A 1984-10-05 1984-10-05
US06/843,858 US4616705A (en) 1984-10-05 1986-03-24 Mini-well temperature profiling process

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US65823884A Continuation 1984-10-05 1984-10-05

Publications (1)

Publication Number Publication Date
US4616705A true US4616705A (en) 1986-10-14

Family

ID=27097584

Family Applications (1)

Application Number Title Priority Date Filing Date
US06/843,858 Expired - Fee Related US4616705A (en) 1984-10-05 1986-03-24 Mini-well temperature profiling process

Country Status (1)

Country Link
US (1) US4616705A (en)

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4886118A (en) 1983-03-21 1989-12-12 Shell Oil Company Conductively heating a subterranean oil shale to create permeability and subsequently produce oil
US4933887A (en) * 1985-05-10 1990-06-12 Budapesti Muszaki Egyetem Process and apparatus for the determination of thermo-physical properties
FR2645360A1 (en) * 1989-03-31 1990-10-05 Ifremer Method and device for connecting in situ a transmission cable to a carrier cable
EP0424120A2 (en) * 1989-10-17 1991-04-24 Baroid Technology, Inc. Borehole pressure and temperature measurement system
FR2658972A1 (en) * 1990-02-23 1991-08-30 Elf Aquitaine Device for heating the production string (casing, column) of a well and method for fitting the heating windings
US5060287A (en) * 1990-12-04 1991-10-22 Shell Oil Company Heater utilizing copper-nickel alloy core
US5065818A (en) * 1991-01-07 1991-11-19 Shell Oil Company Subterranean heaters
US5121993A (en) * 1990-04-30 1992-06-16 The United States Of America As Represented By The Department Of Energy Triaxial thermopile array geo-heat-flow sensor
US5164660A (en) * 1991-08-12 1992-11-17 Shell Oil Company True, power, RMS current, and RMS voltage measuring devices
US5189283A (en) * 1991-08-28 1993-02-23 Shell Oil Company Current to power crossover heater control
US5255742A (en) * 1992-06-12 1993-10-26 Shell Oil Company Heat injection process
US5297626A (en) * 1992-06-12 1994-03-29 Shell Oil Company Oil recovery process
US5320179A (en) * 1992-08-06 1994-06-14 Slimdril International Inc. Steering sub for flexible drilling
US5354319A (en) * 1990-01-22 1994-10-11 Medtronic, Inc. Telemetry system for an implantable medical device
TR26370A (en) * 1990-09-27 1995-03-15 Baroid Technology Inc A SYSTEM THAT DIMENSIONS THE DRILL WELL PRESSURE AND TEMPERATURE
US5723781A (en) * 1996-08-13 1998-03-03 Pruett; Phillip E. Borehole tracer injection and detection method
US6009940A (en) * 1998-03-20 2000-01-04 Atlantic Richfield Company Production in frigid environments
WO2000047863A1 (en) * 1999-02-12 2000-08-17 Moore Boyd B Method of making a conductive downhole wire line system
US6497279B1 (en) * 1998-08-25 2002-12-24 Sensor Highway Limited Method of using a heater with a fiber optic string in a wellbore
US6581684B2 (en) 2000-04-24 2003-06-24 Shell Oil Company In Situ thermal processing of a hydrocarbon containing formation to produce sulfur containing formation fluids
US6588504B2 (en) 2000-04-24 2003-07-08 Shell Oil Company In situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids
US6698515B2 (en) 2000-04-24 2004-03-02 Shell Oil Company In situ thermal processing of a coal formation using a relatively slow heating rate
US6715548B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids
US6715546B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore
US6769805B2 (en) 1998-08-25 2004-08-03 Sensor Highway Limited Method of using a heater with a fiber optic string in a wellbore
US20040190589A1 (en) * 2003-03-13 2004-09-30 Alexander Zazovsky Determination of virgin formation temperature
US20060028916A1 (en) * 2004-08-06 2006-02-09 Mcmechan David Acoustic telemetry installation in subterranean wells
AU2003261527B2 (en) * 1999-02-12 2006-05-25 Boyd B Moore Method of making a conductive downhole wire line system
US20060245469A1 (en) * 2002-07-12 2006-11-02 Christian Koeniger Subsea and landing string distributed temperature sensor system
US20070125163A1 (en) * 2005-11-21 2007-06-07 Dria Dennis E Method for monitoring fluid properties
US20070131411A1 (en) * 2003-04-24 2007-06-14 Vinegar Harold J Thermal processes for subsurface formations
US20080035347A1 (en) * 2006-04-21 2008-02-14 Brady Michael P Adjusting alloy compositions for selected properties in temperature limited heaters
US20080178694A1 (en) * 2007-01-25 2008-07-31 Barford Lee A Dynamic environment measurements
US20080184827A1 (en) * 2007-02-02 2008-08-07 The Board Of Regents Of The Nevada System Of Higher Ed. On Behalf Of The Desert Research Inst. Monitoring probes and methods of use
EP1960631A2 (en) * 2005-12-13 2008-08-27 Larry V. Cooper Flexible sinker bar with electrically conductive wires
US20090114403A1 (en) * 2005-07-01 2009-05-07 Terence Borst Method and apparatus for drilling and servicing subterranean wells with rotating coiled tubing
US20090200023A1 (en) * 2007-10-19 2009-08-13 Michael Costello Heating subsurface formations by oxidizing fuel on a fuel carrier
US7644765B2 (en) 2006-10-20 2010-01-12 Shell Oil Company Heating tar sands formations while controlling pressure
US7735935B2 (en) 2001-04-24 2010-06-15 Shell Oil Company In situ thermal processing of an oil shale formation containing carbonate minerals
US20100208766A1 (en) * 2007-06-25 2010-08-19 Schlumberger Technology Corporation Fluid level indication system and technique
US7798220B2 (en) 2007-04-20 2010-09-21 Shell Oil Company In situ heat treatment of a tar sands formation after drive process treatment
US7831134B2 (en) 2005-04-22 2010-11-09 Shell Oil Company Grouped exposed metal heaters
WO2010151176A2 (en) * 2009-06-25 2010-12-29 Общество С Ограниченной Ответственностью "Ht" Method and device for eliminating paraffin deposits and hydrate plugs in oil and gas wells
US8151880B2 (en) 2005-10-24 2012-04-10 Shell Oil Company Methods of making transportation fuel
US8151907B2 (en) 2008-04-18 2012-04-10 Shell Oil Company Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
RU2449112C1 (en) * 2010-08-13 2012-04-27 Открытое Акционерное Общество "Ставропольский радиозавод "Сигнал" (ОАО "Ставропольский радиозавод "Сигнал") Method of thermal rates regulating of oil wells and oil pipelines
US8224163B2 (en) 2002-10-24 2012-07-17 Shell Oil Company Variable frequency temperature limited heaters
US8220539B2 (en) 2008-10-13 2012-07-17 Shell Oil Company Controlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US8327932B2 (en) 2009-04-10 2012-12-11 Shell Oil Company Recovering energy from a subsurface formation
US8355623B2 (en) 2004-04-23 2013-01-15 Shell Oil Company Temperature limited heaters with high power factors
RU2494231C1 (en) * 2012-04-19 2013-09-27 федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Пермский национальный исследовательский политехнический университет" Dewaxing method of oil producing well
US8627887B2 (en) 2001-10-24 2014-01-14 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US8631866B2 (en) 2010-04-09 2014-01-21 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8701768B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations
US8820406B2 (en) 2010-04-09 2014-09-02 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US9016370B2 (en) 2011-04-08 2015-04-28 Shell Oil Company Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US9033042B2 (en) 2010-04-09 2015-05-19 Shell Oil Company Forming bitumen barriers in subsurface hydrocarbon formations
RU2563007C1 (en) * 2014-06-26 2015-09-10 Константин Иосифович Сухарев Oil heating system
RU2563509C2 (en) * 2012-09-28 2015-09-20 Публичное акционерное общество "Татнефть" имени В.Д. Шашина (ПАО "Татнефть" им. В.Д Шашина) Method for producing high viscosity oil using electric heating and delivering chemical agent to target point of well
US20150267487A1 (en) * 2014-02-18 2015-09-24 Athabasca Oil Corporation Method for assembly of well heaters
US20160097273A1 (en) * 2013-12-27 2016-04-07 Halliburton Energy Services ,Inc. Multi-phase fluid flow profile measurement
US9309755B2 (en) 2011-10-07 2016-04-12 Shell Oil Company Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations
CN106223935A (en) * 2016-09-05 2016-12-14 深圳市奈士迪技术研发有限公司 A kind of oil temperature for oil exploration monitors system
US10047594B2 (en) 2012-01-23 2018-08-14 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation
RU2729303C1 (en) * 2019-11-12 2020-08-05 Владислав Юрьевич Никулин Fluid flow heating method in oil well
US10947817B2 (en) * 2018-08-14 2021-03-16 Robert C Kramm Methods and systems for a tool with encapsulated heating cable within a wellbore

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2290075A (en) * 1938-04-08 1942-07-14 Schlumberger Well Surv Corp Thermal process and device for surveying the beds traversed by drill holes
US2383455A (en) * 1942-11-28 1945-08-28 Frederick G Bradbury Method and apparatus for locating leaks in wells
US3114417A (en) * 1961-08-14 1963-12-17 Ernest T Saftig Electric oil well heater apparatus
US3410136A (en) * 1966-08-15 1968-11-12 Gearhart Owen Industries Differential temperature well logging apparatus
US3800871A (en) * 1972-05-04 1974-04-02 B Watson Tubing anchors
US3880234A (en) * 1973-05-02 1975-04-29 Union Oil Co Apparatus for detecting high temperature in wells
US4168747A (en) * 1977-09-02 1979-09-25 Dresser Industries, Inc. Method and apparatus using flexible hose in logging highly deviated or very hot earth boreholes
US4222438A (en) * 1978-10-30 1980-09-16 Standard Oil Company (Indiana) Reservoir fluid sampling method and apparatus
US4570715A (en) * 1984-04-06 1986-02-18 Shell Oil Company Formation-tailored method and apparatus for uniformly heating long subterranean intervals at high temperature
US4572299A (en) * 1984-10-30 1986-02-25 Shell Oil Company Heater cable installation

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2290075A (en) * 1938-04-08 1942-07-14 Schlumberger Well Surv Corp Thermal process and device for surveying the beds traversed by drill holes
US2383455A (en) * 1942-11-28 1945-08-28 Frederick G Bradbury Method and apparatus for locating leaks in wells
US3114417A (en) * 1961-08-14 1963-12-17 Ernest T Saftig Electric oil well heater apparatus
US3410136A (en) * 1966-08-15 1968-11-12 Gearhart Owen Industries Differential temperature well logging apparatus
US3800871A (en) * 1972-05-04 1974-04-02 B Watson Tubing anchors
US3880234A (en) * 1973-05-02 1975-04-29 Union Oil Co Apparatus for detecting high temperature in wells
US4168747A (en) * 1977-09-02 1979-09-25 Dresser Industries, Inc. Method and apparatus using flexible hose in logging highly deviated or very hot earth boreholes
US4222438A (en) * 1978-10-30 1980-09-16 Standard Oil Company (Indiana) Reservoir fluid sampling method and apparatus
US4570715A (en) * 1984-04-06 1986-02-18 Shell Oil Company Formation-tailored method and apparatus for uniformly heating long subterranean intervals at high temperature
US4572299A (en) * 1984-10-30 1986-02-25 Shell Oil Company Heater cable installation

Cited By (232)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4886118A (en) 1983-03-21 1989-12-12 Shell Oil Company Conductively heating a subterranean oil shale to create permeability and subsequently produce oil
US4933887A (en) * 1985-05-10 1990-06-12 Budapesti Muszaki Egyetem Process and apparatus for the determination of thermo-physical properties
FR2645360A1 (en) * 1989-03-31 1990-10-05 Ifremer Method and device for connecting in situ a transmission cable to a carrier cable
EP0424120A2 (en) * 1989-10-17 1991-04-24 Baroid Technology, Inc. Borehole pressure and temperature measurement system
EP0424120A3 (en) * 1989-10-17 1992-04-15 Baroid Technology, Inc. Borehole pressure and temperature measurement system
US5163321A (en) * 1989-10-17 1992-11-17 Baroid Technology, Inc. Borehole pressure and temperature measurement system
US5354319A (en) * 1990-01-22 1994-10-11 Medtronic, Inc. Telemetry system for an implantable medical device
FR2658972A1 (en) * 1990-02-23 1991-08-30 Elf Aquitaine Device for heating the production string (casing, column) of a well and method for fitting the heating windings
US5121993A (en) * 1990-04-30 1992-06-16 The United States Of America As Represented By The Department Of Energy Triaxial thermopile array geo-heat-flow sensor
TR26370A (en) * 1990-09-27 1995-03-15 Baroid Technology Inc A SYSTEM THAT DIMENSIONS THE DRILL WELL PRESSURE AND TEMPERATURE
US5060287A (en) * 1990-12-04 1991-10-22 Shell Oil Company Heater utilizing copper-nickel alloy core
US5065818A (en) * 1991-01-07 1991-11-19 Shell Oil Company Subterranean heaters
US5164660A (en) * 1991-08-12 1992-11-17 Shell Oil Company True, power, RMS current, and RMS voltage measuring devices
US5189283A (en) * 1991-08-28 1993-02-23 Shell Oil Company Current to power crossover heater control
US5255742A (en) * 1992-06-12 1993-10-26 Shell Oil Company Heat injection process
US5297626A (en) * 1992-06-12 1994-03-29 Shell Oil Company Oil recovery process
USRE35696E (en) 1992-06-12 1997-12-23 Shell Oil Company Heat injection process
US5320179A (en) * 1992-08-06 1994-06-14 Slimdril International Inc. Steering sub for flexible drilling
US5723781A (en) * 1996-08-13 1998-03-03 Pruett; Phillip E. Borehole tracer injection and detection method
US6009940A (en) * 1998-03-20 2000-01-04 Atlantic Richfield Company Production in frigid environments
US6497279B1 (en) * 1998-08-25 2002-12-24 Sensor Highway Limited Method of using a heater with a fiber optic string in a wellbore
US6769805B2 (en) 1998-08-25 2004-08-03 Sensor Highway Limited Method of using a heater with a fiber optic string in a wellbore
WO2000047863A1 (en) * 1999-02-12 2000-08-17 Moore Boyd B Method of making a conductive downhole wire line system
US6148925A (en) * 1999-02-12 2000-11-21 Moore; Boyd B. Method of making a conductive downhole wire line system
AU764305B2 (en) * 1999-02-12 2003-08-14 Boyd B. Moore Method of making a conductive downhole wire line system
AU2003261527B2 (en) * 1999-02-12 2006-05-25 Boyd B Moore Method of making a conductive downhole wire line system
US6769483B2 (en) 2000-04-24 2004-08-03 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources
US6758268B2 (en) 2000-04-24 2004-07-06 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a relatively slow heating rate
US6607033B2 (en) 2000-04-24 2003-08-19 Shell Oil Company In Situ thermal processing of a coal formation to produce a condensate
US6609570B2 (en) 2000-04-24 2003-08-26 Shell Oil Company In situ thermal processing of a coal formation and ammonia production
US6688387B1 (en) 2000-04-24 2004-02-10 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce a hydrocarbon condensate
US6698515B2 (en) 2000-04-24 2004-03-02 Shell Oil Company In situ thermal processing of a coal formation using a relatively slow heating rate
US6702016B2 (en) 2000-04-24 2004-03-09 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with heat sources located at an edge of a formation layer
US6708758B2 (en) 2000-04-24 2004-03-23 Shell Oil Company In situ thermal processing of a coal formation leaving one or more selected unprocessed areas
US6712136B2 (en) 2000-04-24 2004-03-30 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a selected production well spacing
US6712135B2 (en) 2000-04-24 2004-03-30 Shell Oil Company In situ thermal processing of a coal formation in reducing environment
US6712137B2 (en) 2000-04-24 2004-03-30 Shell Oil Company In situ thermal processing of a coal formation to pyrolyze a selected percentage of hydrocarbon material
US6715549B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected atomic oxygen to carbon ratio
US6715547B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to form a substantially uniform, high permeability formation
US6715548B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids
US6715546B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore
US6719047B2 (en) 2000-04-24 2004-04-13 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation in a hydrogen-rich environment
US6722430B2 (en) 2000-04-24 2004-04-20 Shell Oil Company In situ thermal processing of a coal formation with a selected oxygen content and/or selected O/C ratio
US6722429B2 (en) 2000-04-24 2004-04-20 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation leaving one or more selected unprocessed areas
US6722431B2 (en) 2000-04-24 2004-04-20 Shell Oil Company In situ thermal processing of hydrocarbons within a relatively permeable formation
US6725928B2 (en) 2000-04-24 2004-04-27 Shell Oil Company In situ thermal processing of a coal formation using a distributed combustor
US6725921B2 (en) 2000-04-24 2004-04-27 Shell Oil Company In situ thermal processing of a coal formation by controlling a pressure of the formation
US6725920B2 (en) 2000-04-24 2004-04-27 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to convert a selected amount of total organic carbon into hydrocarbon products
US6729395B2 (en) 2000-04-24 2004-05-04 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected ratio of heat sources to production wells
US6729397B2 (en) 2000-04-24 2004-05-04 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected vitrinite reflectance
US6729396B2 (en) 2000-04-24 2004-05-04 Shell Oil Company In situ thermal processing of a coal formation to produce hydrocarbons having a selected carbon number range
US6729401B2 (en) 2000-04-24 2004-05-04 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation and ammonia production
US6732795B2 (en) 2000-04-24 2004-05-11 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to pyrolyze a selected percentage of hydrocarbon material
US6732794B2 (en) 2000-04-24 2004-05-11 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US6732796B2 (en) 2000-04-24 2004-05-11 Shell Oil Company In situ production of synthesis gas from a hydrocarbon containing formation, the synthesis gas having a selected H2 to CO ratio
US6736215B2 (en) 2000-04-24 2004-05-18 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation, in situ production of synthesis gas, and carbon dioxide sequestration
US6739394B2 (en) 2000-04-24 2004-05-25 Shell Oil Company Production of synthesis gas from a hydrocarbon containing formation
US6739393B2 (en) 2000-04-24 2004-05-25 Shell Oil Company In situ thermal processing of a coal formation and tuning production
US6742587B2 (en) 2000-04-24 2004-06-01 Shell Oil Company In situ thermal processing of a coal formation to form a substantially uniform, relatively high permeable formation
US6742588B2 (en) 2000-04-24 2004-06-01 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce formation fluids having a relatively low olefin content
US6742593B2 (en) 2000-04-24 2004-06-01 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using heat transfer from a heat transfer fluid to heat the formation
US6742589B2 (en) 2000-04-24 2004-06-01 Shell Oil Company In situ thermal processing of a coal formation using repeating triangular patterns of heat sources
US6745832B2 (en) 2000-04-24 2004-06-08 Shell Oil Company Situ thermal processing of a hydrocarbon containing formation to control product composition
US6745837B2 (en) 2000-04-24 2004-06-08 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a controlled heating rate
US6745831B2 (en) 2000-04-24 2004-06-08 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation by controlling a pressure of the formation
US6749021B2 (en) 2000-04-24 2004-06-15 Shell Oil Company In situ thermal processing of a coal formation using a controlled heating rate
US6752210B2 (en) 2000-04-24 2004-06-22 Shell Oil Company In situ thermal processing of a coal formation using heat sources positioned within open wellbores
US7798221B2 (en) 2000-04-24 2010-09-21 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US6761216B2 (en) 2000-04-24 2004-07-13 Shell Oil Company In situ thermal processing of a coal formation to produce hydrocarbon fluids and synthesis gas
US6763886B2 (en) 2000-04-24 2004-07-20 Shell Oil Company In situ thermal processing of a coal formation with carbon dioxide sequestration
US6769485B2 (en) 2000-04-24 2004-08-03 Shell Oil Company In situ production of synthesis gas from a coal formation through a heat source wellbore
US6591907B2 (en) 2000-04-24 2003-07-15 Shell Oil Company In situ thermal processing of a coal formation with a selected vitrinite reflectance
US6581684B2 (en) 2000-04-24 2003-06-24 Shell Oil Company In Situ thermal processing of a hydrocarbon containing formation to produce sulfur containing formation fluids
US6789625B2 (en) 2000-04-24 2004-09-14 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using exposed metal heat sources
US8789586B2 (en) 2000-04-24 2014-07-29 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US6805195B2 (en) 2000-04-24 2004-10-19 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce hydrocarbon fluids and synthesis gas
US6820688B2 (en) 2000-04-24 2004-11-23 Shell Oil Company In situ thermal processing of coal formation with a selected hydrogen content and/or selected H/C ratio
US6591906B2 (en) 2000-04-24 2003-07-15 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation with a selected oxygen content
US8485252B2 (en) 2000-04-24 2013-07-16 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US8225866B2 (en) 2000-04-24 2012-07-24 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US6588504B2 (en) 2000-04-24 2003-07-08 Shell Oil Company In situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids
US7735935B2 (en) 2001-04-24 2010-06-15 Shell Oil Company In situ thermal processing of an oil shale formation containing carbonate minerals
US8608249B2 (en) 2001-04-24 2013-12-17 Shell Oil Company In situ thermal processing of an oil shale formation
US8627887B2 (en) 2001-10-24 2014-01-14 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US20060245469A1 (en) * 2002-07-12 2006-11-02 Christian Koeniger Subsea and landing string distributed temperature sensor system
US8579504B2 (en) * 2002-07-12 2013-11-12 Schlumberger Oilfield UK PLC, Sensor Highway Limited Subsea and landing string distributed temperature sensor system
US8224163B2 (en) 2002-10-24 2012-07-17 Shell Oil Company Variable frequency temperature limited heaters
US8238730B2 (en) 2002-10-24 2012-08-07 Shell Oil Company High voltage temperature limited heaters
US8224164B2 (en) 2002-10-24 2012-07-17 Shell Oil Company Insulated conductor temperature limited heaters
US20040190589A1 (en) * 2003-03-13 2004-09-30 Alexander Zazovsky Determination of virgin formation temperature
US6905241B2 (en) * 2003-03-13 2005-06-14 Schlumberger Technology Corporation Determination of virgin formation temperature
US20070131411A1 (en) * 2003-04-24 2007-06-14 Vinegar Harold J Thermal processes for subsurface formations
US7360588B2 (en) * 2003-04-24 2008-04-22 Shell Oil Company Thermal processes for subsurface formations
US7942203B2 (en) 2003-04-24 2011-05-17 Shell Oil Company Thermal processes for subsurface formations
US8579031B2 (en) 2003-04-24 2013-11-12 Shell Oil Company Thermal processes for subsurface formations
US8355623B2 (en) 2004-04-23 2013-01-15 Shell Oil Company Temperature limited heaters with high power factors
US9725972B2 (en) 2004-07-01 2017-08-08 Reel Revolution Holdings Limited Method and apparatus for drilling and servicing subterranean wells with rotating coiled tubing
WO2006019935A2 (en) * 2004-08-06 2006-02-23 Halliburton Energy Services, Inc. Acoustic telemetry installation in subterranean wells
US20060028916A1 (en) * 2004-08-06 2006-02-09 Mcmechan David Acoustic telemetry installation in subterranean wells
WO2006019935A3 (en) * 2004-08-06 2007-03-01 Halliburton Energy Serv Inc Acoustic telemetry installation in subterranean wells
US7986869B2 (en) 2005-04-22 2011-07-26 Shell Oil Company Varying properties along lengths of temperature limited heaters
US7942197B2 (en) 2005-04-22 2011-05-17 Shell Oil Company Methods and systems for producing fluid from an in situ conversion process
US7860377B2 (en) 2005-04-22 2010-12-28 Shell Oil Company Subsurface connection methods for subsurface heaters
US8027571B2 (en) 2005-04-22 2011-09-27 Shell Oil Company In situ conversion process systems utilizing wellbores in at least two regions of a formation
US8070840B2 (en) 2005-04-22 2011-12-06 Shell Oil Company Treatment of gas from an in situ conversion process
US8230927B2 (en) 2005-04-22 2012-07-31 Shell Oil Company Methods and systems for producing fluid from an in situ conversion process
US8233782B2 (en) 2005-04-22 2012-07-31 Shell Oil Company Grouped exposed metal heaters
US8224165B2 (en) 2005-04-22 2012-07-17 Shell Oil Company Temperature limited heater utilizing non-ferromagnetic conductor
US7831134B2 (en) 2005-04-22 2010-11-09 Shell Oil Company Grouped exposed metal heaters
US8752617B2 (en) * 2005-07-01 2014-06-17 Reel Revolution Holdings Limited Method and apparatus for drilling and servicing subterranean wells with rotating coiled tubing
US20090114403A1 (en) * 2005-07-01 2009-05-07 Terence Borst Method and apparatus for drilling and servicing subterranean wells with rotating coiled tubing
US8606091B2 (en) 2005-10-24 2013-12-10 Shell Oil Company Subsurface heaters with low sulfidation rates
US8151880B2 (en) 2005-10-24 2012-04-10 Shell Oil Company Methods of making transportation fuel
US7409858B2 (en) * 2005-11-21 2008-08-12 Shell Oil Company Method for monitoring fluid properties
US20070125163A1 (en) * 2005-11-21 2007-06-07 Dria Dennis E Method for monitoring fluid properties
EP1960631A4 (en) * 2005-12-13 2015-04-15 Larry V Cooper Flexible sinker bar with electrically conductive wires
US20090301709A1 (en) * 2005-12-13 2009-12-10 Cooper Larry V Flexible Sinker Bar With Electrically Conductive Wires
EP1960631A2 (en) * 2005-12-13 2008-08-27 Larry V. Cooper Flexible sinker bar with electrically conductive wires
US9273528B2 (en) * 2005-12-13 2016-03-01 Larry V. Cooper Flexible sinker bar with electrically conductive wires
AU2006326541B2 (en) * 2005-12-13 2012-05-31 Larry V. Cooper Flexible sinker bar with electrically conductive wires
US20080035347A1 (en) * 2006-04-21 2008-02-14 Brady Michael P Adjusting alloy compositions for selected properties in temperature limited heaters
US7673786B2 (en) 2006-04-21 2010-03-09 Shell Oil Company Welding shield for coupling heaters
US8083813B2 (en) 2006-04-21 2011-12-27 Shell Oil Company Methods of producing transportation fuel
US8192682B2 (en) 2006-04-21 2012-06-05 Shell Oil Company High strength alloys
US7683296B2 (en) 2006-04-21 2010-03-23 Shell Oil Company Adjusting alloy compositions for selected properties in temperature limited heaters
US7866385B2 (en) 2006-04-21 2011-01-11 Shell Oil Company Power systems utilizing the heat of produced formation fluid
US7785427B2 (en) 2006-04-21 2010-08-31 Shell Oil Company High strength alloys
US7912358B2 (en) 2006-04-21 2011-03-22 Shell Oil Company Alternate energy source usage for in situ heat treatment processes
US8857506B2 (en) 2006-04-21 2014-10-14 Shell Oil Company Alternate energy source usage methods for in situ heat treatment processes
US7793722B2 (en) 2006-04-21 2010-09-14 Shell Oil Company Non-ferromagnetic overburden casing
US7845411B2 (en) 2006-10-20 2010-12-07 Shell Oil Company In situ heat treatment process utilizing a closed loop heating system
US7730947B2 (en) 2006-10-20 2010-06-08 Shell Oil Company Creating fluid injectivity in tar sands formations
US7677310B2 (en) 2006-10-20 2010-03-16 Shell Oil Company Creating and maintaining a gas cap in tar sands formations
US7644765B2 (en) 2006-10-20 2010-01-12 Shell Oil Company Heating tar sands formations while controlling pressure
US7677314B2 (en) 2006-10-20 2010-03-16 Shell Oil Company Method of condensing vaporized water in situ to treat tar sands formations
US8555971B2 (en) 2006-10-20 2013-10-15 Shell Oil Company Treating tar sands formations with dolomite
US7681647B2 (en) 2006-10-20 2010-03-23 Shell Oil Company Method of producing drive fluid in situ in tar sands formations
US7703513B2 (en) 2006-10-20 2010-04-27 Shell Oil Company Wax barrier for use with in situ processes for treating formations
US7717171B2 (en) 2006-10-20 2010-05-18 Shell Oil Company Moving hydrocarbons through portions of tar sands formations with a fluid
US8191630B2 (en) 2006-10-20 2012-06-05 Shell Oil Company Creating fluid injectivity in tar sands formations
US7841401B2 (en) 2006-10-20 2010-11-30 Shell Oil Company Gas injection to inhibit migration during an in situ heat treatment process
US7730946B2 (en) 2006-10-20 2010-06-08 Shell Oil Company Treating tar sands formations with dolomite
US7730945B2 (en) 2006-10-20 2010-06-08 Shell Oil Company Using geothermal energy to heat a portion of a formation for an in situ heat treatment process
US7673681B2 (en) 2006-10-20 2010-03-09 Shell Oil Company Treating tar sands formations with karsted zones
US20080178694A1 (en) * 2007-01-25 2008-07-31 Barford Lee A Dynamic environment measurements
US7793559B2 (en) 2007-02-02 2010-09-14 Board Of Regents Of The Nevada System Of Higher Education, On Behalf Of The Desert Research Institute Monitoring probes and methods of use
US20080184827A1 (en) * 2007-02-02 2008-08-07 The Board Of Regents Of The Nevada System Of Higher Ed. On Behalf Of The Desert Research Inst. Monitoring probes and methods of use
US7832484B2 (en) 2007-04-20 2010-11-16 Shell Oil Company Molten salt as a heat transfer fluid for heating a subsurface formation
US7849922B2 (en) 2007-04-20 2010-12-14 Shell Oil Company In situ recovery from residually heated sections in a hydrocarbon containing formation
US8381815B2 (en) 2007-04-20 2013-02-26 Shell Oil Company Production from multiple zones of a tar sands formation
US7841425B2 (en) 2007-04-20 2010-11-30 Shell Oil Company Drilling subsurface wellbores with cutting structures
US8791396B2 (en) 2007-04-20 2014-07-29 Shell Oil Company Floating insulated conductors for heating subsurface formations
US7841408B2 (en) 2007-04-20 2010-11-30 Shell Oil Company In situ heat treatment from multiple layers of a tar sands formation
US9181780B2 (en) 2007-04-20 2015-11-10 Shell Oil Company Controlling and assessing pressure conditions during treatment of tar sands formations
US8662175B2 (en) 2007-04-20 2014-03-04 Shell Oil Company Varying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
US8459359B2 (en) 2007-04-20 2013-06-11 Shell Oil Company Treating nahcolite containing formations and saline zones
US8327681B2 (en) 2007-04-20 2012-12-11 Shell Oil Company Wellbore manufacturing processes for in situ heat treatment processes
US7931086B2 (en) 2007-04-20 2011-04-26 Shell Oil Company Heating systems for heating subsurface formations
US7798220B2 (en) 2007-04-20 2010-09-21 Shell Oil Company In situ heat treatment of a tar sands formation after drive process treatment
US7950453B2 (en) 2007-04-20 2011-05-31 Shell Oil Company Downhole burner systems and methods for heating subsurface formations
US8042610B2 (en) 2007-04-20 2011-10-25 Shell Oil Company Parallel heater system for subsurface formations
US8128281B2 (en) * 2007-06-25 2012-03-06 Schlumberger Technology Corporation Fluid level indication system and technique
US20100208766A1 (en) * 2007-06-25 2010-08-19 Schlumberger Technology Corporation Fluid level indication system and technique
US20100238971A1 (en) * 2007-06-25 2010-09-23 Schlumberger Technology Corporation Fluid level indication system and technique
US8240774B2 (en) 2007-10-19 2012-08-14 Shell Oil Company Solution mining and in situ treatment of nahcolite beds
US8146661B2 (en) 2007-10-19 2012-04-03 Shell Oil Company Cryogenic treatment of gas
US8272455B2 (en) 2007-10-19 2012-09-25 Shell Oil Company Methods for forming wellbores in heated formations
US8276661B2 (en) 2007-10-19 2012-10-02 Shell Oil Company Heating subsurface formations by oxidizing fuel on a fuel carrier
US7866388B2 (en) 2007-10-19 2011-01-11 Shell Oil Company High temperature methods for forming oxidizer fuel
US20090200023A1 (en) * 2007-10-19 2009-08-13 Michael Costello Heating subsurface formations by oxidizing fuel on a fuel carrier
US8162059B2 (en) 2007-10-19 2012-04-24 Shell Oil Company Induction heaters used to heat subsurface formations
US8196658B2 (en) 2007-10-19 2012-06-12 Shell Oil Company Irregular spacing of heat sources for treating hydrocarbon containing formations
US8011451B2 (en) 2007-10-19 2011-09-06 Shell Oil Company Ranging methods for developing wellbores in subsurface formations
US7866386B2 (en) 2007-10-19 2011-01-11 Shell Oil Company In situ oxidation of subsurface formations
US8146669B2 (en) 2007-10-19 2012-04-03 Shell Oil Company Multi-step heater deployment in a subsurface formation
US8536497B2 (en) 2007-10-19 2013-09-17 Shell Oil Company Methods for forming long subsurface heaters
US8113272B2 (en) 2007-10-19 2012-02-14 Shell Oil Company Three-phase heaters with common overburden sections for heating subsurface formations
US8151907B2 (en) 2008-04-18 2012-04-10 Shell Oil Company Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8177305B2 (en) 2008-04-18 2012-05-15 Shell Oil Company Heater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations
US9528322B2 (en) 2008-04-18 2016-12-27 Shell Oil Company Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8162405B2 (en) 2008-04-18 2012-04-24 Shell Oil Company Using tunnels for treating subsurface hydrocarbon containing formations
US8562078B2 (en) 2008-04-18 2013-10-22 Shell Oil Company Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US8636323B2 (en) 2008-04-18 2014-01-28 Shell Oil Company Mines and tunnels for use in treating subsurface hydrocarbon containing formations
US8752904B2 (en) 2008-04-18 2014-06-17 Shell Oil Company Heated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
US8172335B2 (en) 2008-04-18 2012-05-08 Shell Oil Company Electrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations
US9129728B2 (en) 2008-10-13 2015-09-08 Shell Oil Company Systems and methods of forming subsurface wellbores
US8267185B2 (en) 2008-10-13 2012-09-18 Shell Oil Company Circulated heated transfer fluid systems used to treat a subsurface formation
US8220539B2 (en) 2008-10-13 2012-07-17 Shell Oil Company Controlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US8881806B2 (en) 2008-10-13 2014-11-11 Shell Oil Company Systems and methods for treating a subsurface formation with electrical conductors
US8256512B2 (en) 2008-10-13 2012-09-04 Shell Oil Company Movable heaters for treating subsurface hydrocarbon containing formations
US8281861B2 (en) 2008-10-13 2012-10-09 Shell Oil Company Circulated heated transfer fluid heating of subsurface hydrocarbon formations
US9022118B2 (en) 2008-10-13 2015-05-05 Shell Oil Company Double insulated heaters for treating subsurface formations
US9051829B2 (en) 2008-10-13 2015-06-09 Shell Oil Company Perforated electrical conductors for treating subsurface formations
US8261832B2 (en) 2008-10-13 2012-09-11 Shell Oil Company Heating subsurface formations with fluids
US8353347B2 (en) 2008-10-13 2013-01-15 Shell Oil Company Deployment of insulated conductors for treating subsurface formations
US8267170B2 (en) 2008-10-13 2012-09-18 Shell Oil Company Offset barrier wells in subsurface formations
US8327932B2 (en) 2009-04-10 2012-12-11 Shell Oil Company Recovering energy from a subsurface formation
US8434555B2 (en) 2009-04-10 2013-05-07 Shell Oil Company Irregular pattern treatment of a subsurface formation
US8448707B2 (en) 2009-04-10 2013-05-28 Shell Oil Company Non-conducting heater casings
WO2010151176A2 (en) * 2009-06-25 2010-12-29 Общество С Ограниченной Ответственностью "Ht" Method and device for eliminating paraffin deposits and hydrate plugs in oil and gas wells
WO2010151176A3 (en) * 2009-06-25 2011-03-03 Общество С Ограниченной Ответственностью "Ht" Method and device for eliminating paraffin and hydrate plugs in oil and gas wells
US8701768B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations
US8631866B2 (en) 2010-04-09 2014-01-21 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US9022109B2 (en) 2010-04-09 2015-05-05 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8833453B2 (en) 2010-04-09 2014-09-16 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with tapered copper thickness
US9033042B2 (en) 2010-04-09 2015-05-19 Shell Oil Company Forming bitumen barriers in subsurface hydrocarbon formations
US8820406B2 (en) 2010-04-09 2014-09-02 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US9127538B2 (en) 2010-04-09 2015-09-08 Shell Oil Company Methodologies for treatment of hydrocarbon formations using staged pyrolyzation
US8739874B2 (en) 2010-04-09 2014-06-03 Shell Oil Company Methods for heating with slots in hydrocarbon formations
US9127523B2 (en) 2010-04-09 2015-09-08 Shell Oil Company Barrier methods for use in subsurface hydrocarbon formations
US9399905B2 (en) 2010-04-09 2016-07-26 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8701769B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations based on geology
RU2449112C1 (en) * 2010-08-13 2012-04-27 Открытое Акционерное Общество "Ставропольский радиозавод "Сигнал" (ОАО "Ставропольский радиозавод "Сигнал") Method of thermal rates regulating of oil wells and oil pipelines
US9016370B2 (en) 2011-04-08 2015-04-28 Shell Oil Company Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US9309755B2 (en) 2011-10-07 2016-04-12 Shell Oil Company Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations
US10047594B2 (en) 2012-01-23 2018-08-14 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation
RU2494231C1 (en) * 2012-04-19 2013-09-27 федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Пермский национальный исследовательский политехнический университет" Dewaxing method of oil producing well
RU2563509C2 (en) * 2012-09-28 2015-09-20 Публичное акционерное общество "Татнефть" имени В.Д. Шашина (ПАО "Татнефть" им. В.Д Шашина) Method for producing high viscosity oil using electric heating and delivering chemical agent to target point of well
US20160097273A1 (en) * 2013-12-27 2016-04-07 Halliburton Energy Services ,Inc. Multi-phase fluid flow profile measurement
US9885235B2 (en) * 2013-12-27 2018-02-06 Halliburton Energy Services, Inc. Multi-phase fluid flow profile measurement
US10294736B2 (en) 2014-02-18 2019-05-21 Athabasca Oil Corporation Cable support system and method
US9822592B2 (en) 2014-02-18 2017-11-21 Athabasca Oil Corporation Cable-based well heater
US9938782B2 (en) 2014-02-18 2018-04-10 Athabasca Oil Corporation Facility for assembly of well heaters
US10024122B2 (en) 2014-02-18 2018-07-17 Athabasca Oil Corporation Injection of heating cables with a coiled tubing injector
US9341034B2 (en) * 2014-02-18 2016-05-17 Athabasca Oil Corporation Method for assembly of well heaters
US20150267487A1 (en) * 2014-02-18 2015-09-24 Athabasca Oil Corporation Method for assembly of well heaters
US11053754B2 (en) 2014-02-18 2021-07-06 Athabasca Oil Corporation Cable-based heater and method of assembly
US11486208B2 (en) 2014-02-18 2022-11-01 Athabasca Oil Corporation Assembly for supporting cables in deployed tubing
RU2563007C1 (en) * 2014-06-26 2015-09-10 Константин Иосифович Сухарев Oil heating system
CN106223935A (en) * 2016-09-05 2016-12-14 深圳市奈士迪技术研发有限公司 A kind of oil temperature for oil exploration monitors system
US10947817B2 (en) * 2018-08-14 2021-03-16 Robert C Kramm Methods and systems for a tool with encapsulated heating cable within a wellbore
RU2729303C1 (en) * 2019-11-12 2020-08-05 Владислав Юрьевич Никулин Fluid flow heating method in oil well

Similar Documents

Publication Publication Date Title
US4616705A (en) Mini-well temperature profiling process
US4572299A (en) Heater cable installation
EP1974121B1 (en) Method for monitoring fluid properties
US4585066A (en) Well treating process for installing a cable bundle containing strands of changing diameter
US20180292569A1 (en) Downhole sensing cable system for improved seismic energy coupling to the cable system
US9840908B2 (en) Completion system having a sand control assembly, an inductive coupler, and a sensor proximate to the sand control assembly
US3957118A (en) Cable system for use in a pipe string and method for installing and using the same
RU2169838C2 (en) System testing borehole
CA2530915C (en) Apparatus and methods for operating a tool in a wellbore
EP2966258B1 (en) Depth positioning using gamma-ray correlation and downhole parameter differential
US3904840A (en) Wellbore telemetry apparatus
WO2008034028A1 (en) Fiber optic sensors in mwd applications
US6116085A (en) Instrumentation tubing string assembly for use in wellbores
EA010141B1 (en) A tubing equipped with an optical fiber and methods of its making and using
US11035229B2 (en) Segmented wireless production logging
CN100393980C (en) Data transmission device
WO2015009424A1 (en) Method and system for monitoring and managing fiber cable slack in a coiled tubing
CA1261647A (en) Mini-well temperature profiling process
US4469451A (en) Method and apparatus for measuring temperature of an earth formation in the presence of a radio frequency electromagnetic field
CN108138566B (en) Downhole system and method with tubular and signal conductors
CN85108986A (en) The thermometry of small-sized well
AU2015405062B2 (en) Toroidal system and method for communicating in a downhole environment
CA2239210C (en) Instrumentation tubing string assembly for use in wellbores
CA1250340A (en) Method and apparatus for uniformly heating long subterranean intervals at high temperature

Legal Events

Date Code Title Description
AS Assignment

Owner name: SHELL OIL COMPANY, A DE. CORP.

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:STEGEMEIER, GEORGE L.;VAN MEURS, PETER;VAN EGMOND, COR F. H.;REEL/FRAME:004568/0362

Effective date: 19841002

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
FP Expired due to failure to pay maintenance fee

Effective date: 19981014

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362