US4448322A - Metal container end - Google Patents

Metal container end Download PDF

Info

Publication number
US4448322A
US4448322A US06/083,870 US8387079A US4448322A US 4448322 A US4448322 A US 4448322A US 8387079 A US8387079 A US 8387079A US 4448322 A US4448322 A US 4448322A
Authority
US
United States
Prior art keywords
inches
flat wall
central panel
countersink
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US06/083,870
Inventor
John L. Kraska
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rexam Beverage Can Co
Original Assignee
National Can Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US05/968,099 external-priority patent/US4217843A/en
Application filed by National Can Corp filed Critical National Can Corp
Priority to US06/083,870 priority Critical patent/US4448322A/en
Application granted granted Critical
Publication of US4448322A publication Critical patent/US4448322A/en
Assigned to AMERICAN NATIONAL CAN CORPORATION, A CORP OF DE. reassignment AMERICAN NATIONAL CAN CORPORATION, A CORP OF DE. MERGER (SEE DOCUMENT FOR DETAILS). DELAWARE EFFECTIVE 4/30/87 Assignors: AMERICAN CAN PACKAGING INC., A CORP. OF DE., NATIONAL CAN CORPORATION, TRAFALGAR INDUSTRIES INC., (INTO)
Assigned to REXAM BEVERAGE CAN COMPANY reassignment REXAM BEVERAGE CAN COMPANY CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: AMERICAN NATIONAL CAN COMPANY
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D51/00Making hollow objects
    • B21D51/16Making hollow objects characterised by the use of the objects
    • B21D51/38Making inlet or outlet arrangements of cans, tins, baths, bottles, or other vessels; Making can ends; Making closures
    • B21D51/383Making inlet or outlet arrangements of cans, tins, baths, bottles, or other vessels; Making can ends; Making closures scoring lines, tear strips or pulling tabs

Definitions

  • the present invention relates generally to container end panels and more particularly to panels that are utilized in conjunction with containers that are used for packaging products under high pressure, such as beer and/or carbonated beverages.
  • the bottom wall and sidewall are formed as an integral unit by drawing and ironing a flat blank to produce a container body open at one end. The open end of the body then has an end panel secured thereto by a conventional seaming process.
  • the containers When these types of containers are utilized for packaging beer and/or carbonated beverages, the containers must be capable of withstanding minimum pressures of 90 psi before the container end will “buckle” and also be capable of withstanding minimum pressures of 60 psi before the container will “rock".
  • the term “rock” is related to the deflection of the center panel portion of the end panel, which normally has a tab connected thereto by a rivet, and the term identifies the pressure at which any given portion of the center of the end panel projects above the upper peripheral edge or chime of the container.
  • the term “buckle” pressure is the pressure that an end is capable of withstanding without any notable distortion of the end and/or rupture of any portion of the end.
  • a metal container end panel is formed from a metal having a thickness of 0.0120 inches which is capable of withstanding 90 psi minimum buckle pressure and 60 psi minimum rock pressure and the end can be seamed to a container utilizing conventional commercial tooling that is now used for the seaming process.
  • the container end constructed in accordance with the present invention includes a specifically configured countersink between the peripheral curl and the center substantially flat panel.
  • the countersink includes inner and outer flat walls that are interconnected by a first arcuate portion that has a radius which is less than three times the thickness of the metal and the inner flat wall is integrally joined at its upper end with the center panel through a second arcuate portion that has a radius which is approximately twice the thickness of the metal.
  • the outer flat wall defines an angle of less than five degrees with respect to a plane that extends perpendicular to the center panel and has a length such that the upper edge is located above the lower peripheral edge of the central flat panel portion.
  • the inner flat wall has a length sufficient to locate the lower edge of the first arcuate portion about 0.075 or more inches below the lower peripheral edge of the flat central panel portion, and the area above the outer flat wall is inclined outwardly to minimize interference with the chuck seamer.
  • the end also has a second outer flat wall above the upper edge of the first outer flat wall and the outer flat wall defines an angle with a perpendicular plane that is substantially greater than the first angle.
  • the second arcuate portion connecting the inner flat wall to the central panel portion is coined to reduce the thickness thereof, which increases the buckle pressure of the end, while the central panel portion is domed slightly away from the countersink to further increase the buckle pressure of the end.
  • the apparatus and method for producing the unique end includes upper and lower dies, which are movable relative to each other along a path.
  • the lower die includes a central die member surrounded by inner and outer annular die members, which cooperate with each other to produce an annular recess while the upper die member has an annular punch received into the recess.
  • the three die members of the lower die are adjustable relative to each other and the closed position of the punch is adjustable relative to the three lower die members to accurately control the dimensions of the countersink.
  • FIG. 1 shows a plan view of a metal container end constructed in accordance with the teachings of the present invention
  • FIG. 2 is a fragmentary sectional view of the tooling utilized for forming the countersink walls
  • FIG. 3 is an enlarged fragmentary sectional view of the peripheral portion of the container end.
  • FIG. 1 of the drawings illustrates a container end, generally designated by reference numeral 10, having a peripheral curl 12 which is adapted to be seamed onto a container body utilizing a conventional double seaming process.
  • Container end 10 has a generally flat central panel portion 14 which has a score 16 produced therein to define a removable section.
  • a tab 18 is connected to removable section 16.
  • container end 10 has a countersink 20 located between peripheral curl 12 and central flat panel portion 14.
  • opening means including score 16 and tab 18 are shown for purposes of illustration only and any other type of opening means may be incorporated into the end of the present invention.
  • the opening means may be of the "button” or any other "ecology” type end.
  • the end constructed in accordance with this invention can be used on either a two-piece or a three-piece container.
  • countersink 20 is specifically configured so that the container end panel may be formed from a flat blank having a thickness on the order of 0.0120 inches or less and having the same diameter as the blanks used for making present ends, while still being capable of resisting buckle pressures of at least 90 psi and rock pressures of at least 60 psi. Furthermore, this can be accomplished with a minimum modification of the existing tool normally utilized for converting an end panel to a finished end.
  • the countersink 20 includes an inner wall 22 and an outer wall 24 which are interconnected by an arcuate portion 26.
  • Inner wall 22 is connected to center panel portion 14 through an arcuate portion 28.
  • inner flat wall 22 has a length that will locate the peripheral edge 30 of central panel portion 14 a dimension H above the lower edge of arcuate portion 26.
  • outer flat wall 24 and the angle thereof are critical toward obtaining buckle pressures of more than 90 psi and rock pressures of more than 60 psi utilizing an aluminum blank which has a thickness of 0.012 inches or less.
  • this outer straight flat wall portion 24 is of a sufficient length such that the juncture 32 between the upper end of flat wall portion 24 and the lower end of peripheral curl 12 is located at a height of more than 0.080 inches above the lower edge of countersink 20, more specifically, arcuate portion 26.
  • the angle B defined between wall portion 24 and a vertical plane P extending perpendicular to the panel is preferably less than five degrees and in the illustrated embodiment is approximately four degrees.
  • the length of flat outer wall portion 24 is such that the juncture 32 at the upper end of outer flat wall 24 is located above the peripheral lower edge of flat panel portion 14.
  • this flat portion is preferably longer, the maximum dimension is dictated by the existing seamer tooling so as not to interfere with the double seaming of the end onto the container.
  • the particular dimensions of the radii R1 and R2 are also important in producing an acceptable end that meets minimum buckle pressure requirements utilizing a stock material having a thickness of 0.0120 inches or less.
  • the radius R1 is less than three times the thickness of the aluminum while the radius R2 is preferably approximately twice the thickness of the aluminum metal.
  • the arcuate portion 28 is coined along the radius portion R2 so as to reduce the thickness of the arcuate portion and work harden the metal therein. This work hardening of the metal results in stiffening the arcuate area 28 which increases the resistance to buckling.
  • the central panel portion also preferably has a slight upward dome having a radius R3.
  • the second wall portion 34 preferably defines an angle C with respect to plane P which is substantially greater and preferably at least six times greater than angle B.
  • the apparatus for producing the unique end is disclosed in FIG. 2 and consists of an upper die 60 and a lower die 62 which cooperate with each other to form the countersink of the particular construction described above.
  • a lower die 62 consists of a central portion or member 64 that has a spherical upper surface 66 to produce a slight dome in the central panel portion 14.
  • the lower die 62 also includes an inner die member 68 which has an outer peripheral surface 70 that extends parallel to the plane that extends perpendicular to the end.
  • the upper end of vertical surface 70 has an arcuate portion 72 which has a radius of less than 0.030 inches.
  • Lower die 62 also has an outer die member 76 that has surface or wall 78 which cooperates with surface or wall 70 to define a recess 79 and outer surface 78 of recess 79 defines an angle of less than five degrees with respect to vertical surface 70 or a plane extending perpendicular to the end 10.
  • Upper die 60 has an annular punch 80 which has a lower arcuate surface 82 which circumscribes an arc of 180 degrees and has flat vertical inner and outer surfaces 84 and 86 at opposite ends of arcuate surface 82. Annular punch 80 is adapted to be received into recess 79 that is defined between surfaces 70 and 78. Upper die 60 also has an inwardly directed generally horizontal surface 88 located above the lower edge of arcuate surface 82 by a predetermined dimension as will be explained later. Upper die 60 also has an outer annular inclined surface 90 which is inclined with respect to a plane extending perpendicular to end 10 by an angle substantially greater than the angle for wall 78 and is at least six times greater thah such angle.
  • the spacing between surfaces 70 and 78 is just slightly greater than twice the radius of arcuate surface 82 and twice the thickness of the metal.
  • the juncture between surfaces 86 and 90 is located above the periphery of inclined generally horizontal surface 88, which is located at least 0.080 or more inches above the lower edge of arcuate portion 82.
  • trough 20 will be formed with the inner wall 22 being substantially vertical and outer wall 24 also being substantially vertical and the lower edge of arcuate portion 26 is moved away from central panel portion 14.
  • the arcuate surface 72 cooperates with inwardly directed inclined surface 88 to coin the arcuate area around the periphery of central flat panel portion 14.
  • lower die 62 as a three-piece unit.
  • inner and outer die members 68 and 76 can be moved relative to each other along the path of movement of dies 60 and 62 to accurately position an upper edge of flat outer wall 78 with respect to an upper edge of arcuate surface 72 on the upper end of inner wall 70 of recess 79.
  • This arrangement allows the manufacturer of ends to accurately control the specific dimensions of countersink 20, particularly the depth thereof with respect to central panel 14.
  • the three die members that define lower die 62 can readily be adjusted to accommodate metal of varying thickness. It will be appreciated that the thickness of a coil of metal specified to have a thickness of 0.0120 inches may vary in thickness ⁇ 0.0005 inches. Thus, this variation can readily be accommodated by proper adjustment of die members 64, 68 and 76 with respect to each other along the path of movement of dies 60 and 62, indicated by arrows D in FIG. 2.
  • die members 64, 68 and 76 are a simple matter which can be accomplished in a short period of time.
  • the die members are normally fixedly secured to a bed of a press through the use of bolts (not shown).
  • shims (not shown) of a proper thickness and position them between the respective die members and the bed of the press.
  • the closed position of the punch with respect to lower die 2 can be adjusted in the same manner.
  • inner flat wall portion 22 of countersink 20 it is preferable that this wall define a minimum angle with respect to a vertical reference plane.
  • This angle is preferably zero but practical considerations virtually prevent the angle from being zero because it would make it difficult if not impossible to remove the end from the lower die. Therefore, the annular spacing between inner vertical surface 84 of punch 80 and the vertical surface 70 of inner die portion 68 is made as small as possible while still allowing for sufficient clearance for the end to be readily removed from the die. It has been found that by making this space between one and one-third and one and one-half the thickness of the metal stock will produce a minimum angle for vertical wall 22 and still allow the end to be readily removed from the die.
  • Radius R1 is set for 0.030 inches while radius R2 has a dimension of 0.025 inches.
  • Outer flat wall portion 24 defines an angle B of approximately four degrees while inner flat wall portion defines an angle A of 10 degrees.
  • the countersink depth H has a dimension of 0.083 inches while the juncture 32 between peripheral curl 12 and flat wall portion 24 is located at 0.092 inches above the lower edge of arcuate portion 26.
  • the surface 66 has a radius of 8 inches so that R3 is 8 inches. It was determined that the doming of the central panel portion removes all excess metal and in fact stretches the metal in the central panel portion.
  • a blank having a peripheral diameter of approximately 3.250 inches was converted to the dimensions set forth above to produce a 209 diameter finished end. Actual tests of sample ends produced in accordance with these dimensions show that the ends were capable of withstanding a buckle pressure of approximately 96.5 psi and a rock pressure of 70 psi.
  • the second annular outer wall portion 34 had an angle C of about 25 degrees and the upper end of wall portion 34 merged with arcuate curl 12 while a selected portion of arcuate portion 28 was coined to approximately 0.001 to 0.002 inches reduction.
  • Virtually all random samples tested had a "buckle" pressure of 90 psi or more than a "rock” pressure of more than 60 psi.
  • the significant advantage of the particular end constructed in accordance with the teachings of the present invention is that conventional conversion tooling, except for one station, can still be utilized for converting a blank end.
  • conventional conversion tooling except for one station, can still be utilized for converting a blank end.
  • such tooling has six stations with the integral rivet for connecting the tab being formed at the first and second stations, the score producing the removable section being produced at the third station, the tab being preliminarily staked by partial deformation of the rivet at the fourth station and firmly staked at the fifth station.
  • the sixth station in present commercial tooling produces the final configuration for the central panel portion, which produces the strengthening effect in this kind of design.
  • the tooling in the sixth station it is only necessary to revise the tooling in the sixth station to include the punch portion 80, the domed central portion 64 and inner and outer lower die elements 68 and 76.
  • the particular dimensions, specifically the location of the countersink with respect to the remainder of the end is such that conventional seaming tooling can be utilized for double tooling the present end onto a container body.
  • seaming tooling There are several types of seaming tooling that are presently being used by various packagers but all of these are adapted for having the countersink located at a specific location.
  • the existing seaming tooling requires that the diameter of the center portion of the countersink be 2.296 inches for a 209 diameter end and 2.416 inches for a 211 diameter end.
  • the end described above has the diameter of the center portion of the countersink located at the center point for radius R1, and is 2.296 inches, and the inclined wall 34 provides adequate clearance for any conventional chuck seamer.
  • the fully converted end can readily be double seamed to a container body utilizing commercial equipment that packagers are presently using.
  • the particular configuration of the countersink wall, and particularly the depth thereof as well as the length of the outer flat wall portion of the countersink allows the manufacturer of ends to reduce the thickness of the stock material from the present thickness of 0.0135 inches to a maximum thickness of 0.0120 and possibly even 0.0115 inches. Such a reduction in metal thickness substantially reduces the overall cost of manufacturing ends.

Abstract

A container end formed from metal having an approximate thickness of 0.0120 inches which is capable of withstanding at least 90 psi buckle pressure and at least 60 psi rock pressure is disclosed herein. A container end panel includes a peripheral curl surrounding a substantially flat center panel with a countersink therebetween. The countersink has inner and outer substantially flat walls that are interconnected by an arcuate portion that has a radius of approximately 0.030 inches and the inner wall is connected to the periphery of the center panel through an arcuate portion that has a radius of approximately 0.025 inches. The outer flat wall has a length which is greater than the length of the inner flat wall and the outer flat wall defines an angle of less than five degrees with respect to a plane that extends perpendicular through the center flat panel. The inner flat wall has a length to locate the lower edge of the countersink about 0.075 inches or more below the lower edge of the periphery of the center panel and defines a minimum angle with respect to a vertical reference plane.

Description

This application is a Divisional application of Ser. No. 968,099, filed Dec. 8, 1978, now U.S. Pat. No. 4,217,843, which in turn is a Continuation-In-Part application of Ser. No. 820,237, filed July 29, 1977, now abandoned.
BACKGROUND OF THE INVENTION
The present invention relates generally to container end panels and more particularly to panels that are utilized in conjunction with containers that are used for packaging products under high pressure, such as beer and/or carbonated beverages.
In recent years, many of these products have commonly been packaged in metal containers formed either of aluminum or tinplated steel. Since the beer and carbonated beverage industry utilizes at least 46 billion containers annually in the United States, it is essential that the containers be formed of a minimum thickness of metal so that the container can be marketed at a competitive price. The cost of the container is extremely important since, for many products, the cost of the container approaches or exceeds the cost of the product being packaged therein. As such, any cost reduction in manufacturing finished containers is extremely desirable.
Because of the large market for metal containers, particularly those formed of aluminim, a very small savings in the amount of material for a single container can substantially effect the overall cost considerations. For example, a reduction in metal thickness of approximately 0.001 inches can result in millions of dollars in savings for a manufacturer of cans.
In recent years, many beverages have been packaged in what is commonly referred to as a two-piece container. In this container, the bottom wall and sidewall are formed as an integral unit by drawing and ironing a flat blank to produce a container body open at one end. The open end of the body then has an end panel secured thereto by a conventional seaming process.
When these types of containers are utilized for packaging beer and/or carbonated beverages, the containers must be capable of withstanding minimum pressures of 90 psi before the container end will "buckle" and also be capable of withstanding minimum pressures of 60 psi before the container will "rock". The term "rock" is related to the deflection of the center panel portion of the end panel, which normally has a tab connected thereto by a rivet, and the term identifies the pressure at which any given portion of the center of the end panel projects above the upper peripheral edge or chime of the container. The term "buckle" pressure is the pressure that an end is capable of withstanding without any notable distortion of the end and/or rupture of any portion of the end.
Quite recently the assignee of the present invention developed a drawn and ironed container that can be manufactured with a minimum amount of metal and still be capable of withstanding the pressures indicated above. This drawn and ironed container is disclosed in U.S. Pat. No. 3,942,673 issued to Seung W. Lyu et al. While this drawn and ironed container has found a remarkable degree of commercial success, the end panel utilized in connection therewith still of necessity must be formed from a metal blank having a thickness of approximately 0.013 inches to withstand the desired buckle and rock pressures.
Various proposals have been suggested for reducing the metal thickness of an end panel. One example of such proposal is disclosed in Cospen et al. U.S. Pat. No. 3,843,014. This patent discloses a particular configuration for the countersink portion of an end panel between a peripheral curl and a center flat panel portion. The patentees of this patent indicate that the particular configuration of the end panel will allow a panel to be formed from metal having a thickness on the order of 0.0115 inches. Actual tests were conducted with sample end panels constructed in accordance with the teachings of the Cospen et al. disclosure and it was found that while the container end panel was capable of withstanding the minimum buckle pressures required, the particular configuration resulted in the end being bulged outwardly sufficiently by approximately 30 psi to produce a "rocker" container. Thus, such a proposal has not been accepted as a commercially feasible alternate to the present commercial ends.
Another more recent proposal for utilizing sheet metal stock of less thickness than the standard indicated above has been developed by Aluminum Company of America, Pittsburgh, Pa., which is disclosed in U.S. Pat. No. 4,031,837. This proposal contemplates increasing the depth of the center panel with respect to the lower edge of the outer countersink above the present standard of 0.065 inches for a conventional 209 diameter aluminum beer and beverage end. While test data from the developer of this product indicates that the container is capable of withstanding the minimum required buckle pressures, the particular configuration of the end requires new seamer chucks for double seaming the end panel onto a container body. Such an approach is unrealistic from a commercial standpoint since most packagers will utilize various types of ends from different manufacturers and these ends of necessity must be capable of being double seamed to a container utilizing a standard chuck seamer. For example, a packager may make one run utilizing a certain end manufactured by one company and then shift to a further end manufactured by another company. If different types of chuck seamers are required for the various operations, a substantial amount of time and cost will be involved in converting the seamers to accommodate different ends. This approach also requires that the diameter of the blank used for making the end be increased.
SUMMARY OF THE INVENTION
According to the present invention, a metal container end panel is formed from a metal having a thickness of 0.0120 inches which is capable of withstanding 90 psi minimum buckle pressure and 60 psi minimum rock pressure and the end can be seamed to a container utilizing conventional commercial tooling that is now used for the seaming process.
More specifically, the container end constructed in accordance with the present invention, includes a specifically configured countersink between the peripheral curl and the center substantially flat panel. The countersink includes inner and outer flat walls that are interconnected by a first arcuate portion that has a radius which is less than three times the thickness of the metal and the inner flat wall is integrally joined at its upper end with the center panel through a second arcuate portion that has a radius which is approximately twice the thickness of the metal. The outer flat wall defines an angle of less than five degrees with respect to a plane that extends perpendicular to the center panel and has a length such that the upper edge is located above the lower peripheral edge of the central flat panel portion. Preferably, the inner flat wall has a length sufficient to locate the lower edge of the first arcuate portion about 0.075 or more inches below the lower peripheral edge of the flat central panel portion, and the area above the outer flat wall is inclined outwardly to minimize interference with the chuck seamer. The end also has a second outer flat wall above the upper edge of the first outer flat wall and the outer flat wall defines an angle with a perpendicular plane that is substantially greater than the first angle.
According to one aspect of the invention, the second arcuate portion connecting the inner flat wall to the central panel portion is coined to reduce the thickness thereof, which increases the buckle pressure of the end, while the central panel portion is domed slightly away from the countersink to further increase the buckle pressure of the end.
The apparatus and method for producing the unique end includes upper and lower dies, which are movable relative to each other along a path. The lower die includes a central die member surrounded by inner and outer annular die members, which cooperate with each other to produce an annular recess while the upper die member has an annular punch received into the recess. The three die members of the lower die are adjustable relative to each other and the closed position of the punch is adjustable relative to the three lower die members to accurately control the dimensions of the countersink.
BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
FIG. 1 shows a plan view of a metal container end constructed in accordance with the teachings of the present invention;
FIG. 2 is a fragmentary sectional view of the tooling utilized for forming the countersink walls;
FIG. 3 is an enlarged fragmentary sectional view of the peripheral portion of the container end.
DETAILED DESCRIPTION
While this invention is susceptible of embodiment in many different forms, there is shown in the drawings and will herein be described in detail a preferred embodiment of the invention with the understanding that the present disclosure is to be considered as an exemplification of the principles of the invention and is not intended to limit the invention to the embodiment illustrated.
FIG. 1 of the drawings illustrates a container end, generally designated by reference numeral 10, having a peripheral curl 12 which is adapted to be seamed onto a container body utilizing a conventional double seaming process. Container end 10 has a generally flat central panel portion 14 which has a score 16 produced therein to define a removable section. A tab 18 is connected to removable section 16. As is conventional in ends of this type, container end 10 has a countersink 20 located between peripheral curl 12 and central flat panel portion 14.
The opening means including score 16 and tab 18 are shown for purposes of illustration only and any other type of opening means may be incorporated into the end of the present invention. For example the opening means may be of the "button" or any other "ecology" type end. Also, the end constructed in accordance with this invention can be used on either a two-piece or a three-piece container.
According to the present invention, countersink 20 is specifically configured so that the container end panel may be formed from a flat blank having a thickness on the order of 0.0120 inches or less and having the same diameter as the blanks used for making present ends, while still being capable of resisting buckle pressures of at least 90 psi and rock pressures of at least 60 psi. Furthermore, this can be accomplished with a minimum modification of the existing tool normally utilized for converting an end panel to a finished end.
Referring to FIG. 3, the countersink 20 includes an inner wall 22 and an outer wall 24 which are interconnected by an arcuate portion 26. Inner wall 22 is connected to center panel portion 14 through an arcuate portion 28.
According to the present invention, all of the parameters or dimensions of the respective portions which form a countersink 20 are critical and are interrelated to each other to optimize the maximum pressures that the end is capable of withstanding without buckling or rocking. More specifically, inner flat wall 22 has a length that will locate the peripheral edge 30 of central panel portion 14 a dimension H above the lower edge of arcuate portion 26.
It has also been determined that the angle (A) of inner flat wall 22 with respect to a reference plane P, when considered in conjunction with the length of flat wall 22, has a significant effect on the pressure resistance the container can withstand without failure. It has been determined that by having the dimension H at least 0.075 inches with a tolerance in the range of ±0.005 inches and having a minimum angle A, the buckle and rock pressures are substantially increased, when compared with a present day standard 209 diameter end having the dimension H set at 0.065 inches.
Also, the length of outer flat wall 24 and the angle thereof are critical toward obtaining buckle pressures of more than 90 psi and rock pressures of more than 60 psi utilizing an aluminum blank which has a thickness of 0.012 inches or less. Preferably, this outer straight flat wall portion 24 is of a sufficient length such that the juncture 32 between the upper end of flat wall portion 24 and the lower end of peripheral curl 12 is located at a height of more than 0.080 inches above the lower edge of countersink 20, more specifically, arcuate portion 26. The angle B defined between wall portion 24 and a vertical plane P extending perpendicular to the panel is preferably less than five degrees and in the illustrated embodiment is approximately four degrees.
Stated another way, the length of flat outer wall portion 24 is such that the juncture 32 at the upper end of outer flat wall 24 is located above the peripheral lower edge of flat panel portion 14. However, while this flat portion is preferably longer, the maximum dimension is dictated by the existing seamer tooling so as not to interfere with the double seaming of the end onto the container.
The particular dimensions of the radii R1 and R2 are also important in producing an acceptable end that meets minimum buckle pressure requirements utilizing a stock material having a thickness of 0.0120 inches or less. In the embodiment illustrated, the radius R1 is less than three times the thickness of the aluminum while the radius R2 is preferably approximately twice the thickness of the aluminum metal. In order to further increase the resistance of the end to buckling, the arcuate portion 28 is coined along the radius portion R2 so as to reduce the thickness of the arcuate portion and work harden the metal therein. This work hardening of the metal results in stiffening the arcuate area 28 which increases the resistance to buckling. The central panel portion also preferably has a slight upward dome having a radius R3.
It has also been determined that interference between the conventional chuck seamer (not shown) can be minimized or eliminated by forming a second flat wall portion 34 between wall portion 24 and peripheral curl 12. The second wall portion 34 preferably defines an angle C with respect to plane P which is substantially greater and preferably at least six times greater than angle B.
The apparatus for producing the unique end is disclosed in FIG. 2 and consists of an upper die 60 and a lower die 62 which cooperate with each other to form the countersink of the particular construction described above. A lower die 62 consists of a central portion or member 64 that has a spherical upper surface 66 to produce a slight dome in the central panel portion 14. The lower die 62 also includes an inner die member 68 which has an outer peripheral surface 70 that extends parallel to the plane that extends perpendicular to the end. The upper end of vertical surface 70 has an arcuate portion 72 which has a radius of less than 0.030 inches. Lower die 62 also has an outer die member 76 that has surface or wall 78 which cooperates with surface or wall 70 to define a recess 79 and outer surface 78 of recess 79 defines an angle of less than five degrees with respect to vertical surface 70 or a plane extending perpendicular to the end 10.
Upper die 60 has an annular punch 80 which has a lower arcuate surface 82 which circumscribes an arc of 180 degrees and has flat vertical inner and outer surfaces 84 and 86 at opposite ends of arcuate surface 82. Annular punch 80 is adapted to be received into recess 79 that is defined between surfaces 70 and 78. Upper die 60 also has an inwardly directed generally horizontal surface 88 located above the lower edge of arcuate surface 82 by a predetermined dimension as will be explained later. Upper die 60 also has an outer annular inclined surface 90 which is inclined with respect to a plane extending perpendicular to end 10 by an angle substantially greater than the angle for wall 78 and is at least six times greater thah such angle. Also, the spacing between surfaces 70 and 78 is just slightly greater than twice the radius of arcuate surface 82 and twice the thickness of the metal. The juncture between surfaces 86 and 90 is located above the periphery of inclined generally horizontal surface 88, which is located at least 0.080 or more inches above the lower edge of arcuate portion 82.
Thus, when punch 80 is moved towards lower die 62, trough 20 will be formed with the inner wall 22 being substantially vertical and outer wall 24 also being substantially vertical and the lower edge of arcuate portion 26 is moved away from central panel portion 14. As the upper die bottoms out with respect to lower die 62, the arcuate surface 72 cooperates with inwardly directed inclined surface 88 to coin the arcuate area around the periphery of central flat panel portion 14.
The advantage of making lower die 62 as a three-piece unit will be apparent. One significant advantage is that inner and outer die members 68 and 76 can be moved relative to each other along the path of movement of dies 60 and 62 to accurately position an upper edge of flat outer wall 78 with respect to an upper edge of arcuate surface 72 on the upper end of inner wall 70 of recess 79.
This arrangement allows the manufacturer of ends to accurately control the specific dimensions of countersink 20, particularly the depth thereof with respect to central panel 14. Also, the three die members that define lower die 62 can readily be adjusted to accommodate metal of varying thickness. It will be appreciated that the thickness of a coil of metal specified to have a thickness of 0.0120 inches may vary in thickness ±0.0005 inches. Thus, this variation can readily be accommodated by proper adjustment of die members 64, 68 and 76 with respect to each other along the path of movement of dies 60 and 62, indicated by arrows D in FIG. 2.
In addition, if a slight increase in buckle pressure is desired, with a small sacrifice in rock pressure, the amount of coining of arcuate portion 28 can be increased.
The adjustment of die members 64, 68 and 76 relative to each other is a simple matter which can be accomplished in a short period of time. For example, the die members are normally fixedly secured to a bed of a press through the use of bolts (not shown). For adjusting die members 64, 68 and 72 relative to each other, it is only necessary to select shims (not shown) of a proper thickness and position them between the respective die members and the bed of the press. The closed position of the punch with respect to lower die 2 can be adjusted in the same manner.
Turning now to inner flat wall portion 22 of countersink 20, it is preferable that this wall define a minimum angle with respect to a vertical reference plane. This angle is preferably zero but practical considerations virtually prevent the angle from being zero because it would make it difficult if not impossible to remove the end from the lower die. Therefore, the annular spacing between inner vertical surface 84 of punch 80 and the vertical surface 70 of inner die portion 68 is made as small as possible while still allowing for sufficient clearance for the end to be readily removed from the die. It has been found that by making this space between one and one-third and one and one-half the thickness of the metal stock will produce a minimum angle for vertical wall 22 and still allow the end to be readily removed from the die.
The method aspect of the invention can be best understood from the further description of the apparatus shown in FIG. 2. Upper and lower dies 60 and 62 are aligned with each other for relative movement along a predetermined path so that annular punch 80 is aligned with recess 79 and inclined surface 88 is aligned with inner die portion 68. A sheet of metal material having a thickness of about 0.0120 inches is then inserted between the die elements and the die elements are moved towards each other to force the punch into the recess and produce countersink 20. During this relative movement, a portion of the metal material is forced into engagement with outer surface 78 of recess 79 to produce a first flat wall portion 32 and a second flat wall portion 34 for the outer portion of the countersink or trough. At the same time, the cooperation between die portion 68 and punch 80 produces a second or inner flat wall portion for countersink 20 and an arcuate portion interconnecting the flat wall portion with the central panel portion. By proper selection of the length of annular punch 80, which is preferably more than twice the radius of its lower arcuate surface in conjunction with the relative lengths of flat walls 70 and 76, the peripheral edge 30 of central panel 14 is located below upper edge 32 of annular flat wall 32.
A specific example of the dimensions for producing a 209 diameter end will now be set forth. Radius R1 is set for 0.030 inches while radius R2 has a dimension of 0.025 inches. Outer flat wall portion 24 defines an angle B of approximately four degrees while inner flat wall portion defines an angle A of 10 degrees. The countersink depth H has a dimension of 0.083 inches while the juncture 32 between peripheral curl 12 and flat wall portion 24 is located at 0.092 inches above the lower edge of arcuate portion 26. The surface 66 has a radius of 8 inches so that R3 is 8 inches. It was determined that the doming of the central panel portion removes all excess metal and in fact stretches the metal in the central panel portion.
A blank having a peripheral diameter of approximately 3.250 inches was converted to the dimensions set forth above to produce a 209 diameter finished end. Actual tests of sample ends produced in accordance with these dimensions show that the ends were capable of withstanding a buckle pressure of approximately 96.5 psi and a rock pressure of 70 psi.
By way of a further specific example, several million 209 diameter ends were made by cutting discs having a diameter of 3.252 inches from a 0.012 gauge 5182-H19 aluminum and converting the discs as described above. The finished ends had a radius R1 of approximately 0.030 inches and a radius R2 had a dimension of approximately 0.025 inches. Inner annular flat wall 22 had an angle A of approximately 10 degrees while first outer flat wall portion 24 had an angle B of approximately 4 degrees. The countersink depth H was maintained at about 0.075±0.003 inches while the upper end 32 of the flat wall was located 0.097 inches above the lower edge of first radiused portion 26. The second annular outer wall portion 34 had an angle C of about 25 degrees and the upper end of wall portion 34 merged with arcuate curl 12 while a selected portion of arcuate portion 28 was coined to approximately 0.001 to 0.002 inches reduction. Virtually all random samples tested had a "buckle" pressure of 90 psi or more than a "rock" pressure of more than 60 psi.
The significant advantage of the particular end constructed in accordance with the teachings of the present invention is that conventional conversion tooling, except for one station, can still be utilized for converting a blank end. Normally, such tooling has six stations with the integral rivet for connecting the tab being formed at the first and second stations, the score producing the removable section being produced at the third station, the tab being preliminarily staked by partial deformation of the rivet at the fourth station and firmly staked at the fifth station. The sixth station in present commercial tooling produces the final configuration for the central panel portion, which produces the strengthening effect in this kind of design.
With the end as described above, it is only necessary to revise the tooling in the sixth station to include the punch portion 80, the domed central portion 64 and inner and outer lower die elements 68 and 76. Furthermore, the particular dimensions, specifically the location of the countersink with respect to the remainder of the end is such that conventional seaming tooling can be utilized for double tooling the present end onto a container body. There are several types of seaming tooling that are presently being used by various packagers but all of these are adapted for having the countersink located at a specific location. The existing seaming tooling requires that the diameter of the center portion of the countersink be 2.296 inches for a 209 diameter end and 2.416 inches for a 211 diameter end. The end described above has the diameter of the center portion of the countersink located at the center point for radius R1, and is 2.296 inches, and the inclined wall 34 provides adequate clearance for any conventional chuck seamer. Thus, the fully converted end can readily be double seamed to a container body utilizing commercial equipment that packagers are presently using.
The particular configuration of the countersink wall, and particularly the depth thereof as well as the length of the outer flat wall portion of the countersink allows the manufacturer of ends to reduce the thickness of the stock material from the present thickness of 0.0135 inches to a maximum thickness of 0.0120 and possibly even 0.0115 inches. Such a reduction in metal thickness substantially reduces the overall cost of manufacturing ends.

Claims (5)

What is claimed is:
1. A circular, metal container end having a metal thickness of approximately 0.0120 inches and including a peripheral curl and a central panel with a countersink between said curl and central panel extending below said central panel, the improvement of said countersink having inner and outer flat walls interconnected by a first arcuate portion, said first arcuate portion having a radius less than three times the thickness of said metal, said flat inner wall being integral with said central panel through a second arcuate portion having a radius approximately twice the thickness of said metal and said outer flat wall having a length greater than said inner flat wall so that an upper end is located above a peripheral edge of said central panel, and said outer flat wall defining an angle of less than five degrees with respect to a plane extending perpendicular to said central panel, said peripheral curl extending above said central panel so that said container end is capable of resisting at least 90 psi buckle pressure and at least 60 psi rock pressure.
2. A container end as defined in claim 1, in which said first arcuate portion has a radius of 0.030 inches, said second arcuate portion has a radius of 0.025 inches, and a lower edge of said first arcuate portion is located at least 0.075 inches below the peripheral edge of said central panel.
3. A container end as defined in claim 2, in which said second arcuate portion has a thickness less than the metal thickness of said central panel portion.
4. A container end as defined in claim 1, further including a second flat wall portion integral with said upper end of said outer flat wall and said peripheral curl, said second flat wall portion defining an angle several times greater than the angle of said outer flat wall.
5. The container end as claimed in claim 1 further characterized by said inner flat wall defining an angle with respect to said plane of less than approximately ten degrees.
US06/083,870 1978-12-08 1979-10-11 Metal container end Expired - Lifetime US4448322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US06/083,870 US4448322A (en) 1978-12-08 1979-10-11 Metal container end

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US05/968,099 US4217843A (en) 1977-07-29 1978-12-08 Method and apparatus for forming ends
US06/083,870 US4448322A (en) 1978-12-08 1979-10-11 Metal container end

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US05/968,099 Division US4217843A (en) 1977-07-29 1978-12-08 Method and apparatus for forming ends

Publications (1)

Publication Number Publication Date
US4448322A true US4448322A (en) 1984-05-15

Family

ID=26769835

Family Applications (1)

Application Number Title Priority Date Filing Date
US06/083,870 Expired - Lifetime US4448322A (en) 1978-12-08 1979-10-11 Metal container end

Country Status (1)

Country Link
US (1) US4448322A (en)

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4561280A (en) * 1984-01-16 1985-12-31 Dayton Reliable Tool & Mfg. Co. Shell making method and apparatus
US4567746A (en) * 1984-01-16 1986-02-04 Dayton Reliable Tool & Mfg. Co. Method and apparatus for making shells for cans
US4577774A (en) * 1982-03-11 1986-03-25 Ball Corporation Buckle resistance for metal container closures
US4599884A (en) * 1984-01-16 1986-07-15 Dayton Reliable Tool & Mfg. Co. Apparatus for transferring relatively flat objects
US4606472A (en) * 1984-02-14 1986-08-19 Metal Box, P.L.C. Reinforced can end
US4637961A (en) * 1984-01-16 1987-01-20 Dayton Reliable Tool & Mfg. Co. Shell for can ends
US4641761A (en) * 1983-10-26 1987-02-10 Ball Corporation Increased strength for metal beverage closure through reforming
US4704887A (en) * 1984-01-16 1987-11-10 Dayton Reliable Tool & Mfg. Co. Method and apparatus for making shells for can ends
US4735863A (en) * 1984-01-16 1988-04-05 Dayton Reliable Tool & Mfg. Co. Shell for can
AU573675B2 (en) * 1984-01-16 1988-06-16 Dayton Reliable Tool & Mfg. Co. Method and appartus for forming can ends
US4792067A (en) * 1985-05-13 1988-12-20 Pittway Corporation Mounting cup
US4796772A (en) * 1987-09-07 1989-01-10 Ball Corporation Metal closure with circumferentially-variegated strengthening
US4813576A (en) * 1985-05-13 1989-03-21 Pittway Corporation Mounting cup
US4832223A (en) * 1987-07-20 1989-05-23 Ball Corporation Container closure with increased strength
US4862722A (en) * 1984-01-16 1989-09-05 Dayton Reliable Tool & Mfg. Co. Method for forming a shell for a can type container
USRE33217E (en) * 1982-03-11 1990-05-15 Ball Corporation Buckle resistance for metal container closures
US4958757A (en) * 1985-05-13 1990-09-25 Pittway Corporation Ferrule for sealing with a container
US5016785A (en) * 1985-05-13 1991-05-21 Pittway Corp. Skirtless mounting cup
US5046637A (en) * 1988-04-29 1991-09-10 Cmb Foodcan Plc Can end shells
US5356256A (en) * 1992-10-02 1994-10-18 Turner Timothy L Reformed container end
US5590807A (en) * 1992-10-02 1997-01-07 American National Can Company Reformed container end
AU687378B2 (en) * 1993-02-18 1998-02-26 David Robert Sergeant Container end closure
US5749488A (en) * 1995-10-02 1998-05-12 Reynolds Metals Company Can end with recessed center panel formed downwardly from coin
WO1998037995A1 (en) * 1997-02-27 1998-09-03 Buhrke Tech International, Inc. Reduced gauge steel can end
US6065634A (en) * 1995-05-24 2000-05-23 Crown Cork & Seal Technologies Corporation Can end and method for fixing the same to a can body
US6173857B1 (en) * 1996-01-15 2001-01-16 Tetra Laval Holdings & Finance Bottom for a package with internal overpressure
US6408498B1 (en) 1998-08-26 2002-06-25 Crown Cork & Seal Technologies Corporation Can end having a strengthened side wall and apparatus and method of making same
US6419110B1 (en) 2001-07-03 2002-07-16 Container Development, Ltd. Double-seamed can end and method for forming
WO2002057137A2 (en) * 2001-01-19 2002-07-25 Ball Corporation Beverage can end with reduced countersink
US6499622B1 (en) 1999-12-08 2002-12-31 Metal Container Corporation, Inc. Can lid closure and method of joining a can lid closure to a can body
US20030001788A1 (en) * 2001-06-28 2003-01-02 Masanao Fujiwara Antenna
WO2003004716A2 (en) 2001-07-03 2003-01-16 Container Development, Ltd. Can shell and double-seamed can end
US20030042258A1 (en) * 2001-08-16 2003-03-06 Timothy Turner Can end
US6561004B1 (en) * 1999-12-08 2003-05-13 Metal Container Corporation Can lid closure and method of joining a can lid closure to a can body
US20030173367A1 (en) * 1999-12-08 2003-09-18 Nguyen Tuan A. Metallic beverage can end with improved chuck wall and countersink
US20040074911A1 (en) * 2001-07-03 2004-04-22 Container Development, Ltd. Can shell and double-seamed can end
US6736283B1 (en) 2002-11-19 2004-05-18 Alcoa Inc. Can end, tooling for manufacture of the can end and seaming chuck adapted to affix a converted can end to a can body
US6748789B2 (en) 2001-10-19 2004-06-15 Rexam Beverage Can Company Reformed can end for a container and method for producing same
US6772900B2 (en) 2001-08-16 2004-08-10 Rexam Beverage Can Company Can end
US20050006388A1 (en) * 2001-08-16 2005-01-13 Timothy Turner Can end
US20050006395A1 (en) * 1999-12-08 2005-01-13 Metal Container Corporation Can lid closure and method of joining a can lid closure to a can body
US20050029269A1 (en) * 2001-07-03 2005-02-10 Container Development, Ltd. Can shell and double-seamed can end
US20050252922A1 (en) * 1999-12-08 2005-11-17 Metal Container Corporation Can lid closure and method of joining a can lid closure to a can body
US20060042344A1 (en) * 2004-07-29 2006-03-02 Bathurst Jess N Method and apparatus for shaping a metallic container end closure
US20060071005A1 (en) * 2004-09-27 2006-04-06 Bulso Joseph D Container end closure with improved chuck wall and countersink
US20060096994A1 (en) * 2001-08-16 2006-05-11 Timothy Turner Can end
US20070007294A1 (en) * 2005-07-01 2007-01-11 Jentzsch Kevin R Method and apparatus for forming a reinforcing bead in a container end closure
EP1813540A1 (en) * 2006-01-30 2007-08-01 Impress Group B.V. Can end for a can and such can
US20080257900A1 (en) * 2007-04-20 2008-10-23 Rexam Beverage Can Company Can End With Negatively Angled Wall
US20090039091A1 (en) * 2007-08-10 2009-02-12 Rexam Beverage Can Company Can End With Countersink
US20090180999A1 (en) * 2008-01-11 2009-07-16 U.S. Nutraceuticals, Llc D/B/A Valensa International Method of preventing, controlling and ameliorating urinary tract infections using cranberry derivative and d-mannose composition
WO2012174058A1 (en) * 2011-06-14 2012-12-20 Crown Packaging Technology, Inc. Methos and system for forming high - strength beverage can ends of aluminum magnesium alloy and such can ends
US8727169B2 (en) 2010-11-18 2014-05-20 Ball Corporation Metallic beverage can end closure with offset countersink
US8939695B2 (en) 2011-06-16 2015-01-27 Sonoco Development, Inc. Method for applying a metal end to a container body
US8973780B2 (en) 2007-08-10 2015-03-10 Rexam Beverage Can Company Can end with reinforcing bead
US8998027B2 (en) 2011-09-02 2015-04-07 Sonoco Development, Inc. Retort container with thermally fused double-seamed or crimp-seamed metal end
US9566634B2 (en) 2010-06-07 2017-02-14 Rexam Beverage Can Company Can end produced from downgauged blank
US10131455B2 (en) 2011-10-28 2018-11-20 Sonoco Development, Inc. Apparatus and method for induction sealing of conveyed workpieces
US10399139B2 (en) 2012-04-12 2019-09-03 Sonoco Development, Inc. Method of making a retort container

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3441170A (en) * 1967-03-03 1969-04-29 Continental Can Co Coined bead for improved fill characteristics
US3843014A (en) * 1973-03-16 1974-10-22 Pechiney Ugine Kuhlmann Container cover
US4031837A (en) * 1976-05-21 1977-06-28 Aluminum Company Of America Method of reforming a can end

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3441170A (en) * 1967-03-03 1969-04-29 Continental Can Co Coined bead for improved fill characteristics
US3843014A (en) * 1973-03-16 1974-10-22 Pechiney Ugine Kuhlmann Container cover
US4031837A (en) * 1976-05-21 1977-06-28 Aluminum Company Of America Method of reforming a can end

Cited By (137)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4577774A (en) * 1982-03-11 1986-03-25 Ball Corporation Buckle resistance for metal container closures
USRE33217E (en) * 1982-03-11 1990-05-15 Ball Corporation Buckle resistance for metal container closures
US4641761A (en) * 1983-10-26 1987-02-10 Ball Corporation Increased strength for metal beverage closure through reforming
US4862722A (en) * 1984-01-16 1989-09-05 Dayton Reliable Tool & Mfg. Co. Method for forming a shell for a can type container
US4567746A (en) * 1984-01-16 1986-02-04 Dayton Reliable Tool & Mfg. Co. Method and apparatus for making shells for cans
US4599884A (en) * 1984-01-16 1986-07-15 Dayton Reliable Tool & Mfg. Co. Apparatus for transferring relatively flat objects
US4561280A (en) * 1984-01-16 1985-12-31 Dayton Reliable Tool & Mfg. Co. Shell making method and apparatus
US4637961A (en) * 1984-01-16 1987-01-20 Dayton Reliable Tool & Mfg. Co. Shell for can ends
US4704887A (en) * 1984-01-16 1987-11-10 Dayton Reliable Tool & Mfg. Co. Method and apparatus for making shells for can ends
US4735863A (en) * 1984-01-16 1988-04-05 Dayton Reliable Tool & Mfg. Co. Shell for can
AU573675B2 (en) * 1984-01-16 1988-06-16 Dayton Reliable Tool & Mfg. Co. Method and appartus for forming can ends
US4606472A (en) * 1984-02-14 1986-08-19 Metal Box, P.L.C. Reinforced can end
US4813576A (en) * 1985-05-13 1989-03-21 Pittway Corporation Mounting cup
US4792067A (en) * 1985-05-13 1988-12-20 Pittway Corporation Mounting cup
US4958757A (en) * 1985-05-13 1990-09-25 Pittway Corporation Ferrule for sealing with a container
US5016785A (en) * 1985-05-13 1991-05-21 Pittway Corp. Skirtless mounting cup
US4832223A (en) * 1987-07-20 1989-05-23 Ball Corporation Container closure with increased strength
US4796772A (en) * 1987-09-07 1989-01-10 Ball Corporation Metal closure with circumferentially-variegated strengthening
US5046637A (en) * 1988-04-29 1991-09-10 Cmb Foodcan Plc Can end shells
US5527143A (en) * 1992-10-02 1996-06-18 American National Can Company Reformed container end
US5590807A (en) * 1992-10-02 1997-01-07 American National Can Company Reformed container end
US5598734A (en) * 1992-10-02 1997-02-04 American National Can Company Reformed container end
US5356256A (en) * 1992-10-02 1994-10-18 Turner Timothy L Reformed container end
US5950858A (en) * 1993-02-18 1999-09-14 Sergeant; David Robert Container end closure
AU687378B2 (en) * 1993-02-18 1998-02-26 David Robert Sergeant Container end closure
US6065634A (en) * 1995-05-24 2000-05-23 Crown Cork & Seal Technologies Corporation Can end and method for fixing the same to a can body
US20030150866A1 (en) * 1995-05-24 2003-08-14 Brifcani Mouayed Mamdooh Can end and method for fixing the same to a can body
US20050247717A1 (en) * 1995-05-24 2005-11-10 Brifcani Mouayed M Can end and method for fixing the same to a can body
US6935826B2 (en) 1995-05-24 2005-08-30 Crown Cork & Seal Technologies Corporation Can end and method for fixing the same to a can body
US6877941B2 (en) * 1995-05-24 2005-04-12 Crown Packaging Technology, Inc. Can end and method for fixing the same to a can body
US6848875B2 (en) * 1995-05-24 2005-02-01 Crown Cork & Seal Technologies Corporation Can end and method for fixing the same to a can body
US8328041B2 (en) 1995-05-24 2012-12-11 Crown Packaging Technology, Inc. Can end and method for fixing the same to a can body
US20040129710A1 (en) * 1995-05-24 2004-07-08 Crown Cork & Seal Technologies Corporation Can end and method for fixing the same to a can body
US20030202862A1 (en) * 1995-05-24 2003-10-30 Brifcani Mouayed Mamdooh Can end and method for fixing the same to a can body
US5749488A (en) * 1995-10-02 1998-05-12 Reynolds Metals Company Can end with recessed center panel formed downwardly from coin
US6173857B1 (en) * 1996-01-15 2001-01-16 Tetra Laval Holdings & Finance Bottom for a package with internal overpressure
WO1998037995A1 (en) * 1997-02-27 1998-09-03 Buhrke Tech International, Inc. Reduced gauge steel can end
US6408498B1 (en) 1998-08-26 2002-06-25 Crown Cork & Seal Technologies Corporation Can end having a strengthened side wall and apparatus and method of making same
US20040140312A1 (en) * 1999-12-08 2004-07-22 Neiner Christopher G. Can lid closure and method of joining a can lid closure to a can body
US7673768B2 (en) 1999-12-08 2010-03-09 Metal Container Corporation Can lid closure
US6561004B1 (en) * 1999-12-08 2003-05-13 Metal Container Corporation Can lid closure and method of joining a can lid closure to a can body
US20030173367A1 (en) * 1999-12-08 2003-09-18 Nguyen Tuan A. Metallic beverage can end with improved chuck wall and countersink
US8490825B2 (en) 1999-12-08 2013-07-23 Metal Container Corporation Can lid closure and method of joining a can lid closure to a can body
US6702142B2 (en) 1999-12-08 2004-03-09 Metal Container Corporation Can lid closure and method of joining a can lid closure to a can body
US7380684B2 (en) 1999-12-08 2008-06-03 Metal Container Corporation Can lid closure
US20050252922A1 (en) * 1999-12-08 2005-11-17 Metal Container Corporation Can lid closure and method of joining a can lid closure to a can body
US7100789B2 (en) 1999-12-08 2006-09-05 Ball Corporation Metallic beverage can end with improved chuck wall and countersink
US6499622B1 (en) 1999-12-08 2002-12-31 Metal Container Corporation, Inc. Can lid closure and method of joining a can lid closure to a can body
US20050006395A1 (en) * 1999-12-08 2005-01-13 Metal Container Corporation Can lid closure and method of joining a can lid closure to a can body
WO2002057137A2 (en) * 2001-01-19 2002-07-25 Ball Corporation Beverage can end with reduced countersink
WO2002057137A3 (en) * 2001-01-19 2003-03-13 Ball Corp Beverage can end with reduced countersink
US20030001788A1 (en) * 2001-06-28 2003-01-02 Masanao Fujiwara Antenna
US6516968B2 (en) 2001-07-03 2003-02-11 Container Development, Ltd Can shell and double-seamed can end
US10843845B2 (en) 2001-07-03 2020-11-24 Ball Corporation Can shell and double-seamed can end
US7819275B2 (en) 2001-07-03 2010-10-26 Container Development, Ltd. Can shell and double-seamed can end
US8313004B2 (en) 2001-07-03 2012-11-20 Ball Corporation Can shell and double-seamed can end
WO2003004716A2 (en) 2001-07-03 2003-01-16 Container Development, Ltd. Can shell and double-seamed can end
US20050029269A1 (en) * 2001-07-03 2005-02-10 Container Development, Ltd. Can shell and double-seamed can end
US20030121924A1 (en) * 2001-07-03 2003-07-03 Container Development, Ltd. Can shell and double-seamed can end
US20110031256A1 (en) * 2001-07-03 2011-02-10 Stodd R Peter Can Shell and Double-Seamed Can End
US8931660B2 (en) 2001-07-03 2015-01-13 Ball Corporation Can shell and double-seamed can end
US9371152B2 (en) 2001-07-03 2016-06-21 Ball Corporation Can shell and double-seamed can end
US20040074911A1 (en) * 2001-07-03 2004-04-22 Container Development, Ltd. Can shell and double-seamed can end
US10246217B2 (en) 2001-07-03 2019-04-02 Ball Corporation Can shell and double-seamed can end
US7341163B2 (en) 2001-07-03 2008-03-11 Container Development, Ltd. Can shell and double-seamed can end
US6419110B1 (en) 2001-07-03 2002-07-16 Container Development, Ltd. Double-seamed can end and method for forming
US7174762B2 (en) 2001-08-16 2007-02-13 Rexam Beverage Can Company Can end
US20040200838A1 (en) * 2001-08-16 2004-10-14 Timothy Turner Can end
US20030042258A1 (en) * 2001-08-16 2003-03-06 Timothy Turner Can end
US20040211780A1 (en) * 2001-08-16 2004-10-28 Timothy Turner Can end
US20040065663A1 (en) * 2001-08-16 2004-04-08 Timothy Turner Can end
US20090266824A1 (en) * 2001-08-16 2009-10-29 Rexam Beverage Can Company Can end
US20090269169A1 (en) * 2001-08-16 2009-10-29 Rexam Beverage Can Company Can end
US20080050207A1 (en) * 2001-08-16 2008-02-28 Rexam Beverage Can Company Can End
US20050006388A1 (en) * 2001-08-16 2005-01-13 Timothy Turner Can end
US7350392B2 (en) 2001-08-16 2008-04-01 Rexam Beverage Can Company Can end
US8052005B2 (en) 2001-08-16 2011-11-08 Rexam Beverage Can Company Can end
US7004345B2 (en) 2001-08-16 2006-02-28 Rexam Beverage Can Company Can end
US6772900B2 (en) 2001-08-16 2004-08-10 Rexam Beverage Can Company Can end
US7556168B2 (en) 2001-08-16 2009-07-07 Rexam Beverage Can Company Can end with fold
US8328492B2 (en) 2001-08-16 2012-12-11 Rexam Beverage Can Company Can end
US8104319B2 (en) 2001-08-16 2012-01-31 Rexam Beverage Can Company Method of forming a can end
US7644833B2 (en) 2001-08-16 2010-01-12 Rexam Beverage Can Company Can end
US20060096994A1 (en) * 2001-08-16 2006-05-11 Timothy Turner Can end
US7748563B2 (en) 2001-10-19 2010-07-06 Rexam Beverage Can Company Reformed can end for a container and method for producing same
US20040211786A1 (en) * 2001-10-19 2004-10-28 Timothy Turner Reformed can end for a container and method for producing same
US6748789B2 (en) 2001-10-19 2004-06-15 Rexam Beverage Can Company Reformed can end for a container and method for producing same
US6736283B1 (en) 2002-11-19 2004-05-18 Alcoa Inc. Can end, tooling for manufacture of the can end and seaming chuck adapted to affix a converted can end to a can body
WO2005032953A2 (en) 2003-09-30 2005-04-14 Container Development, Ltd Can shell and double-seamed can end
US20060042344A1 (en) * 2004-07-29 2006-03-02 Bathurst Jess N Method and apparatus for shaping a metallic container end closure
US7500376B2 (en) 2004-07-29 2009-03-10 Ball Corporation Method and apparatus for shaping a metallic container end closure
US20120292329A1 (en) * 2004-09-27 2012-11-22 Ball Corporation Container End Closure With Improved Chuck Wall and Countersink
US8235244B2 (en) 2004-09-27 2012-08-07 Ball Corporation Container end closure with arcuate shaped chuck wall
US20090020543A1 (en) * 2004-09-27 2009-01-22 Ball Corporation Container End Closure With Improved Chuck Wall and Countersink
US8505765B2 (en) * 2004-09-27 2013-08-13 Ball Corporation Container end closure with improved chuck wall provided between a peripheral cover hook and countersink
US20110204055A1 (en) * 2004-09-27 2011-08-25 Ball Corporation Container End Closure With Improved Chuck Wall and Countersink
US20060071005A1 (en) * 2004-09-27 2006-04-06 Bulso Joseph D Container end closure with improved chuck wall and countersink
US7938290B2 (en) 2004-09-27 2011-05-10 Ball Corporation Container end closure having improved chuck wall with strengthening bead and countersink
US20090120943A1 (en) * 2005-07-01 2009-05-14 Ball Corporation Method and Apparatus for Forming a Reinforcing Bead in a Container End Closure
US20100243663A1 (en) * 2005-07-01 2010-09-30 Ball Corporation Container End Closure
US7743635B2 (en) 2005-07-01 2010-06-29 Ball Corporation Method and apparatus for forming a reinforcing bead in a container end closure
US8205477B2 (en) 2005-07-01 2012-06-26 Ball Corporation Container end closure
WO2007005564A3 (en) * 2005-07-01 2007-08-09 Ball Corp Method and apparatus for forming a reinforcing bead in a container end closure
CN101227987B (en) * 2005-07-01 2012-08-08 鲍尔公司 Method and apparatus for forming a reinforcing bead in a container end closure
US20070007294A1 (en) * 2005-07-01 2007-01-11 Jentzsch Kevin R Method and apparatus for forming a reinforcing bead in a container end closure
US7506779B2 (en) 2005-07-01 2009-03-24 Ball Corporation Method and apparatus for forming a reinforcing bead in a container end closure
EP1907287A1 (en) * 2005-07-25 2008-04-09 Metal Container Corporation Can lid closure and method of joining a can lid closure to a can body
EP1907287A4 (en) * 2005-07-25 2009-08-12 Metal Container Corp Can lid closure and method of joining a can lid closure to a can body
US20100059530A1 (en) * 2006-01-30 2010-03-11 Impress Group B.V. Can End for a Can and Such Can
WO2007085499A1 (en) * 2006-01-30 2007-08-02 Impress Group B.V. Can end for a can and such can
AU2007209495B2 (en) * 2006-01-30 2013-05-23 Impress Group B.V. Can end for a can and such can
EP1813540A1 (en) * 2006-01-30 2007-08-01 Impress Group B.V. Can end for a can and such can
AP2807A (en) * 2006-01-30 2013-11-30 Impress Group Bv Can end for a can and such can
US9260217B2 (en) 2006-01-30 2016-02-16 Impress Group B.V. Can end for a can and such can
EA019950B1 (en) * 2006-01-30 2014-07-30 Импресс Груп Б.В. Can end for a can and such can
US20080257900A1 (en) * 2007-04-20 2008-10-23 Rexam Beverage Can Company Can End With Negatively Angled Wall
US8875936B2 (en) 2007-04-20 2014-11-04 Rexam Beverage Can Company Can end with negatively angled wall
US20090039091A1 (en) * 2007-08-10 2009-02-12 Rexam Beverage Can Company Can End With Countersink
US8011527B2 (en) 2007-08-10 2011-09-06 Rexam Beverage Can Company Can end with countersink
US8973780B2 (en) 2007-08-10 2015-03-10 Rexam Beverage Can Company Can end with reinforcing bead
US9540137B2 (en) 2007-08-10 2017-01-10 Rexam Beverage Can Company Can end with reinforcing bead
US20090180999A1 (en) * 2008-01-11 2009-07-16 U.S. Nutraceuticals, Llc D/B/A Valensa International Method of preventing, controlling and ameliorating urinary tract infections using cranberry derivative and d-mannose composition
US10486852B2 (en) 2010-06-07 2019-11-26 Rexam Beverage Can Company Can end produced from downgauged blank
US9566634B2 (en) 2010-06-07 2017-02-14 Rexam Beverage Can Company Can end produced from downgauged blank
US8727169B2 (en) 2010-11-18 2014-05-20 Ball Corporation Metallic beverage can end closure with offset countersink
WO2012174058A1 (en) * 2011-06-14 2012-12-20 Crown Packaging Technology, Inc. Methos and system for forming high - strength beverage can ends of aluminum magnesium alloy and such can ends
US8939695B2 (en) 2011-06-16 2015-01-27 Sonoco Development, Inc. Method for applying a metal end to a container body
US9783337B2 (en) 2011-09-02 2017-10-10 Sonoco Development, Inc. Container with thermally fused double-seamed or crimp-seamed metal end
US9988179B2 (en) 2011-09-02 2018-06-05 Sonoco Development, Inc. Container with thermally fused double-seamed or crimp-seamed metal end
US10259612B2 (en) 2011-09-02 2019-04-16 Sonoco Development, Inc. Container with thermally fused double-seamed or crimp-seamed metal end
US9499299B2 (en) 2011-09-02 2016-11-22 Sonoco Development, Inc. Container with thermally fused double-seamed or crimp-seamed metal end
US8998027B2 (en) 2011-09-02 2015-04-07 Sonoco Development, Inc. Retort container with thermally fused double-seamed or crimp-seamed metal end
US10994888B2 (en) 2011-09-02 2021-05-04 Sonoco Development, Inc. Container with thermally fused double-seamed or crimp-seamed metal end
US10131455B2 (en) 2011-10-28 2018-11-20 Sonoco Development, Inc. Apparatus and method for induction sealing of conveyed workpieces
US10399139B2 (en) 2012-04-12 2019-09-03 Sonoco Development, Inc. Method of making a retort container
US10569324B2 (en) 2012-04-12 2020-02-25 Sonoco Development, Inc. Method of making a retort container
US11040495B2 (en) 2012-04-12 2021-06-22 Sonoco Development, Inc Method of making a retort container

Similar Documents

Publication Publication Date Title
US4448322A (en) Metal container end
US4217843A (en) Method and apparatus for forming ends
EP0088968B1 (en) A method for further forming a metal closure and a metal container end
US4641761A (en) Increased strength for metal beverage closure through reforming
US5487295A (en) Method of forming a metal container body
EP0303837B1 (en) Container closure with increased strength
US4577774A (en) Buckle resistance for metal container closures
US5502995A (en) Method and apparatus for forming a can shell
CA2333575C (en) Can bottom having improved strength and apparatus for making same
US3995572A (en) Forming small diameter opening for aerosol, screw cap, or crown cap by multistage necking-in of drawn or drawn and ironed container body
US5356256A (en) Reformed container end
US4685322A (en) Method of forming a drawn and redrawn container body
CA1238873A (en) Increased strength for metal beverage closure through reforming
US5351852A (en) Base profile for a drawn container
WO1986005421A1 (en) Drawn can body method, apparatus and products
US5851685A (en) Rivet in a converted can end, method of manufacture, and tooling
US4485663A (en) Tool for making container
USRE33217E (en) Buckle resistance for metal container closures
US20230016790A1 (en) Can end with a coined rivet, tooling assembly therefor and a method of forming
US20230286033A1 (en) Shell with expandable rivet button and tooling therefor
EP0103074A2 (en) Increased strenght for metal closures through reversing curved segments
US3468153A (en) Die set unit and method for can manufacture
GB1604068A (en) Metal container ends
US11400509B2 (en) Shell with expandable bubble and tooling therefor
EP0512984B1 (en) Method and apparatus for processing containers

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: AMERICAN NATIONAL CAN CORPORATION, A CORP OF DE.

Free format text: MERGER;ASSIGNORS:AMERICAN CAN PACKAGING INC., A CORP. OF DE.;TRAFALGAR INDUSTRIES INC., (INTO);NATIONAL CAN CORPORATION;REEL/FRAME:004813/0201

Effective date: 19870430

AS Assignment

Owner name: REXAM BEVERAGE CAN COMPANY, ILLINOIS

Free format text: CHANGE OF NAME;ASSIGNOR:AMERICAN NATIONAL CAN COMPANY;REEL/FRAME:011571/0181

Effective date: 20001204