US4410905A - Power, ground and decoupling structure for chip carriers - Google Patents

Power, ground and decoupling structure for chip carriers Download PDF

Info

Publication number
US4410905A
US4410905A US06/293,022 US29302281A US4410905A US 4410905 A US4410905 A US 4410905A US 29302281 A US29302281 A US 29302281A US 4410905 A US4410905 A US 4410905A
Authority
US
United States
Prior art keywords
chip
set forth
sliver
pattern
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US06/293,022
Inventor
Dimitry G. Grabbe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TE Connectivity Corp
Original Assignee
AMP Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AMP Inc filed Critical AMP Inc
Priority to US06/293,022 priority Critical patent/US4410905A/en
Assigned to AMP INCORPORATED reassignment AMP INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: GRABBE, DIMITRY G.
Application granted granted Critical
Publication of US4410905A publication Critical patent/US4410905A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3672Foil-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01056Barium [Ba]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/0665Epoxy resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/07802Adhesive characteristics other than chemical not being an ohmic electrical conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2924/15738Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
    • H01L2924/15747Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16152Cap comprising a cavity for hosting the device, e.g. U-shaped cap
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30105Capacitance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12528Semiconductor component

Definitions

  • This invention relates to a chip carrier for semiconductor chips, more specifically, to a power, ground and decoupling lead structure whereby a minimum number of chip carrier leads are utilized for power and ground connection and whereby the lead structure provides an integral decoupling capacitor structure having substantially zero inductance.
  • Chip carriers for integrated circuit chips are well known in the art and are widely used. Such chip carriers have lead arrays thereon which extend from the outer edges of the chip carrier to a central portion of the carrier where they are then connected to bonding pads on semiconductor chips bonded at and to the center of the chip carrier.
  • the leads on the chip carrier by virtue of the need of high density, are very narrow and therefore have a recognizable electrical resistance.
  • the chip mounted in the center of the chip carrier during the time of arrival of a clock pulse, may switch a large number of transistors simultaneously, therefore providing an instantaneous high drain from the power supply. If the resistance of the conductors is sufficiently high, this results in a voltage drop across the chip which renders it sensitive to noise and can cause errors in switching.
  • a lead structure whereby connection can be made from a power and ground pattern directly to the semiconductor chip pads with only one chip carrier lead being required for each of the sources of power and ground potential. Further, the lead patterns for providing power and ground connection also provide an integral decoupling capacitor structure for the system closely adjacent the chip and also can act as a heat sink for the chip.
  • a chip carrier having a plurality of leads thereon for external interconnection with preferably only one of the leads utilized to provide a source of power to the chip and preferably a single lead utilized as a ground connection.
  • the power and ground leads are connected to an interdigitated lead array at the center of the chip carrier with the chip being secured to the chip carrier above the interdigitated pattern.
  • the chip is bonded to an insulating sliver which rests above a glass filter and bonding agent which fills the space between the interdigitated pattern and the sliver.
  • the chip is hermetically sealed within a ceramic cap which is bonded to the chip carrier. Power and ground connections are made from the chip directly to a pair of buses surrounding the interdigitated patterns rather than to leads extending outwardly to the edge of the chip carrier.
  • FIG. 1 is a top view of a chip carrier having a lead structure in accordance with the present invention.
  • FIG. 2 is a cross-sectional view of the chip carrier of FIG. 1 with a semiconductor chip and appropriate structure for providing a completed circuit.
  • FIG. 1 there is shown a semiconductor chip carrier 1 of standard construction.
  • chip carriers are usually formed from aluminum oxide, beryllium oxide, or other similar electrically insulating ceramic types of material.
  • a lead pattern 3, preferably of copper, is formed on the chip carrier 1 as will be explained hereinbelow, the leads 5 and 9 of the lead area being utilized to provide power and a source of ground potential respectively from an external source to the semiconductor chip as will be described hereinbelow.
  • the lead 5 is connected to a lead portion 7, which is coupled to a bus portion 15 which in turn is connected to comb-shaped lead pattern 21.
  • Pattern 21 is interdigitated with the comb-shaped lead pattern 23 which is connected to bus 13 which in turn is connected to the pad 9 through the lead portion 11. It can therefore be seen that the power bus 15 is interdigitated with the ground bus 13 at the center portion of the chip carrier over which the semiconductor chip will be mounted in a manner to be described hereinbelow.
  • a decoupling capacitor represented as 31 is provided as a result of the capacitance between the interdigitated fingers 21 and 23 because the fingers are disposed upon and embedded in a dielectric substrate 1.
  • the capacitor 31, as shown, is therefore symbolic of the capacitor action taking place at the interdigitated pattern. This capacitor has substantially no inductance.
  • FIG. 2 there is shown the chip carrier 1 having lead 33 thereon and the interdigitated pattern (not shown) beneath a glass filler having barium titanate therein and bonding agent 25 which fills the space between the interdigitated pattern on the chip carrier 1 therebeneath and a beryllium oxide chip sliver 35.
  • a semiconductor chip 19 is bonded to the sliver 35, preferably with indium-bearing solder.
  • a lead 37 is shown connected from a pad on the chip 19 to one of the leads 33 in well known manner.
  • a ceramic cap 17 is bonded to the carrier 1 by means of sealant 27 which attaches the cap over the leads 3 on the substrate 1. This provides an hermetic seal and seals the chip within the cap.
  • the beryllium oxide sliver 35 can be mounted, metallized on the top side if a soldering attachment of the chip will be used, or without metallization if a silver epoxy die attachment will be used.
  • the chip 19 rests directly on top of the sliver 35 and propogates heat through the sliver.
  • the interdigitated metal pattern in addition to providing the capacitive coupling noted above, also is a good heat conductor with a high heat spreading coefficient. The net result of this structure is therefore to provide a low junction-to-case thermal resistance.
  • the copper lead frame is secured to the ceramic substrate by oxidizing one surface of the lead frame to form copper oxide and them forming a bond of the copper oxide and ceramic by the procedure described in the U.S. Pat. Nos. of Burgess et al. (3,744,120), Babcock et al. (3,766,634), Burgess et al. (3,854,892), Burgess et al. (3,911,553), Cusano et al. (3,994,430) and Cusano et al. (4,129,243).
  • a separate decoupling capacitor is not required and, in addition, only a single lead on the chip carrier or substrate is required for connection to the external world for each of the sources of power and ground potential.

Abstract

A chip carrier having a plurality of leads thereon for external interconnection with preferably only one of the leads utilized to provide a source of power to the chip and preferably a single lead utilized as a ground connection. The power and ground leads are connected to an interdigitated lead array at the center of the chip carrier with the chip being secured to the chip carrier above the interdigitated pattern. The chip is bonded to a dielectric sliver which rests above a glass filler and bonding agent which fills the space between the interdigitated pattern and the sliver. The chip is hermetically sealed within the ceramic cap which is bonded to the chip carrier. Power and ground connections are made, from the chip directly to a pair of buses surrounding the interdigitated pattern rather than to leads extending outwardly to the edge of the chip carrier.

Description

BACKGROUND OF THE INVENTION
1. FIELD OF THE INVENTION
This invention relates to a chip carrier for semiconductor chips, more specifically, to a power, ground and decoupling lead structure whereby a minimum number of chip carrier leads are utilized for power and ground connection and whereby the lead structure provides an integral decoupling capacitor structure having substantially zero inductance.
2. DESCRIPTION OF THE PRIOR ART
Chip carriers for integrated circuit chips are well known in the art and are widely used. Such chip carriers have lead arrays thereon which extend from the outer edges of the chip carrier to a central portion of the carrier where they are then connected to bonding pads on semiconductor chips bonded at and to the center of the chip carrier. The leads on the chip carrier, by virtue of the need of high density, are very narrow and therefore have a recognizable electrical resistance. The chip mounted in the center of the chip carrier, during the time of arrival of a clock pulse, may switch a large number of transistors simultaneously, therefore providing an instantaneous high drain from the power supply. If the resistance of the conductors is sufficiently high, this results in a voltage drop across the chip which renders it sensitive to noise and can cause errors in switching. Therefore it is important to maintain substantially constant potential across the chip. Usually, an attempt is made to handle this problem by placing decoupling capacitors directly adjacent to the chip carrier. This serves to eliminate the problem of voltage drop in the voltage and ground plane in the circuit board or chip carrier but not inside the chip carrier itself. These instantaneous switchings create two types of problems, one is instantaneous voltage drop as noted above and the second is that the self-inductance in the switching network creates an inductive spike. This spike is a source of electrical noise. If a capacitor was available immediately adjacent to the chip with the capability of having zero measurable inductance, it would remove the spike and reduce the noise in the chip.
SUMMARY OF THE INVENTION
In accordance with the present invention, there is provided a lead structure whereby connection can be made from a power and ground pattern directly to the semiconductor chip pads with only one chip carrier lead being required for each of the sources of power and ground potential. Further, the lead patterns for providing power and ground connection also provide an integral decoupling capacitor structure for the system closely adjacent the chip and also can act as a heat sink for the chip.
The above is accomplished by a chip carrier having a plurality of leads thereon for external interconnection with preferably only one of the leads utilized to provide a source of power to the chip and preferably a single lead utilized as a ground connection. The power and ground leads are connected to an interdigitated lead array at the center of the chip carrier with the chip being secured to the chip carrier above the interdigitated pattern. The chip is bonded to an insulating sliver which rests above a glass filter and bonding agent which fills the space between the interdigitated pattern and the sliver. The chip is hermetically sealed within a ceramic cap which is bonded to the chip carrier. Power and ground connections are made from the chip directly to a pair of buses surrounding the interdigitated patterns rather than to leads extending outwardly to the edge of the chip carrier.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a top view of a chip carrier having a lead structure in accordance with the present invention; and
FIG. 2 is a cross-sectional view of the chip carrier of FIG. 1 with a semiconductor chip and appropriate structure for providing a completed circuit.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
Referring first to FIG. 1, there is shown a semiconductor chip carrier 1 of standard construction. Such chip carriers are usually formed from aluminum oxide, beryllium oxide, or other similar electrically insulating ceramic types of material. A lead pattern 3, preferably of copper, is formed on the chip carrier 1 as will be explained hereinbelow, the leads 5 and 9 of the lead area being utilized to provide power and a source of ground potential respectively from an external source to the semiconductor chip as will be described hereinbelow. The lead 5 is connected to a lead portion 7, which is coupled to a bus portion 15 which in turn is connected to comb-shaped lead pattern 21. Pattern 21 is interdigitated with the comb-shaped lead pattern 23 which is connected to bus 13 which in turn is connected to the pad 9 through the lead portion 11. It can therefore be seen that the power bus 15 is interdigitated with the ground bus 13 at the center portion of the chip carrier over which the semiconductor chip will be mounted in a manner to be described hereinbelow.
A decoupling capacitor represented as 31 is provided as a result of the capacitance between the interdigitated fingers 21 and 23 because the fingers are disposed upon and embedded in a dielectric substrate 1. The capacitor 31, as shown, is therefore symbolic of the capacitor action taking place at the interdigitated pattern. This capacitor has substantially no inductance.
Referring now to FIG. 2, there is shown the chip carrier 1 having lead 33 thereon and the interdigitated pattern (not shown) beneath a glass filler having barium titanate therein and bonding agent 25 which fills the space between the interdigitated pattern on the chip carrier 1 therebeneath and a beryllium oxide chip sliver 35. A semiconductor chip 19 is bonded to the sliver 35, preferably with indium-bearing solder. A lead 37 is shown connected from a pad on the chip 19 to one of the leads 33 in well known manner. A ceramic cap 17 is bonded to the carrier 1 by means of sealant 27 which attaches the cap over the leads 3 on the substrate 1. This provides an hermetic seal and seals the chip within the cap.
The beryllium oxide sliver 35 can be mounted, metallized on the top side if a soldering attachment of the chip will be used, or without metallization if a silver epoxy die attachment will be used. The chip 19 rests directly on top of the sliver 35 and propogates heat through the sliver. The interdigitated metal pattern, in addition to providing the capacitive coupling noted above, also is a good heat conductor with a high heat spreading coefficient. The net result of this structure is therefore to provide a low junction-to-case thermal resistance.
The copper lead frame is secured to the ceramic substrate by oxidizing one surface of the lead frame to form copper oxide and them forming a bond of the copper oxide and ceramic by the procedure described in the U.S. Pat. Nos. of Burgess et al. (3,744,120), Babcock et al. (3,766,634), Burgess et al. (3,854,892), Burgess et al. (3,911,553), Cusano et al. (3,994,430) and Cusano et al. (4,129,243).
It can be seen that, in accordance with the present invention, a separate decoupling capacitor is not required and, in addition, only a single lead on the chip carrier or substrate is required for connection to the external world for each of the sources of power and ground potential.
Though the invention has been described with respect to a preferred embodiment thereof, many variations and modifications will immediately become apparent to those skilled in the art. It is therefore the intention that the appended claims be interpreted as broadly as possible in view of the prior art to include all such variations and modifications.

Claims (11)

What is claimed is:
1. A system for carrying semiconductor chips and the like comprising:
(a) an electrically insulating substrate,
(b) an electrical conductor pattern on said substrate extending to plural locations at the edges of said substrate, and
(c) an interdigitated pattern of electrically conductive material formed at a central region of said substrate, said pattern having two unconnected portions, each portion being connected to a different location at the edge of said substrate.
2. A system as set forth in claim 1 wherein said substrate is formed from a ceramic material.
3. A system as set forth in claim 1 further including an insulating sliver secured over said interdigitated pattern.
4. A system as set forth in claim 3 further including a semiconductor chip secured over said insulating sliver and means coupling plural pads on said semiconductor chip to one of said two unconnected portions.
5. A system as set forth in claim 3 further including glass filler means bonding said insulating sliver to said pattern.
6. A system as set forth in claim 4 further including glass filler means bonding said insulating sliver to said pattern.
7. A system as set forth in claim 4 further including indium-bearing solder means bonding said semiconductor chip to said insulating sliver.
8. A system as set forth in claim 6 further including indium-bearing solder means bonding said semiconductor chip to said insulating sliver.
9. A system as set forth in claim 5 where said glass filler includes barium titanate.
10. A system as set forth in claim 6 where said glass filler includes barium titanate.
11. A system as set forth in claim 8 where said glass filler includes barium titanate.
US06/293,022 1981-08-14 1981-08-14 Power, ground and decoupling structure for chip carriers Expired - Fee Related US4410905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US06/293,022 US4410905A (en) 1981-08-14 1981-08-14 Power, ground and decoupling structure for chip carriers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US06/293,022 US4410905A (en) 1981-08-14 1981-08-14 Power, ground and decoupling structure for chip carriers

Publications (1)

Publication Number Publication Date
US4410905A true US4410905A (en) 1983-10-18

Family

ID=23127294

Family Applications (1)

Application Number Title Priority Date Filing Date
US06/293,022 Expired - Fee Related US4410905A (en) 1981-08-14 1981-08-14 Power, ground and decoupling structure for chip carriers

Country Status (1)

Country Link
US (1) US4410905A (en)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4801999A (en) * 1987-07-15 1989-01-31 Advanced Micro Devices, Inc. Integrated circuit lead frame assembly containing voltage bussing and distribution to an integrated circuit die using tape automated bonding with two metal layers
US4835120A (en) * 1987-01-12 1989-05-30 Debendra Mallik Method of making a multilayer molded plastic IC package
US4873615A (en) * 1986-10-09 1989-10-10 Amp Incorporated Semiconductor chip carrier system
US4918511A (en) * 1985-02-01 1990-04-17 Advanced Micro Devices, Inc. Thermal expansion compensated metal lead frame for integrated circuit package
EP0389826A1 (en) * 1989-03-20 1990-10-03 Seiko Epson Corporation Arrangement of semiconductor devices and method of and apparatus for mounting semiconductor devices
US5019892A (en) * 1988-02-18 1991-05-28 Amp Incorporated Chip carrier with accumulator
US5099306A (en) * 1988-11-21 1992-03-24 Honeywell Inc. Stacked tab leadframe assembly
US5126820A (en) * 1985-02-01 1992-06-30 Advanced Micro Devices, Inc. Thermal expansion compensated metal lead frame for integrated circuit package
US5148265A (en) * 1990-09-24 1992-09-15 Ist Associates, Inc. Semiconductor chip assemblies with fan-in leads
US5200364A (en) * 1990-01-26 1993-04-06 Texas Instruments Incorporated Packaged integrated circuit with encapsulated electronic devices
US5258330A (en) * 1990-09-24 1993-11-02 Tessera, Inc. Semiconductor chip assemblies with fan-in leads
US5346861A (en) * 1990-09-24 1994-09-13 Tessera, Inc. Semiconductor chip assemblies and methods of making same
US5366931A (en) * 1991-10-30 1994-11-22 Hyundai Electronics Industries Co., Ltd. Fabrication method for on-chip decoupling capacitor
US5381037A (en) * 1993-06-03 1995-01-10 Advanced Micro Devices, Inc. Lead frame with selected inner leads coupled to an inner frame member for an integrated circuit package assemblies
US5389577A (en) * 1992-08-31 1995-02-14 Sgs-Thomson Microelectronics, Inc. Leadframe for integrated circuits
US5482898A (en) * 1993-04-12 1996-01-09 Amkor Electronics, Inc. Method for forming a semiconductor device having a thermal dissipator and electromagnetic shielding
US5589709A (en) * 1992-12-03 1996-12-31 Linear Technology Inc. Lead frame capacitor and capacitively-coupled isolator circuit using same
US5661336A (en) * 1994-05-03 1997-08-26 Phelps, Jr.; Douglas Wallace Tape application platform and processes therefor
US5672909A (en) * 1995-02-07 1997-09-30 Amkor Electronics, Inc. Interdigitated wirebond programmable fixed voltage planes
US5679977A (en) * 1990-09-24 1997-10-21 Tessera, Inc. Semiconductor chip assemblies, methods of making same and components for same
US5734198A (en) * 1994-11-10 1998-03-31 Micron Technology, Inc. Multi-layer lead frame for a semiconductor device
US5801074A (en) * 1996-02-20 1998-09-01 Kim; Jong Tae Method of making an air tight cavity in an assembly package
US5820014A (en) 1993-11-16 1998-10-13 Form Factor, Inc. Solder preforms
US5943558A (en) * 1996-09-23 1999-08-24 Communications Technology, Inc. Method of making an assembly package having an air tight cavity and a product made by the method
US5965936A (en) * 1997-12-31 1999-10-12 Micron Technology, Inc. Multi-layer lead frame for a semiconductor device
US5982018A (en) * 1997-05-23 1999-11-09 Micron Technology, Inc. Thin film capacitor coupons for memory modules and multi-chip modules
US5994152A (en) 1996-02-21 1999-11-30 Formfactor, Inc. Fabricating interconnects and tips using sacrificial substrates
US6054754A (en) * 1997-06-06 2000-04-25 Micron Technology, Inc. Multi-capacitance lead frame decoupling device
US6114756A (en) * 1998-04-01 2000-09-05 Micron Technology, Inc. Interdigitated capacitor design for integrated circuit leadframes
US6144089A (en) * 1997-11-26 2000-11-07 Micron Technology, Inc. Inner-digitized bond fingers on bus bars of semiconductor device package
US6225694B1 (en) * 1997-09-02 2001-05-01 Oki Electric Industry Co, Ltd. Semiconductor device
US6274823B1 (en) 1993-11-16 2001-08-14 Formfactor, Inc. Interconnection substrates with resilient contact structures on both sides
US6285070B1 (en) 1995-12-22 2001-09-04 Micron Technology, Inc. Method of forming semiconductor die with integral decoupling capacitor
US6426461B1 (en) * 2000-09-21 2002-07-30 Delphi Technologies, Inc. Enclosure for electronic components
US6472737B1 (en) 1998-01-20 2002-10-29 Micron Technology, Inc. Lead frame decoupling capacitor, semiconductor device packages including the same and methods
US6518660B2 (en) * 2001-02-19 2003-02-11 Samsung Electronics Co., Ltd. Semiconductor package with ground projections
US6563192B1 (en) 1995-12-22 2003-05-13 Micron Technology, Inc. Semiconductor die with integral decoupling capacitor
US20030148578A1 (en) * 2002-02-07 2003-08-07 Ku Joseph W. Method and apparatus for building up large scale on chip de-coupling capacitor on standard CMOS/SOI technology
US7098078B2 (en) 1990-09-24 2006-08-29 Tessera, Inc. Microelectronic component and assembly having leads with offset portions
US8033838B2 (en) 1996-02-21 2011-10-11 Formfactor, Inc. Microelectronic contact structure
US20170110426A1 (en) * 2015-10-16 2017-04-20 Advanced Semiconductor Engineering, Inc. Lid structure and semiconductor device package including the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3648122A (en) * 1970-06-19 1972-03-07 Bell Telephone Labor Inc Metal-insulator-metal solid-state rectifier
US4366342A (en) * 1978-06-21 1982-12-28 Minnesota Mining And Manufacturing Company Conductively coated embossed articles

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3648122A (en) * 1970-06-19 1972-03-07 Bell Telephone Labor Inc Metal-insulator-metal solid-state rectifier
US4366342A (en) * 1978-06-21 1982-12-28 Minnesota Mining And Manufacturing Company Conductively coated embossed articles

Cited By (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4918511A (en) * 1985-02-01 1990-04-17 Advanced Micro Devices, Inc. Thermal expansion compensated metal lead frame for integrated circuit package
US5126820A (en) * 1985-02-01 1992-06-30 Advanced Micro Devices, Inc. Thermal expansion compensated metal lead frame for integrated circuit package
US4873615A (en) * 1986-10-09 1989-10-10 Amp Incorporated Semiconductor chip carrier system
US4835120A (en) * 1987-01-12 1989-05-30 Debendra Mallik Method of making a multilayer molded plastic IC package
US4801999A (en) * 1987-07-15 1989-01-31 Advanced Micro Devices, Inc. Integrated circuit lead frame assembly containing voltage bussing and distribution to an integrated circuit die using tape automated bonding with two metal layers
US5019892A (en) * 1988-02-18 1991-05-28 Amp Incorporated Chip carrier with accumulator
US5099306A (en) * 1988-11-21 1992-03-24 Honeywell Inc. Stacked tab leadframe assembly
EP0389826A1 (en) * 1989-03-20 1990-10-03 Seiko Epson Corporation Arrangement of semiconductor devices and method of and apparatus for mounting semiconductor devices
US5200364A (en) * 1990-01-26 1993-04-06 Texas Instruments Incorporated Packaged integrated circuit with encapsulated electronic devices
US6392306B1 (en) 1990-09-24 2002-05-21 Tessera, Inc. Semiconductor chip assembly with anisotropic conductive adhesive connections
US5148265A (en) * 1990-09-24 1992-09-15 Ist Associates, Inc. Semiconductor chip assemblies with fan-in leads
US5346861A (en) * 1990-09-24 1994-09-13 Tessera, Inc. Semiconductor chip assemblies and methods of making same
US5950304A (en) * 1990-09-24 1999-09-14 Tessera, Inc. Methods of making semiconductor chip assemblies
US6372527B1 (en) 1990-09-24 2002-04-16 Tessera, Inc. Methods of making semiconductor chip assemblies
US6433419B2 (en) 1990-09-24 2002-08-13 Tessera, Inc. Face-up semiconductor chip assemblies
US6465893B1 (en) 1990-09-24 2002-10-15 Tessera, Inc. Stacked chip assembly
US5258330A (en) * 1990-09-24 1993-11-02 Tessera, Inc. Semiconductor chip assemblies with fan-in leads
US7098078B2 (en) 1990-09-24 2006-08-29 Tessera, Inc. Microelectronic component and assembly having leads with offset portions
US6133627A (en) * 1990-09-24 2000-10-17 Tessera, Inc. Semiconductor chip package with center contacts
US7198969B1 (en) 1990-09-24 2007-04-03 Tessera, Inc. Semiconductor chip assemblies, methods of making same and components for same
US7271481B2 (en) 1990-09-24 2007-09-18 Tessera, Inc. Microelectronic component and assembly having leads with offset portions
US5679977A (en) * 1990-09-24 1997-10-21 Tessera, Inc. Semiconductor chip assemblies, methods of making same and components for same
US5682061A (en) * 1990-09-24 1997-10-28 Tessera, Inc. Component for connecting a semiconductor chip to a substrate
US7291910B2 (en) 1990-09-24 2007-11-06 Tessera, Inc. Semiconductor chip assemblies, methods of making same and components for same
US5366931A (en) * 1991-10-30 1994-11-22 Hyundai Electronics Industries Co., Ltd. Fabrication method for on-chip decoupling capacitor
US5389577A (en) * 1992-08-31 1995-02-14 Sgs-Thomson Microelectronics, Inc. Leadframe for integrated circuits
US5926358A (en) * 1992-12-03 1999-07-20 Linear Technology Corporation Lead frame capacitor and capacitively-coupled isolator circuit using same
US5650357A (en) * 1992-12-03 1997-07-22 Linear Technology Corporation Process for manufacturing a lead frame capacitor and capacitively-coupled isolator circuit using same
US5945728A (en) * 1992-12-03 1999-08-31 Linear Technology Corporation Lead frame capacitor and capacitively coupled isolator circuit
US5589709A (en) * 1992-12-03 1996-12-31 Linear Technology Inc. Lead frame capacitor and capacitively-coupled isolator circuit using same
US5482898A (en) * 1993-04-12 1996-01-09 Amkor Electronics, Inc. Method for forming a semiconductor device having a thermal dissipator and electromagnetic shielding
US5485037A (en) * 1993-04-12 1996-01-16 Amkor Electronics, Inc. Semiconductor device having a thermal dissipator and electromagnetic shielding
US5381037A (en) * 1993-06-03 1995-01-10 Advanced Micro Devices, Inc. Lead frame with selected inner leads coupled to an inner frame member for an integrated circuit package assemblies
US5820014A (en) 1993-11-16 1998-10-13 Form Factor, Inc. Solder preforms
US6274823B1 (en) 1993-11-16 2001-08-14 Formfactor, Inc. Interconnection substrates with resilient contact structures on both sides
US5889320A (en) * 1994-05-03 1999-03-30 Phelps, Jr.; Douglas Wallace Tape application platform and processes therefor
US5696032A (en) * 1994-05-03 1997-12-09 Phelps, Jr.; Douglas Wallace Tape application platform and processes therefor
US6043557A (en) * 1994-05-03 2000-03-28 Phelps, Jr.; Douglas Wallace Tape application platform and processes therefor
US5661336A (en) * 1994-05-03 1997-08-26 Phelps, Jr.; Douglas Wallace Tape application platform and processes therefor
US5734198A (en) * 1994-11-10 1998-03-31 Micron Technology, Inc. Multi-layer lead frame for a semiconductor device
US6124630A (en) * 1994-11-10 2000-09-26 Micron Technology, Inc. Multi-layer lead frame for a semiconductor device
US6307255B1 (en) 1994-11-10 2001-10-23 Micron Technology, Inc. Multi-layer lead frame for a semiconductor device
US5672909A (en) * 1995-02-07 1997-09-30 Amkor Electronics, Inc. Interdigitated wirebond programmable fixed voltage planes
US6563192B1 (en) 1995-12-22 2003-05-13 Micron Technology, Inc. Semiconductor die with integral decoupling capacitor
US6285070B1 (en) 1995-12-22 2001-09-04 Micron Technology, Inc. Method of forming semiconductor die with integral decoupling capacitor
US5801074A (en) * 1996-02-20 1998-09-01 Kim; Jong Tae Method of making an air tight cavity in an assembly package
US5994152A (en) 1996-02-21 1999-11-30 Formfactor, Inc. Fabricating interconnects and tips using sacrificial substrates
US8033838B2 (en) 1996-02-21 2011-10-11 Formfactor, Inc. Microelectronic contact structure
US6707136B2 (en) 1996-09-04 2004-03-16 Micron Technology, Inc. Multi-layer lead frame for a semiconductor device
US6515353B2 (en) 1996-09-04 2003-02-04 Micron Technology, Inc. Multi-layer lead frame for a semiconductor device
US5943558A (en) * 1996-09-23 1999-08-24 Communications Technology, Inc. Method of making an assembly package having an air tight cavity and a product made by the method
US6165814A (en) * 1997-05-23 2000-12-26 Micron Technology, Inc. Thin film capacitor coupons for memory modules and multi-chip modules
US5982018A (en) * 1997-05-23 1999-11-09 Micron Technology, Inc. Thin film capacitor coupons for memory modules and multi-chip modules
US6342724B1 (en) 1997-05-23 2002-01-29 Micron Technology, Inc. Thin film capacitor coupons for memory modules and multi-chip modules
US6054754A (en) * 1997-06-06 2000-04-25 Micron Technology, Inc. Multi-capacitance lead frame decoupling device
US6184574B1 (en) 1997-06-06 2001-02-06 Micron Technology, Inc. Multi-capacitance lead frame decoupling device
US6310388B1 (en) 1997-06-06 2001-10-30 Micron Technology, Inc. Semiconductor die assembly having leadframe decoupling characters
US6781219B2 (en) 1997-06-06 2004-08-24 Micron Technology, Inc. Semiconductor die assembly having leadframe decoupling characters
US6504236B2 (en) 1997-06-06 2003-01-07 Micron Technology, Inc. Semiconductor die assembly having leadframe decoupling characters and method
US6538319B2 (en) 1997-09-02 2003-03-25 Oki Electric Industry Co., Ltd. Semiconductor device
US6225694B1 (en) * 1997-09-02 2001-05-01 Oki Electric Industry Co, Ltd. Semiconductor device
US6376282B1 (en) 1997-11-26 2002-04-23 Micron Technology, Inc. Inner-digitized bond fingers on bus bars of semiconductor device package
US6144089A (en) * 1997-11-26 2000-11-07 Micron Technology, Inc. Inner-digitized bond fingers on bus bars of semiconductor device package
US6630732B2 (en) 1997-11-26 2003-10-07 Micron Technology, Inc. Lead frames including inner-digitized bond fingers on bus bars and semiconductor device package including same
US5965936A (en) * 1997-12-31 1999-10-12 Micron Technology, Inc. Multi-layer lead frame for a semiconductor device
US6515359B1 (en) 1998-01-20 2003-02-04 Micron Technology, Inc. Lead frame decoupling capacitor semiconductor device packages including the same and methods
US20030052402A1 (en) * 1998-01-20 2003-03-20 Corisis David J. Lead frame decoupling capacitor, semiconductor device packages including the same and methods
US6472737B1 (en) 1998-01-20 2002-10-29 Micron Technology, Inc. Lead frame decoupling capacitor, semiconductor device packages including the same and methods
US7071542B2 (en) 1998-01-20 2006-07-04 Micron Technology, Inc. Lead frame decoupling capacitor, semiconductor device packages including the same and methods
US6717257B2 (en) 1998-01-20 2004-04-06 Micron Technology, Inc. Lead frame decoupling capacitor, semiconductor device packages including the same and methods
US20060118924A1 (en) * 1998-01-20 2006-06-08 Corisis David J Lead frame assemblies and decoupling capacitors
US6265764B1 (en) 1998-04-01 2001-07-24 Micron Technology, Inc. Interdigitated capacitor design for integrated circuit lead frames
US6730994B2 (en) 1998-04-01 2004-05-04 Micron Technology, Inc. Interdigitated capacitor design for integrated circuit lead frames and methods
US6531765B2 (en) 1998-04-01 2003-03-11 Micron Technology, Inc. Interdigitated capacitor design for integrated circuit lead frames and method
US6114756A (en) * 1998-04-01 2000-09-05 Micron Technology, Inc. Interdigitated capacitor design for integrated circuit leadframes
US6396134B2 (en) 1998-04-01 2002-05-28 Micron Technology, Inc. Interdigitated capacitor design for integrated circuit lead frames
US6426461B1 (en) * 2000-09-21 2002-07-30 Delphi Technologies, Inc. Enclosure for electronic components
US6518660B2 (en) * 2001-02-19 2003-02-11 Samsung Electronics Co., Ltd. Semiconductor package with ground projections
US6982197B2 (en) * 2002-02-07 2006-01-03 Hewlett-Packard Development Company, L.P. Method and apparatus for building up large scale on chip de-coupling capacitor on standard CMOS/SOI technology
US20030148578A1 (en) * 2002-02-07 2003-08-07 Ku Joseph W. Method and apparatus for building up large scale on chip de-coupling capacitor on standard CMOS/SOI technology
US20170110426A1 (en) * 2015-10-16 2017-04-20 Advanced Semiconductor Engineering, Inc. Lid structure and semiconductor device package including the same
US10804173B2 (en) * 2015-10-16 2020-10-13 Advanced Semiconductor Engineering, Inc. Lid structure and semiconductor device package including the same
US11776862B2 (en) 2015-10-16 2023-10-03 Advanced Semiconductor Engineering, Inc. Lid structure and semiconductor device package including the same

Similar Documents

Publication Publication Date Title
US4410905A (en) Power, ground and decoupling structure for chip carriers
US4038488A (en) Multilayer ceramic multi-chip, dual in-line packaging assembly
US5475264A (en) Arrangement having multilevel wiring structure used for electronic component module
US4982311A (en) Package for very large scale integrated circuit
US5629240A (en) Method for direct attachment of an on-chip bypass capacitor in an integrated circuit
US3784884A (en) Low parasitic microwave package
US4578697A (en) Semiconductor device encapsulating a multi-chip array
US3683241A (en) Radio frequency transistor package
US4860087A (en) Semiconductor device and process for producing the same
US5883428A (en) Package for housing a semiconductor element
US5635751A (en) High frequency transistor with reduced parasitic inductance
JPS63260042A (en) Integrated package single bonding shelf multi-row wire bonding finger layout
GB2324411A (en) Lead frame structure and semiconductor package
JPH04212444A (en) Integrated circuit provided with packaged encapsuled electronic device
US6340839B1 (en) Hybrid integrated circuit
US4646126A (en) Semiconductor device
US6087721A (en) Semiconductor device with a high-frequency bipolar transistor on an insulating substrate
US9866213B1 (en) High voltage switch module
JPS6220707B2 (en)
JPH0563454A (en) Semiconductor device
US5719748A (en) Semiconductor package with a bridge for chip area connection
JP2003514395A (en) Multi-chip module for high power
JP2901401B2 (en) Multi-chip module
JPH0412538A (en) Semiconductor device
JP2830816B2 (en) Resin-sealed semiconductor device

Legal Events

Date Code Title Description
AS Assignment

Owner name: AMP INCORPORATED, 3705 PAXTON ST., HARRISBURG, PA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:GRABBE, DIMITRY G.;REEL/FRAME:003910/0355

Effective date: 19810811

Owner name: AMP INCORPORATED, PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GRABBE, DIMITRY G.;REEL/FRAME:003910/0355

Effective date: 19810811

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, PL 96-517 (ORIGINAL EVENT CODE: M170); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, PL 96-517 (ORIGINAL EVENT CODE: M171); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees
FP Lapsed due to failure to pay maintenance fee

Effective date: 19951018

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362