US3950277A - Laundry pre-soak compositions - Google Patents

Laundry pre-soak compositions Download PDF

Info

Publication number
US3950277A
US3950277A US05/382,415 US38241573A US3950277A US 3950277 A US3950277 A US 3950277A US 38241573 A US38241573 A US 38241573A US 3950277 A US3950277 A US 3950277A
Authority
US
United States
Prior art keywords
lipase
amano
fabrics
compositions
soaking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US05/382,415
Inventor
Robert Lee Stewart
Homer Wallace McCune
Francis Louvaine Diehl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Priority to US05/382,415 priority Critical patent/US3950277A/en
Application granted granted Critical
Publication of US3950277A publication Critical patent/US3950277A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • C11D3/38627Preparations containing enzymes, e.g. protease or amylase containing lipase

Definitions

  • This invention relates to compositions and methods for removing oily triglyceride stains from fabrics, especially cotton or cotton blend fabrics. More particularly, the invention relates to the use of mixtures of a lipase enzyme and an activator selected from the group consisting of naphthalene sulfonates, certain polyoxyalkylene derivatives of ethylenediamine and certain acylamino acid salts as pre-soaking compositions for removal of oily triglyceride stains.
  • the present invention employs the combination of a lipase enzyme and a lipase activator in a laundry pre-soak operation for the removal of oily triglyceride stains from fabrics.
  • lipolytic enzymes i.e., lipases
  • a lipolytic enzyme i.e., lipases
  • a synthetic lipase activator Such activators have been found to be effective and economical substitutes for the bile lipase activators.
  • the present invention encompasses laundry compositions especially adapted to removal of triglyceride stains from fabrics, comprising from about 0.01 to about 7.0% by weight of a lipolytic enzyme, and from about 0.1 to about 70.0% by weight of a lipase activator selected from the group consisting of water-soluble napthalene sulfonates; water-soluble (having a cloud point in 10% solution less than 75°C) polyoxyalkylene derivatives of ethylenediamine of the formula: ##EQU1## wherein, x, y, x', and y' are each integers having a sum of from about 8 to about 120 (preferably from about 25 to about 90) and w, z, w', and z' are each integers having a sum of from about 2 to about 80 (preferably from about 6 to about 65); and water-soluble acylamino acid salts of the formula: ##EQU2## wherein R is straight or branched chain alkyl containing at least 9 carbon atoms
  • compositions herein are particularly effective when used in pre-soaking processes wherein the soiled fabric is soaked in said aqueous compositions for a period of from at least about 30 minutes to about 24 hours, and thereafter laundered in an aqueous solution of a conventional soap or detergent composition using standard household equipment.
  • compositions of the present invention contain two essential components, a lipolytic enzyme (lipase) and a lipase activator.
  • lipase comprises from about 0.01 to about 7.0%, preferably from about 0.02 to about 4.0%, of the composition and the lipase activator comprises from about 0.1 to about 70.0%, preferably from about 0.2 to about 40.0%, by weight of the composition.
  • reference to % concentrations mean % by weight of the total composition.
  • the process of the present invention for removing triglyceride stains from fabrics involve two essential steps.
  • the first step consists of soaking the soiled fabric in an aqueous composition comprising a lipase, a lipase activator, and a conventional soap or detergent compound at a temperature of from about 40° to about 160°F for a period of from at least about 30 minutes.
  • the soaking time depends on the load of triglyceride stain on the fabric, the enzyme concentration employed, the soaking temperature, the type of fabric and the use. Such considerations are well within the discretion of the routineer.
  • the fabrics are cleansed in standard fashion using an aqueous soap or detergent solution.
  • the triglycerides are degraded into diglycerides, monoglycerides, and/or glycerin and free fatty acids which are readily removed from the fabric in the subsequent laundering step.
  • the lipase activators of the present invention enhance the degradation of triglycerides by emulsifying the fatty acids produced, thereby preventing the formation of fatty acid mineral salts which might otherwise interfere with the ester-water interface believed necessary fo lipase hydrolysis (cf. Wills, Bio. Chem. J., 60, 529 (1955)).
  • the lipases employed in this invention are those which exhibit lipolytic activity under the conditions of temperature and pH normally encountered in laundry situations.
  • the lipases suitable herein are those which are characterized by sufficient lipolytic activity at a soaking temperature of about 40° to 160°F in a pH range of from 6 to 11 to alter, presumably by cleavage of ester bonds, or otherwise render more easily removable, the triglycerides found in oily stains normally encountered in a laundry situation.
  • Lipases suitable for use herein include those of animal, plant, and microbiological origin. Although only a few studies on lipase distribution in plants have been conducted, suitable lipase enzymes are present in cambium, bark, and in plant roots. In addition, lipases have been found in the seeds of fruit, oil palm, lettuce, rice bran, barley and malt, wheat, oats and oat flour, cotton, tung kernels, corn, millet, coconuts, walnuts, fusarium, cannabis and cucurbito.
  • lipases suitable for use herein can be derived from Pseudomonas, Aspergillus, Pneumococcus, Staphylococcus, and Staphylococcus Toxins, Mycobacterium Tuberculosis, Mycotorula Lipolytica, and Sclerotinia, microorganisms.
  • Suitable animal lipases are found in the body fluids and organs of many species. Most organs of mammals contain lipases, but in addition, the enzymes are found in several digestive juices as well as in pancreatic juice. A preferred class of animal lipase herein is the pancreatic lipase.
  • the lipases preferred for use herein are Amano CE, Amano M-AP, Takeda 1969-4-9, and Meito MY-30.
  • the concentration of lipase employed in the present compositions is an amount sufficient to degrade, or otherwise alter, triglyceride stains, during the soaking step of the instant processes, to ease their removal. While the concentrations employed are dependent upon the particular enzyme used and the conditions of solution, such as pH, temperature, and period of the presoak, normally, concentrations in the range of from about 0.01 to about 7.0% and preferably from about 0.02 to about 4.0%, are employed. Pre-soak compositions having a lipase component within this range result in normally useful concentrations of lipase in solution. The use of lipase below about 1 ppm, even at maximum concentrations, tends to require extended soaking periods, while the use of lipase at above about 100 ppm provides little additional benefit and is therefore economically wasteful.
  • lipase employed herein is somewhat dependent upon the activity level of the enzymes.
  • Preferred herein are enzymes having an activity of from 10,000 to 20,000 units per gram (u/g) as determined by the liberation of fatty acid from triglyceride substrates under the conditions described more fully in the Report of the Enzyme Committee, International Biochemical Union 7-11 (1963).
  • the lipase activators suitable for use in the present invention are members selected from the group consisting of naphthalene sulfonates, certain polyoxyalkylenes of ethylenediamine, and certain acylamino acid salts.
  • naphthalene sulfonates suitable for use herein include both the alpha and beta sulfonated naphthalenes. Such salts are commercially available wetting agents marketed by, for example, American Cyanamid Company.
  • the preferred salts of naphthalene sulfonate include the alkali metal, ammonium, and substituted ammonium salts.
  • suitable alkali metal salts include sodium isopropylnaphthalene sulfonate, potassium methylnaphthalene sulfonate, cesium butylnaphthalene sulfonate, and rubidium naphthalene sulfonate.
  • ammonium salts include ammonium naphthalene sulfonate and ammonium alkylnaphthalene sulfonates.
  • the substituted water-soluble ammonium salts of napthalene sulfonate include lower alkyl, alkanol, and aryl ammonium salts such as tetramethylammonium naphthalene sulfonate, diethanolammonium isopropylnaphthalene sulfonate, phenylammonium methylnaphthalene sulfonate, triethanolammonium butylnaphthalene sulfonate, and quinolylammonium naphthalene sulfonate.
  • the most preferred naphthalene sulfonate suitable for use herein is sodium isopropylnaphthalene sulfonate marketed by American Cynamid Company as Aerosol OS.
  • the polyoxyalkylene derivatives of ethylenediamine suitable for use herein are prepared by the sequential addition of ethylene and propylene oxides to ethylenediamine according to known procedures, and are commercially available, for example, from Wyandotte Chemicals Corporation under the tradename "Tetronics".
  • tetronics are thoroughly discussed in Wyandotte Chemicals Technical Bulletin, "Technical Data on Tetronic Series Nonionic Surfactants (1968)", incorporated herein by reference, and include for example Tetronics 501, 1104, 1301, 1302, 1501, 1502, 504, 701, 702, 704, 901, 904, 1101, and 1102.
  • the most preferred polyoxyalkylene derivative of ethylenediamine suitable for use herein is Tetronic 701, wherein the poly(oxypropylene) hydrotrope has a typical molecular weight in the range of 2501 to 3000 and the poly(oxyethylene) hydrophil has a weight percentage of about 10%.
  • acylamino acid salts suitable for use herein can be prepared by standard procedures.
  • suitable acylamino acid salts include N-caproyl-glycine, sodium salt; N-stearoyl-glycine, ammonium salt; N-palmityl glycine, methanolammonium salt; N-undecanoyl-1-alanine, potassium salt; N-lauroyl-d-alanine, tetramethylammonium salt; N-myristyl-1-alanine, naphthylammonium salt; N-margaroyl-d-valine, lithium salt; N-cerotyl-1-valine, ammonium salt; N-heneicosanoyl-1-valine, dimethylammonium salt; N-lauroyl-1-leucine, sodium salt; N-arachidyl-d-leucine, di-pyridylammonium salt; N-tridecanoyl-1-leucine
  • soaps i.e., the water-soluble salts, especially the alkali metal salts, of fatty acids containing from about 10 to about 22 carbon atoms can optionally be present with the lipase and activator in the soaking step.
  • synthetic detergent compounds such as those disclosed in U.S. Pat. No. 3,308,067 issued Mar. 7, 1967, incorporated herein by reference, can be present in the soaking step.
  • compositions comprising, in addition to lipase enzymes and lipase activators, a conventional surfactant system, as detailed above, are preferred for use herein.
  • Various materials such as sequestrants, builder salts and the like can likewise be co-present with the lipase and lipase activator in the soaking step.
  • the water-soluble salts of the polyphosphates, phosphates, tripolyphosphates, nitrilotriacetates, ethylenediaminetetracetates, carbonates, etc. can optionally be used in conjunction with the activator and lipase in the soaking step of the instant process.
  • sequestrants and builders include the phosphate, carbonate, etc., salts disclosed hereinafter. All such materials are compatible with the lipase enzymes herein.
  • the pH of the soaking step can be maintained at a particular and desired level by the incorporation of a buffering agent.
  • the soaking step will normally be effected at a pH of from 6 to 11, and buffering agents can be employed to regulate pH within said range, especially the preferred range of 8 to 10, so as to maximize the activity of the lipase employed.
  • Preferred buffers for use herein are sodium tetraborate decahydrate combined with boric acid, which maintains an acid-base balance within a pH range corresponding to the optimum lipolytic activity level.
  • Other suitable buffers can be employed to maintain a desired pH range depending on the particular lipase used in the presoak. Exampls of other buffers include monosodium phosphate, and sodium acid pyrophosphate and mixtures thereof.
  • Soil-suspending agents such as sodium carboxymethylcellulose, optical brighteners, dyes, germicidal agents, suds depressants, and suds boosters can each be added in amounts up to about 10% by weight of the composition.
  • the soaking step of the process of the present invention can be carried out in any of the types of containers normally found in the household.
  • the soaking step can be conducted in basins, tubs, washtubs, buckets, pails or the like so as to effect the soil- and stain-removing function of the combined employment of lipase and activator.
  • a preferred method of effecting the soaking operation involves the use of the laundry tub or basin of a conventional home washing machine.
  • the conduct of the soaking step in this fashion eliminates the need for removing the garments for a subsequent washing operation which will normally be effected in a washing machine.
  • the soaking of the fabrics can be conducted with the aid of agitation. Such agitation is conveniently employed as a means of reducing the soaking time required to effect soil and stain removal.
  • the soaking operation can be conducted over a wide temperature range and in accordance with usual laundry soaking methods.
  • the temperature should not be such as to cause inactivation or denaturation of the enzyme component.
  • a temperature in the range of from 40° to 160°F is suitable from the standpoint of assuring substantial enzymatic activity.
  • a preferred temperature is from 80° to 110°F.
  • the washing step which follows the presoaking step described hereinbefore is conducted in the presence of an organic detergent.
  • Suitable detergents for employment in the washing step include, for example, any of the commercially-available heavy-duty laundry compositions or soap compositions commonly employed in home laundering.
  • Detergent compositions will comprise a water-soluble organic synthetic detergent or soap and, preferably, a builder salt for enhanced cleaning properties.
  • suitable detergent compounds which can be employed are those described hereinbefore and the alkali metal soaps, such as the sodium and potassium salts, of naturally occurring plant or animal esters (e.g., palm oil, coconut oil, babassu oil, soybean oil, castor oil, tallow, whale and fish oils, grease and lard, and mixtures thereof) or of synthetically produced fatty acids (e.g., rosin and those resin acids in tall oil) and/or of naphthenic acids.
  • naturally occurring plant or animal esters e.g., palm oil, coconut oil, babassu oil, soybean oil, castor oil, tallow, whale and fish oils, grease and lard, and mixtures thereof
  • synthetically produced fatty acids e.g., rosin and those resin acids in tall oil
  • naphthenic acids e.g., rosin and those resin acids in tall oil
  • Suitable builder salts will include alkali metal carbonates, borates, phosphates, polyphosphates, bicarbonates and silicates. Ammonium or substituted ammonium salts can also be used. Specific examples of such salts are sodium tripolyphosphate, sodium carbonate, sodium pyrophosphate, sodium bicarbonate, potassium tripolyphosphate, sodium hexametaphosphate, sodium sesquicarbonate, sodium mono- and diorthophosphate and potassium bicarbonate.
  • organic alkaline sequestrant and builder salts used alone or in admixture include alkali metal, ammonium or substituted ammonium, aminopolycarboxylates, e.g., sodium and potassium N-(2-hydroxyethyl) -ethylenediaminetriacetates, sodium and potassium nitrilotriacetates and sodium, potassium and triethanolammonium N-(2-hydroxyethyl)-nitrilo diacetates. Mixed salts of these polycarboxylates are also suitable.
  • the alkali metal salts of phytic acid, e.g., sodium phytate are also suitable as organic alkaline sequestrant builder salts (see U.S. Pat. No. 2,739,942).
  • the detergent and builder components will normally be employed in such amounts as to provide a ratio of builder salt to organic detergent of from about 1:1 to 10:1.
  • the treated fabrics are laundered in a conventional manner with the aid of an effective amount of a laundry composition comprising a detergent surfactant and optional builder components as described.
  • the laundry detergent component can be added to the aqueous presoaking bath so as to conveniently effect the two-step process of the present invention.
  • the detergent washing step which involves the use of conventional laundry detergent compositions in amounts customarily employed in home laundering operations, facilitates the removal of the fragmented products resulting from the fat-splitting properties of the lipase employed in the soaking step.
  • the hydrolyzed products of the soaking which include glycerine and fatty acids, are removed from the treated fabrics to provide improved cleaning effects.
  • Fabrics treated in accordance with the presoaking and washing steps of the present invention are rinsed in the usual fashion.
  • the rinsing operation can be conveniently effected in a home washing machine as the usual rinsing operation which follows a conventional detergent wash.
  • the treated fabrics can be dried, ironed or folded as is customary in the laundry arts.
  • the process of the present invention is particularly efficacious in removing oily triglyceride soils and stains from polyester and polyester-containing fabric materials.
  • the process can be employed to remove such triglyceride soils and stains from fabrics woven from polyester fibers or from fabrics which employ combinations of polyester fibers and other fibers (e.g., 65% polyester, 35% cotton blends).
  • polyester fabrics are those woven or nonwoven materials fabricated from polyester fibers, the most common of which are copolymers of ethylene glycol and terephthalic acid. Such fabrics are commercially available under a number of trade names, e.g., Dacron, Fortrel, Kodel and Blue C Polyester.
  • the following example illustrates a laundry pre-soak composition containing lipase in combination with a lipase activator as hereinabove defined.
  • the example is only by way of illustration and is not intended to be limiting of the compositions of the invention.
  • the Amano M-AP lipase is replaced by an equivalent amount of Amano CE, Takeda 1969-4-9, Meito MY-30, to form comparable pre-soak compositions.
  • the Aerosol OS is replaced by an equivalent amount of Tetronic 701 and N-lauroyl-1 -leucine, to form comparable pre-soak compositions.
  • Fabrics treated in the foregoing manner have substantially more of the triglyceride stain removed than do fabrics pre-soaked in Amano M-AP, alone, or in Aerosol OS, alone, prior to laundering.
  • the Amano M-AP enzyme is replaced by an equivalent amount of the following lipase enzymes: Astra, Nagase, Lipase YL, Wallerstein AW, Meito MY-30, Amano CE, Amano CE-50, Amano AP-6 and Takeda 1969-4-9, respectively, and equivalent results are secured in that improved removal of triolein stain is secured.
  • Aerosol OS is replaced by an equivalent aount of a polyoxyalkylene derivative of ethylenediamine wherein the poly(oxypropylene) hydrotrope has a typical molecular weight in the range of 2501 to 3000 and the poly (oxyethylene) hydrophil has a weight percentage of about 10% (Tetronic 701) and N-lauroyl-1-leucine sodium salt and equivalent removal of the triglyceride stains is secured.
  • Dacron fabric swatches soiled with commercial French salad dressing are cleansed as follows: 3 pounds of the swatches are immersed in 3 gallons of water containing 50 ppm of Amano CE-50 lipase and 0.005% by weight of Tetronic 701 (pH 8.5). The heavily soiled Dacron swatches are allowed to stand in the soaking liquor at 100°F for 15 hours with occasional agitation. Following the presoaking, the fabrics are removed from the soaking solution and laundered in standard fashion with a commercial, built anionic detergent composition employed in a conventional automatic home washing machine. The detergent composition is used at a concentration of 1000 ppm in water at temperature of 110°F to launder the pre-soaked Dacron fabrics.
  • the mixed triglyceride stains present in the salad dressing are substantially removed from the Dacron swatches pre-soaked and laundered in the foregoing manner.
  • the process of this invention for removing triglycerides from fabrics can be successfully carried out using all manner of lipase enzymes and specific lipase activators as herein detailed.
  • Lipase enzymes from microbial sources, especially Amano M-AP are preferred in the processes herein.

Abstract

Compositions and methods for removing oily triglyceride stains from fabrics employing a lipase enzyme and a lipase activator selected from the group consisting of naphthalene sulfonates, certain polyoxyalkylene derivatives of ethylenediamine and certain acylamino acid salts. The lipase-plus-activator compositions are utilized to pre-soak soiled fabrics, which are subsequently laundered using conventional household equipment.

Description

BACKGROUND OF THE INVENTION
This invention relates to compositions and methods for removing oily triglyceride stains from fabrics, especially cotton or cotton blend fabrics. More particularly, the invention relates to the use of mixtures of a lipase enzyme and an activator selected from the group consisting of naphthalene sulfonates, certain polyoxyalkylene derivatives of ethylenediamine and certain acylamino acid salts as pre-soaking compositions for removal of oily triglyceride stains.
Current laundry and pre-soak procedures exhibit one or more deficiencies when used to remove triglyceride stains. This is especially true in the case of hollow fibre polyester/cotton blend fabrics. Effective removal of such stains has been for the most part accomplished by means of inconvenient and expensive dry cleaning. Accordingly, an efficient, low cost process for the removal of oily triglyceride stains employing standard household laundering equipment is desirable.
The present invention employs the combination of a lipase enzyme and a lipase activator in a laundry pre-soak operation for the removal of oily triglyceride stains from fabrics. The use of lipolytic enzymes (i.e., lipases) in cleansing operations has been described in German Pat. No. 491,219; British Pat. No. 682,878; and U.S. Pat. No. 3,451,925. The co-pending applications of Storm, Ser. No. 315,031, filed Dec. 14, 1972 and Montgomery, Ser. No. 315,049, filed Dec. 14, 1972 both now abandoned disclose laundry pre-soaks containing lipase in combination with a divalent cation and/or borax salts to enhance lipase activity. The enhancing effect of natural bile salts on mixtures of lipases and surface active agents has been described by E. D. Wills, Bio. Chem. J., 60, 529 (1955), "The Effect of Surface-Active Agents on Pancreatic Lipase". Although bile salts were shown to enhance lipase-pulse-detergent hydrolysis of triglycerides, biles salts are expensive and therefore commercially unattractive.
In the present invention, improved low cost removal of oily triglyceride stains from fabrics, especially cotton blends, is obtained by the use of a lipolytic enzyme (i.e., lipases) and a synthetic lipase activator. Such activators have been found to be effective and economical substitutes for the bile lipase activators.
It is an object herein to provide improved economical compositions and methods for the removal of triglyceride stains from fabrics.
It is another object herein to provide compositions and methods for the removal of triglyceride stains from fabrics utilizing standard household laundry equipment.
These and other objects are provided for herein as will be seen from the following disclosure.
SUMMARY OF THE INVENTION
The present invention encompasses laundry compositions especially adapted to removal of triglyceride stains from fabrics, comprising from about 0.01 to about 7.0% by weight of a lipolytic enzyme, and from about 0.1 to about 70.0% by weight of a lipase activator selected from the group consisting of water-soluble napthalene sulfonates; water-soluble (having a cloud point in 10% solution less than 75°C) polyoxyalkylene derivatives of ethylenediamine of the formula: ##EQU1## wherein, x, y, x', and y' are each integers having a sum of from about 8 to about 120 (preferably from about 25 to about 90) and w, z, w', and z' are each integers having a sum of from about 2 to about 80 (preferably from about 6 to about 65); and water-soluble acylamino acid salts of the formula: ##EQU2## wherein R is straight or branched chain alkyl containing at least 9 carbon atoms (preferably containing from about 9 to about 26 carbon atoms), R1 is a member selected from the group consisting of hydrogen, methyl, isopropyl, isobutyl, 1-methylpropyl, hydroxymethyl, and 1-hydroxyethyl, and X+ is a cation such as alkali metal, ammonium, or substituted ammonium.
The compositions herein are particularly effective when used in pre-soaking processes wherein the soiled fabric is soaked in said aqueous compositions for a period of from at least about 30 minutes to about 24 hours, and thereafter laundered in an aqueous solution of a conventional soap or detergent composition using standard household equipment.
DETAILED DESCRIPTION OF THE INVENTION
The compositions of the present invention contain two essential components, a lipolytic enzyme (lipase) and a lipase activator. The lipase comprises from about 0.01 to about 7.0%, preferably from about 0.02 to about 4.0%, of the composition and the lipase activator comprises from about 0.1 to about 70.0%, preferably from about 0.2 to about 40.0%, by weight of the composition. Unless otherwise indicated, reference to % concentrations mean % by weight of the total composition.
The process of the present invention for removing triglyceride stains from fabrics involve two essential steps. The first step consists of soaking the soiled fabric in an aqueous composition comprising a lipase, a lipase activator, and a conventional soap or detergent compound at a temperature of from about 40° to about 160°F for a period of from at least about 30 minutes. The soaking time depends on the load of triglyceride stain on the fabric, the enzyme concentration employed, the soaking temperature, the type of fabric and the use. Such considerations are well within the discretion of the routineer. In the second step of the process, the fabrics are cleansed in standard fashion using an aqueous soap or detergent solution.
During the soaking period, the triglycerides are degraded into diglycerides, monoglycerides, and/or glycerin and free fatty acids which are readily removed from the fabric in the subsequent laundering step. Although not wishing to be bound by theory, it is believed that the lipase activators of the present invention enhance the degradation of triglycerides by emulsifying the fatty acids produced, thereby preventing the formation of fatty acid mineral salts which might otherwise interfere with the ester-water interface believed necessary fo lipase hydrolysis (cf. Wills, Bio. Chem. J., 60, 529 (1955)).
The lipases employed in this invention are those which exhibit lipolytic activity under the conditions of temperature and pH normally encountered in laundry situations. The lipases suitable herein are those which are characterized by sufficient lipolytic activity at a soaking temperature of about 40° to 160°F in a pH range of from 6 to 11 to alter, presumably by cleavage of ester bonds, or otherwise render more easily removable, the triglycerides found in oily stains normally encountered in a laundry situation.
Lipases suitable for use herein include those of animal, plant, and microbiological origin. Although only a few studies on lipase distribution in plants have been conducted, suitable lipase enzymes are present in cambium, bark, and in plant roots. In addition, lipases have been found in the seeds of fruit, oil palm, lettuce, rice bran, barley and malt, wheat, oats and oat flour, cotton, tung kernels, corn, millet, coconuts, walnuts, fusarium, cannabis and cucurbito.
Suitable lipases are also found in many strains of bacateria and fungi. For example, lipases suitable for use herein can be derived from Pseudomonas, Aspergillus, Pneumococcus, Staphylococcus, and Staphylococcus Toxins, Mycobacterium Tuberculosis, Mycotorula Lipolytica, and Sclerotinia, microorganisms.
Suitable animal lipases are found in the body fluids and organs of many species. Most organs of mammals contain lipases, but in addition, the enzymes are found in several digestive juices as well as in pancreatic juice. A preferred class of animal lipase herein is the pancreatic lipase.
Specific examples of the commercially-available lipase enzymes, suitable for use herein, the pH ranges of their optimum activity, and the source appear in Table I. Of course it is preferred to use a given lipase with its range of optimum activity.
              TABLE I                                                     
______________________________________                                    
            pH Range of                                                   
*Lipase     Lipolytic Activity                                            
                           Source                                         
______________________________________                                    
Remyzyme PL-600                                                           
             7-11          Pancreatic Juice                               
Astra        7-10          Microbial                                      
Nacase      7-9            Microbial                                      
Lipase YL   7-9            Microbial                                      
Wallerstein AW                                                            
            7-9            Fungal                                         
Amano M-AP  6-8            Fungal                                         
Meito MY-30 6-8            Fungal                                         
Amano CE     8-10          Microbial                                      
Amano CE-50  7-10          Microbial                                      
Amano AP-6  6-8            Fungal                                         
Takeda 1969-4-9                                                           
            6-8            Microbial                                      
______________________________________                                    
 *Designated by commercial source                                         
The lipases preferred for use herein are Amano CE, Amano M-AP, Takeda 1969-4-9, and Meito MY-30.
The concentration of lipase employed in the present compositions is an amount sufficient to degrade, or otherwise alter, triglyceride stains, during the soaking step of the instant processes, to ease their removal. While the concentrations employed are dependent upon the particular enzyme used and the conditions of solution, such as pH, temperature, and period of the presoak, normally, concentrations in the range of from about 0.01 to about 7.0% and preferably from about 0.02 to about 4.0%, are employed. Pre-soak compositions having a lipase component within this range result in normally useful concentrations of lipase in solution. The use of lipase below about 1 ppm, even at maximum concentrations, tends to require extended soaking periods, while the use of lipase at above about 100 ppm provides little additional benefit and is therefore economically wasteful.
The amount of lipase employed herein is somewhat dependent upon the activity level of the enzymes. Preferred herein are enzymes having an activity of from 10,000 to 20,000 units per gram (u/g) as determined by the liberation of fatty acid from triglyceride substrates under the conditions described more fully in the Report of the Enzyme Committee, International Biochemical Union 7-11 (1963).
The lipase activators suitable for use in the present invention are members selected from the group consisting of naphthalene sulfonates, certain polyoxyalkylenes of ethylenediamine, and certain acylamino acid salts.
The naphthalene sulfonates suitable for use herein include both the alpha and beta sulfonated naphthalenes. Such salts are commercially available wetting agents marketed by, for example, American Cyanamid Company. The preferred salts of naphthalene sulfonate include the alkali metal, ammonium, and substituted ammonium salts. Various non-limiting examples of suitable alkali metal salts include sodium isopropylnaphthalene sulfonate, potassium methylnaphthalene sulfonate, cesium butylnaphthalene sulfonate, and rubidium naphthalene sulfonate. Various non-limiting examples of suitable ammonium salts include ammonium naphthalene sulfonate and ammonium alkylnaphthalene sulfonates. The substituted water-soluble ammonium salts of napthalene sulfonate include lower alkyl, alkanol, and aryl ammonium salts such as tetramethylammonium naphthalene sulfonate, diethanolammonium isopropylnaphthalene sulfonate, phenylammonium methylnaphthalene sulfonate, triethanolammonium butylnaphthalene sulfonate, and quinolylammonium naphthalene sulfonate. The most preferred naphthalene sulfonate suitable for use herein is sodium isopropylnaphthalene sulfonate marketed by American Cynamid Company as Aerosol OS.
The polyoxyalkylene derivatives of ethylenediamine suitable for use herein are prepared by the sequential addition of ethylene and propylene oxides to ethylenediamine according to known procedures, and are commercially available, for example, from Wyandotte Chemicals Corporation under the tradename "Tetronics". Various suitable tetronics are thoroughly discussed in Wyandotte Chemicals Technical Bulletin, "Technical Data on Tetronic Series Nonionic Surfactants (1968)", incorporated herein by reference, and include for example Tetronics 501, 1104, 1301, 1302, 1501, 1502, 504, 701, 702, 704, 901, 904, 1101, and 1102. The most preferred polyoxyalkylene derivative of ethylenediamine suitable for use herein is Tetronic 701, wherein the poly(oxypropylene) hydrotrope has a typical molecular weight in the range of 2501 to 3000 and the poly(oxyethylene) hydrophil has a weight percentage of about 10%.
The acylamino acid salts suitable for use herein can be prepared by standard procedures. Non-limiting examples of suitable acylamino acid salts include N-caproyl-glycine, sodium salt; N-stearoyl-glycine, ammonium salt; N-palmityl glycine, methanolammonium salt; N-undecanoyl-1-alanine, potassium salt; N-lauroyl-d-alanine, tetramethylammonium salt; N-myristyl-1-alanine, naphthylammonium salt; N-margaroyl-d-valine, lithium salt; N-cerotyl-1-valine, ammonium salt; N-heneicosanoyl-1-valine, dimethylammonium salt; N-lauroyl-1-leucine, sodium salt; N-arachidyl-d-leucine, di-pyridylammonium salt; N-tridecanoyl-1-leucine, quinoylammonium salt; N-pelargonyl-1-isoleucine, cesium salt; N-pentadecanoyl-d-isoleucine, phenanthrylammonium salt; N-behenyl-1-isoleucine, ethanolammonium salt; N-tetracosanoyl-1-serine, rubidinum salt; N-pelargonyl-1-serine-2-hydroxypropyl, ammonium salt; N-enanthyl-d-serine, bis-(tetraoctylammonium) salt; N-nonadecanoyl-1-threonine, phenylammonium salt; N-cerotry-d-threonine, ammonium salt; and N-lauroyl-1-threonine, trimethyldodecylammonium salt. The most preferred acylamino acid salt is N-lauroyl-1-leucine, sodium salt.
Conventional enzyme-compatible surfactants can optionally be employed in the soaking step of the instant process. For example, soaps, i.e., the water-soluble salts, especially the alkali metal salts, of fatty acids containing from about 10 to about 22 carbon atoms can optionally be present with the lipase and activator in the soaking step. Likewise, synthetic detergent compounds, such as those disclosed in U.S. Pat. No. 3,308,067 issued Mar. 7, 1967, incorporated herein by reference, can be present in the soaking step.
Compositions comprising, in addition to lipase enzymes and lipase activators, a conventional surfactant system, as detailed above, are preferred for use herein.
Various materials such as sequestrants, builder salts and the like can likewise be co-present with the lipase and lipase activator in the soaking step. For example, the water-soluble salts of the polyphosphates, phosphates, tripolyphosphates, nitrilotriacetates, ethylenediaminetetracetates, carbonates, etc., can optionally be used in conjunction with the activator and lipase in the soaking step of the instant process. Specific examples of such sequestrants and builders include the phosphate, carbonate, etc., salts disclosed hereinafter. All such materials are compatible with the lipase enzymes herein.
The pH of the soaking step can be maintained at a particular and desired level by the incorporation of a buffering agent. The soaking step will normally be effected at a pH of from 6 to 11, and buffering agents can be employed to regulate pH within said range, especially the preferred range of 8 to 10, so as to maximize the activity of the lipase employed. Preferred buffers for use herein are sodium tetraborate decahydrate combined with boric acid, which maintains an acid-base balance within a pH range corresponding to the optimum lipolytic activity level. Other suitable buffers can be employed to maintain a desired pH range depending on the particular lipase used in the presoak. Exampls of other buffers include monosodium phosphate, and sodium acid pyrophosphate and mixtures thereof.
Other minor ingredients can also be present in the soaking compositions. Soil-suspending agents such as sodium carboxymethylcellulose, optical brighteners, dyes, germicidal agents, suds depressants, and suds boosters can each be added in amounts up to about 10% by weight of the composition.
The soaking step of the process of the present invention can be carried out in any of the types of containers normally found in the household. Thus, the soaking step can be conducted in basins, tubs, washtubs, buckets, pails or the like so as to effect the soil- and stain-removing function of the combined employment of lipase and activator. A preferred method of effecting the soaking operation involves the use of the laundry tub or basin of a conventional home washing machine. The conduct of the soaking step in this fashion eliminates the need for removing the garments for a subsequent washing operation which will normally be effected in a washing machine. The soaking of the fabrics can be conducted with the aid of agitation. Such agitation is conveniently employed as a means of reducing the soaking time required to effect soil and stain removal.
The soaking operation can be conducted over a wide temperature range and in accordance with usual laundry soaking methods. The temperature should not be such as to cause inactivation or denaturation of the enzyme component. A temperature in the range of from 40° to 160°F is suitable from the standpoint of assuring substantial enzymatic activity. A preferred temperature is from 80° to 110°F.
The washing step which follows the presoaking step described hereinbefore is conducted in the presence of an organic detergent. Suitable detergents for employment in the washing step include, for example, any of the commercially-available heavy-duty laundry compositions or soap compositions commonly employed in home laundering. Detergent compositions will comprise a water-soluble organic synthetic detergent or soap and, preferably, a builder salt for enhanced cleaning properties. Examples of suitable detergent compounds which can be employed are those described hereinbefore and the alkali metal soaps, such as the sodium and potassium salts, of naturally occurring plant or animal esters (e.g., palm oil, coconut oil, babassu oil, soybean oil, castor oil, tallow, whale and fish oils, grease and lard, and mixtures thereof) or of synthetically produced fatty acids (e.g., rosin and those resin acids in tall oil) and/or of naphthenic acids.
Suitable builder salts will include alkali metal carbonates, borates, phosphates, polyphosphates, bicarbonates and silicates. Ammonium or substituted ammonium salts can also be used. Specific examples of such salts are sodium tripolyphosphate, sodium carbonate, sodium pyrophosphate, sodium bicarbonate, potassium tripolyphosphate, sodium hexametaphosphate, sodium sesquicarbonate, sodium mono- and diorthophosphate and potassium bicarbonate.
Examples of organic alkaline sequestrant and builder salts used alone or in admixture include alkali metal, ammonium or substituted ammonium, aminopolycarboxylates, e.g., sodium and potassium N-(2-hydroxyethyl) -ethylenediaminetriacetates, sodium and potassium nitrilotriacetates and sodium, potassium and triethanolammonium N-(2-hydroxyethyl)-nitrilo diacetates. Mixed salts of these polycarboxylates are also suitable. The alkali metal salts of phytic acid, e.g., sodium phytate are also suitable as organic alkaline sequestrant builder salts (see U.S. Pat. No. 2,739,942). The detergent and builder components will normally be employed in such amounts as to provide a ratio of builder salt to organic detergent of from about 1:1 to 10:1.
Following completion of the lipase- activator presoaking operation of the invention, the treated fabrics are laundered in a conventional manner with the aid of an effective amount of a laundry composition comprising a detergent surfactant and optional builder components as described. If desired, the laundry detergent component can be added to the aqueous presoaking bath so as to conveniently effect the two-step process of the present invention. The detergent washing step, which involves the use of conventional laundry detergent compositions in amounts customarily employed in home laundering operations, facilitates the removal of the fragmented products resulting from the fat-splitting properties of the lipase employed in the soaking step. Thus, the hydrolyzed products of the soaking, which include glycerine and fatty acids, are removed from the treated fabrics to provide improved cleaning effects.
Fabrics treated in accordance with the presoaking and washing steps of the present invention are rinsed in the usual fashion. The rinsing operation can be conveniently effected in a home washing machine as the usual rinsing operation which follows a conventional detergent wash. Following rinsing, the treated fabrics can be dried, ironed or folded as is customary in the laundry arts.
The process of the present invention is particularly efficacious in removing oily triglyceride soils and stains from polyester and polyester-containing fabric materials. Thus, the process can be employed to remove such triglyceride soils and stains from fabrics woven from polyester fibers or from fabrics which employ combinations of polyester fibers and other fibers (e.g., 65% polyester, 35% cotton blends). Examples of polyester fabrics are those woven or nonwoven materials fabricated from polyester fibers, the most common of which are copolymers of ethylene glycol and terephthalic acid. Such fabrics are commercially available under a number of trade names, e.g., Dacron, Fortrel, Kodel and Blue C Polyester.
The following example illustrates a laundry pre-soak composition containing lipase in combination with a lipase activator as hereinabove defined. The example is only by way of illustration and is not intended to be limiting of the compositions of the invention.
EXAMPLE I
Improved, low cost, laundry pre-soak compositions having the following formulas are prepared.
______________________________________                                    
Components             Formula                                            
______________________________________                                    
Sodium sulfate         36%                                                
Sodium carbonate       15%                                                
Sodium silicate        15%                                                
Linear dodecyl benzene sulfonate                                          
                        5%                                                
Sodium tallow alkyl sulfonate                                             
                        2%                                                
Amano M-AP              2%                                                
Aerosol OS*            20%                                                
Water                  Balance                                            
______________________________________                                    
 *Sodium isopropylnaphthalene sulfonate                                   
In the preceding composition, the Amano M-AP lipase is replaced by an equivalent amount of Amano CE, Takeda 1969-4-9, Meito MY-30, to form comparable pre-soak compositions.
In the above composition, the Aerosol OS is replaced by an equivalent amount of Tetronic 701 and N-lauroyl-1 -leucine, to form comparable pre-soak compositions.
The following examples illustrate the process of this invention for removing triglycerides from fabrics employing a lipase-activator presoaking step followed by laundering in standard fashion. The examples are only by way of illustration and are not intended to be limiting of the process of the invention.
EXAMPLE II
Eight pounds of a mixed load of cotton, Dacron, and polyester/cotton blend fabrics stained with triolein are immersed in 8 gallons of water containing 0.05% by weight of sodium isopropylnaphthalene sulfonate (Aerosol OS) and 50 ppm Amano M-AP lipolytic enzyme at pH 8. The fabrics are allowed to soak for a period of 3 hours at 70°F. Following the soaking operation, the fabrics are placed in a standard, top-loading automatic washing machine containing 12 gallons of water and one cup of a commercial, spray-dried, built laundry detergent. The fabrics are laundered in standard fashion at a water temperature of 100°F and dried.
Fabrics treated in the foregoing manner have substantially more of the triglyceride stain removed than do fabrics pre-soaked in Amano M-AP, alone, or in Aerosol OS, alone, prior to laundering.
In the above process, the Amano M-AP enzyme is replaced by an equivalent amount of the following lipase enzymes: Astra, Nagase, Lipase YL, Wallerstein AW, Meito MY-30, Amano CE, Amano CE-50, Amano AP-6 and Takeda 1969-4-9, respectively, and equivalent results are secured in that improved removal of triolein stain is secured.
In the foregoing procedure the Aerosol OS is replaced by an equivalent aount of a polyoxyalkylene derivative of ethylenediamine wherein the poly(oxypropylene) hydrotrope has a typical molecular weight in the range of 2501 to 3000 and the poly (oxyethylene) hydrophil has a weight percentage of about 10% (Tetronic 701) and N-lauroyl-1-leucine sodium salt and equivalent removal of the triglyceride stains is secured.
EXAMPLE III
Dacron fabric swatches soiled with commercial French salad dressing (5% by weight) are cleansed as follows: 3 pounds of the swatches are immersed in 3 gallons of water containing 50 ppm of Amano CE-50 lipase and 0.005% by weight of Tetronic 701 (pH 8.5). The heavily soiled Dacron swatches are allowed to stand in the soaking liquor at 100°F for 15 hours with occasional agitation. Following the presoaking, the fabrics are removed from the soaking solution and laundered in standard fashion with a commercial, built anionic detergent composition employed in a conventional automatic home washing machine. The detergent composition is used at a concentration of 1000 ppm in water at temperature of 110°F to launder the pre-soaked Dacron fabrics.
The mixed triglyceride stains present in the salad dressing are substantially removed from the Dacron swatches pre-soaked and laundered in the foregoing manner.
As can be seen from the foregoing, the process of this invention for removing triglycerides from fabrics, especially polyester and polyester/cotton blends, can be successfully carried out using all manner of lipase enzymes and specific lipase activators as herein detailed. Lipase enzymes from microbial sources, especially Amano M-AP, are preferred in the processes herein.

Claims (6)

What is claimed is:
1. A laundry pre-soak composition for improved triglyceride stain removal comprising from about 0.01 to about 7.0% by weight of a lipase and from about 0.1 to about 70% by weight of a water-soluble lipase activator selected from the alkali metal salts and ammonium salts of isopropylnaphthalene sulfonate, methylnaphthalene sulfonate, or butylnaphthalene sulfonate.
2. A composition according to claim 1 wherein the lipase enzyme is selected from the group consisting of Amano CE, Amano M-AP, Takeda 1969-4-9, and Meito MY-30.
3. A composition according to claim 1 comprising, in addition to lipase enzyme and a lipase activator, a surfactant.
4. A process for removing triglycerides from fabrics, comprising: soaking the fabric in the aqueous composition of claim 1 for a period of from at least 30 minutes; and thereafter laundering in an aqueous solution of soap or synthetic detergent composition.
5. A process according to claim 4 wherein the lipase enzyme is a member selected from the group consisting of Amano CE, Amano M-AP, Takeda 1969-4-9, and Meito MY-30.
6. A process according to claim 4 wherein the lipase enzyme is Amano M-AP.
US05/382,415 1973-07-25 1973-07-25 Laundry pre-soak compositions Expired - Lifetime US3950277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US05/382,415 US3950277A (en) 1973-07-25 1973-07-25 Laundry pre-soak compositions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US05/382,415 US3950277A (en) 1973-07-25 1973-07-25 Laundry pre-soak compositions

Publications (1)

Publication Number Publication Date
US3950277A true US3950277A (en) 1976-04-13

Family

ID=23508839

Family Applications (1)

Application Number Title Priority Date Filing Date
US05/382,415 Expired - Lifetime US3950277A (en) 1973-07-25 1973-07-25 Laundry pre-soak compositions

Country Status (1)

Country Link
US (1) US3950277A (en)

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4093417A (en) * 1974-06-01 1978-06-06 Karl Hans Heinlein Method for processing textile material
US4115292A (en) * 1977-04-20 1978-09-19 The Procter & Gamble Company Enzyme-containing detergent articles
US4124517A (en) * 1975-09-22 1978-11-07 Daikin Kogyo Kabushiki Kaisha Dry cleaning composition
US4176079A (en) * 1977-04-20 1979-11-27 The Procter & Gamble Company Water-soluble enzyme-containing article
US4311788A (en) * 1978-07-05 1982-01-19 Heuck Claus Christian Process for the quantitative determination of a serum protein in turbid serum and plasma samples
US4323467A (en) * 1980-11-24 1982-04-06 Syntex (U.S.A.) Inc. Contact lens cleaning, storing and wetting solutions
EP0205208A2 (en) * 1985-06-11 1986-12-17 Unilever N.V. Enzymatic detergent composition
EP0206390A2 (en) * 1985-06-11 1986-12-30 Unilever N.V. Enzymatic detergent composition
EP0218272A1 (en) * 1985-08-09 1987-04-15 Gist-Brocades N.V. Novel lipolytic enzymes and their use in detergent compositions
EP0271155A2 (en) * 1986-12-10 1988-06-15 Unilever N.V. Enzymatic dishwashing and rinsing process
US4863626A (en) * 1985-08-21 1989-09-05 The Clorox Company Encapsulated enzyme in dry bleach composition
US4874537A (en) * 1988-09-28 1989-10-17 The Clorox Company Stable liquid nonaqueous detergent compositions
US4908150A (en) * 1989-02-02 1990-03-13 Lever Brothers Company Stabilized lipolytic enzyme-containing liquid detergent composition
US4919834A (en) * 1988-09-28 1990-04-24 The Clorox Company Package for controlling the stability of a liquid nonaqueous detergent
EP0399681A2 (en) * 1989-05-15 1990-11-28 The Clorox Company Lipase and cutinase surfactant systems and method useful in laundering
EP0415652A2 (en) 1989-09-01 1991-03-06 The Clorox Company Bleaching compositions containing an oxidant bleach and enzyme granules
US5082585A (en) * 1989-02-02 1992-01-21 Lever Brothers Company, Division Of Conopco, Inc. Enzymatic liquid detergent compositions containing nonionic copolymeric stabilizing agents for included lipolytic enzymes
US5089167A (en) * 1985-08-21 1992-02-18 The Clorox Company Stable peracid bleaching compositions: organic peracid, magnesium sulfate and controlled amounts of water
US5093021A (en) * 1985-08-21 1992-03-03 The Clorox Company Encapsulated enzyme in dry bleach composition
US5211874A (en) * 1985-08-21 1993-05-18 The Clorox Company Stable peracid and enzyme bleaching composition
US5223169A (en) * 1989-05-15 1993-06-29 The Clorox Company Hydrolase surfactant systems and their use in laundering
US5227085A (en) * 1992-02-03 1993-07-13 Motsenbocker Gregg A Water-based cleaner containing TSP, EDTA, ethylene glycol butyl ether, and acetone
US5254287A (en) * 1985-08-21 1993-10-19 The Clorox Company Encapsulated enzyme in dry bleach composition
US5292448A (en) * 1988-05-10 1994-03-08 Lever Brothers Company, Division Of Conopco, Inc. Enzymatic detergent composition
US5417875A (en) * 1991-12-04 1995-05-23 Kao Corporation Containing N-acylamino acid salt and germicide
US5447649A (en) * 1990-03-01 1995-09-05 Novo Nordisk A/S Lipase containing liquid pre-spotter and use of such pre-spotter
US5474701A (en) * 1994-01-21 1995-12-12 Buckman Laboratories International, Inc. Enzymes for recreational water
EP0694607A2 (en) 1991-03-25 1996-01-31 The Clorox Company Oxidant composition containing stable bleach activator granules
US5512203A (en) * 1987-05-29 1996-04-30 Genencor International, Inc. Cutinase cleaning compositions
US5529917A (en) * 1985-08-09 1996-06-25 Gist-Brocades Compositions and methods for making lipolytic enzymes
US5558812A (en) * 1993-06-16 1996-09-24 Solvay Enzymes Gmbh & Co. Kg. Liquid enzyme formulations
US5578489A (en) * 1991-12-20 1996-11-26 Novo Nordisk A/S Removal of hydrophobic esters from textiles
US5591378A (en) * 1994-07-06 1997-01-07 The Clorox Company Substituted benzonitriles and compositions useful for bleaching
US5830735A (en) * 1987-03-06 1998-11-03 Gist-Brocades Nv Method for producing lipolytic enzymes using transformed Pseudomonas
US5876625A (en) * 1996-07-22 1999-03-02 Carnegie Mellon University Metal ligand containing bleaching compositions
US5914141A (en) * 1997-03-11 1999-06-22 Alfacel S.A. Easy peeling wiener casings via use of enzymes
EP0731834B1 (en) * 1993-12-03 2000-05-24 Buckman Laboratories International, Inc. Enzyme stabilization by block-copolymers
US6254645B1 (en) 1999-08-20 2001-07-03 Genencor International, Inc. Enzymatic modification of the surface of a polyester fiber or article
US6300122B1 (en) 1991-12-20 2001-10-09 Genencor International Method for applying enzyme to non-finished cellulosic-containing fabrics to improve appearance and feel characteristics
US6342381B1 (en) 1998-02-27 2002-01-29 Buckman Laboratories Internationals, Inc. Enzyme stabilization with pre-superpolyamide or pre-fiber-forming polyamide oligomers
US20030082755A1 (en) * 1999-11-05 2003-05-01 Wade Dyson Enzymes useful for changing the properties of polyester
US20030233710A1 (en) * 2000-10-27 2003-12-25 Bsh Bosch Undsiemens Hausgerate Gmbh Method for mechanical cleaning of textiles or solid objects
US20070134779A1 (en) * 2002-09-04 2007-06-14 Wade Dyson Enzymes useful for changing the properties of polyester
US20110136719A1 (en) * 2009-03-02 2011-06-09 Dizolve Group Corporation Dissolvable laundry detergent sheet
WO2011078949A1 (en) 2009-12-21 2011-06-30 Danisco Us Inc. Surfactants that improve the cleaning of lipid-based stains treated with lipases
WO2015164677A1 (en) 2014-04-23 2015-10-29 Gregory Van Buskirk Cleaning formulations for chemically sensitive individuals: compositions and methods
WO2016115408A1 (en) 2015-01-14 2016-07-21 Gregory Van Buskirk Improved fabric treatment method for stain release
US9464264B2 (en) 2014-02-06 2016-10-11 Dizolve Group Corp. Method and apparatus for making a laundry detergent sheet
US20190367845A1 (en) * 2018-06-01 2019-12-05 Amtex Innovations Llc Methods of washing stitchbonded nonwoven towels using a soil release polymer
US20210054312A1 (en) * 2018-06-01 2021-02-25 Amtex Innovations Llc Methods of laundering stitchbonded nonwoven towels using a soil release polymer
US11795417B2 (en) 2020-02-24 2023-10-24 Dizolve Group Corporation Dissolvable sheet containing a cleaning active and method of making same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1750198A (en) * 1930-03-11 Dttstrie aktiengesellschaft
US1881745A (en) * 1925-01-14 1932-10-11 Chem Fab Milch Aktien Ges Process of bleaching, dyeing, and printing vegetable and animal fiber material, fabrics, or felt
US2047069A (en) * 1930-05-09 1936-07-07 Gen Aniline Works Inc Amides
US3451935A (en) * 1966-04-25 1969-06-24 Procter & Gamble Granular enzyme-containing laundry composition
GB1156238A (en) * 1966-04-25 1969-06-25 Procter & Gamble Conglutination of Enzymes and Detergent Compositions
US3553139A (en) * 1966-04-25 1971-01-05 Procter & Gamble Enzyme containing detergent composition and a process for conglutination of enzymes and detergent composition
US3655568A (en) * 1969-01-10 1972-04-11 Wahib Nassif Zaki Enzyme containing detergent composition having improved physical and stability characteristics
US3707505A (en) * 1969-12-30 1972-12-26 Ajinomoto Kk Enzyme-containing detergent composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1750198A (en) * 1930-03-11 Dttstrie aktiengesellschaft
US1881745A (en) * 1925-01-14 1932-10-11 Chem Fab Milch Aktien Ges Process of bleaching, dyeing, and printing vegetable and animal fiber material, fabrics, or felt
US2047069A (en) * 1930-05-09 1936-07-07 Gen Aniline Works Inc Amides
US3451935A (en) * 1966-04-25 1969-06-24 Procter & Gamble Granular enzyme-containing laundry composition
GB1156238A (en) * 1966-04-25 1969-06-25 Procter & Gamble Conglutination of Enzymes and Detergent Compositions
US3553139A (en) * 1966-04-25 1971-01-05 Procter & Gamble Enzyme containing detergent composition and a process for conglutination of enzymes and detergent composition
US3655568A (en) * 1969-01-10 1972-04-11 Wahib Nassif Zaki Enzyme containing detergent composition having improved physical and stability characteristics
US3707505A (en) * 1969-12-30 1972-12-26 Ajinomoto Kk Enzyme-containing detergent composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Wills, Article in Biochemical Journal, Vol. 60, 1955, pp. 529 to 534. *

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4093417A (en) * 1974-06-01 1978-06-06 Karl Hans Heinlein Method for processing textile material
US4124517A (en) * 1975-09-22 1978-11-07 Daikin Kogyo Kabushiki Kaisha Dry cleaning composition
US4115292A (en) * 1977-04-20 1978-09-19 The Procter & Gamble Company Enzyme-containing detergent articles
US4176079A (en) * 1977-04-20 1979-11-27 The Procter & Gamble Company Water-soluble enzyme-containing article
US4311788A (en) * 1978-07-05 1982-01-19 Heuck Claus Christian Process for the quantitative determination of a serum protein in turbid serum and plasma samples
US4323467A (en) * 1980-11-24 1982-04-06 Syntex (U.S.A.) Inc. Contact lens cleaning, storing and wetting solutions
EP0205208A2 (en) * 1985-06-11 1986-12-17 Unilever N.V. Enzymatic detergent composition
EP0206390A2 (en) * 1985-06-11 1986-12-30 Unilever N.V. Enzymatic detergent composition
US5133893A (en) * 1985-06-11 1992-07-28 Lever Brothers Company Enzymatic detergent composition
EP0205208A3 (en) * 1985-06-11 1988-11-09 Unilever Nv Enzymatic detergent composition
EP0206390B1 (en) * 1985-06-11 1992-09-09 Unilever N.V. Enzymatic detergent composition
EP0218272A1 (en) * 1985-08-09 1987-04-15 Gist-Brocades N.V. Novel lipolytic enzymes and their use in detergent compositions
US5529917A (en) * 1985-08-09 1996-06-25 Gist-Brocades Compositions and methods for making lipolytic enzymes
US5167854A (en) * 1985-08-21 1992-12-01 The Clorox Company Encapsulated enzyme in dry bleach composition
US4863626A (en) * 1985-08-21 1989-09-05 The Clorox Company Encapsulated enzyme in dry bleach composition
US5211874A (en) * 1985-08-21 1993-05-18 The Clorox Company Stable peracid and enzyme bleaching composition
US5093021A (en) * 1985-08-21 1992-03-03 The Clorox Company Encapsulated enzyme in dry bleach composition
US5089167A (en) * 1985-08-21 1992-02-18 The Clorox Company Stable peracid bleaching compositions: organic peracid, magnesium sulfate and controlled amounts of water
US5254287A (en) * 1985-08-21 1993-10-19 The Clorox Company Encapsulated enzyme in dry bleach composition
EP0271155A2 (en) * 1986-12-10 1988-06-15 Unilever N.V. Enzymatic dishwashing and rinsing process
EP0271155A3 (en) * 1986-12-10 1988-08-17 Unilever Nv Enzymatic dishwashing and rinsing composition
US5830735A (en) * 1987-03-06 1998-11-03 Gist-Brocades Nv Method for producing lipolytic enzymes using transformed Pseudomonas
US5512203A (en) * 1987-05-29 1996-04-30 Genencor International, Inc. Cutinase cleaning compositions
US5292448A (en) * 1988-05-10 1994-03-08 Lever Brothers Company, Division Of Conopco, Inc. Enzymatic detergent composition
US4874537A (en) * 1988-09-28 1989-10-17 The Clorox Company Stable liquid nonaqueous detergent compositions
US4919834A (en) * 1988-09-28 1990-04-24 The Clorox Company Package for controlling the stability of a liquid nonaqueous detergent
US5082585A (en) * 1989-02-02 1992-01-21 Lever Brothers Company, Division Of Conopco, Inc. Enzymatic liquid detergent compositions containing nonionic copolymeric stabilizing agents for included lipolytic enzymes
US4908150A (en) * 1989-02-02 1990-03-13 Lever Brothers Company Stabilized lipolytic enzyme-containing liquid detergent composition
US5223169A (en) * 1989-05-15 1993-06-29 The Clorox Company Hydrolase surfactant systems and their use in laundering
EP0399681A3 (en) * 1989-05-15 1991-01-16 The Clorox Company Lipase and cutinase surfactant systems and method useful in laundering
EP0399681A2 (en) * 1989-05-15 1990-11-28 The Clorox Company Lipase and cutinase surfactant systems and method useful in laundering
EP0415652A2 (en) 1989-09-01 1991-03-06 The Clorox Company Bleaching compositions containing an oxidant bleach and enzyme granules
US5447649A (en) * 1990-03-01 1995-09-05 Novo Nordisk A/S Lipase containing liquid pre-spotter and use of such pre-spotter
EP0694607A2 (en) 1991-03-25 1996-01-31 The Clorox Company Oxidant composition containing stable bleach activator granules
US5417875A (en) * 1991-12-04 1995-05-23 Kao Corporation Containing N-acylamino acid salt and germicide
US5578489A (en) * 1991-12-20 1996-11-26 Novo Nordisk A/S Removal of hydrophobic esters from textiles
US6300122B1 (en) 1991-12-20 2001-10-09 Genencor International Method for applying enzyme to non-finished cellulosic-containing fabrics to improve appearance and feel characteristics
WO1993015178A1 (en) * 1992-02-03 1993-08-05 Motsenbocker Advanced Development, Inc. Aqueous cleaner containing trisodium phosphate, edta or phytic acid, and solvent mixture
US5227085A (en) * 1992-02-03 1993-07-13 Motsenbocker Gregg A Water-based cleaner containing TSP, EDTA, ethylene glycol butyl ether, and acetone
US5558812A (en) * 1993-06-16 1996-09-24 Solvay Enzymes Gmbh & Co. Kg. Liquid enzyme formulations
EP0731834B1 (en) * 1993-12-03 2000-05-24 Buckman Laboratories International, Inc. Enzyme stabilization by block-copolymers
US5474701A (en) * 1994-01-21 1995-12-12 Buckman Laboratories International, Inc. Enzymes for recreational water
US5591378A (en) * 1994-07-06 1997-01-07 The Clorox Company Substituted benzonitriles and compositions useful for bleaching
US5707542A (en) * 1994-07-06 1998-01-13 The Clorox Company Substituted benzonitriles and compositions useful for bleaching
US5876625A (en) * 1996-07-22 1999-03-02 Carnegie Mellon University Metal ligand containing bleaching compositions
US6099586A (en) * 1996-07-22 2000-08-08 Carnegie Mellon University Metal ligand containing bleaching compositions
US5914141A (en) * 1997-03-11 1999-06-22 Alfacel S.A. Easy peeling wiener casings via use of enzymes
US6342381B1 (en) 1998-02-27 2002-01-29 Buckman Laboratories Internationals, Inc. Enzyme stabilization with pre-superpolyamide or pre-fiber-forming polyamide oligomers
US6254645B1 (en) 1999-08-20 2001-07-03 Genencor International, Inc. Enzymatic modification of the surface of a polyester fiber or article
US20030082755A1 (en) * 1999-11-05 2003-05-01 Wade Dyson Enzymes useful for changing the properties of polyester
US6933140B1 (en) 1999-11-05 2005-08-23 Genencor International, Inc. Enzymes useful for changing the properties of polyester
US20030233710A1 (en) * 2000-10-27 2003-12-25 Bsh Bosch Undsiemens Hausgerate Gmbh Method for mechanical cleaning of textiles or solid objects
US20070155642A1 (en) * 2000-10-27 2007-07-05 Bsh Bosch Und Siemens Hausgerate Gmbh Method for mechanical cleaning of textiles or solid objects
US20070155643A1 (en) * 2000-10-27 2007-07-05 Bsh Bosch Und Siemens Hausgerate Gmbh Method for mechanical cleaning of textiles or solid objects
US7977295B2 (en) * 2000-10-27 2011-07-12 Bsh Bosch Und Siemens Hausgeraete Gmbh Method for mechanical cleaning of textiles or solid objects comprising encapsulated enzymes
US8101562B2 (en) * 2000-10-27 2012-01-24 Bsh Bosch Und Siemens Hausgeraete Gmbh Method for mechanical cleaning of textiles or solid objects utilizing an encapsulated enzyme
US20070134779A1 (en) * 2002-09-04 2007-06-14 Wade Dyson Enzymes useful for changing the properties of polyester
US20110136719A1 (en) * 2009-03-02 2011-06-09 Dizolve Group Corporation Dissolvable laundry detergent sheet
EP3470504A1 (en) 2009-12-21 2019-04-17 Danisco US Inc. Surfactants that improve the cleaning of lipid-based stains treated with lipases
WO2011078949A1 (en) 2009-12-21 2011-06-30 Danisco Us Inc. Surfactants that improve the cleaning of lipid-based stains treated with lipases
US10639825B2 (en) 2014-02-06 2020-05-05 Dizolve Group Corporation Method and apparatus for making a laundry detergent sheet
US9464264B2 (en) 2014-02-06 2016-10-11 Dizolve Group Corp. Method and apparatus for making a laundry detergent sheet
WO2015164677A1 (en) 2014-04-23 2015-10-29 Gregory Van Buskirk Cleaning formulations for chemically sensitive individuals: compositions and methods
WO2016115408A1 (en) 2015-01-14 2016-07-21 Gregory Van Buskirk Improved fabric treatment method for stain release
US20190367845A1 (en) * 2018-06-01 2019-12-05 Amtex Innovations Llc Methods of washing stitchbonded nonwoven towels using a soil release polymer
US10822578B2 (en) * 2018-06-01 2020-11-03 Amtex Innovations Llc Methods of washing stitchbonded nonwoven towels using a soil release polymer
US20210054312A1 (en) * 2018-06-01 2021-02-25 Amtex Innovations Llc Methods of laundering stitchbonded nonwoven towels using a soil release polymer
US11884899B2 (en) * 2018-06-01 2024-01-30 Amtex Innovations Llc Methods of laundering stitchbonded nonwoven towels using a soil release polymer
US11795417B2 (en) 2020-02-24 2023-10-24 Dizolve Group Corporation Dissolvable sheet containing a cleaning active and method of making same

Similar Documents

Publication Publication Date Title
US3950277A (en) Laundry pre-soak compositions
US7183248B2 (en) Enzymatic cleaner having high pH stability
US3654166A (en) Detergent compositions
EP0342917B1 (en) Detergent composition
JPS59176396A (en) Detergent composition
CA1237686A (en) Detergent composition
EP2535401A1 (en) Detergent composition comprising soil-release polymers of improved storage stability
US5798327A (en) Enzymatic detergent compositions
US5877139A (en) Enzymatic detergent compositions
US4272396A (en) Enzyme-containing detergent composition
US4248729A (en) Detergency booster
WO1997020025A9 (en) Enzymatic detergent compositions
AU687536B2 (en) Stable enzyme-containing aqueous laundry prespotting composition
US4287101A (en) Enzyme-containing detergent composition
US5223169A (en) Hydrolase surfactant systems and their use in laundering
US6107264A (en) Enzymatic bleach composition
EP0662121B1 (en) Cleaning process
CS263618B1 (en) Enzyme agent for washing,degreasing,cleaning and water regeneration
EP0745118A1 (en) Enzymatic bleach booster compositions
JPH08508775A (en) Enzyme detergent
WO2024002922A1 (en) Liquid laundry detergent formulation
WO2018224699A1 (en) Liquid detergent composition with surfactant-mixture and at least two enzymes
JPH0776360B2 (en) Granular detergent composition
JPH0546880B2 (en)
JP2001064696A (en) Presoaking detergent composition