US3925660A - Selectable wavelength X-ray source, spectrometer and assay method - Google Patents

Selectable wavelength X-ray source, spectrometer and assay method Download PDF

Info

Publication number
US3925660A
US3925660A US353451A US35345173A US3925660A US 3925660 A US3925660 A US 3925660A US 353451 A US353451 A US 353451A US 35345173 A US35345173 A US 35345173A US 3925660 A US3925660 A US 3925660A
Authority
US
United States
Prior art keywords
primary
targets
rays
ray
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US353451A
Inventor
Richard D Albert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US353451A priority Critical patent/US3925660A/en
Priority to CA170,157A priority patent/CA1021072A/en
Priority to GB3843275A priority patent/GB1436873A/en
Priority to GB2142873A priority patent/GB1436871A/en
Priority to GB5107075A priority patent/GB1436872A/en
Priority to NL7306391A priority patent/NL7306391A/xx
Priority to FR7316487A priority patent/FR2184328A5/fr
Priority to DE2323610A priority patent/DE2323610A1/en
Priority to US05/537,072 priority patent/US3983397A/en
Priority to US05/633,980 priority patent/US4048496A/en
Priority to US05/638,434 priority patent/US4104526A/en
Application granted granted Critical
Publication of US3925660A publication Critical patent/US3925660A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/112Non-rotating anodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/24Tubes wherein the point of impact of the cathode ray on the anode or anticathode is movable relative to the surface thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/24Tubes wherein the point of impact of the cathode ray on the anode or anticathode is movable relative to the surface thereof
    • H01J35/30Tubes wherein the point of impact of the cathode ray on the anode or anticathode is movable relative to the surface thereof by deflection of the cathode ray
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/70Circuit arrangements for X-ray tubes with more than one anode; Circuit arrangements for apparatus comprising more than one X ray tube or more than one cathode
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/076X-ray fluorescence
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/112Non-rotating anodes
    • H01J35/116Transmissive anodes

Definitions

  • ABSTRACT A method and apparatus for producing X-rays having any selected one of a plurality of specific different wavelength spectra greatly facilitates X-ray fluorescence analysis of samples to detect constituent elements.
  • an electron beam is directed to any selectable one of an array of primary targets of different composition.
  • X-rays from the selected primary target may be utilized directly or caused to impinge on any selected one of a plurality of secondary targets, which are also each of differing composition to cause the secondary target to emit a specific X-ray spectrum characteristic of that secondary target.
  • Analysis of the X-ray fluorescence from a sample irradiated by a plurality of different specific selected X-ray spectra enables identification and measurement of particular chemical elements in the sample.
  • the system including the selection of appropriate combinations of primary and secondary targets may be controlled manually or by a computer responsive to the detector of the X-ray fluorescence from the sample.
  • This invention relates to a method and apparatus for producing X-rays of selectable wavelengths and intensities and to a system utilizing such X-rays to detect specific chemical elements in a sample by analysis of X-ray fluorescence therefrom.
  • the conventional X-ray tube consists of means for accelerating a beam of electrons toward a target or anode generally composed of a refractory metal such as tungsten or the like.
  • the resultant X-rays have two principal components. One consists of the characteristic X-ray fluorescence wavelengths of the target material and the other is a poly-chromatic spectrum known as bremmstrahlung which contains a more or less continuous distribution of wavelengths.
  • the characteristic specific wavelength of the target material is unchangeable and is accompanied by a heterogeneous mixture of many wavelengths.
  • the wavelength of X-ray fluorescence from a sample is not determined by the wavelength of the incident X-rays, this does not mean that control of the wavelength of the incident X-rays is unimportant.
  • the intensity of the X-ray fluorescence from the sample is strongly dependent upon the wavelength of the incident X-rays.
  • the presence of the bremmstrahlung spectrum in the vicinity of the sample can. greatly interfere with detection of the desired sample fluorescence.
  • the X-ray fluorescence analysis technique requires a substantially bremmstrahlung-free source of X-rays having a specific wavelength spectrum.
  • the source of X-rays should be readily adjustable to produce any selected one of a large number of specific wavelengths or wavelength spectra since it may be necessary to sequentially irradiate the sample with a series of different wavelengths to produce a strong fluorescence response from each of the various constituent elements.
  • This change of output wavelengths should be accomplishable guickly and by a simple adjustment of controls either manually or preferably by an automatic feedback systern which responds to the sample X-ray fluorescence.
  • an X-ray source producing selectable wavelengths and intensities can offer important advantages in contexts other than the spectrometric analysis of substances as discussed above.
  • the image which is obtained of the internal structure of a subject is useful only to the extent that different internal elements of the subject are distinguishable in the image.
  • the contrast in such an image, between different internal areas of the subject is again strongly influenced by the wavelength of the incident X-rays.
  • the particular wavelength which provides the best contrast in an image of a medical patient between bone structure and the surrounding soft tissue may not be the same wavelength which provides the best contrast in distinguishing tumorous tissue from adjacent normal tissue.
  • the versatility of radiology equipment of this kind may also be greatly enhanced by an X-ray source providing for selection of any of a plurality of different wavelength spectra.
  • This invention provides for a rapid, efficient and accurate detection of constituent elements in a sample by X-ray fluorescence analysis.
  • An X-ray source also usable for purposes additional to sample analysis, is provided for generating any selected one of a plurality of different wavelength spectra which may include substantially monochromatic spectra. Selection of the wavelength and intensity of the output of the source is readily accomplished by manual adjustment of controls or, in one preferred form, by a feedback system responsive to detected X-ray fluorescence from the sample.
  • an electron beam or the like is controllably directable to any of an array of primary targets of different composition.
  • primary X-rays emitted from the selected primary target may be selectively transmitted directly to the sample or caused to impinge upon any selectable one of an array of secondary targets which are also each of different composition.
  • the resultant X-ray emission from the selected secondary target has a spectrum determined by that particular target and is transmitted to the sample or the like, means being provided for suppressing bremmstrahlung which might otherwise reach the sample.
  • Still another object of the invention is to provide for the suppression of bremmstrahlung in an X-ray source capable of producing any of a plurality of specific predetermined X-ray wavelengths.
  • FIG. 1 is a schematic view of a first embodiment of an X-ray spectrometer in accordance with the invention
  • FIG. 2 is an enlarged schematic sectional view of a portion of the apparatus of FIG. 1 taken along curved line 22 thereof;
  • FIG. 3 is a partial cross-sectional view of a portion of the X-ray source of the spectrometer of FIG. 1 showing one example of structural detail for such source;
  • FIG. 4 is a schematic view of a modification of the X-ray spectrometer system including, in schematic form, a self-cycling feedback circuit for controlling the X-ray source to perform an analysis of a substance in an automatic manner or for other purposes;
  • FIGS. 5A and 5B which may bejuxtaposed with FIG. 5B above FIG. 5A to form a single continuous circuit diagram, illustrates the circuit of FIG. 4 in greater detail;
  • FIG. 6 illustrates a modified construction of the X-ray source
  • FIG. 7 illustrates another modification of the X-ray source
  • FIG. 8 illustrates still another variation of the X-ray source construction.
  • a sample composed of a single element is subjected to polychromatic X-rays, the fluorescence from the sample can be detected and analyzed to produce a plot of the amount of X-ray fluorescence at each wavelength.
  • This fluorescent X-ray spectrum is unique for that element and enables ready identification. If the sample is composed of a mixture of ele' ments, a more complex fluorescent X-ray spectrum will be obtained, but it is possible in most instances to analyze the various peaks appearing in the spectrum to determine which elements are present and it is further possible to determine the relative amounts of each element from the relative heights of the peaks representative of each element. This process is termed fX-ray fluorescence analysis and is potentially a very valuable assay technique. It is nondestructive of the sample. and does not require any mechanical disruption thereof.
  • wavelength spectrum of the X'rays which are impinged upon the sample doesnot determine the wavelengths of the fluorescence from the sample, there is a strong relationship insofar as the intensity of sample fluorescence is concerned.
  • a different wavelength spectra may be required to maximize fluorescence from each particular element which may be present in the sample.
  • the present invention greatly facilitates accuracy, sensitivity, convenience, and speed of X-ray fluorescence analysis by providing a source of X-rays for sequentially irradiating a sample with selected ones of a large number of predetermined wavelength spectra.
  • a practical, convenient source for exciting X-rays of selectable wavelength suitable for this purpose has not heretofore been available.
  • high-energy electrons are caused to strike a target and the resulting X-rays have two' distinct components.
  • the first component is the characteristic fluorescent X-ray wavelengths of the particular element of which the target is composed and the other is a continuous wavelength distribution called bremmstrahlung.
  • the bremmstrahlung wavelength mixture is strongly affected by the energy of the electron beam.
  • This invention provides an X-ray source having a plurality of targets of differing composition to selectively produce any of a large number of characteristic X-ray wavelengths together with means for suppressing bremmstrahlung radiation so that a substantially pure output of any of a number of specific wavelength spectra may be obtained.
  • the sample may be initially irradiated with a polychromatic X-ray spectrum.
  • the resulting fluorescence from the sample may then be detected and analyzed to produce a fluorescent X-ray spectrum, containing peaks at specific wavelengths, that enables a tentative identification of the probable elements in the sample.
  • the X-ray source may then be adjusted to irradiate the sample with the specific X-ray wavelengths which will optimize fluorescence from those particular elements to confirm the presence of each such element and to determine the amount thereof in a rapid and accurate manner.
  • detection and identification of the specific wavelengths in the X-ray fluorescence from the sample are performed by the energy dispersive tech nique in which the electric charge produced when a fluorescent X-ray from the sample is absorbed in a detector is measured.
  • the collected charge, on a capacitor or the like, produces a readily measurable voltage which is proportional to the energy of the absorbed X- ray. This energy is inversely proportional to the wavelength of the X-ray thereby enabling determination of the wavelength.
  • an X-ray spectrometer system I1 is shown in schematic form including an X-ray tube or source 12 capable of irradiating a sample 13 which is to be analyzed with X-rays having any selected one of a large number of predetermined different specific wavelengths or combinations of specific wavelengths.
  • Source 12 in this example has an evacuated envelope 14 with a relatively narrow cylindrical neck portion 16 formed ofinsulativc material and a flared anode end portion 17, formed of conductive material, that terminates in a circular conductive end anode 18.
  • Electron beam generating and deflection means are situated in the neck portion 16 of the envelope and may be essentially similar to those employed in cathode ray tubes.
  • Electron beam 23 is focussed and accelerated by passage through an annular first anode 24 and then passes through a region bounded by four deflection plates 26 to which voltages may be applied to direct the beam toward any selected area of end anode 18.
  • a magnetic beam deflection yoke 27, having control means 28, may be disposed around the envelope 14 in the region of deflection plates 26 to provide an alternate or supplemental means of cntrolling the direction of the electron beam, suitable detailed constructions for such magnetic deflection means and controls being well known in the art.
  • suitable detailed constructions for such magnetic deflection means and controls being well known in the art.
  • various known provisions for enhanc' ing beam focusing and tube life such as ion traps, getter materials, magnetic focusing means, and the like, may be employed in the envelope 14 if desired.
  • the cathode 19 is at a high negative potential while end anode plate 18 is at ground to reduce the likelihood of arcing to nearby grounded structure.
  • Filament terminals 29 are connected across a filament power supply 31 through a filament power control switch 32 and a variable resistor 33 that provides for adjustment of filament current.
  • voltages for the electrodes 22, 24, and deflection plates 26 may be provided from a high-voltage power supply 34 having the positive side grounded and having the negative side coupled to one of the filament terminals 29 through a switch 36 and further having a pair of intermediate taps 37 and 38 of progressively more negative voltages.
  • the resistive element 39 of a first potentiometer is connected between tap 37 and switch 36.
  • a first sliding contact 41 at resistive element 39 is coupled to cathode 19 through an adjustable current limiting resistor 42.
  • a second sliding contact 43 is connected to control electrode 22 through an adjustable current limiting resistor 44 and a third sliding contact 46 is connected to first anode 24 through an adjustable resistor 47.
  • the sliding contacts 41, 43, and 46 enable the voltages applied to cathode 19, control electrode 22, and first anode 24 to be selectively varied to determine beam current, energy, and focus.
  • the resistive element 48 of a second potentiometer has one end grounded and the other end connected to power supply tap 38 through a deflector voltage on/off switch 49.
  • Four adjustable sliding contacts 51 at resistive element 48 each connect with a separate one of the deflection plates 26 through a separate one of a plurality of adjustable current-limiting resistors 52. Accordingly, the voltage applied to each of the deflection plates may be individually varied to direct the electron beam 23 toward any selected area of the end anode plate 18.
  • a secondary X-ray output 53 having a selectable one of a large number of predetermined wavelength spectra can be directed to the sample 13
  • a series of primary targets 54 are mounted in the end anode plate 18 in a circular array in this instance.
  • An inner ring of similar primary targets 56 is also provided for purposes which will hereinafter be described.
  • the primary targets 54 are composed of a number of different chemical elements and have sufflcient thickness to completely stop the electrons of beam 23 and at least a portion of the primary targets have sufficient thickness to absorb much of the bremmstrahlung arising from the electron impact on the target. Where substantial bremmstrahlung absorption is desired, nickel, copper or iron primary targets in thicknesses of about 5 X l0 cm. are typical for electron beam energies of less than about 40 KeV. Thin window supports may be provided for the targets 54 if necessary.
  • the target When the electron beam 23 is impinged upon a selected one of the primary targets 54, the target emits primary X-rays which include both the characteristic wavelength of the target element and considerable bremmstrahlung or polychromatic X-rays. Much of the bremmstrahlung is absorbed in passage through the primary target except in the case of certain specialized ones thereof which will be hereinafter described. Characteristic X-ray wavelengths are emitted by fluorescence from the opposite side of the selected primary target 54 which fluorescent X-rays may be accompanied by any unabsorbed bremmstrahlung.
  • a collimater 57 formed of dense X-ray absorbant material and having collimation passages 58 therethrough with one such passage being adjacent each primary target 54 and 56.
  • a secondary target table 59 Disposed on the opposite side of collimator 57 from the primary targets 54 is a secondary target table 59 which may be rotated relative to the end anode 18 and collimator 57.
  • a circular outer array of secondary targets 61 and matching inner array of secondary targets 60 are mounted on table 59, the secondary targets each being formed of different elements which fluoresee different specific wavelengths.
  • Table 59 is rotatable to enable any selected one of the secondary targets 61 to be moved into alignment with any selected one of the primary targets 54 so that the primary X-rays produced at any particular primary target can be transmitted to any selected one of the secondary targets 61.
  • Collimator 57 serves to prevent primary radiation from a particular selected target 54 from reaching any secondary target 61 other than the selected one.
  • the selected secondary target 61 fluoresces the specific characteristic wavelength spectrum of the element of which the secondary target is composed. Depending on the particular element and target thickness, this may be substantially monochromatic or it may include several specific wavelengths. Any remaining bremmstrahlung inn the primary X-rays is largely absorbed in the secondary target, the thickness of which is selected to accomplish this purpose. A thickness of about 1 X cm. is typical for a molybdenum secondary target, for example, in a system where the electron beam 23 has an energy of about 40 KeV and substantial bremmstrahlung absorption is desired.
  • the sample 13 to be analyzed Upon irradiation by the fluorescent secondary X-ray 53 from a selected secondary target 61, the sample 13 to be analyzed in turn emits fluorescent X-rays 63.
  • X- rays 63 have wavelengths characteristic of the elements of which the sample is composed and have relative intensities indicative of the proportion of each element therein.
  • the fluorescent X-rays 63 from the sample are received at a sample detector 64.
  • detector 64 is a liquid nitrogen cooled, solid-state detector, although spark chambers, gas-filled proportional counters, liquid Xenon proportional counters, or scintillator-photomultiplier detectors may also be employed.
  • Detector 64 may be protected from X-ray tube and other background radiation by a shield 65.
  • liquid nitrogen cooling for detector 64 is provided by a cryostat 66.
  • the output of solidstate detector 64 is coupled to a preamplifier 67 which amplifies the X-ray count for transmission to a pulseheight analyzer 68 or other count analyzing, recording or display means through a pulse-shaping, linear amplifier and amplitude discriminator 70 which suppresses noise.
  • the detector 64 is preferably of the energy-dispersive type which, in effect, produces an output pulse having an amplitude proportional to the electric charge produced when each X-ray is absorbed. This charge and thus the output voltage are proportional the energy of the absorbed X-ray which energy is, in turn, inversely proportional to the wavelength of the X-ray.
  • pulse height analyzer 68 is able to sort counts according to the wavelength of the initiating X-ray from the sample to identify which wavelengths are present and in what amounts. This is the information needed to determine the composition of sample 13 by X-ray fluorescence analysis as hereinbefore discussed.
  • the X-ray source 12 enhances speed, sensitivity, and precision of the assay of the sample 13 by enabling irradiation of the sample with any selected one of a large number of specific wavelengths and by providing the capability of sequentially subjectingn the sample to a series of different wavelengths each selected to optimize sample fluorescence from a specific possible constituent element of the sample.
  • This capability results from the ability to match any of a large number of primary targets 54 with any of a large number of secondary targets 61 in an arrangement which suppresses contamination by bremmstrahlung and unwanted characteristic radiation from the target and other materials.
  • FIG. 2 illustrates more detail of the target and collimator structure and further illustrates useful variations in form and function for the primary and secondary targets which enable use of either forward or backward fluorescent X-ray emission from the secondary targets and which enable deliberate transmission of bremmstrahlung to the sample when that is desirable.
  • the rotatable secondary target table 59 is provided with a series of apertures 69 in some of which secondary targets 61 are disposed transversely to the path of primary X-rays from the primary targets.
  • Such secondary targets 61 make use of forwardly emitted X-ray fluorescence for the purpose of irradiating the sample 13.
  • the primary radiation from a primary target 54 strikes one surface of the secondary target 61, and, as illustrated by dashed line 53', the secondary X-ray output originates by fluorescence at the opposite side of the secondary target.
  • a second group of secondary targets 62 may be provided in which the fluorescent secondary X-ray output 53 is emitted backwardly from the secondary target.
  • the backward emission targets 62 are secured to table 59 in an oblique relationship to the axis of the adjacent collimator passage 58 through which primary X-rays arrive.
  • secondary targets 62 depend on backward emission of fluorescent X-rays, such targets may be substantially thicker than targets 61 in order to absorb primary X-rays including bremmstrahlung arriving through the collimator passage 58.
  • fluorescent X-rays are emitted omnidirectionally and the dashed lines 53 and 53' simply represent that portion of the X-ray fluorescence which is directed toward the sample 13.
  • FIG. 2 illustrates certain other highly advantageous features of the target and collimator structure.
  • contamination of the secondary X-rays 53 output with with characteristic X-ray spectra from the material of the collimator 57 may be suppressed by coating the surfaces of the collimtor, including passages 58, with a lining 71 of filtering material, such as beryllium, having a low atomic number.
  • filtering material such as beryllium
  • one or more of the secondary targets may have thickness selected to cause such targets to act as filters, suppressing all but desired specific wavelengths, rather than acting to generate the secondary X-rays by fluorescence.
  • identical primary or secondary targets may be provided at spaced locations around the anode 18 and table 69 to provide for irradiation of sample 13 from different directions with a specific selected wavelength.
  • FIG. 3 illustrates one advantageous detailed construction of the target and collimator region of the X-ray source 12. Unlike FIG. 2, which is taken along an are 2-2 of FIG. 1, FIG. 3 is a section view of a portion of the anode end of the X-ray source 12 taken along a radial plane thereof.
  • the collimator 57 may each be mechanically separate elements as depicted schematically in the preceding FIGS., such components may also be advantageously combined into a single assembly as shown in FIG. 3.
  • the collimator 57 may be joined to the end of envelope 14 to form an end closure therefor.
  • Rotatable table 59 carrying the secondary targets 60 and 61 may be attached to the collimator struc- .ture 57 through a bearing 72 and annular retainer 73 attached to the collimator by means such as screws 74.
  • the passages 76 in retainer 73 through which the sores 74 extend are of greater diameter than the screws so that the retainer and thus the rotatable table 59, including secondary targets 60 and 61, may be shifted laterally as necessary to bring the targets into optimum alignment with the collimation passages 58.
  • the edge of the table may be provided with gear teeth 76 which engage an output gear 77 of a servomotor 78 mounted on the collimator structure 57.
  • Servomotor 78 carries a position sensing means 80 which will hereinafter be described.
  • Passages 58 of the collimator including the lining 71 thereof are outwardly flared toward the interior of envelope l4 and the primary target 54 associated with each such passage is disposed transversely therein at the small diameter portion of the flared section.
  • the primary targets 54 and 56 having the thicknesses hereinbefore described, may be adequately cooled by heat conduction to the adjacent supporting surfaces if the electron beam 23 power is less than around 100 watts. If primary target thicknesses are insufficient for this purpose or higher electron beam power is utilized, suitable coolant passages 79 may be provided within the collimator 57 with fittings 81 being provided at the exterior surface to provide for a forced flow of coolant.
  • the above-described disposition of the primary targets 54 and 56 within flared extensions of the collimator passages 58 serves to suppress cross-contamination of adjacent primary targets from evaporated and redeposited target material which may otherwise result from impingement of an electron beam thereon.
  • the material of one target may tend to be deposited on another thereby interfering with proper operation of the source.
  • Crosscontamination may be still further suppressed by a coating 85 of carbon or other low atomic number material on the target and by extending a thin foil 82, supported by a wire grid 83, across the inner surface of col limator 57.
  • the foil 82 and grid 83 are thin and formed of a suitable low atomic number material, such as carbon for the foil and beryllium for the grid, the electron beam 23 loses little energy in passing through such structure and no significant undesired X-ray background is generated.
  • the X-ray source 12 it is desirable in many operations to check the intensity of the secondary radiation flux 53 at the output of the X-ray source 12 at a particular time when a particular combination of primary and secondary targets and electron beam voltages is being used and it may also be desirable to monitor the wavelength spectrum of such radiation flux.
  • the previously described inner arrays of primary targets 56 and secondary targets 60 are utilized for this purpose. If, at a given time, the electron beam 23 is being directed to a specific one of the primary targets 54, as depicted in FIG. 3, and it is desired to monitor secondary output flux or wavelength or both, the electron beam may be temporarily redirected to the associated inner one of the primary targets 56 or to other primary targets 56.
  • a monitor detector 86 which may typically be a gas-filled proportional counter, is secured to rotatable table 59 adjacent each inner secondary target 60 in position to receive the fluorescent X-ray emission therefrom, the counter being preferably partially enclosed by a shield 87 to screen out background radiation other than that originating from the adjacent surface of the associated one of the secondary targets 60.
  • the output of each monitor detector 86 may be processed essentially similarly to the output of the sample fluorescence detector 64 of FIG. 1 to obtain the desired data or may be utilized in automatic control of the spectrometer as will hereinafter be described.
  • FIG. 4 illustrates, in block form, modifications which enable self-cycling of the system to perform an X-ray fluorescence analysis of a sample 13, including automatic determination of the optimum X-ray output wavelengths from source 12 for the particular sample 13 and automatic control of the source to select the appropriate primary and secondary targets and electron beam intensities and energies.
  • the filament terminals 29 may be coupled to the output of a programmable current supply 88 of the known form which provides an output current having a magnitude determined by coded digital signals applied to the input.
  • the cathode 19 is coupled to the output of a programmable voltage supply 89 of the known form which supplies an output voltage selectively variable in response to coded input signals.
  • Additional programmable voltage supplied 91, 92 and 93 are coupled to the control electrode 22, first anode 24, and deflection plates 26, respectively.
  • the output of analog-to-digital converter 96 consists of successive signals indicative of the wavelengths of counts from sample detector 64 and may be transmitted to the input 97 of a digital computer 98, preferably of the minicomputer form.
  • the number of counts from detector 64 of a given wavelength occurring in a given interval of time is proportional not only to the amount of a particular chemical element in the sample 13, but also is proportional to the electron beam 23 current in source 12.
  • the computer must also be provided with digital input signals indicative of beam current.
  • a low value resistor 99 is disposed in the ground connection to end anode plate 18 and the voltage developed across the resistor, which is proportional to the electron beam 23 current, is applied to another analog-to-digital converter 101.
  • the output of converter 101 is coupled to the computer input 97 to transmit digital signals thereto coded to indicate electron beam current.
  • a digital computer may readily be programmed to perform the logical operations which are required for the sample analysis and which are required to issue appropriate instructions, derived from such analysis at each stage of the process, to the programmable current and voltage supplies 88, 89, 91, 92 and 93 and to servomotor 78.
  • the computer may also be caused to display the results of the analysis on an appropriate output device 102 which may include a visual display and a printout if desired.
  • the qualitative and quantitative assay results may be displayed in graphical or alphanumeric form on a cathode ray tube or may be printed out or plotted graphically.
  • Such programming involves storing instructions in a central processing and memory unit 103 of the computer for selecting X-ray wavelengths for sample radiation. These instructions are executed by a target selection logic portion 104 of the memory which transmits digital control signals to programmable voltage supply 93 and to servomotor 78 in order to direct the electron beam 23 to the selected primary target and to rotate table 59 to align the selected second target therewith (or to align no secondary target therewith). Similarly, instructions are stored in a beam energy control portion 106 of the computer memory to transmit digital signals to programmable voltage supply 89 of the cathode to maintain a selected beam accelerating voltage.
  • Still another portion 107 of the computer memory is provided with instructions to control programmable voltage supplies 91 and 92 for optimum beam focus and another portion 108 of the memory stores instructions for selecting optimum filament current and control electrode voltage and for transmitting correspondingly coded signals to programmable supplies 88 and 91.
  • FIGS. A and 53 Circuit provisions for adapting the system of FIGS. 1 to 4 to automatic or self-cycling operation with the aid of a computer are shown in more detail in FIGS. A and 53.
  • FIG. 5A may be disposed with FIG. 5B immediately above FIG. 5A to form a single continuous cir- 12 cuit diagram.
  • the legends A/D and D/A refer respectively to analog-to-digital and digitalto-analog converter circuits, suitable detailed constructions therefor being known to the art.
  • the legend IF refers to interface cards, also known to the art, for connecting digital signal channels of external circuitry with a computer.
  • the computer 98 is a minicomputer of the form identified as a PDP- Il, manufactured by Digital Equipment Corporation,
  • the interfaces IF may be of the DR] IA form manufactured by the same company.
  • the legend OC identifies optical coupling devices of the known form through which digital signals may be transmitted from one device to another without requiring direct electrical connection therebetween and which are used for isolation where the signal receiving circuit is at a high voltage level relative to the signal input circuit.
  • the legend DSC refers to device status circuits of a form which will be hereinafter described.
  • fluorescent X-ray counts from the previously described sample detector 64 are initially amplified by the preamplifier 67 and further amplified by amplifier 94 and then transmitted to. the analog-to-digital signal converter 96 which codes each count signal according to pulse height for transmission to the computer 98 through an interface 111a. Accordingly, with suitable programming, the computer 98 is enabled to store a count of the number of fluorescent X-rays from the sample of each specific wavelength to establish the characteristic wavelength spectrum of fluorescent X- rays from the sample. Counts from the several monitor detectors 86, of which only one is depicted in FIG. 5, are similarly transmitted through a preamplifier I12, amplifier 113, analog-to-digital converter 96!), and interface lllb.
  • Computer 98 is enabled to control the first anode voltage at X-ray source 12 through an interface lllc, digital-to-analog converter 116a, and optical coupler 117a whichjointly form a control signal channel to the previously described programmable voltage supply 92.
  • Supply 92 has a controlled voltage output 118 connected to the first anode 24 of the source.
  • the programmable voltage supply 91 having a controlled voltage output 119 coupled to the source control grid 22, is responsive to computer instructions received through an interface 111d, digital-to-analog converter 1161), and optical coupler 1171).
  • Another interface llle, digital-to-analog converter 1160, and optical coupler 117c enable the computer to control programmable voltage supply 89 which has a controlled voltage output 121 connected to the cathode 19 of the X-ray source 12.
  • the computer is enabled to control the filament current of the source through an interface lllf, digital-to-analog converter 116d, and optical coupler 117d, the supply 88 having a pair of controlled current conductors 122 connected across the filament 21 of the source.
  • Control of electron beam deflection within the source 12 by the computer is enabled by an interface 111g, digital-to-analog converter 116e, and optical coupler ll7e forming a control signal path to programmable voltage supply 93Y which has a pair of controlled voltage outputs connecting with a first pair of the opposed deflection plates 26Y.
  • an interface Illh connects with a digital-to-analog converter l16fwhich in turn connects through an optical coupler 1l7fwith programmable voltage supply 93X which has a pair of controlled voltage outputs connected to the remaining pair of opposed deflection plates 26X, thus enabling primary target selection within source 12 by the computer.
  • an interface 111i connects the computer with a digital-to-analog converter 116i having an output connected to one input of a comparator 123, the output of which is connected to servomotor 78 to supply operating current thereto. Accordingly, servomotor 78 will operate to rotate secondary target table 59 if there is an output from comparator 123.
  • the other input of the comparator is connected to a rotatable tap contact 124 which is turned by servomotor 28 in synchronism with table 59.
  • Rotatable tap 124 is in sliding contact with a circular resistor 126 having a DC voltage source 127 connected thereacross in series with an on/off switch 130. With switch 130 closed, the voltage at rotatable contact 124 is a function of the rotationalposition thereof and this voltage is supplied to the other input of comparator 123. The comparator 123 will produce an output, causing motor 78 to operate, until such time as rotation of the contact 124 brings the voltage applied to comparator 123 from contact 124 into balance with the control voltage applied thereto from digital-to-analog converter 116i at which point the output of the comparator ceases and motor rotation stops.
  • the basic reference voltage between the high voltage end of X-ray source 12 and ground, with reference to which the several programmable supplies 88, 89, 91, 92 and 93 provide selected voltage variations, is itself determined by an additional main programmable voltage supply 128 having an output coupled to each of the other programmable supplies.
  • Main supply 128 is itself controllable by instructions from computer 98 through an interface lllj and digital-tdanalog converter ll6j. No optical coupler is employed in the last described instruction channel, as the main voltage supply 128 is of the known form having internal means providing isolation of the output from the signal receiving input components which operate at relatively low voltages.
  • the computer 98 may be enabled to monitor various significant source operating voltages to determine if these conform with the instructions issued by thecomputer and to enable corrective modifications in instructions if needed.
  • the main programmable voltage supply 128 has a monitor output 129 which is coupled to a voltage monitor 131. The output of monitor 131 is transmitted to the computer through an analog-to-digital converter 96d and interface 111k.
  • a voltage signal indicative of electron beam current within the X-ray source 12 is provided to the computer through a conductor 132 connected between end anode 118 and an amplifier 133 having an output coupled to analog-todigital converter 96e which in turn provides the digitized beam current information to the computer through an interface 1111.
  • a series of device status circuits 134 are employed.
  • a first such device status circuit 134a detects any deparature of the output voltage of the main programmable voltage supply 128 from that indicated by the control signal currently being received from the associated digital-to-analog converter ll6j.
  • Programmable voltage supplies 128 of this form have an error signal output 136a on which a signal appears whenever there is a discrepancy between the input instructions and output voltage. Error signal terminal 136a is coupled to the input of the device status circuit 134a which has an output coupled to the computer through an interface 111m.
  • the device status circuit 134a has a pair of digital output comparators 137 and 138 each having the main voltage supply error signal 136 connected to one input.
  • a small negative reference voltage is applied to the other input of one comparator 137 while a small positive reference voltage is applied to the other input of the other comparator 138.
  • the outputs of both comparators 137 and 138 are high, If the error signal increases significantly in either direction, the output of one of the comparators goes low.
  • the outputs of the two comparators 137 and 138 are connected to the inputs of an AND gate 139, the output of which is coupled to the interface lllm.
  • the output of the AND gate 139 is high when the received error signal is within the acceptable narrow limits and goes low to inform the computer when a significant degree of error is detected.
  • the error signal outputs 136b and 136g of programmable supplies 88, 89, 91, 92, 93Y and 93X, respectively, are each coupled to a separate one of a series of device status circuit 134 which are in turn coupled to the computer 98 through interfaces 1 1 In, 1110, 111p, lllq, 111r, and 111s, respectively.
  • the output of servomotor control comparator 123 connects with an additional device status circuit 134 and interface 111: to inform the computer when the secondary target table 59 is undergoing movement.
  • Speed and accuracy of the system can be greatly enhanced if the generation of X-rays by source 12 is temporarily interrupted during periods when any significant operating parameter is temporarily out of conformity with the instructions supplied by computer 98 and also during the period required to process each X-ray count produced by sample detector 64.
  • a source pulsing circuit 138 is provided for this purpose.
  • Pulsing circuit 138 utilizes an OR gate 139 and an AND gate 140 having outputs coupled respectively to the set and reset inputs of an MECL-type flip-flop 141 through optical coupler 117g.
  • the output of preamplifier 67 is coupled to one input of AND gate 140 through an isolating amplifier 145 and discriminator amplifier 146.
  • resetting of flip-flop 141 blocks X-ray production in source 12.
  • the other input of AND gate 140 is controllable by the computer through an interface 111a and inverter 149.
  • OR gate 139 Setting of the flip-flop to restore X-ray production after a predetermined period sufficient to process a detected X-ray is accomplished through a connection from the output of amplifier 146 to one input of OR gate 139 through a time delay means such as a monostable multivabrator 147.
  • the other input of OR gate 139 is coupled to the computer through interface l11u to enable the computer to maintain X-ray production when necessary by overriding the pulsing circuit 138.
  • a single one of the outputs of flip-flop 141 is utilized to control pulsing of the X-ray source 12, this being the output 148 which is high when the flip-flop is in the reset state indicating that a count has been detected or that one or more operating parameters are incorrect as described above.
  • This high condition of flip-flop output 148 is caused to block temporarily the electron beam generation within source 12 by applying a negative voltage pulse to control grid 22 relative to cathode 19.
  • the output voltage at flip-flop output terminal 148 which is unipolar, is amplified and made bipolar by a circuit 150.
  • Circuit 150 may be formed of a first transistor 151 having a base coupled to flip-flop output 148 through a resistor 152 and having an emitter coupled to cathode 19.
  • the collector of transistor 151 is coupled to the base of a second transistor 156 through a resistor 155.
  • a small positive voltage, typically volts, is applied to the emitter of transistor 156 and is also applied to the base thereof through a resistor 157.
  • a small negative voltage, typically 3 volts, is applied to the collector of transistor 156 through a resistor 158, the collector of transistor 156 being coupled to the base of a third transistor 159 through a speed-up filter circuit formed by a parallel capacitor 161 and resistor 162.
  • the emitter of transistor 159 is coupled to cathode 19 while the collector thereof is coupled to control grid 22 through a capacitor 163.
  • the collector of transistor 159 is also connected to the movable contact 164 of a potentiometer through a resistor 166.
  • a positive voltage, typically +300 volts, is applied to the resistive element 167 of the potentiometer which has one end connected to cathode 19.
  • the previously described connection of controlled voltage output 1 19 of programmable voltage supply 91 to control grid 22 is made through a resistor 168 and a diode 169 which is in parallel therewith for DC. restoration.
  • the voltages referred to in the foregoing description of circuit 149 are voltages taken relative to the basic high negative voltage at the cathode end of X-ray source 12 and are additive thereto rather than being relative to ground.
  • output 148 of flip-flop 141 is low and thus transistor 151 is biased off and transistor 156 and 159 are also biased off. Under this condition, the voltage applied to control grid 22 is determined wholly by supply 91 and acts to draw electrons from cathode 19 to form the desired electron beam.
  • output 148 of the flip-flop goes high.
  • Transistor 151 is turned on thereby turning on transistors 156 and 159. The resultant conduction through transistor 159 reduces the positive voltage on capacitor 163.
  • FIG. 6 a modification of the geometry of the X-ray source 12a is shown in which backward emission of X-rays from both the primary targets 54a and secondary targers 61a is utilized and in which the sample 13a to be assayed is retained in a different manner.
  • the source 12a is designed to assay samples deposited on a cone of filter paper 171 which is received in a conforming cavity 172 formed coaxially in the end anode 18 of housing 14a.
  • the primary targets 54a in this example are mounted in the interior wall of vacuum envelope 14a in cavities 173 therein in oblique relationship to the electron beam 23a whereby when primary X-rays 174, including bremmstrahlung and characteristic X-rays, are emitted toward passages 58a in a collimator end portion 57a of the housing from the same surface of the target that receives the electron beam.
  • a thin foil and supporting grid structure 176 formed of low atomic number materials may be disposed across each cavity 173 to prevent cross-contamination between primary targets by evaporation, spalling, or the like. Where such protective means 176 are utilized, pump out channels 177 communicate the interior of envelope 14a with each cavity 173 to prevent creation of a pressure differential when the envelope is evacuated.
  • the primary X-rays 174 from the selected primary ,target 54a are transmitted through an associated one of the collimation passages 58a, each of which contains a thin window 178 of low atomic number material, such as beryllium, to impinge upon a selected one of the secondary targets 61a which has been positioned in alignment with the passage 58a.
  • the secondary targets 61a may be carried upon a table 59a rotatable by a servomotor 78a as previously described.
  • the secondary targets 61a are also disposed obliquely with respect to the path of the primary X-rays 174 in position to intercept and absorb bremmstrahlung from the primary targets while emitting fluorescent secondary X-rays 53a, characteristic of the particular target material, toward the sample 13a.
  • an X-ray filter 181 may be positioned in the path of the secondary X-rays 53a from the secondary target to the sample in order to suppress wavelengths other than a particular one with which it is desired to irradiate the sample. Suitable filter compositions for absorbing certain X-ray wavelengths while transmitting others are known to the art.
  • the sample fluorescence detector 64a may be positioned on the axis of the source 12a in position to view the sample 13a through a circular window 182 provided in table 59a for that purpose.
  • the monitor detectors 86a may be mounted on collimation structure 57a between collimator passages 58a and sample-receiving cavity 172.
  • a protective foil and grid 176b may be disposed across each cavity l73b and a pump out channel l77b communicates therewith.
  • Primary X-rays 174b from the selected primary target 54b are transmitted through a passage 58b in collimating structure 57b to impinge upon a selected one of the secondary targets 61b, each of which is mounted in a well 184 in a table 59b which may be rotated by a servomotor 78b as previously described.
  • the secondary targets 61b are disposed transversely in the wells 184 so that secondary fluorescent X-rays 53b are emitted from the side of the secondary target which is opposite from the side that receives the primary X-rays l74b.
  • the monitor detectors 86b may be mounted on table 59b in position to view secondary X-rays emitted from duplicate secondary targets 60b also carried on the table 59b in alignment with additional collimation passages 58b.
  • Certain of the previously described embodiments employ forward emission from one or both of the primary and secndary targets while others employ backward emission from one or both targets.
  • Backward emission is defined as utilization of the X-rays emitted from the same surface of the target that receives the radiation which generates the X-rays while forward emission is defined as the utilization of X-rays emitted from the surface of the target opposite from that which receives the initiating radiation.
  • the choice between the several configurations depends primarily on whether wavelength purity or intensity of the output from the source needs to be emphasized.
  • Backward emission provides greater intensity of the output radiation but, owing to the greater opportunity for scattering of bremmstrahlung, the output tends to be slightly more contaminated with undesired wavelengths than where forward emission is used.
  • FIG. 8 illustrates still another modification wherein the choice of either forward or backward primary X-ray emission from the primary targets 540 is also provided.
  • the X-ray source 12c construction shown in FIG. 8 may be similar to that of FIG. 3 except for the providing of an additional set of primary targets 540 in the sidewall of vacuum envelope 14c. These additional targets 540 may be similar to those described with reference to FIGS. 6 and 7 and accordingly need not be redescribed. It will be apparent that the electron beam 23 may be selectively switched to any one of the additional primary targets 540 to produce primary X-rays 1740 by backward emission where high intensity is desired or may be redirected to utilize the previously described primary targets 54 if the more strongly monochromatic output obtainable from forward emission is desired.
  • primary X-rays by directing charged particles to a selected one of a plurality of primary targets which are disposed at separate locations on a primary target plate and each of which has a different composition, the primary X-rays including a wavelength characteristic of the material of the selected primary target and further including a bremmstrahlung spectrum of many wavelengths,
  • said selected one of said secondary targets having a composition which emits characteristic X-rays having a wavelength spectra that produces X-ray fluorescence in a specific possible constituent element of said substance, and said selected one of said primary targets being of different composition than said selected one of said secondary targets and being selected to produce primary X-rays which promote said characteristic X-ray emission by said selected secondary target,
  • steps defined in claim 1 further comprising the step of selecting a primary target sufficiently thick to absorb at least a substantial portion of said bremmstrahlung while being sufficiently thin to emit said secondary X-rays by fluorescence from the surface of said selected primary target which is opposite from the surface thereof which intercepts said charged particles.
  • steps defined in claim 1 comprising the further steps of sequentially directing said charged particles to each of said plurality of primary targets and sequentially directing said primary X-rays produced at each primary target during said charged particle irradiation thereof to each of a plurality of said secondary targets whereby the wavelength spectrum of said secondary X-rays is sequentially shifted.
  • steps defined in claim 1 comprising the further steps of initially irradiating said substance with an X-ray spectrum including a large number of wavelengths while detecting the wavelengths of X-ray fluorescence from said sample in order to tentatively identify the probable constituents thereof, and subsequently irradiating said substance with secondary X-rays from at least one specific combination of said primary and secondary targets selected to produce secondary X-rays having a wavelength which optimizes X-ray fluorescence of at least one of said probable constituents.
  • An X-ray fluorescence analysis spectrometer comprising:
  • an X-ray source having means for producing any selected one of a plurality of different specific predetermined X-ray spectra, said X-ray source having a plurality of primary targets each of different composition and means for directing accelerated charged particles to any selected one of said primary targets to produce primary X-rays which include bremmstrahlung and which include specific wavelengths characteristic of the material of the selected primary target, said X-ray source having a plurality of secondary targets each of different composition and means for directing said primary X-rays from any selected one of said primary targets to any selected one of said secondary targets to produce secondary X-rays thereat that have one of said specific predetermined X-ray spectra, said X-ray source further having means for preventing primary X-rays from a selected primary target from reaching ones of said secondary targets other than said selected secondary target,
  • an X-ray detector disposed for detecting characteristic fluorescent X-rays emitted from said substance.
  • said selected primary target is disposed to intercept bremmstrahlung directed toward said selected secondary target and is proportioned to absorb at least a substantial proportion of said bremmstrahlung while emitting said primary X-rays by X-ray fluorescence.
  • At least one of said primary targets has a surface positioned to receive said charged particles and to emit said primary X-rays from the same surface toward said secondary target including said bremmstrahlung and said characteristic wavelengths
  • said secondary target has a surface positioned to intercept said primary X-rays and is proportioned to absorb bremmstrahlung therein while emitting said secondary X-rays toward said substance by X-ray fluorescence from another surface.
  • said means for preventing primary X-rays from reaching ones of said secondary targets other than said selected secondary target comprises a radiation absorbent collimating means disposed between said primary and secondary targets for intercepting primary X-rays from said selected primary target which are directed toward secondary targets other than said selected secondary target and having at least one radiation transmissive passage for transmitting said primary X-rays from said selected primary target to said selected secondary target.
  • combination defined in claim 6 further comprising a self-cycling system for said X-ray source, said self-cycling system having means for sequentially directing said charged particles to predetermined specific ones of said primary targets, and having means for shifting predetermined specific ones of said secondary targets into postion to receive said primary X-rays from predetermined specific ones of said primary targets to produce a predetermined sequence of said secondary X-ray spectra.
  • said self-cycling system further comprises means for controlling said X-ray source to initially irradiate said substance with a polychromatic X-ray spectrum, means coupled to said detector for analyzing the wavelength spectrum of characteristic X-ray fluorescence from said substance in response to said polychromatic irradiation thereof to identify wavelength characteristic of specific elements, logic circuit means for controlling said X-ray source to sequentially irradiate said substance with a plurality of specific secondary X-ray spectra each selected to cause strong X-ray fluorescence from a particular separate one of said specific elements, and means for indicating the amount of characteristic fluroscent X-rays of each of said elements which are detected during said irradiation of said substance by said specific secondary X-ray spectra.
  • the combination defined in claim 12 further comprising an additional plurality of primary targets each having a composition similar to that of an associ ated separate one of said plurality of primary targets, an additional plurality of secondary targets each having a composition similar to that of an associated separate one of said secondary targets, a plurality of monitor X-ray detectors each positioned to receive and detect secondary X-rays emitted from an associated separate one of said additional secondary targets, and wherein said self-cycling system has means for momentarily diverting said charged particles from a selected primary target to the one of said additional primary targets associated therewith to cause the associated one of said monitor detectors to produce a signal indicative of the radiation flux being directed to said sample and has means for adjusting the energy of said charged particles if said detected radiation flux differs from a predetermined value.
  • said self-cycling system further comprises means for suppressing acceleration of said charged particles to said primary targets during periods when said means for directing said charged particles is in the process of redirecting said particles from one selected primary target to another selected primary target.
  • said self-cycling system further comprises means for suppressing acceleration of said charged particles to said primary targets during periods when said means for shifting said secondary targets is in the process of shifting a secondary target.

Abstract

A method and apparatus for producing X-rays having any selected one of a plurality of specific different wavelength spectra greatly facilitates X-ray fluorescence analysis of samples to detect constituent elements. In the X-ray source, an electron beam is directed to any selectable one of an array of primary targets of different composition. X-rays from the selected primary target may be utilized directly or caused to impinge on any selected one of a plurality of secondary targets, which are also each of differing composition to cause the secondary target to emit a specific X-ray spectrum characteristic of that secondary target. Analysis of the X-ray fluorescence from a sample irradiated by a plurality of different specific selected X-ray spectra enables identification and measurement of particular chemical elements in the sample. The system including the selection of appropriate combinations of primary and secondary targets may be controlled manually or by a computer responsive to the detector of the X-ray fluorescence from the sample.

Description

United States Patent [191 Albert SELECTABLE WAVELENGTH X-RAY SOURCE, SPECTROMETER AND ASSAY METHOD [76] Inventor: Richard D. Albert, 317 Hartford Road, Danville, Calif. 94523 [22] Filed: Apr. 24, 1973 [21] Appl. No.: 353,451
Related US. Application Data [63] Continuation-impart of Ser. No. 251,378, May 8, 1972, abandoned.
[ Dec. 9, 1975 Primary ExaminerJames W. Lawrence Assistant Examiner-D. C. Nelms Attorney, Agent, or Firm-Phillips, Moore, Weissenberger Lempio & Strabala [57] ABSTRACT A method and apparatus for producing X-rays having any selected one of a plurality of specific different wavelength spectra greatly facilitates X-ray fluorescence analysis of samples to detect constituent elements. In the X-ray source, an electron beam is directed to any selectable one of an array of primary targets of different composition. X-rays from the selected primary target may be utilized directly or caused to impinge on any selected one of a plurality of secondary targets, which are also each of differing composition to cause the secondary target to emit a specific X-ray spectrum characteristic of that secondary target. Analysis of the X-ray fluorescence from a sample irradiated by a plurality of different specific selected X-ray spectra enables identification and measurement of particular chemical elements in the sample. The system including the selection of appropriate combinations of primary and secondary targets may be controlled manually or by a computer responsive to the detector of the X-ray fluorescence from the sample.
18 Claims, 9 Drawing Figures MAGNETIC DEFLECTION CONTROL 0 AMPLIFIER DISCRIMINATOR ANALYSER US. Patent Dec. 9, 1975 Sheet 1 of9 $925,660
MAGNETIC I I DEFLECTIQN CONTROL PULSE HEIGHT ANALYSER U.S. Patent Dec. 9, 1975 Sheet2 of9 3,925,660
swmvm k/ u V US. Patent Dec. 9, 1975 Sheet4 of9 3,925,660
2? PROGRAMABL ,88 9
CURRENT Z7 SUPPLY I PROGRAMABLE 59 a-ifl g VOLTAGE --Z/ SUPPLY n- CONTROL FIG. 4. M5 2 PROGRAMABLE 7/ VOLTAGE P I SUPPLY 24 r\ CONTROL PROGRAMABLE m J VOLTAGE if; MAGNETIC SUPPLY BEAM I IPROGRAMABLE, ENERGY DEFLEOTION I VOLTAGE 9a CONTROL 5 SUPPLY /0b 27 26 "TARGET SELECTION LOGIC M I /04 CENTRAL Q' -gfi E PROCESSING CONVERTOR QRA RY COMPUTER 97- INPUT- OUTPUT DISPLAY AND READOUT AMPLIFIER DISCRIMINATOR ANALOG TO DIGITAL CONVERTOR lOZ Sheet 5 0f 9 Dec. 9, 1975 US. Patent Sheet 6 of 9 mOJuTEJm JOME U.S. Patent Dec. 9, 1975 Sheet 7 of 9 US. Patent Dec. 9, 1975 U.S. Patent Dec. 9, 1975 Sheet 8 of9 3,925,660
US. Patent Dec. 9, 1975 Sheet 9 of9 3,925,660
SELECTABLE WAVELENGTH X-RAY SOURCE, SPECTROMETER AND ASSAY METHOD CROSS-REFERENCE TO RELATED APPLICATIONS This application is a continuation-in-part of prior copending application Ser. No. 251,378 of Richard D. Albert, filed May 8, 1972, for WAVELENGTH X-RAY SPECTROMETER AND ASSAY METHOD, now abandoned.
BACKGROUND OF THE INVENTION This invention relates to a method and apparatus for producing X-rays of selectable wavelengths and intensities and to a system utilizing such X-rays to detect specific chemical elements in a sample by analysis of X-ray fluorescence therefrom.
When exposed to X-rays, most substances will fluoresce X-rays that have a specific wavelength or combination of specific wavelengths that are characteristic of the chemical elements in the substance. The wavelength spectrum of the X-ray fluorescence is not deter mined by that of the incident X-rays which are causing the fluorescence but is instead determined by the elemental composition of the substance. As the fluorescent X-ray spectrum is distinct for each different element, this offers a technique for rapidly and nondestructively detecting the presence of a specific element in a sample or for identifying the total chemical composition of the sample. The complete fluorescent X-ray spectrum of an unknown substance provides a fingerprint for that substance which contains all the information needed to identify and quantitatively analyze most of the elements that may be present in the substance.
This technique has heretofore been used only on a very limited basis, mostly within the confines of research laboratories, to analyze specific substances for specific elements using an assembly of devices useful only for that particular analysis.
One major problem is that conventional X-ray tubes or sources are not easily controllable with respect to the wavelength spectrum which is produced. The conventional X-ray tube consists of means for accelerating a beam of electrons toward a target or anode generally composed of a refractory metal such as tungsten or the like. The resultant X-rays have two principal components. One consists of the characteristic X-ray fluorescence wavelengths of the target material and the other is a poly-chromatic spectrum known as bremmstrahlung which contains a more or less continuous distribution of wavelengths. The characteristic specific wavelength of the target material is unchangeable and is accompanied by a heterogeneous mixture of many wavelengths. Use of such an X-ray tube complicates the X-ray fluorescence analysis technique described above and greatly limits the accuracy of the result. While, as pointed out above, the wavelength of X-ray fluorescence from a sample is not determined by the wavelength of the incident X-rays, this does not mean that control of the wavelength of the incident X-rays is unimportant. First, the intensity of the X-ray fluorescence from the sample is strongly dependent upon the wavelength of the incident X-rays. Second, the presence of the bremmstrahlung spectrum in the vicinity of the sample can. greatly interfere with detection of the desired sample fluorescence.
SELECTABLE- l Accordingly, efficient use of the X-ray fluorescence analysis technique requires a substantially bremmstrahlung-free source of X-rays having a specific wavelength spectrum. Further, if the technique is to be used to analyze a sample for a variety of initially unknown possible chemical element constituents, the source of X-rays should be readily adjustable to produce any selected one of a large number of specific wavelengths or wavelength spectra since it may be necessary to sequentially irradiate the sample with a series of different wavelengths to produce a strong fluorescence response from each of the various constituent elements. This change of output wavelengths should be accomplishable guickly and by a simple adjustment of controls either manually or preferably by an automatic feedback systern which responds to the sample X-ray fluorescence.
These objectives cannot be accomplished if the X-ray source apparatus must be disassembled and reconstructed in part to produce a desired specific wave length spectra.
Moreover, an X-ray source producing selectable wavelengths and intensities can offer important advantages in contexts other than the spectrometric analysis of substances as discussed above. In radiology as used for medical purposes or for the inspection of industrial parts, for example, the image which is obtained of the internal structure of a subject is useful only to the extent that different internal elements of the subject are distinguishable in the image. The contrast in such an image, between different internal areas of the subject, is again strongly influenced by the wavelength of the incident X-rays. The particular wavelength which provides the best contrast in an image of a medical patient between bone structure and the surrounding soft tissue may not be the same wavelength which provides the best contrast in distinguishing tumorous tissue from adjacent normal tissue. Thus, the versatility of radiology equipment of this kind may also be greatly enhanced by an X-ray source providing for selection of any of a plurality of different wavelength spectra.
SUMMARY OF THE INVENTION This invention provides for a rapid, efficient and accurate detection of constituent elements in a sample by X-ray fluorescence analysis. An X-ray source, also usable for purposes additional to sample analysis, is provided for generating any selected one of a plurality of different wavelength spectra which may include substantially monochromatic spectra. Selection of the wavelength and intensity of the output of the source is readily accomplished by manual adjustment of controls or, in one preferred form, by a feedback system responsive to detected X-ray fluorescence from the sample.
Within the X-ray source, an electron beam or the like is controllably directable to any of an array of primary targets of different composition. In a preferred form, primary X-rays emitted from the selected primary target may be selectively transmitted directly to the sample or caused to impinge upon any selectable one of an array of secondary targets which are also each of different composition. The resultant X-ray emission from the selected secondary target has a spectrum determined by that particular target and is transmitted to the sample or the like, means being provided for suppressing bremmstrahlung which might otherwise reach the sample. The invention includes a number of additional novel features which will hereinafter be described in connection with the description of preferred embodiments.
Accordingly, it is an object of this invention to facilitate the detection and measurement of constituent elements in a substance by analysis of X-ray fluorescence therefrom.
It is another object of this invention to provide a method and apparatus for producing X-rays having any selected one of a plurality of predetermined wavelength spectra and intensities.
It is still another object of this invention to provide for the automatic cycling of output of X-ray wavelengths and intensities in an X-ray source to facilitate assay of a sample by analysis of fluorescent X-rays emitted therefrom.
Still another object of the invention is to provide for the suppression of bremmstrahlung in an X-ray source capable of producing any of a plurality of specific predetermined X-ray wavelengths.
The invention, together with further objects and advantages thereof, will best be understood by reference to the following description of certain preferred embodiments taken in conjunction with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS In the accompanying drawings:
FIG. 1 is a schematic view of a first embodiment of an X-ray spectrometer in accordance with the invention;
FIG. 2 is an enlarged schematic sectional view of a portion of the apparatus of FIG. 1 taken along curved line 22 thereof;
FIG. 3 is a partial cross-sectional view of a portion of the X-ray source of the spectrometer of FIG. 1 showing one example of structural detail for such source;
FIG. 4 is a schematic view of a modification of the X-ray spectrometer system including, in schematic form, a self-cycling feedback circuit for controlling the X-ray source to perform an analysis of a substance in an automatic manner or for other purposes;
FIGS. 5A and 5B, which may bejuxtaposed with FIG. 5B above FIG. 5A to form a single continuous circuit diagram, illustrates the circuit of FIG. 4 in greater detail;
FIG. 6 illustrates a modified construction of the X-ray source;
FIG. 7 illustrates another modification of the X-ray source, and
FIG. 8 illustrates still another variation of the X-ray source construction.
DESCRIPTION OF PREFERRED EMBODIMENTS The present invention will best be understood by first briefly reviewing certain properties of materials subjected to X-ray irradiation. Specifically, most chemical elements will fluoresce an X-ray spectrum having one or more specific wavelengths upon being irradiated by X-rays that do not necessarily include the same wavelengths and which may be a polychromatic mixture of many different wavelengths. Further, each of the known elements fluoresces a specific wavelength or combination thereof which is unique to that element and which differs from the fluorescent radiation of each other element. If a sample composed of a single element is subjected to polychromatic X-rays, the fluorescence from the sample can be detected and analyzed to produce a plot of the amount of X-ray fluorescence at each wavelength. This fluorescent X-ray spectrum is unique for that element and enables ready identification. If the sample is composed of a mixture of ele' ments, a more complex fluorescent X-ray spectrum will be obtained, but it is possible in most instances to analyze the various peaks appearing in the spectrum to determine which elements are present and it is further possible to determine the relative amounts of each element from the relative heights of the peaks representative of each element. This process is termed fX-ray fluorescence analysis and is potentially a very valuable assay technique. It is nondestructive of the sample. and does not require any mechanical disruption thereof.
Accuracy and speed of X-ray fluorescence analysis are dependent upon the extent to which X-ray fluorescence from the sample can be maximized in relation to the background radiation wavelengths. The lack of suitable apparatus and techniques for optimizing X-ray fluorescence from elements suspected to be present in a sample has heretofore restricted the use of this potentially valuable assay technique.
While the wavelength spectrum of the X'rays which are impinged upon the sample doesnot determine the wavelengths of the fluorescence from the sample, there is a strong relationship insofar as the intensity of sample fluorescence is concerned. A different wavelength spectra may be required to maximize fluorescence from each particular element which may be present in the sample.
Accordingly, the present invention greatly facilitates accuracy, sensitivity, convenience, and speed of X-ray fluorescence analysis by providing a source of X-rays for sequentially irradiating a sample with selected ones of a large number of predetermined wavelength spectra. A practical, convenient source for exciting X-rays of selectable wavelength suitable for this purpose has not heretofore been available. In the conventional X-ray tubes or sources, high-energy electrons are caused to strike a target and the resulting X-rays have two' distinct components. The first component is the characteristic fluorescent X-ray wavelengths of the particular element of which the target is composed and the other is a continuous wavelength distribution called bremmstrahlung. While the wavelength of the characteristic X-rays from the conventional tube depends solely on the atomic number of the anode element, the bremmstrahlung wavelength mixture is strongly affected by the energy of the electron beam. This invention provides an X-ray source having a plurality of targets of differing composition to selectively produce any of a large number of characteristic X-ray wavelengths together with means for suppressing bremmstrahlung radiation so that a substantially pure output of any of a number of specific wavelength spectra may be obtained.
This greatly enhances the utility of X-ray fluorescence analysis as an assay procedure. Specifically, the sample may be initially irradiated with a polychromatic X-ray spectrum. The resulting fluorescence from the sample may then be detected and analyzed to produce a fluorescent X-ray spectrum, containing peaks at specific wavelengths, that enables a tentative identification of the probable elements in the sample. The X-ray source may then be adjusted to irradiate the sample with the specific X-ray wavelengths which will optimize fluorescence from those particular elements to confirm the presence of each such element and to determine the amount thereof in a rapid and accurate manner.
Preferably, detection and identification of the specific wavelengths in the X-ray fluorescence from the sample are performed by the energy dispersive tech nique in which the electric charge produced when a fluorescent X-ray from the sample is absorbed in a detector is measured. The collected charge, on a capacitor or the like, produces a readily measurable voltage which is proportional to the energy of the absorbed X- ray. This energy is inversely proportional to the wavelength of the X-ray thereby enabling determination of the wavelength.
Referring now to FIG. 1, an X-ray spectrometer system I1 is shown in schematic form including an X-ray tube or source 12 capable of irradiating a sample 13 which is to be analyzed with X-rays having any selected one of a large number of predetermined different specific wavelengths or combinations of specific wavelengths. Source 12 in this example has an evacuated envelope 14 with a relatively narrow cylindrical neck portion 16 formed ofinsulativc material and a flared anode end portion 17, formed of conductive material, that terminates in a circular conductive end anode 18. Electron beam generating and deflection means are situated in the neck portion 16 of the envelope and may be essentially similar to those employed in cathode ray tubes. This may include an annular cathode 19 heated by a filament 21 and an annular control electrode 22 disposed coaxially therewith and extending slightly fur ther toward the anode end of the envelope whereby the voltage applied to the control electrode will determine the current or intensity of the electron beam '23 emitted from the cathode. Electron beam 23 is focussed and accelerated by passage through an annular first anode 24 and then passes through a region bounded by four deflection plates 26 to which voltages may be applied to direct the beam toward any selected area of end anode 18. A magnetic beam deflection yoke 27, having control means 28, may be disposed around the envelope 14 in the region of deflection plates 26 to provide an alternate or supplemental means of cntrolling the direction of the electron beam, suitable detailed constructions for such magnetic deflection means and controls being well known in the art. Although not shown, it will be understood that various known provisions for enhanc' ing beam focusing and tube life, such as ion traps, getter materials, magnetic focusing means, and the like, may be employed in the envelope 14 if desired.
In a preferred arrangement, the cathode 19 is at a high negative potential while end anode plate 18 is at ground to reduce the likelihood of arcing to nearby grounded structure. Filament terminals 29 are connected across a filament power supply 31 through a filament power control switch 32 and a variable resistor 33 that provides for adjustment of filament current. Although other circuit configurations are suitable, voltages for the electrodes 22, 24, and deflection plates 26 may be provided from a high-voltage power supply 34 having the positive side grounded and having the negative side coupled to one of the filament terminals 29 through a switch 36 and further having a pair of intermediate taps 37 and 38 of progressively more negative voltages. To provide voltages for the electrodes 19, 22, 24, the resistive element 39 of a first potentiometer is connected between tap 37 and switch 36. A first sliding contact 41 at resistive element 39 is coupled to cathode 19 through an adjustable current limiting resistor 42. A second sliding contact 43 is connected to control electrode 22 through an adjustable current limiting resistor 44 and a third sliding contact 46 is connected to first anode 24 through an adjustable resistor 47. The sliding contacts 41, 43, and 46 enable the voltages applied to cathode 19, control electrode 22, and first anode 24 to be selectively varied to determine beam current, energy, and focus. i
To enable adjustment of the voltages applied to the deflection plates 26 for the purpose of controlling 'the direction of the electron beam 23, the resistive element 48 of a second potentiometer has one end grounded and the other end connected to power supply tap 38 through a deflector voltage on/off switch 49. Four adjustable sliding contacts 51 at resistive element 48 each connect with a separate one of the deflection plates 26 through a separate one ofa plurality of adjustable current-limiting resistors 52. Accordingly, the voltage applied to each of the deflection plates may be individually varied to direct the electron beam 23 toward any selected area of the end anode plate 18.
Considering now means by which a secondary X-ray output 53 having a selectable one of a large number of predetermined wavelength spectra can be directed to the sample 13, a series of primary targets 54 are mounted in the end anode plate 18 in a circular array in this instance. An inner ring of similar primary targets 56 is also provided for purposes which will hereinafter be described. The primary targets 54 are composed of a number of different chemical elements and have sufflcient thickness to completely stop the electrons of beam 23 and at least a portion of the primary targets have sufficient thickness to absorb much of the bremmstrahlung arising from the electron impact on the target. Where substantial bremmstrahlung absorption is desired, nickel, copper or iron primary targets in thicknesses of about 5 X l0 cm. are typical for electron beam energies of less than about 40 KeV. Thin window supports may be provided for the targets 54 if necessary.
When the electron beam 23 is impinged upon a selected one of the primary targets 54, the target emits primary X-rays which include both the characteristic wavelength of the target element and considerable bremmstrahlung or polychromatic X-rays. Much of the bremmstrahlung is absorbed in passage through the primary target except in the case of certain specialized ones thereof which will be hereinafter described. Characteristic X-ray wavelengths are emitted by fluorescence from the opposite side of the selected primary target 54 which fluorescent X-rays may be accompanied by any unabsorbed bremmstrahlung.
Disposed adjacent end anode 18 is a collimater 57 formed of dense X-ray absorbant material and having collimation passages 58 therethrough with one such passage being adjacent each primary target 54 and 56. Disposed on the opposite side of collimator 57 from the primary targets 54 is a secondary target table 59 which may be rotated relative to the end anode 18 and collimator 57. A circular outer array of secondary targets 61 and matching inner array of secondary targets 60 are mounted on table 59, the secondary targets each being formed of different elements which fluoresee different specific wavelengths.
Table 59 is rotatable to enable any selected one of the secondary targets 61 to be moved into alignment with any selected one of the primary targets 54 so that the primary X-rays produced at any particular primary target can be transmitted to any selected one of the secondary targets 61. Collimator 57 serves to prevent primary radiation from a particular selected target 54 from reaching any secondary target 61 other than the selected one.
Upon irradiation by primary X-rays from a selected one of the primary targets 54, the selected secondary target 61 fluoresces the specific characteristic wavelength spectrum of the element of which the secondary target is composed. Depending on the particular element and target thickness, this may be substantially monochromatic or it may include several specific wavelengths. Any remaining bremmstrahlung inn the primary X-rays is largely absorbed in the secondary target, the thickness of which is selected to accomplish this purpose. A thickness of about 1 X cm. is typical for a molybdenum secondary target, for example, in a system where the electron beam 23 has an energy of about 40 KeV and substantial bremmstrahlung absorption is desired.
Upon irradiation by the fluorescent secondary X-ray 53 from a selected secondary target 61, the sample 13 to be analyzed in turn emits fluorescent X-rays 63. X- rays 63 have wavelengths characteristic of the elements of which the sample is composed and have relative intensities indicative of the proportion of each element therein. The fluorescent X-rays 63 from the sample are received at a sample detector 64. In this example, detector 64 is a liquid nitrogen cooled, solid-state detector, although spark chambers, gas-filled proportional counters, liquid Xenon proportional counters, or scintillator-photomultiplier detectors may also be employed. Detector 64 may be protected from X-ray tube and other background radiation by a shield 65. In the present example, liquid nitrogen cooling for detector 64 is provided by a cryostat 66. The output of solidstate detector 64 is coupled to a preamplifier 67 which amplifies the X-ray count for transmission to a pulseheight analyzer 68 or other count analyzing, recording or display means through a pulse-shaping, linear amplifier and amplitude discriminator 70 which suppresses noise. The detector 64 is preferably of the energy-dispersive type which, in effect, produces an output pulse having an amplitude proportional to the electric charge produced when each X-ray is absorbed. This charge and thus the output voltage are proportional the energy of the absorbed X-ray which energy is, in turn, inversely proportional to the wavelength of the X-ray. Thus, pulse height analyzer 68 is able to sort counts according to the wavelength of the initiating X-ray from the sample to identify which wavelengths are present and in what amounts. This is the information needed to determine the composition of sample 13 by X-ray fluorescence analysis as hereinbefore discussed.
The X-ray source 12 enhances speed, sensitivity, and precision of the assay of the sample 13 by enabling irradiation of the sample with any selected one of a large number of specific wavelengths and by providing the capability of sequentially subjectingn the sample to a series of different wavelengths each selected to optimize sample fluorescence from a specific possible constituent element of the sample. This capability results from the ability to match any of a large number of primary targets 54 with any of a large number of secondary targets 61 in an arrangement which suppresses contamination by bremmstrahlung and unwanted characteristic radiation from the target and other materials.
FIG. 2 illustrates more detail of the target and collimator structure and further illustrates useful variations in form and function for the primary and secondary targets which enable use of either forward or backward fluorescent X-ray emission from the secondary targets and which enable deliberate transmission of bremmstrahlung to the sample when that is desirable. In particular, the rotatable secondary target table 59 is provided with a series of apertures 69 in some of which secondary targets 61 are disposed transversely to the path of primary X-rays from the primary targets. Such secondary targets 61 make use of forwardly emitted X-ray fluorescence for the purpose of irradiating the sample 13. That is, the primary radiation from a primary target 54 strikes one surface of the secondary target 61, and, as illustrated by dashed line 53', the secondary X-ray output originates by fluorescence at the opposite side of the secondary target. However, a second group of secondary targets 62 may be provided in which the fluorescent secondary X-ray output 53 is emitted backwardly from the secondary target. For this purpose, the backward emission targets 62 are secured to table 59 in an oblique relationship to the axis of the adjacent collimator passage 58 through which primary X-rays arrive. As the secondary targets 62 depend on backward emission of fluorescent X-rays, such targets may be substantially thicker than targets 61 in order to absorb primary X-rays including bremmstrahlung arriving through the collimator passage 58. With respect to both types of secondary targets 61 and 62, it should be appreciated that fluorescent X-rays are emitted omnidirectionally and the dashed lines 53 and 53' simply represent that portion of the X-ray fluorescence which is directed toward the sample 13.
FIG. 2 illustrates certain other highly advantageous features of the target and collimator structure. For example, contamination of the secondary X-rays 53 output with with characteristic X-ray spectra from the material of the collimator 57 may be suppressed by coating the surfaces of the collimtor, including passages 58, with a lining 71 of filtering material, such as beryllium, having a low atomic number. Considering still a further advantageous feature of the source construction, there may be instances, such as in the initial steps of an X-ray fluorescence analysis of a sample 13, wherein it is desired to produce a polychromatic X-ray output. While this can be done by cycling the electron beam 23 across a variety of the primary targets 54 in combination with a variety of the secondary targets 61 and 62, it is also provided for in this example of the invention by omitting any secondary target from one of the apertures 69' in rotatable table 59. Thus, bremmstrahlung from a primary target 54 in alignment with the open aperture 69 is not absorbed but is transmitted outward in the direction of the sample. Bremmstrahlung production may be enhanced if a particular one of the primary targets 54' is made of reduced thickness or replaced with a thin window for use in conjunction with the opening 69 in rotatable table 59. It should also be observed that one or more of the secondary targets may have thickness selected to cause such targets to act as filters, suppressing all but desired specific wavelengths, rather than acting to generate the secondary X-rays by fluorescence. Similarly, identical primary or secondary targets may be provided at spaced locations around the anode 18 and table 69 to provide for irradiation of sample 13 from different directions with a specific selected wavelength.
Certain structural details were omitted from FIGS. 1 and 2 in order to better illustrate certain basic principles of the invention. While the detailed construction of the apparatus may take a variety of forms, FIG. 3 illustrates one advantageous detailed construction of the target and collimator region of the X-ray source 12. Unlike FIG. 2, which is taken along an are 2-2 of FIG. 1, FIG. 3 is a section view of a portion of the anode end of the X-ray source 12 taken along a radial plane thereof.
While the anode end 14 of the X-ray source 12, the collimator 57, and the rotatable table 59 may each be mechanically separate elements as depicted schematically in the preceding FIGS., such components may also be advantageously combined into a single assembly as shown in FIG. 3. Thus, the collimator 57 may be joined to the end of envelope 14 to form an end closure therefor. Rotatable table 59 carrying the secondary targets 60 and 61 may be attached to the collimator struc- .ture 57 through a bearing 72 and annular retainer 73 attached to the collimator by means such as screws 74. Preferably, the passages 76 in retainer 73 through which the sores 74 extend are of greater diameter than the screws so that the retainer and thus the rotatable table 59, including secondary targets 60 and 61, may be shifted laterally as necessary to bring the targets into optimum alignment with the collimation passages 58.
To provide for selective turning of the table 59 in order to bring a particular secondary target into alignment with a particular primary target, the edge of the table may be provided with gear teeth 76 which engage an output gear 77 of a servomotor 78 mounted on the collimator structure 57. Servomotor 78 carries a position sensing means 80 which will hereinafter be described.
Passages 58 of the collimator including the lining 71 thereof are outwardly flared toward the interior of envelope l4 and the primary target 54 associated with each such passage is disposed transversely therein at the small diameter portion of the flared section. The primary targets 54 and 56, having the thicknesses hereinbefore described, may be adequately cooled by heat conduction to the adjacent supporting surfaces if the electron beam 23 power is less than around 100 watts. If primary target thicknesses are insufficient for this purpose or higher electron beam power is utilized, suitable coolant passages 79 may be provided within the collimator 57 with fittings 81 being provided at the exterior surface to provide for a forced flow of coolant.
The above-described disposition of the primary targets 54 and 56 within flared extensions of the collimator passages 58 serves to suppress cross-contamination of adjacent primary targets from evaporated and redeposited target material which may otherwise result from impingement of an electron beam thereon. In the absence of this corrective provision, the material of one target may tend to be deposited on another thereby interfering with proper operation of the source. Crosscontamination may be still further suppressed by a coating 85 of carbon or other low atomic number material on the target and by extending a thin foil 82, supported by a wire grid 83, across the inner surface of col limator 57. Provided the foil 82 and grid 83 are thin and formed of a suitable low atomic number material, such as carbon for the foil and beryllium for the grid, the electron beam 23 loses little energy in passing through such structure and no significant undesired X-ray background is generated.
Considering now still another advantageous aspect of the X-ray source as depicted in FIG. 3, it is desirable in many operations to check the intensity of the secondary radiation flux 53 at the output of the X-ray source 12 at a particular time when a particular combination of primary and secondary targets and electron beam voltages is being used and it may also be desirable to monitor the wavelength spectrum of such radiation flux. The previously described inner arrays of primary targets 56 and secondary targets 60 are utilized for this purpose. If, at a given time, the electron beam 23 is being directed to a specific one of the primary targets 54, as depicted in FIG. 3, and it is desired to monitor secondary output flux or wavelength or both, the electron beam may be temporarily redirected to the associated inner one of the primary targets 56 or to other primary targets 56. This will cause a similar fluorescent X-ray output 53" at the associated one of the inner secondary targets 60. A monitor detector 86, which may typically be a gas-filled proportional counter, is secured to rotatable table 59 adjacent each inner secondary target 60 in position to receive the fluorescent X-ray emission therefrom, the counter being preferably partially enclosed by a shield 87 to screen out background radiation other than that originating from the adjacent surface of the associated one of the secondary targets 60. The output of each monitor detector 86 may be processed essentially similarly to the output of the sample fluorescence detector 64 of FIG. 1 to obtain the desired data or may be utilized in automatic control of the spectrometer as will hereinafter be described.
FIG. 4 illustrates, in block form, modifications which enable self-cycling of the system to perform an X-ray fluorescence analysis of a sample 13, including automatic determination of the optimum X-ray output wavelengths from source 12 for the particular sample 13 and automatic control of the source to select the appropriate primary and secondary targets and electron beam intensities and energies.
For this purpose, the filament terminals 29 may be coupled to the output of a programmable current supply 88 of the known form which provides an output current having a magnitude determined by coded digital signals applied to the input. Similarly, the cathode 19 is coupled to the output of a programmable voltage supply 89 of the known form which supplies an output voltage selectively variable in response to coded input signals. Additional programmable voltage supplied 91, 92 and 93 are coupled to the control electrode 22, first anode 24, and deflection plates 26, respectively.
Output counts from sample X-ray fluorescence detector 64, after passage through the preamplifier 67, are applied to an additional amplifier-discriminator 94 and then to an analog-to-digital converter 96 of the known form which generates a binary digital output signal coded to indicate the height or amplitude of each such pulse. Thus, the output of analog-to-digital converter 96 consists of successive signals indicative of the wavelengths of counts from sample detector 64 and may be transmitted to the input 97 of a digital computer 98, preferably of the minicomputer form. The number of counts from detector 64 of a given wavelength occurring in a given interval of time is proportional not only to the amount of a particular chemical element in the sample 13, but also is proportional to the electron beam 23 current in source 12. Thus, to interpret the detector 64 output accurately and to control electron beam intensity, the computer must also be provided with digital input signals indicative of beam current. For this purpose, a low value resistor 99 is disposed in the ground connection to end anode plate 18 and the voltage developed across the resistor, which is proportional to the electron beam 23 current, is applied to another analog-to-digital converter 101. The output of converter 101 is coupled to the computer input 97 to transmit digital signals thereto coded to indicate electron beam current.
Given this capability of enabling the computer 98 to receive digital data indicative of X-ray counts at detector 64 and indicative of electron beam current and given the above described means for controlling the filament 21 current and the voltages applied to cathode 19, control electrode 22, first anode 24 and deflection plates 26 and given control of servomotor 78, by means to be hereinafter described in more detail, suitable programming of the computer 98 to perform the X-ray fluorescence analysis process hereinbefore described will be apparent to those skilled in the art. A digital computer may readily be programmed to perform the logical operations which are required for the sample analysis and which are required to issue appropriate instructions, derived from such analysis at each stage of the process, to the programmable current and voltage supplies 88, 89, 91, 92 and 93 and to servomotor 78. By techniques well known to the art, the computer may also be caused to display the results of the analysis on an appropriate output device 102 which may include a visual display and a printout if desired. Depending on the choice of output means 102, the qualitative and quantitative assay results may be displayed in graphical or alphanumeric form on a cathode ray tube or may be printed out or plotted graphically. Such programming involves storing instructions in a central processing and memory unit 103 of the computer for selecting X-ray wavelengths for sample radiation. These instructions are executed by a target selection logic portion 104 of the memory which transmits digital control signals to programmable voltage supply 93 and to servomotor 78 in order to direct the electron beam 23 to the selected primary target and to rotate table 59 to align the selected second target therewith (or to align no secondary target therewith). Similarly, instructions are stored in a beam energy control portion 106 of the computer memory to transmit digital signals to programmable voltage supply 89 of the cathode to maintain a selected beam accelerating voltage. Still another portion 107 of the computer memory is provided with instructions to control programmable voltage supplies 91 and 92 for optimum beam focus and another portion 108 of the memory stores instructions for selecting optimum filament current and control electrode voltage and for transmitting correspondingly coded signals to programmable supplies 88 and 91.
It will be apparent that if the programmable current and voltage supplied 88, 89, 91, 92 and 93 are of the form requiring analog inputs, then digital-to-analog converters may be situated in the signal paths between each such supply and the computer 98.
While the system of FIG. 4 has been described as utilizing the electrostatic deflection plates 26 for the purpose of directing the electron beam 23, it will be apparent that similar techniques may be utilized to control the magnetic deflection system 28 either alternately or in conjunction with the electrostatic deflection plates.
Circuit provisions for adapting the system of FIGS. 1 to 4 to automatic or self-cycling operation with the aid of a computer are shown in more detail in FIGS. A and 53. FIG. 5A may be disposed with FIG. 5B immediately above FIG. 5A to form a single continuous cir- 12 cuit diagram. In FIGS. 5A and 5B, the legends A/D and D/A refer respectively to analog-to-digital and digitalto-analog converter circuits, suitable detailed constructions therefor being known to the art. Similarly, the legend IF refers to interface cards, also known to the art, for connecting digital signal channels of external circuitry with a computer. If, for example, the computer 98 is a minicomputer of the form identified as a PDP- Il, manufactured by Digital Equipment Corporation,
the interfaces IF may be of the DR] IA form manufactured by the same company. The legend OC identifies optical coupling devices of the known form through which digital signals may be transmitted from one device to another without requiring direct electrical connection therebetween and which are used for isolation where the signal receiving circuit is at a high voltage level relative to the signal input circuit. The legend DSC refers to device status circuits of a form which will be hereinafter described.
Referring now to FIGS. 5A and 5B in conjunction, fluorescent X-ray counts from the previously described sample detector 64 are initially amplified by the preamplifier 67 and further amplified by amplifier 94 and then transmitted to. the analog-to-digital signal converter 96 which codes each count signal according to pulse height for transmission to the computer 98 through an interface 111a. Accordingly, with suitable programming, the computer 98 is enabled to store a count of the number of fluorescent X-rays from the sample of each specific wavelength to establish the characteristic wavelength spectrum of fluorescent X- rays from the sample. Counts from the several monitor detectors 86, of which only one is depicted in FIG. 5, are similarly transmitted through a preamplifier I12, amplifier 113, analog-to-digital converter 96!), and interface lllb.
Computer 98 is enabled to control the first anode voltage at X-ray source 12 through an interface lllc, digital-to-analog converter 116a, and optical coupler 117a whichjointly form a control signal channel to the previously described programmable voltage supply 92. Supply 92 has a controlled voltage output 118 connected to the first anode 24 of the source. Similarly, the programmable voltage supply 91, having a controlled voltage output 119 coupled to the source control grid 22, is responsive to computer instructions received through an interface 111d, digital-to-analog converter 1161), and optical coupler 1171). Another interface llle, digital-to-analog converter 1160, and optical coupler 117c enable the computer to control programmable voltage supply 89 which has a controlled voltage output 121 connected to the cathode 19 of the X-ray source 12. The computer is enabled to control the filament current of the source through an interface lllf, digital-to-analog converter 116d, and optical coupler 117d, the supply 88 having a pair of controlled current conductors 122 connected across the filament 21 of the source.
Control of electron beam deflection within the source 12 by the computer is enabled by an interface 111g, digital-to-analog converter 116e, and optical coupler ll7e forming a control signal path to programmable voltage supply 93Y which has a pair of controlled voltage outputs connecting with a first pair of the opposed deflection plates 26Y. Similarly, an interface Illh connects with a digital-to-analog converter l16fwhich in turn connects through an optical coupler 1l7fwith programmable voltage supply 93X which has a pair of controlled voltage outputs connected to the remaining pair of opposed deflection plates 26X, thus enabling primary target selection within source 12 by the computer.
To enable secondary target selection, an interface 111i connects the computer with a digital-to-analog converter 116i having an output connected to one input of a comparator 123, the output of which is connected to servomotor 78 to supply operating current thereto. Accordingly, servomotor 78 will operate to rotate secondary target table 59 if there is an output from comparator 123. To enable the voltage level supplied to the comparator 123 from digital-to-analog converter 116i to determine the rotational position of table 59, the other input of the comparator is connected to a rotatable tap contact 124 which is turned by servomotor 28 in synchronism with table 59. Rotatable tap 124 is in sliding contact with a circular resistor 126 having a DC voltage source 127 connected thereacross in series with an on/off switch 130. With switch 130 closed, the voltage at rotatable contact 124 is a function of the rotationalposition thereof and this voltage is supplied to the other input of comparator 123. The comparator 123 will produce an output, causing motor 78 to operate, until such time as rotation of the contact 124 brings the voltage applied to comparator 123 from contact 124 into balance with the control voltage applied thereto from digital-to-analog converter 116i at which point the output of the comparator ceases and motor rotation stops.
The basic reference voltage, between the high voltage end of X-ray source 12 and ground, with reference to which the several programmable supplies 88, 89, 91, 92 and 93 provide selected voltage variations, is itself determined by an additional main programmable voltage supply 128 having an output coupled to each of the other programmable supplies. Main supply 128 is itself controllable by instructions from computer 98 through an interface lllj and digital-tdanalog converter ll6j. No optical coupler is employed in the last described instruction channel, as the main voltage supply 128 is of the known form having internal means providing isolation of the output from the signal receiving input components which operate at relatively low voltages.
In order to control the X-ray source 12 and servomotor 78 to obtain optimum speed and accuracy of the sample analysis, it may be desirable to provide the computer 98 with certain additional input information for reference purposes. For example, the computer may be enabled to monitor various significant source operating voltages to determine if these conform with the instructions issued by thecomputer and to enable corrective modifications in instructions if needed. For this purpose, the main programmable voltage supply 128 has a monitor output 129 which is coupled to a voltage monitor 131. The output of monitor 131 is transmitted to the computer through an analog-to-digital converter 96d and interface 111k. Similarly, a voltage signal indicative of electron beam current within the X-ray source 12 is provided to the computer through a conductor 132 connected between end anode 118 and an amplifier 133 having an output coupled to analog-todigital converter 96e which in turn provides the digitized beam current information to the computer through an interface 1111.
To inform the computer if any of the outputs of the several programmable voltage and current supplies or the servomotor control comparator 123 are out of conformity with the instructions being applied thereto, which condition occurs momentarily following a change of instructions, a series of device status circuits 134 are employed. A first such device status circuit 134a detects any deparature of the output voltage of the main programmable voltage supply 128 from that indicated by the control signal currently being received from the associated digital-to-analog converter ll6j. Programmable voltage supplies 128 of this form have an error signal output 136a on which a signal appears whenever there is a discrepancy between the input instructions and output voltage. Error signal terminal 136a is coupled to the input of the device status circuit 134a which has an output coupled to the computer through an interface 111m.
The device status circuit 134a has a pair of digital output comparators 137 and 138 each having the main voltage supply error signal 136 connected to one input. A small negative reference voltage is applied to the other input of one comparator 137 while a small positive reference voltage is applied to the other input of the other comparator 138. Thus, if the error signal from main voltage supply terminal 136a remains within the narrow limits defined by the small positive and negative voltages, the outputs of both comparators 137 and 138 are high, If the error signal increases significantly in either direction, the output of one of the comparators goes low. The outputs of the two comparators 137 and 138 are connected to the inputs of an AND gate 139, the output of which is coupled to the interface lllm. The output of the AND gate 139 is high when the received error signal is within the acceptable narrow limits and goes low to inform the computer when a significant degree of error is detected.
Similarly, the error signal outputs 136b and 136g of programmable supplies 88, 89, 91, 92, 93Y and 93X, respectively, are each coupled to a separate one of a series of device status circuit 134 which are in turn coupled to the computer 98 through interfaces 1 1 In, 1110, 111p, lllq, 111r, and 111s, respectively. For similar purposes, the output of servomotor control comparator 123 connects with an additional device status circuit 134 and interface 111: to inform the computer when the secondary target table 59 is undergoing movement.
Speed and accuracy of the system can be greatly enhanced if the generation of X-rays by source 12 is temporarily interrupted during periods when any significant operating parameter is temporarily out of conformity with the instructions supplied by computer 98 and also during the period required to process each X-ray count produced by sample detector 64. A source pulsing circuit 138 is provided for this purpose.
Pulsing circuit 138 utilizes an OR gate 139 and an AND gate 140 having outputs coupled respectively to the set and reset inputs of an MECL-type flip-flop 141 through optical coupler 117g. To reset the flip-flop upon detection of an X-ray by sample detector 64, the output of preamplifier 67 is coupled to one input of AND gate 140 through an isolating amplifier 145 and discriminator amplifier 146. As will hereinafter be described in more detail, resetting of flip-flop 141 blocks X-ray production in source 12. To enable the computer to override the pulsing circuit 138 and maintain X-ray production when that is desirable, the other input of AND gate 140 is controllable by the computer through an interface 111a and inverter 149.
Setting of the flip-flop to restore X-ray production after a predetermined period sufficient to process a detected X-ray is accomplished through a connection from the output of amplifier 146 to one input of OR gate 139 through a time delay means such as a monostable multivabrator 147. The other input of OR gate 139 is coupled to the computer through interface l11u to enable the computer to maintain X-ray production when necessary by overriding the pulsing circuit 138.
A single one of the outputs of flip-flop 141 is utilized to control pulsing of the X-ray source 12, this being the output 148 which is high when the flip-flop is in the reset state indicating that a count has been detected or that one or more operating parameters are incorrect as described above. This high condition of flip-flop output 148 is caused to block temporarily the electron beam generation within source 12 by applying a negative voltage pulse to control grid 22 relative to cathode 19. For this purpose, the output voltage at flip-flop output terminal 148, which is unipolar, is amplified and made bipolar by a circuit 150.
Circuit 150 may be formed of a first transistor 151 having a base coupled to flip-flop output 148 through a resistor 152 and having an emitter coupled to cathode 19. The collector of transistor 151 is coupled to the base of a second transistor 156 through a resistor 155. A small positive voltage, typically volts, is applied to the emitter of transistor 156 and is also applied to the base thereof through a resistor 157. A small negative voltage, typically 3 volts, is applied to the collector of transistor 156 through a resistor 158, the collector of transistor 156 being coupled to the base of a third transistor 159 through a speed-up filter circuit formed by a parallel capacitor 161 and resistor 162. The emitter of transistor 159 is coupled to cathode 19 while the collector thereof is coupled to control grid 22 through a capacitor 163. The collector of transistor 159 is also connected to the movable contact 164 of a potentiometer through a resistor 166. A positive voltage, typically +300 volts, is applied to the resistive element 167 of the potentiometer which has one end connected to cathode 19. The previously described connection of controlled voltage output 1 19 of programmable voltage supply 91 to control grid 22 is made through a resistor 168 and a diode 169 which is in parallel therewith for DC. restoration. It should be understood that the voltages referred to in the foregoing description of circuit 149 are voltages taken relative to the basic high negative voltage at the cathode end of X-ray source 12 and are additive thereto rather than being relative to ground.
During the periods that an electron beam is being produced in source 12 to generate X-rays, output 148 of flip-flop 141 is low and thus transistor 151 is biased off and transistor 156 and 159 are also biased off. Under this condition, the voltage applied to control grid 22 is determined wholly by supply 91 and acts to draw electrons from cathode 19 to form the desired electron beam. Upon receipt of a reset pulse at flip-flop 141 from AND gate 140 indicating that a sample count is being processed, output 148 of the flip-flop goes high. Transistor 151 is turned on thereby turning on transistors 156 and 159. The resultant conduction through transistor 159 reduces the positive voltage on capacitor 163. This applies a negative step voltage at control grid 22 relative to cathode 19 thereby cutting off the electron beam within source 12. Upon setting of the flip-flop 141 by receipt of the delayed set pulse from OR gate 139, following expiration of a predetermined count processing time, flip-flop output 148 again goes low turning off transistor 151. This turns off transistors 156 and 159 to restore the original voltage relationship between control grid 22 and cathode 19 thereby regenerating the electron beam in the X-ray source 12.
Variations in the previously described configuration of the X-ray source 12, including the type and disposition of the primary and secondary targets therein, may readily be made. Referring now to FIG. 6, a modification of the geometry of the X-ray source 12a is shown in which backward emission of X-rays from both the primary targets 54a and secondary targers 61a is utilized and in which the sample 13a to be assayed is retained in a different manner. Specifically, the source 12a is designed to assay samples deposited on a cone of filter paper 171 which is received in a conforming cavity 172 formed coaxially in the end anode 18 of housing 14a. The primary targets 54a in this example are mounted in the interior wall of vacuum envelope 14a in cavities 173 therein in oblique relationship to the electron beam 23a whereby when primary X-rays 174, including bremmstrahlung and characteristic X-rays, are emitted toward passages 58a in a collimator end portion 57a of the housing from the same surface of the target that receives the electron beam. A thin foil and supporting grid structure 176 formed of low atomic number materials may be disposed across each cavity 173 to prevent cross-contamination between primary targets by evaporation, spalling, or the like. Where such protective means 176 are utilized, pump out channels 177 communicate the interior of envelope 14a with each cavity 173 to prevent creation of a pressure differential when the envelope is evacuated.
The primary X-rays 174 from the selected primary ,target 54a are transmitted through an associated one of the collimation passages 58a, each of which contains a thin window 178 of low atomic number material, such as beryllium, to impinge upon a selected one of the secondary targets 61a which has been positioned in alignment with the passage 58a. For this purpose, the secondary targets 61a may be carried upon a table 59a rotatable by a servomotor 78a as previously described.
The secondary targets 61a are also disposed obliquely with respect to the path of the primary X-rays 174 in position to intercept and absorb bremmstrahlung from the primary targets while emitting fluorescent secondary X-rays 53a, characteristic of the particular target material, toward the sample 13a. If desired, an X-ray filter 181 may be positioned in the path of the secondary X-rays 53a from the secondary target to the sample in order to suppress wavelengths other than a particular one with which it is desired to irradiate the sample. Suitable filter compositions for absorbing certain X-ray wavelengths while transmitting others are known to the art. Using the above-described geometry, the sample fluorescence detector 64a may be positioned on the axis of the source 12a in position to view the sample 13a through a circular window 182 provided in table 59a for that purpose. The monitor detectors 86a may be mounted on collimation structure 57a between collimator passages 58a and sample-receiving cavity 172.
14b in a manner similar to that described with reference to the preceding embodiment. Thus, a protective foil and grid 176b may be disposed across each cavity l73b and a pump out channel l77b communicates therewith. Primary X-rays 174b from the selected primary target 54b are transmitted through a passage 58b in collimating structure 57b to impinge upon a selected one of the secondary targets 61b, each of which is mounted in a well 184 in a table 59b which may be rotated by a servomotor 78b as previously described. The secondary targets 61b are disposed transversely in the wells 184 so that secondary fluorescent X-rays 53b are emitted from the side of the secondary target which is opposite from the side that receives the primary X-rays l74b. In this embodiment, the monitor detectors 86b may be mounted on table 59b in position to view secondary X-rays emitted from duplicate secondary targets 60b also carried on the table 59b in alignment with additional collimation passages 58b.
. Certain of the previously described embodiments employ forward emission from one or both of the primary and secndary targets while others employ backward emission from one or both targets. Backward emission is defined as utilization of the X-rays emitted from the same surface of the target that receives the radiation which generates the X-rays while forward emission is defined as the utilization of X-rays emitted from the surface of the target opposite from that which receives the initiating radiation. In general, the choice between the several configurations depends primarily on whether wavelength purity or intensity of the output from the source needs to be emphasized. Backward emission provides greater intensity of the output radiation but, owing to the greater opportunity for scattering of bremmstrahlung, the output tends to be slightly more contaminated with undesired wavelengths than where forward emission is used. Where it is desired to provide a choice in a single X-ray source, provisions may be made to utilize either type of emission from either of theprimary and secondary targets. The embodiment of the invention previously described with particular reference to FIG. 2 illustrated a construction providing for either forward or backward emission from the secondary targets 61 and 62. FIG. 8 illustrates still another modification wherein the choice of either forward or backward primary X-ray emission from the primary targets 540 is also provided.
The X-ray source 12c construction shown in FIG. 8 may be similar to that of FIG. 3 except for the providing of an additional set of primary targets 540 in the sidewall of vacuum envelope 14c. These additional targets 540 may be similar to those described with reference to FIGS. 6 and 7 and accordingly need not be redescribed. It will be apparent that the electron beam 23 may be selectively switched to any one of the additional primary targets 540 to produce primary X-rays 1740 by backward emission where high intensity is desired or may be redirected to utilize the previously described primary targets 54 if the more strongly monochromatic output obtainable from forward emission is desired.
Thus, while the invention has been described with respect to certain preferred embodiments, it will be apparent that many modifications are possible and it is not intended to limit the invention except as defined by the following claims.
What is claimed is:
1. In a method for analyzing the composition of a substance by X-ray fluorescence analysis, the steps comprising:
producing primary X-rays by directing charged particles to a selected one of a plurality of primary targets which are disposed at separate locations on a primary target plate and each of which has a different composition, the primary X-rays including a wavelength characteristic of the material of the selected primary target and further including a bremmstrahlung spectrum of many wavelengths,
directing said primary X-rays toward a selected one of a plurality of secondary targets which are dis posed at separate locations on a secondary target carrier and each of which has a different composition whereby secondary X-rays are emitted from said selected secondary target,
said selected one of said secondary targets having a composition which emits characteristic X-rays having a wavelength spectra that produces X-ray fluorescence in a specific possible constituent element of said substance, and said selected one of said primary targets being of different composition than said selected one of said secondary targets and being selected to produce primary X-rays which promote said characteristic X-ray emission by said selected secondary target,
irradiating said substance with said secondary X-rays,
and
detecting the wavelength of characteristic fluorescent X-rays emitted by said substance in response to said irradiation thereof to enable identification of at least one constituent element thereof.
2. The combination of steps defined in claim 1 further comprising the step of selecting a primary target sufficiently thick to absorb at least a substantial portion of said bremmstrahlung while being sufficiently thin to emit said secondary X-rays by fluorescence from the surface of said selected primary target which is opposite from the surface thereof which intercepts said charged particles.
3. The combination of steps defined in claim 1 comprising the further step of sequentially irradiating said substance with secondary X-rays of different specific wavelengths produced by different specific combinations of said primary and secondary targets including primary and secondary target combinations which are of unlike composition.
4. The combination of steps defined in claim 1 comprising the further steps of sequentially directing said charged particles to each of said plurality of primary targets and sequentially directing said primary X-rays produced at each primary target during said charged particle irradiation thereof to each of a plurality of said secondary targets whereby the wavelength spectrum of said secondary X-rays is sequentially shifted.
5. The combination of steps defined in claim 1 comprising the further steps of initially irradiating said substance with an X-ray spectrum including a large number of wavelengths while detecting the wavelengths of X-ray fluorescence from said sample in order to tentatively identify the probable constituents thereof, and subsequently irradiating said substance with secondary X-rays from at least one specific combination of said primary and secondary targets selected to produce secondary X-rays having a wavelength which optimizes X-ray fluorescence of at least one of said probable constituents.
6. An X-ray fluorescence analysis spectrometer comprising:
an X-ray source having means for producing any selected one of a plurality of different specific predetermined X-ray spectra, said X-ray source having a plurality of primary targets each of different composition and means for directing accelerated charged particles to any selected one of said primary targets to produce primary X-rays which include bremmstrahlung and which include specific wavelengths characteristic of the material of the selected primary target, said X-ray source having a plurality of secondary targets each of different composition and means for directing said primary X-rays from any selected one of said primary targets to any selected one of said secondary targets to produce secondary X-rays thereat that have one of said specific predetermined X-ray spectra, said X-ray source further having means for preventing primary X-rays from a selected primary target from reaching ones of said secondary targets other than said selected secondary target,
means for directing any selected one of said predetermined X-ray spectra to a substance to be analyzed, and
an X-ray detector disposed for detecting characteristic fluorescent X-rays emitted from said substance.
7. The combination defined in claim 6 wherein said selected primary target is disposed to intercept bremmstrahlung directed toward said selected secondary target and is proportioned to absorb at least a substantial proportion of said bremmstrahlung while emitting said primary X-rays by X-ray fluorescence.
8. The combination defined in claim 6 wherein at least one of said primary targets has a surface positioned to receive said charged particles and to emit said primary X-rays from the same surface toward said secondary target including said bremmstrahlung and said characteristic wavelengths, and wherein said secondary target has a surface positioned to intercept said primary X-rays and is proportioned to absorb bremmstrahlung therein while emitting said secondary X-rays toward said substance by X-ray fluorescence from another surface.
9. The combination defined in claim 6 wherein said means for preventing primary X-rays from reaching ones of said secondary targets other than said selected secondary target comprises a radiation absorbent collimating means disposed between said primary and secondary targets for intercepting primary X-rays from said selected primary target which are directed toward secondary targets other than said selected secondary target and having at least one radiation transmissive passage for transmitting said primary X-rays from said selected primary target to said selected secondary target.
10. The combination defined in claim 6 further comprising motor means for shifting any selected one of said secondary targets into position for receiving said primary X-rays from any selected one of said primary targets in response to a signal indicative of a predetermined combination of primary and secondary targets.
11. The combination defined in claim 6 wherein said primary targets are spaced apart along a circular arc and wherein said secondary targets are spaced apart along a coaxial circular are on a rotatable member whereby said member may be rotated to bring any selected one of said secondary targets into alignment with any selected one of said primary targets and said means for preventing primary X-rays from reaching ones of said secondary targets other than said selected secondary target comprises a radiation absorbent element disposed between said primary targets and said rotatable member and having a plurality of radiation transmissive passages spaced apart along another circular arc which is coaxial with the arcs of said primary and secondary targets.
12. The combination defined in claim 6 further comprising a self-cycling system for said X-ray source, said self-cycling system having means for sequentially directing said charged particles to predetermined specific ones of said primary targets, and having means for shifting predetermined specific ones of said secondary targets into postion to receive said primary X-rays from predetermined specific ones of said primary targets to produce a predetermined sequence of said secondary X-ray spectra.
13. The combination defined in claim 12 wherein said self-cycling system further comprises means for controlling said X-ray source to initially irradiate said substance with a polychromatic X-ray spectrum, means coupled to said detector for analyzing the wavelength spectrum of characteristic X-ray fluorescence from said substance in response to said polychromatic irradiation thereof to identify wavelength characteristic of specific elements, logic circuit means for controlling said X-ray source to sequentially irradiate said substance with a plurality of specific secondary X-ray spectra each selected to cause strong X-ray fluorescence from a particular separate one of said specific elements, and means for indicating the amount of characteristic fluroscent X-rays of each of said elements which are detected during said irradiation of said substance by said specific secondary X-ray spectra.
14. The combination defined in claim 12 further comprising an additional plurality of primary targets each having a composition similar to that of an associ ated separate one of said plurality of primary targets, an additional plurality of secondary targets each having a composition similar to that of an associated separate one of said secondary targets, a plurality of monitor X-ray detectors each positioned to receive and detect secondary X-rays emitted from an associated separate one of said additional secondary targets, and wherein said self-cycling system has means for momentarily diverting said charged particles from a selected primary target to the one of said additional primary targets associated therewith to cause the associated one of said monitor detectors to produce a signal indicative of the radiation flux being directed to said sample and has means for adjusting the energy of said charged particles if said detected radiation flux differs from a predetermined value.
15. The combination defined in claim 12 wherein said self-cycling system further comprises means for suppressing acceleration of said charged particles to said primary targets during periods when said means for directing said charged particles is in the process of redirecting said particles from one selected primary target to another selected primary target.
16. The combination defined in claim 12 wherein said self-cycling system further comprises means for suppressing acceleration of said charged particles to said primary targets during periods when said means for shifting said secondary targets is in the process of shifting a secondary target.

Claims (18)

1. In a method for analyzing the composition of a substance by X-ray fluorescence analysis, the steps comprising: producing primary X-rays by directing charged particles to a selected one of a plurality of primary targets which are disposed at separate locations on a primary target plate and each of which has a different composition, the primary X-rays including a wavelength characteristic of the material of the selected primary target and further including a bremmstrahlung spectrum of many wavelengths, directing said primary X-rays toward a selected one of a plurality of secondary targets which are disposed at separate locations on a secondary target carrier and each of which has a different composition whereby secondary X-rays are emitted from said selected secondary target, said selected one of said secondary targets having a composition which emits characteristic X-rays having a wavelength spectra that produces X-ray fluorescence in a specific possible constituent element of said substance, and said selected one of said primary targets being of different composition than said selected one of said secondary targets and being selected to produce primary X-rays which promote said characteristic X-ray emission by said selected secondary target, irradiating said substance with said secondary X-rays, and detecting the wavelength of characteristic fluorescent X-rays emitted by said substance in response to said irradiation thereof to enable identification of at least one constituent element thereof.
2. The combination of steps defined in claim 1 further comprising the step of selecting a primary target sufficiently thick to absorb at least a substantial portion of said bremmstrahlung while being sufficiently thin to emit said secondary X-rays by fluorescence from the surface of said selected primary target which is opposite from the surface thereof which intercepts said charged particles.
3. The combination of steps defined in claim 1 comprising the further step of sequentially irradiating said substance with secondary X-rays of different specific wavelengths produced by different specific combinations of said primary and secondary targets including primary and secondary target combinations which are of unlike composition.
4. The combination of steps defined in claim 1 comprising the further steps of sequentially directing said charged particles to each of said plurality of primary targets and sequentially directing said primary X-rays produced at each primary target during said charged particle irradiation thereof to each of a plurality of said secondary targets whereby the wavelength spectrum of said secondary X-rays is sequentially shifted.
5. The combination of steps defined in claim 1 comprising the further steps of initially irradiating said substance with an X-ray spectrum including a large number of wavelengths while detecting the wavelengths of X-ray fluorescence from said sample in order to tentatively identify the probable constituents thereof, and subsequently irradiating said substance with secondary X-rays from at least one specific combination of said primary and secondary targets selected to produce secondary X-rays having a wavelength which optimizes X-ray fluorescence of at least one of said probable constituents.
6. An X-ray fluorescence analysis spectrometer comprising: an X-ray source having means for producing any selected one of a plurality of different specific predetermined X-ray spectra, said X-ray source having a plurality of primary targets each of different composition and means for directing accelerated charged particles to any selected one of said primary targets to produce primary X-rays which include bremmstrahlung and which include specific wavelengths characteristic of the material of the selected primary target, said X-ray source having a plurality of secondary targets each of different composition and means for directing said primary X-rays from any selected one of said primary targets to any selected one of said secondary targets to produce secondary X-rays thereat that have one of said specific predetermined X-ray spectra, said X-ray source further having means for preventing primary X-rays from a selected primary target from reaching ones of said secondary targets other than said selected secondary target, means for directing any selected one of said predetermined X-ray spectra to a substance to be analyzed, and an X-ray detector disposed for detecting characteristic fluorescent X-rays emitted from said substance.
7. The combination defined in claim 6 wherein said selected primary target is disposed to intercept bremmstrahlung directed toward said selected secondary target and is proportioned to absorb at least a substantial proportion of said bremmstrahlung while emitting said primary X-rays by X-ray fluorescence.
8. The combination defined in claim 6 wherein at least one of said primary targets has a surface positioned to receive said charged particles and to emit said primary X-rays from the same surface toward said secondary target including said bremmstrahlung and said characteristic wavelengths, and wherein said secondary target has a surface positioned to intercept said primary X-rays and is proportioned to absorb bremmstrahlung therein while emitting said secondary X-rays toward said substance by X-ray fluorescence from another surface.
9. The combination defined in claim 6 wherein said means for pReventing primary X-rays from reaching ones of said secondary targets other than said selected secondary target comprises a radiation absorbent collimating means disposed between said primary and secondary targets for intercepting primary X-rays from said selected primary target which are directed toward secondary targets other than said selected secondary target and having at least one radiation transmissive passage for transmitting said primary X-rays from said selected primary target to said selected secondary target.
10. The combination defined in claim 6 further comprising motor means for shifting any selected one of said secondary targets into position for receiving said primary X-rays from any selected one of said primary targets in response to a signal indicative of a predetermined combination of primary and secondary targets.
11. The combination defined in claim 6 wherein said primary targets are spaced apart along a circular arc and wherein said secondary targets are spaced apart along a coaxial circular arc on a rotatable member whereby said member may be rotated to bring any selected one of said secondary targets into alignment with any selected one of said primary targets and said means for preventing primary X-rays from reaching ones of said secondary targets other than said selected secondary target comprises a radiation absorbent element disposed between said primary targets and said rotatable member and having a plurality of radiation transmissive passages spaced apart along another circular arc which is coaxial with the arcs of said primary and secondary targets.
12. The combination defined in claim 6 further comprising a self-cycling system for said X-ray source, said self-cycling system having means for sequentially directing said charged particles to predetermined specific ones of said primary targets, and having means for shifting predetermined specific ones of said secondary targets into postion to receive said primary X-rays from predetermined specific ones of said primary targets to produce a predetermined sequence of said secondary X-ray spectra.
13. The combination defined in claim 12 wherein said self-cycling system further comprises means for controlling said X-ray source to initially irradiate said substance with a polychromatic X-ray spectrum, means coupled to said detector for analyzing the wavelength spectrum of characteristic X-ray fluorescence from said substance in response to said polychromatic irradiation thereof to identify wavelength characteristic of specific elements, logic circuit means for controlling said X-ray source to sequentially irradiate said substance with a plurality of specific secondary X-ray spectra each selected to cause strong X-ray fluorescence from a particular separate one of said specific elements, and means for indicating the amount of characteristic fluroscent X-rays of each of said elements which are detected during said irradiation of said substance by said specific secondary X-ray spectra.
14. The combination defined in claim 12 further comprising an additional plurality of primary targets each having a composition similar to that of an associated separate one of said plurality of primary targets, an additional plurality of secondary targets each having a composition similar to that of an associated separate one of said secondary targets, a plurality of monitor X-ray detectors each positioned to receive and detect secondary X-rays emitted from an associated separate one of said additional secondary targets, and wherein said self-cycling system has means for momentarily diverting said charged particles from a selected primary target to the one of said additional primary targets associated therewith to cause the associated one of said monitor detectors to produce a signal indicative of the radiation flux being directed to said sample and has means for adjusting the energy of said charged particles if said detected radiation flux differs from a predetermined valUe.
15. The combination defined in claim 12 wherein said self-cycling system further comprises means for suppressing acceleration of said charged particles to said primary targets during periods when said means for directing said charged particles is in the process of redirecting said particles from one selected primary target to another selected primary target.
16. The combination defined in claim 12 wherein said self-cycling system further comprises means for suppressing acceleration of said charged particles to said primary targets during periods when said means for shifting said secondary targets is in the process of shifting a secondary target.
17. The combination defined in claim 12 wherein said self-cycling system further comprises means for suppressing accelaration of said charged particles to said primary targets during periods when said detector is in the process of responding to a fluorescent X-ray count from said substance.
18. An X-ray fluorescence analysis spectrometer comprising: an X-ray source having means for producing any selected one of a plurality of different specific predetermined X-ray spectra, said X-ray source having means for producing an accelerated charged particle beam and having a plurality of spaced apart targets each of different composition and means for directing said charged particles to any selected one of said targets to produce X-rays thereat which have different X-ray spectra at different ones of said targets, means for supporting a substance to be analyzed in position to receive said X-rays produced at said selected ones of said targets, an X-ray detector disposed for detecting characteristic fluorescent X-rays emitted from said substance in response to said irradiation thereof, and a self-cycling system coupled to said detector and to said X-ray source and having means for controlling said X-ray surce to initially irradiate said substance with a polychromatic X-ray spectrum and means coupled to said detector for analyzing the wavelength spectrum of characteristic X-ray fluorescence from said substance in response to said polychromatic irradiation thereof to identify wavelengths characteristic of specific elements, said self-cycling system further having logic circuit means controlling said X-ray source to sequentially irradiate said substance with a plurality of specific X-ray spectra each selected to cause strong X-ray fluorescence from a particular separate one of said specific elements, and further having means for registering a value having a magnitude proportional to the amount of characteristic fluorescent X-rays of each of said elements which are detected during said irradiation of said substance by said specific X-ray spectra.
US353451A 1972-05-08 1973-04-24 Selectable wavelength X-ray source, spectrometer and assay method Expired - Lifetime US3925660A (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
US353451A US3925660A (en) 1972-05-08 1973-04-24 Selectable wavelength X-ray source, spectrometer and assay method
CA170,157A CA1021072A (en) 1972-05-08 1973-05-01 Selectable wavelength x-ray source, spectrometer and assay method
GB2142873A GB1436871A (en) 1972-05-08 1973-05-04 Spectrometry
GB5107075A GB1436872A (en) 1972-05-08 1973-05-04 X-ray source
GB3843275A GB1436873A (en) 1972-05-08 1973-05-04 Xa-ray sources
FR7316487A FR2184328A5 (en) 1972-05-08 1973-05-08
NL7306391A NL7306391A (en) 1972-05-08 1973-05-08
DE2323610A DE2323610A1 (en) 1972-05-08 1973-05-08 METHOD AND EQUIPMENT FOR EXAMINATION BY X-RAYS
US05/537,072 US3983397A (en) 1972-05-08 1974-12-30 Selectable wavelength X-ray source
US05/633,980 US4048496A (en) 1972-05-08 1975-11-20 Selectable wavelength X-ray source, spectrometer and assay method
US05/638,434 US4104526A (en) 1973-04-24 1975-12-08 Grid-cathode controlled X-ray tube

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US25137872A 1972-05-08 1972-05-08
US353451A US3925660A (en) 1972-05-08 1973-04-24 Selectable wavelength X-ray source, spectrometer and assay method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US25137872A Continuation-In-Part 1972-05-08 1972-05-08

Related Child Applications (4)

Application Number Title Priority Date Filing Date
US05/537,072 Division US3983397A (en) 1972-05-08 1974-12-30 Selectable wavelength X-ray source
US05/633,980 Continuation US4048496A (en) 1972-05-08 1975-11-20 Selectable wavelength X-ray source, spectrometer and assay method
US05/633,980 Continuation-In-Part US4048496A (en) 1972-05-08 1975-11-20 Selectable wavelength X-ray source, spectrometer and assay method
US05/638,434 Continuation-In-Part US4104526A (en) 1973-04-24 1975-12-08 Grid-cathode controlled X-ray tube

Publications (1)

Publication Number Publication Date
US3925660A true US3925660A (en) 1975-12-09

Family

ID=26941572

Family Applications (1)

Application Number Title Priority Date Filing Date
US353451A Expired - Lifetime US3925660A (en) 1972-05-08 1973-04-24 Selectable wavelength X-ray source, spectrometer and assay method

Country Status (6)

Country Link
US (1) US3925660A (en)
CA (1) CA1021072A (en)
DE (1) DE2323610A1 (en)
FR (1) FR2184328A5 (en)
GB (3) GB1436872A (en)
NL (1) NL7306391A (en)

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4007375A (en) * 1975-07-14 1977-02-08 Albert Richard D Multi-target X-ray source
US4260885A (en) * 1978-02-24 1981-04-07 Albert Richard D Selectable wavelength X-ray source, spectrometer and assay method
EP0046609A1 (en) * 1980-08-21 1982-03-03 Koninklijke Philips Electronics N.V. Radiography apparatus with a fan-shaped beam
US4362935A (en) * 1979-02-09 1982-12-07 Martin Marietta Corporation Field portable element analysis unit
US4519092A (en) * 1982-10-27 1985-05-21 Albert Richard D Scanning x-ray spectrometry method and apparatus
US4558220A (en) * 1981-10-02 1985-12-10 Gearhart Industries, Inc. Radioactivity well logging
US4974247A (en) * 1987-11-24 1990-11-27 The Boeing Company System for radiographically inspecting an object using backscattered radiation and related method
US5257303A (en) * 1992-08-03 1993-10-26 Kamalaksha Das Gupta Surface channeled X-ray tube
US5550378A (en) * 1993-04-05 1996-08-27 Cardiac Mariners, Incorporated X-ray detector
US5610967A (en) * 1993-01-25 1997-03-11 Cardiac Mariners, Incorporated X-ray grid assembly
US5682412A (en) * 1993-04-05 1997-10-28 Cardiac Mariners, Incorporated X-ray source
US5686314A (en) * 1993-12-20 1997-11-11 Kabushiki Kaisha Toshiba Surface processing method effected for total-reflection X-ray fluorescence analysis
US6118853A (en) * 1998-10-06 2000-09-12 Cardiac Mariners, Inc. X-ray target assembly
US6118854A (en) * 1998-10-06 2000-09-12 Cardiac Mariners, Inc. Method of making x-ray beam hardening filter and assembly
US6157703A (en) * 1998-10-06 2000-12-05 Cardiac Mariners, Inc. Beam hardening filter for x-ray source
US6183139B1 (en) 1998-10-06 2001-02-06 Cardiac Mariners, Inc. X-ray scanning method and apparatus
US6198802B1 (en) 1998-10-06 2001-03-06 Cardiac Mariners, Inc. Scanning beam x-ray source and assembly
US6208709B1 (en) 1998-10-06 2001-03-27 Cardiac Mariners, Inc. Detection processing system
US6234671B1 (en) 1998-10-06 2001-05-22 Cardiac Mariners, Inc. X-ray system with scanning beam x-ray source below object table
US20040240618A1 (en) * 2003-04-04 2004-12-02 Mcguire Edward L. Multi-spectrum X-ray generation
US20050190882A1 (en) * 2003-04-04 2005-09-01 Mcguire Edward L. Multi-spectral x-ray image processing
US20050205807A1 (en) * 2004-03-18 2005-09-22 Perel Alexander S In-situ monitoring on an ion implanter
US20050226378A1 (en) * 2004-04-06 2005-10-13 Duke University Devices and methods for targeting interior cancers with ionizing radiation
US20080253627A1 (en) * 2007-04-11 2008-10-16 Searete LLC, a limited liability corporation of Compton scattered X-ray visualization, imaging, or information provider using image combining
US20080253511A1 (en) * 2007-04-11 2008-10-16 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Scintillator aspects of compton scattered X-Ray visualization, imaging, or information providing
US20080253526A1 (en) * 2007-04-11 2008-10-16 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Geometric compton scattered x-ray visualizing, imaging, or information providing
US20080253524A1 (en) * 2007-04-11 2008-10-16 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Method and system for Compton scattered X-ray depth visualization, imaging, or information provider
US20080253525A1 (en) * 2007-04-11 2008-10-16 Boyden Edward S Compton scattered x-ray visualizing, imaging, or information providing of at least some dissimilar matter
US20080253522A1 (en) * 2007-04-11 2008-10-16 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Tool associated with compton scattered X-ray visualization, imaging, or information provider
US20090086898A1 (en) * 2007-09-27 2009-04-02 Varian Medical Systems Technologies, Inc. Analytical x-ray tube for close coupled sample analysis
WO2009138753A1 (en) * 2008-05-16 2009-11-19 Elekta Ab (Publ) Radiotherapy apparatus
US20090296887A1 (en) * 2007-04-11 2009-12-03 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Aspects of compton scattered X-RAY visualization, imaging, or information providing
US20100310047A1 (en) * 2009-06-04 2010-12-09 Nextray, Inc. Strain matching of crystals and horizontally-spaced monochromator and analyzer crystal arrays in diffraction enhanced imaging systems and related methods
US20100310046A1 (en) * 2009-06-04 2010-12-09 Nextray, Inc. Systems and methods for detecting an image of an object by use of x-ray beams generated by multiple small area sources and by use of facing sides of adjacent monochromator crystals
US20110013744A1 (en) * 2009-07-16 2011-01-20 Edax, Inc. Optical Positioner Design in X-Ray Analyzer for Coaxial Micro-Viewing and Analysis
US20120025093A1 (en) * 2010-02-12 2012-02-02 Carl Zeiss Nts Gmbh Particle Beam System
US20130272497A1 (en) * 2012-04-12 2013-10-17 Horiba, Ltd. X-ray detection apparatus
US20130272498A1 (en) * 2012-04-12 2013-10-17 Horiba, Ltd. X-ray detection apparatus
CN104034741A (en) * 2014-06-10 2014-09-10 深圳大学 X-ray source for X-ray raster differential phase-contrast imaging
US9941090B2 (en) 2013-03-15 2018-04-10 Nikon Metrology Nv X-ray source, high-voltage generator, electron beam gun, rotary target assembly, and rotary vacuum seal
US20190311874A1 (en) * 2016-10-21 2019-10-10 Excillum Ab Structured x-ray target
WO2021007590A1 (en) * 2019-07-08 2021-01-14 Thermo Scientific Portable Analytical Instruments Inc. Devices and methods for detecting elements in a sample
US11733185B2 (en) * 2018-07-04 2023-08-22 Rigaku Corporation Fluorescent X-ray analysis apparatus comprising a plurality of X-ray detectors and an X-ray irradiation unit including a multi-wavelength mirror

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE415804B (en) * 1978-06-21 1980-10-27 Nils Johannes Baecklund SET FOR MEDIUM X-RAY META CONTAIN THE CONTENT OR QUANTITY OF A PRESET-PREPARED SUBSTANCE IN A SAMPLE, AND DEVICE FOR EXECUTING THE SET
ATE2698T1 (en) * 1979-02-09 1983-03-15 Martin Marietta Corporation ELEMENT ANALYSIS UNIT.
DE2915986C2 (en) * 1979-04-20 1982-04-08 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe Process for the continuous measurement of element contents
EP0063190B1 (en) * 1981-04-21 1985-08-14 LEDLEY, Robert S. Microfocus x-ray tube
FI68322C (en) * 1983-06-28 1985-08-12 Enso Gutzeit Oy REFRIGERATION FOR THE MAINTENANCE OF THE SILICONE BOTTOM OF THE PAPER ELLER CARTON
JPS6034018A (en) * 1983-08-06 1985-02-21 Canon Inc X-ray collimator and exposing apparatus
FR2555887B1 (en) * 1983-12-06 1987-01-16 Thomson Cgr RADIODIAGNOSTIC FACILITY FOR STEREOSCOPIC OR CONVENTIONAL EXAMINATIONS
DE3419260A1 (en) * 1984-05-23 1985-11-28 Institut po Techničeska Kibernetika i Robotika, Sofia/Sofija Planetary wire feed arrangement
JPH07119837B2 (en) * 1990-05-30 1995-12-20 株式会社日立製作所 CT device, transmission device, and X-ray generator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2925497A (en) * 1956-08-09 1960-02-16 Philips Corp Fluorescence analysis
US2963585A (en) * 1955-07-21 1960-12-06 Daystrom Inc Non-contacting thickness gauges
US3114832A (en) * 1960-07-28 1963-12-17 Radiation Counter Lab Inc X-ray spectroscopic system comprising plural sources, filters, fluorescent radiators, and comparative detectors
US3525863A (en) * 1967-12-28 1970-08-25 Minnesota Mining & Mfg Differential emission x-ray gauging apparatus and method using two monochromatic x-ray beams of balanced intensity
US3671744A (en) * 1970-10-05 1972-06-20 Minnesota Mining & Mfg Digital differential emission x-ray gauge

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2963585A (en) * 1955-07-21 1960-12-06 Daystrom Inc Non-contacting thickness gauges
US2925497A (en) * 1956-08-09 1960-02-16 Philips Corp Fluorescence analysis
US3114832A (en) * 1960-07-28 1963-12-17 Radiation Counter Lab Inc X-ray spectroscopic system comprising plural sources, filters, fluorescent radiators, and comparative detectors
US3525863A (en) * 1967-12-28 1970-08-25 Minnesota Mining & Mfg Differential emission x-ray gauging apparatus and method using two monochromatic x-ray beams of balanced intensity
US3671744A (en) * 1970-10-05 1972-06-20 Minnesota Mining & Mfg Digital differential emission x-ray gauge

Cited By (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4007375A (en) * 1975-07-14 1977-02-08 Albert Richard D Multi-target X-ray source
US4260885A (en) * 1978-02-24 1981-04-07 Albert Richard D Selectable wavelength X-ray source, spectrometer and assay method
US4362935A (en) * 1979-02-09 1982-12-07 Martin Marietta Corporation Field portable element analysis unit
EP0046609A1 (en) * 1980-08-21 1982-03-03 Koninklijke Philips Electronics N.V. Radiography apparatus with a fan-shaped beam
US4558220A (en) * 1981-10-02 1985-12-10 Gearhart Industries, Inc. Radioactivity well logging
US4519092A (en) * 1982-10-27 1985-05-21 Albert Richard D Scanning x-ray spectrometry method and apparatus
US4974247A (en) * 1987-11-24 1990-11-27 The Boeing Company System for radiographically inspecting an object using backscattered radiation and related method
US5257303A (en) * 1992-08-03 1993-10-26 Kamalaksha Das Gupta Surface channeled X-ray tube
US5835561A (en) * 1993-01-25 1998-11-10 Cardiac Mariners, Incorporated Scanning beam x-ray imaging system
US5610967A (en) * 1993-01-25 1997-03-11 Cardiac Mariners, Incorporated X-ray grid assembly
US5644612A (en) * 1993-01-25 1997-07-01 Cardiac Mariners, Inc. Image reconstruction methods
US5651047A (en) * 1993-01-25 1997-07-22 Cardiac Mariners, Incorporated Maneuverable and locateable catheters
US6649914B1 (en) 1993-01-25 2003-11-18 Cardiac Mariners, Inc. Scanning-beam X-ray imaging system
US5859893A (en) * 1993-01-25 1999-01-12 Cardiac Mariners, Inc. X-ray collimation assembly
US5729584A (en) * 1993-01-25 1998-03-17 Cardiac Mariners, Inc. Scanning-beam X-ray imaging system
US5751785A (en) * 1993-01-25 1998-05-12 Cardiac Mariners, Inc. Image reconstruction methods
US5550378A (en) * 1993-04-05 1996-08-27 Cardiac Mariners, Incorporated X-ray detector
US6060713A (en) * 1993-04-05 2000-05-09 Cardiac Mariners Inc X-ray detector
US5682412A (en) * 1993-04-05 1997-10-28 Cardiac Mariners, Incorporated X-ray source
US5686314A (en) * 1993-12-20 1997-11-11 Kabushiki Kaisha Toshiba Surface processing method effected for total-reflection X-ray fluorescence analysis
US6234671B1 (en) 1998-10-06 2001-05-22 Cardiac Mariners, Inc. X-ray system with scanning beam x-ray source below object table
US6157703A (en) * 1998-10-06 2000-12-05 Cardiac Mariners, Inc. Beam hardening filter for x-ray source
US6183139B1 (en) 1998-10-06 2001-02-06 Cardiac Mariners, Inc. X-ray scanning method and apparatus
US6198802B1 (en) 1998-10-06 2001-03-06 Cardiac Mariners, Inc. Scanning beam x-ray source and assembly
US6208709B1 (en) 1998-10-06 2001-03-27 Cardiac Mariners, Inc. Detection processing system
US6118854A (en) * 1998-10-06 2000-09-12 Cardiac Mariners, Inc. Method of making x-ray beam hardening filter and assembly
US6118853A (en) * 1998-10-06 2000-09-12 Cardiac Mariners, Inc. X-ray target assembly
US20040240618A1 (en) * 2003-04-04 2004-12-02 Mcguire Edward L. Multi-spectrum X-ray generation
US20050190882A1 (en) * 2003-04-04 2005-09-01 Mcguire Edward L. Multi-spectral x-ray image processing
US20050205807A1 (en) * 2004-03-18 2005-09-22 Perel Alexander S In-situ monitoring on an ion implanter
US7078712B2 (en) * 2004-03-18 2006-07-18 Axcelis Technologies, Inc. In-situ monitoring on an ion implanter
US20050226378A1 (en) * 2004-04-06 2005-10-13 Duke University Devices and methods for targeting interior cancers with ionizing radiation
US7200203B2 (en) * 2004-04-06 2007-04-03 Duke University Devices and methods for targeting interior cancers with ionizing radiation
US20080253522A1 (en) * 2007-04-11 2008-10-16 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Tool associated with compton scattered X-ray visualization, imaging, or information provider
US20080253521A1 (en) * 2007-04-11 2008-10-16 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Compton scattered X-ray visualization, imaging, or information provider with time of flight computation
US20080253637A1 (en) * 2007-04-11 2008-10-16 Searete LLC, a limited liability corporation of Volumetric type compton scattered X-ray visualization, imaging, or information provider
US20080253526A1 (en) * 2007-04-11 2008-10-16 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Geometric compton scattered x-ray visualizing, imaging, or information providing
US20080253513A1 (en) * 2007-04-11 2008-10-16 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Compton scattered X-ray visualization, imaging, or information provider in soft matter such as tissue, organs, or blood, and/or in hard matter such as bones or teeth
US20080253529A1 (en) * 2007-04-11 2008-10-16 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Ablating based at least partially on compton scattered x-ray visualizing, imaging, or information providing
US20080253524A1 (en) * 2007-04-11 2008-10-16 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Method and system for Compton scattered X-ray depth visualization, imaging, or information provider
US20080253525A1 (en) * 2007-04-11 2008-10-16 Boyden Edward S Compton scattered x-ray visualizing, imaging, or information providing of at least some dissimilar matter
US20080253530A1 (en) * 2007-04-11 2008-10-16 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Limiting ablation based at least partially on Compton scattered X-ray visualizing, imaging, or information providing
US20080253627A1 (en) * 2007-04-11 2008-10-16 Searete LLC, a limited liability corporation of Compton scattered X-ray visualization, imaging, or information provider using image combining
US20080253531A1 (en) * 2007-04-11 2008-10-16 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Cauterizing based at least partially on Compton scattered x-ray visualizing, imaging, or information providing
US20080253511A1 (en) * 2007-04-11 2008-10-16 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Scintillator aspects of compton scattered X-Ray visualization, imaging, or information providing
US20080253528A1 (en) * 2007-04-11 2008-10-16 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Low invasive technique using compton scattered x-ray visualizing, imaging, or information providing to differentiate at least some dissimilar matter
US8041006B2 (en) 2007-04-11 2011-10-18 The Invention Science Fund I Llc Aspects of compton scattered X-ray visualization, imaging, or information providing
US7742567B2 (en) 2007-04-11 2010-06-22 Searete Llc Compton scattered X-ray visualization, imaging, or information provider with time of flight computation
US8837677B2 (en) * 2007-04-11 2014-09-16 The Invention Science Fund I Llc Method and system for compton scattered X-ray depth visualization, imaging, or information provider
US20090296887A1 (en) * 2007-04-11 2009-12-03 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Aspects of compton scattered X-RAY visualization, imaging, or information providing
US7711089B2 (en) 2007-04-11 2010-05-04 The Invention Science Fund I, Llc Scintillator aspects of compton scattered X-ray visualization, imaging, or information providing
US7724871B2 (en) 2007-04-11 2010-05-25 The Invention Science Fund I, Llc Compton scattered X-ray visualization, imaging, or information provider in soft matter such as tissue, organs, or blood, and/or in hard matter such as bones or teeth
US7734012B2 (en) 2007-04-11 2010-06-08 The Invention Science Fund I, Llc Volumetric type compton scattered X-ray visualization, imaging, or information provider
US7593509B2 (en) 2007-09-27 2009-09-22 Varian Medical Systems, Inc. Analytical x-ray tube for close coupled sample analysis
US20090086898A1 (en) * 2007-09-27 2009-04-02 Varian Medical Systems Technologies, Inc. Analytical x-ray tube for close coupled sample analysis
WO2009138753A1 (en) * 2008-05-16 2009-11-19 Elekta Ab (Publ) Radiotherapy apparatus
CN102099081B (en) * 2008-05-16 2016-04-13 伊利克塔股份有限公司 Radiotherapy unit
CN102099081A (en) * 2008-05-16 2011-06-15 伊利克塔股份有限公司 Radiotherapy apparatus
US20110142202A1 (en) * 2008-05-16 2011-06-16 Elekta Ab (Publ) Radiotherapy Apparatus
US8355482B2 (en) 2008-05-16 2013-01-15 Elekta Ab (Publ) Radiotherapy apparatus
US20100310046A1 (en) * 2009-06-04 2010-12-09 Nextray, Inc. Systems and methods for detecting an image of an object by use of x-ray beams generated by multiple small area sources and by use of facing sides of adjacent monochromator crystals
US20100310047A1 (en) * 2009-06-04 2010-12-09 Nextray, Inc. Strain matching of crystals and horizontally-spaced monochromator and analyzer crystal arrays in diffraction enhanced imaging systems and related methods
US8204174B2 (en) 2009-06-04 2012-06-19 Nextray, Inc. Systems and methods for detecting an image of an object by use of X-ray beams generated by multiple small area sources and by use of facing sides of adjacent monochromator crystals
US8315358B2 (en) 2009-06-04 2012-11-20 Nextray, Inc. Strain matching of crystals and horizontally-spaced monochromator and analyzer crystal arrays in diffraction enhanced imaging systems and related methods
US7972062B2 (en) 2009-07-16 2011-07-05 Edax, Inc. Optical positioner design in X-ray analyzer for coaxial micro-viewing and analysis
US20110013744A1 (en) * 2009-07-16 2011-01-20 Edax, Inc. Optical Positioner Design in X-Ray Analyzer for Coaxial Micro-Viewing and Analysis
US8759796B2 (en) * 2010-02-12 2014-06-24 Carl Zeiss Microscopy Gmbh Particle beam system
US20120025093A1 (en) * 2010-02-12 2012-02-02 Carl Zeiss Nts Gmbh Particle Beam System
US20130272498A1 (en) * 2012-04-12 2013-10-17 Horiba, Ltd. X-ray detection apparatus
US20130272497A1 (en) * 2012-04-12 2013-10-17 Horiba, Ltd. X-ray detection apparatus
US9116107B2 (en) * 2012-04-12 2015-08-25 Horiba, Ltd. X-ray detection apparatus for X-ray flourescence analysis
US9116106B2 (en) * 2012-04-12 2015-08-25 Horiba, Ltd. X-ray detection apparatus for X-ray fluorescence analysis
US9947501B2 (en) 2013-03-15 2018-04-17 Nikon Metrology Nv X-ray source, high-voltage generator, electron beam gun, rotary target assembly, rotary target, and rotary vacuum seal
US10096446B2 (en) 2013-03-15 2018-10-09 Nikon Metrology Nv X-ray source, high-voltage generator, electron beam gun, rotary target assembly, rotary target, and rotary vacuum seal
US9941090B2 (en) 2013-03-15 2018-04-10 Nikon Metrology Nv X-ray source, high-voltage generator, electron beam gun, rotary target assembly, and rotary vacuum seal
US10102997B2 (en) * 2013-03-15 2018-10-16 Nikon Metrology Nv X-ray source, high-voltage generator, electron beam gun, rotary target assembly, rotary target, and rotary vacuum seal
US9966217B2 (en) 2013-03-15 2018-05-08 Nikon Metrology Nv X-ray source, high-voltage generator, electron beam gun, rotary target assembly, rotary target, and rotary vacuum seal
US10008357B2 (en) 2013-03-15 2018-06-26 Nikon Metrology Nv X-ray source, high-voltage generator, electron beam gun, rotary target assembly, rotary target, and rotary vacuum seal
US10020157B2 (en) * 2013-03-15 2018-07-10 Nikon Metrology Nv X-ray source, high-voltage generator, electron beam gun, rotary target assembly, rotary target, and rotary vacuum seal
CN104034741B (en) * 2014-06-10 2016-10-05 深圳大学 X-ray source for X-ray grating differential contrast imaging
CN104034741A (en) * 2014-06-10 2014-09-10 深圳大学 X-ray source for X-ray raster differential phase-contrast imaging
US20190311874A1 (en) * 2016-10-21 2019-10-10 Excillum Ab Structured x-ray target
US10784069B2 (en) * 2016-10-21 2020-09-22 Excillum Ab Structured x-ray target
US11733185B2 (en) * 2018-07-04 2023-08-22 Rigaku Corporation Fluorescent X-ray analysis apparatus comprising a plurality of X-ray detectors and an X-ray irradiation unit including a multi-wavelength mirror
WO2021007590A1 (en) * 2019-07-08 2021-01-14 Thermo Scientific Portable Analytical Instruments Inc. Devices and methods for detecting elements in a sample
US11187664B2 (en) 2019-07-08 2021-11-30 Thermo Scientific Portable Analytical Instruments Inc. Devices and methods for detecting elements in a sample

Also Published As

Publication number Publication date
CA1021072A (en) 1977-11-15
GB1436871A (en) 1976-05-26
GB1436872A (en) 1976-05-26
GB1436873A (en) 1976-05-26
NL7306391A (en) 1973-11-12
DE2323610A1 (en) 1973-11-22
FR2184328A5 (en) 1973-12-21

Similar Documents

Publication Publication Date Title
US3925660A (en) Selectable wavelength X-ray source, spectrometer and assay method
US4048496A (en) Selectable wavelength X-ray source, spectrometer and assay method
US4260885A (en) Selectable wavelength X-ray source, spectrometer and assay method
US3983397A (en) Selectable wavelength X-ray source
US7809113B2 (en) X-ray source and fluorescent X-ray analyzing apparatus
US4104526A (en) Grid-cathode controlled X-ray tube
US3766381A (en) Apparatus and method of charge-particle spectroscopy for chemical analysis of a sample
US7476023B1 (en) Multiple energy x-ray source assembly
US6041095A (en) X-ray fluorescence analyzer
US4680467A (en) Electron spectroscopy system for chemical analysis of electrically isolated specimens
US5742660A (en) Dual energy scanning beam laminographic x-radiography
CN114594121B (en) High-flux XPS device, detection method and application
JPH0226183B2 (en)
US3920984A (en) X-ray energy analyzer
US3894233A (en) Ion microprobe analyzer
Jaklevic et al. Small x-ray tubes for energy dispersive analysis using semiconductor spectrometers
US3742214A (en) Apparatus for performing chemical analysis by electron spectroscopy
US3787692A (en) Induced electron emission spectrometer using plural radiation sources
US3158745A (en) X-ray tube with means to selectively deflect the electron beam to plural targets
US3011060A (en) X-ray spectrograph
Goldstein et al. X-ray spectral measurement: WDS and EDS
US4857730A (en) Apparatus and method for local chemical analyses at the surface of solid materials by spectroscopy of X photoelectrons
US3870882A (en) Esca x-ray source
US11315749B2 (en) X-ray tube and X-ray analysis system
Lifshin et al. X-ray spectral measurement and interpretation