Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3918440 A
Publication typeGrant
Publication date11 Nov 1975
Filing date6 Jul 1973
Priority date9 Mar 1973
Also published asDE2311817A1, DE2311817C2
Publication numberUS 3918440 A, US 3918440A, US-A-3918440, US3918440 A, US3918440A
InventorsKraus Werner
Original AssigneeKraus Werner
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Device for promoting formation of bone material
US 3918440 A
Abstract
A device for promoting the formation of bone material in the region of the bone structure of a living being by the application of an A.C. signal, including at least two metal electrodes, which can be inserted into the bone, and an A.C. signal source, which has at least two connecting wires. Each of the connecting wires is connected to a corresponding one of the metal electrodes. A locking element is connected to the end of each connecting wire and a corresponding receiving element is disposed on each of the electrodes. By interlocking of the locking element with the corresponding receiving element, the connection between the connecting wire and the corresponding electrode is effected.
Images(3)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent [191 Kraus 1 Nov. 11, 1975 1 DEVICE FOR PROMOTING FORMATION OF BONE MATERIAL [76] Inventor: Werner Kraus, 31 Bauerstrasse, D-8

[30] Foreign Application Priority Data Mar. 9, 1973 Germany 2311817 [52] US. Cl. l28/82.1; 128/419 F; 339/217 R [51] Int. Cl. A61N l/OO [58] Field of Search l28/82.l, 2.1 E, 2.06 E,

128/419 P, 419 F, 83, 418, 404, 420, 421, 413, 303; 3/1; 339/217 R, 218 R, 91 R [56] References Cited UNlTED STATES PATENTS 3,151.619 10/1964 Sullivan 128/418 X OTHER PUBLICATIONS Electro-Osteograms of Long Bones of Immature Rabbits, Friedenberg et al., J. Dent. Res, June, 1971. Effect of Microamp Electrical Currents on Bone ln Vivo, Nature, Vol. 231, May 1971.

Electrical Current Effects on E. coli Growth Rates, Proceeding of the Soc. for Experimental Photogy & Medicine, Vol. 139, Mar. 1972.

Primary Examiner-Richard A. Gaudet Assistant Exmniner-J. Yasko Attorney, Agent, or Firm-Spencer & Kaye ABSTRACT A device for promoting the formation of bone material in the region of the bone structure of a living being by the application of an AC. signal, including at least two metal electrodes, which can be inserted into the bone, and an AC. signal source, which has at least two connecting wires. Each of the connecting wires is connected to a corresponding one of the metal electrodes. A locking element is connected to the end of each connecting wire and a corresponding receiving element is disposed on each of the electrodes. By interlocking of the locking element with the corresponding receiving element, the connection between the connecting wire and the corresponding electrode is effected.

6 Claims, 8 Drawing Figures ll|||l Patent Nov. 11,1975 Sheet10f3 3,918,440

UQEEGIESP U.S. Patent Nov. 11, 1975 Sheet 2 01 3 3,918,440

DEVICE FOR PROMOTING FORMATION OF BONE MATERIAL BACKGROUND OF THE INVENTION The present invention involves a device. for promoting formation of bone material for assisting in the healing of bone damage by the application of an A.C. signal.

It is known that the healing of bone fractures and the regeneration of bone substance is promoted by lowfrequency electrical alternating currents. German Pat. No. L9 1 8,299, corresponding to my US. patent application Ser. No. 26,809, filed April 9, 1970, now US. Pat. No. 3,745,995 issued July 17, 1973, describes a device including a splint for repositioning and healing of fractured bones, to which an A.C. signal is applied. The device disclosed by my prior application includes a pick-up coil, whose ends are connected to metal electrodes inserted in the region of the bone to be treated. The pick-up coil can have an A.C. signal magnetically induced therein and thus effectively acts as an A.C. signal source.

In many cases, it is not necessary to fix the injured or damaged bone by the use of a separate supporting element, such as a plate or medullary nail, but it is suffrcient to connect the fractured parts together by the use of either bone screws or so-called Kirschner wires.

The Kirschner wires, which can be externally inserted, are strong, thin, metal rods, which are forced through both parts of a broken bone and are then clamped together by two turnbuckles mounted on the ends of the rods projecting from the damaged limb for pressing the fractured parts of the bone together. Where bone screws and Kirschner wires are to be utilized, there is a need for a device operating on the above-mentioned principle of applying an A.C. signal to assist in the formation of bone material, which can be easily utilized, even under difficult conditions, by the physician treating the case.

SUMMARY OF THE INVENTION An object of the present invention is to provide an improved device for applying an A.C. signal to a bone structure.

Another object of the present invention is to provide a device in which the wires from the A.C. signal source are securely connected to the electrodes to be inserted into the bone structure.

A further object of the present invention is to provide a device for applying an A.C. signal to a bone structure in which either bone screws or Kirschner wires are utilized as the electrodes to be inserted into the bone structure.

These objectives are carried out in accordance with the present invention in that the metal electrodes and the corresponding connecting wires of the device for applying the A.C. signal are provided with mating lockable connecting elements. The interconnection of these lockable connecting elements provides a firm mechanical and secure electrical connection between the connecting wires and metal electrodes which can be simply i and conveniently made.

nected between the A.C. source and a respective one of the metal electrodes. Each of the connecting wires is provided with a locking element and each of the electrodes is provided with a corresponding receiving element to receive the locking element of the corresponding connecting wire. The connecting wire and the corresponding electrode are connected by the interlocking of the respective locking element and the respective receiving element.

In accordance with one embodiment of the present invention, the metal electrodes are bone screws, each of which has a recess in its head so as to form a receiving element. Each of the connecting wires from the associated A.C. signal source is provided with a locking element which is formed so as to securely fit within the recess in the head of the corresponding bone screw. The locking elements in addition to providing a mechanism for electrically connecting the connecting wires to the bone screw also serve to mechanically connect the A.C. signal source, which is preferably a magnetic pickup coil, to the bone screws.

The recess in the head of the bone screw can preferably be in the form of an hexagonal socket with a widerred portion at its inner end. The locking element associated with the corresponding connecting wire is constructed so that it corresponds to the hexagonal socket. Wires, which are connected to the connecting wire and are constructed so as to effectively act as springs, are arranged on the inserted portion of the locking element so as to be clamped between the locking element and the socket. This locking element is preferably made of a plastic material and has a cap-like shape.

This plastic cap-like locking element is preferably substantially mushroom shaped and has a shank which fits into the hexagonal socket of the'screw head. The plastic cap has slots for receiving the spring-like wire elements. The connecting wire is preferably laterally inserted into the plastic cap. The top of the cap extends over and engages the lateral surface of the screw head.

In accordance with another embodiment of the invention, the metal electrodes are two thin rods intended to clamp together, with the use of two turnbuckles, two parts of a broken bone through which the rods pass. Mounted between the two rods is an electrically insulating body, electrically insulating the two rods from each other. At least one end of each rod is constructed so as to form a receiving element.

The insulating body which electrically insulates the two rods can be in the form of a tube of insulating material which is placed over portions of either one or both of the rods. Alternatively, it is possible to provide the insulating material around a portion of the rods by placing an insert in the openings in' the turnbuckle through which the rods pass or by constructing portions of the turnbuckle itself with insulating material.

The locking element of the corresponding connecting wire can include a plurality of spring biased balls which lockably engage a groove in the rod. Alternatively, the connecting wires can be connected to the rods by utilizing spring clamps as the locking elements,

which clamps are clamped onto the rods.

In all of the embodiments according to the present invention, the locking element has a resilient portion so that the locking element snaps into or onto the corresponding receiving element. Due to the presence of this resilient portion of the locking element, it is also possible to subsequently remove the locking element from the receiving element so as to disconnect the connecting wire from the corresponding electrode.

BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a partial cross-sectional perspective view of one embodiment of a device for aiding in the formation of bone material according to the present invention with bone screws connected to the fragments of a fractured bone for holding the fragments together.

FIG. 2 is a view of the underside of the locking element associated with the connecting wire for connecting the connecting wire to the corresponding bone screw, in accordance with the device shown in FIG. 1.

FIG. 3 is a cross-sectional side view of the locking element shown in FIG. 2.

FIG. 4 is a partial cross-sectional perspective view of a bone screw with a recess in its head for receiving the locking element shown in FIGS. 2 and 3.

FIG. 4a is a view similar to that of FIG. 4 of a modified embodiment of the device of FIG. 4.

FIG. 5 is a partial cross-sectional perspective view of another embodiment of the device for aiding in the formation of bone material according to the present invention with rods inserted through the fractured bone which rods are interconnected for holding the fragments of the fractured bone together.

FIG. 6a is a partial cross-sectional perspective view similar to that of FIG. 5 of a modified embodiment of the device of FIG. 5.

FIG. 6b is a cross-sectional view showing the connection between one of the locking elements of FIG. 6a and the corresponding rod.

DESCRIPTION OF THE PREFERRED EMBODIMENTS The subject matter of my copending application Ser. No. 26,809, filed Apr. 9, 1970, is incorporated by reference herein to provide a clearer understanding of the present invention.

In FIG. 1, a fractured bone 10 is shown with its fragments reconnected by a plurality of bone screws 12. A pick-up or receiving, coil 16 can be placed into a magnetic field so that an A.C. signal is induced within the coil, which then effectively acts as an A.C. signal source, as described in my above-mentioned prior application. The coil 16 is connected to the bone screws 12 by connecting wires 14 and 15. This connection between the connecting wires and the bone screws will be further described below with reference to FIGS. 2 to 4. The receiving coil 16 is preferably a rod-like ferrite core, on which is applied a singlelayer or multilayer winding, with one end of the winding being connected to the connecting wires 14 and the other end being connected to the connecting wire 15.

In one embodiment of the present invention, details of which are shown in FIGS. 2 to 4, a locking element 18 is mounted on the end of each of the insulated connecting wires, for example the connecting wire 15. The locking element 18 includes a mushroom-shaped part 20 of polytetrafluoroethylene (P.T.F.E.) so that the locking element has a cap-like shape. The connecting wire is radially inserted into part from the side through a kinking protector 22. The connecting wire then passes along the longitudinal axis of the shank of part 20 to three spring wires 24, which are connected together at the center and lead at an angular spacing of 120 along the outside of the shank to the top of part 20. The peripheral surface of the shank is widened at one portion near, or at, the end and the spring wires have corresponding convexities in the location of the widened portion.

The locking element 18 fits into a complementary receiving element formed in the head of the bone screw 12, as shown in FIG. 4. In this embodiment, the bone screw has a known hexagonal socket head, into which a hexagonal spanner can be inserted for both screwing the bone screw into the bone and loosening the screw. The hexagonal socket 25 in the screw head is provided at the rear with a widened portion 26, in which the shank end with the convexed parts of the spring wires 24 can be locked. The top of the part 20 has a crescentshaped cross section so that when it engages the screw head, it extends over the lateral surface and sides of the head.

The locking element 18 can be readily mounted on the screw head even under difficult conditions, for example in a very confined field of operation, and ensures both a secure mechanical seating (and hence also a secure attachment of the receiver coil 16), as well as a satisfactory electrical connection between the connecting wire and the bone screw serving as the electrode.

As another embodiment for the locking element to be connected to a screw head, it is also possible to use a beaker-shaped cap which externally extends over the screw head and locks behind the screw head.

It happens rather frequently that fractures do not heal properly or heal undesirably slow when fixed are fixed by a conventional splint plate attached to the portions of the broken bone by conventional bone screws. This situation can be advantageously dealt with by a modified embodiment of the present invention, which is similar to the embodiment described with reference to FIGS. 1 to 4 with the exception that the bone screws 12 are provided with an electrically insulating coating 28 (e.g. of polytetrafluorethylene) as shown in FIG. 4a. The coating 28 covers a portion of the screw head and an adjacent portion of the shank. To cope with the above mentioned case, the physician replaces two conventional bone screws on opposite sides of the fracture by bone screws 12 having an insulating coating 28, implants the pick-up coil 16 and conncects, the terminals thereof to the screws which are insulated from the splint plate and thus from each other by the insulating coatings.

In accordance with another embodiment of the present invention, two bone parts and 10b of a broken bone can be interconnected with the assistance of two thin but relatively strong metal rods 30, known as Kirschner wires, as shown in FIG. 5. The metal rods 30 are pointed at one end to facilitate their being pushed through the bone and are drawn together in the applied condition by two tumbuckles 32 and 33, whereby the matching ends of the bone parts 10a and 10b are fixed and pressed against each other.

The connecting wires 14 of the A.C. signal source are connected to the metal rods 30, which act as electrodes, via locking elements 34, of which only one is shown in FIG. 5. A locking element 34 is attached to each of the connecting wires 14, which lead to an A.C. source, not shown, such as, for example, a receiving coil, as described with reference to FIG. 1, or an A.C. generator. The parts of the metal rods 30, projecting from the bone, where they pass through the soft tissue 36 surrounding the bone, are surrounded by thin insu- .lating tubes 38 which may consist of thin P.T.E.F.

shrunk-on tubing, and prevent the voltages applied to the metal rods from being short-circuited by the relatively well-conducting soft tissue.

The insulation which is necessary between the two metal rods 30 serving as electrodes in the application of electric currents may be provided either by the insulating tubes 38 or by suitable construction of the turnbuckles 32, 33, which may consist entirely or partly of insulating material, such as, for example, glass-fiber reinforced plastic. In either situation, however, it is preferable to have at least one eye 40 of each turnbuckle include an insulating O-ring 42 of a resilient material such as, for example, rubber, positioned adjacent to the opening through which the rod passes. The O-ring 42 can be compressed by the insertion of a bored clamping screw 43 and when compressed, the ring yields radially inward so that it is finally pressed firmly against the metal rod 30. In this way, a firm mechanical hold of the turnbuckle on the metal rod is ensured, as well as proper electrical insulation between the turnbuckle eye, which has a relatively wide bore, and the metal rod passing through it.

The end of each metal rod 30 remote from the point is constructed so as to form a receiving element adapted to receive the locking element 34. In the embodiment shown in FIG. 5, each metal rod is provided with a machined annular groove 44, in which the corresponding locking element 34 can be locked. The locking element 34 includes radially slidable and lockable balls 31 which can be locked in the annular groove 44.

As shown in FIG, 6a, the connecting wires 14 and 15 from a receiving coil 16, serving as A.C. source, can be clamped to the rods 30, with the use of, for example, U-shaped metal spring clamps 45. The clamps 45 are electrically connected to the ends of the winding of the receiving coil and are clamped onto noninsulated sections of the metal rods 30. The clamp 45 which is connected to the connecting wire 15 is shown in FIGv 6a, on an enlarged scale, clamped onto the rod 30. In this way, the receiving coil 16 is mechanically attached to the metal rods 30 and is also electrically connected to them.

The use of bone screws, for example of a known physiologically well compatible CoCr-Mo alloy, as

electrodes, where alternating electrical potentials of less than one volt in a given frequency range greater than 1 Hertz (i.e. 1c/,) are applied, is possible without the risk of metallosis (i.e. electrolytic solution of living tissue).

The device shown in FIGS. 1 to 4 is especially advantageous in providing a simple mariner for repositioning of the fractured bones, which can be utilized in many cases of bone fracture. This device utilizes bone screws without any supporting plate for repositioning the fractured bone while at the same time providing for electrical stimulation of bone growth. With the use of bone screws without a plate the danger of infection is reduced. In the absence of a sufficient covering of soft tissue around the bone, for example in the case of tibia fractures in children and elderly persons, it frequently happens that the plate cannot be implanted. Repositioning the bone parts with screws without the use of a plate results in long periods of lying in bed because of the lack of stability. These periods can be significantly shortened, for example, by up to one half, by the use of electrostimulation of the bone growth.

Since the device shown in FIGS. 1 to 4 is to be implanted, all of the parts that will come into contact with tissue or bone are made of physiologically compatible, sterilizable materials. If the receiving coil 16, such as shown in FIGS. 1 and 6a, is used as the current source, a low-frequency alternating current (with the frequency preferably below Hertz, with the signals having gradually rising and falling flanks) is then induced by an external magnet field, as described for example in the abovementioned German Pat. No. 1,918,299 of German Offenlegungschrift (laid-open specification) No. 2,1 16,869.

It wil be understood that the above description of the present invention is susceptible to various modifications, changes and adaptations, and the same are intended to be comprehended within the meaning and range of equivalents of the appended claims.

I claim:

1. In an implantable device for promoting the formation of bone material in the region of the bone structure of a living being by the application of an AC. signal, the device including at least two metal bone screws capable of being inserted into the bone structure and a pick-up coil having at least two connecting wires, each of which is to be electrically connected to a corresponding one of the metal bone screws, the improvement comprising: a plurality of first locking means each connected to a respective one of said connecting wires; and receiving means provided by each of said bone screws for receiving said locking means of said corresponding connecting wire so that each said connecting wire is connected in an interlocking relationship to said corresponding bone screw.

2. In a device for promoting the formation of bone material in the region of the bone structure of a living being by the application of an AC. signal, the device including at least two metal electrodes capable of being inserted into the bone structure and an AC. signal source having at least two flexible connecting wires, each of which is to be electrically connected to a corresponding one of the metal electrodes, the improvement comprising: a plurality of first locking means each connected to a respective one of said connecting wires and receiving means disposed on each of said metal electrodes for receiving said locking means of said corresponding connecting wire so that each said connecting wire is connected in an interlocking relationship to said corresponding metal electrode, wherein each said electrode includes a bone screw, whose head has a recess therein forming said receiving means and said locking means includes a cap-like connecting element formed so as to securely fit in said recess in said screw head of said corresponding electrode.

3. A device as defined in claim 2, wherein said recess in said screw head is a hexagonal socket, which internally has a widened portion, and said cap-like connecting element is substantially mushroom-shaped with a widened portion along the peripheral surface of its shank, corresponding to the widened portion of said hexagonal socket, further comprises: connecting electrodes electrically connected to said connecting wires and disposed on the axial surface of said connecting element such that when said connecting element is inserted into said hexagonal socket said connecting electrodes are clamped therebetween.

4. A device as defined in claim 3, wherein said connecting wire is connected to said connecting element so 7 8 as to be perpendicularly disposed with respect to the ing wires can be subsequently disconnected from said longitudinal axis of said connecting element. electrodes.

5. A device as defined in claim 1, wherein said lock- 6. A device as defined in claim 2 wherein said signal ing means includes resilient means which releasably insource comprises a pick-up coil. terlocks with said receiving means so that said connect- 5

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3151619 *17 Jul 19616 Oct 1964Spacelab IncElectrode for electromedical equipment
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4027392 *10 May 19767 Jun 1977Interface Biomedical Laboratories CorporationEndosteal bionic tooth and implantation method
US4442840 *7 Jun 198217 Apr 1984Wojciechowicz Jr AlexanderElectrical connector apparatus and method for a temporary cardiac pacing wire
US4442846 *10 Nov 198117 Apr 1984University Of PennsylvaniaDistributed port bone-piercing cathode for electrically stimulated osteogenesis
US4461300 *18 Jan 198224 Jul 1984Sutter Biomedical, Inc.Bone and tissue healing device including a special electrode assembly and method
US4506674 *22 Dec 198326 Mar 1985Trustees Of The University Of PennsylvaniaMethod of stimulating osteogenesis with distributed port cathode
US4535775 *10 Feb 198320 Aug 1985Biolectron, Inc.Method for treatment of non-union bone fractures by non-invasive electrical stimulation
US4549547 *27 Jul 198229 Oct 1985Trustees Of The University Of PennsylvaniaImplantable bone growth stimulator
US4611597 *2 Nov 198316 Sep 1986Werner KrausImplantable device for the stimulation of bone growth
US4620543 *15 Jun 19844 Nov 1986Richards Medical CompanyEnhanced fracture healing and muscle exercise through defined cycles of electric stimulation
US4683896 *13 Nov 19844 Aug 1987Ewa HerbstMethod for fixing an electrical electrode to bone tissue
US4781591 *6 Apr 19871 Nov 1988Allen James PEndosteal implant and method for performing implantation thereof
US4889111 *19 Oct 198726 Dec 1989Ben Dov MeirBone growth stimulator
US5441527 *24 Jan 199415 Aug 1995Amei Technologies Inc.Implantable bone growth stimulator and method of operation
US5524624 *5 May 199411 Jun 1996Amei Technologies Inc.Apparatus and method for stimulating tissue growth with ultrasound
US5565005 *17 Feb 199315 Oct 1996Amei Technologies Inc.Implantable growth tissue stimulator and method operation
US5738521 *19 Jul 199614 Apr 1998Biolectron, Inc.Method for accelerating osseointegration of metal bone implants using electrical stimulation
US5766231 *11 Oct 199616 Jun 1998Neomedics, Inc.Implantable growth tissue stimulator and method of operation
US6034295 *2 Dec 19967 Mar 2000Christoph RehbergImplantable device having an internal electrode for stimulating growth of tissue
US6080155 *27 Feb 199527 Jun 2000Michelson; Gary KarlinMethod of inserting and preloading spinal implants
US6096038 *7 Jun 19951 Aug 2000Michelson; Gary KarlinApparatus for inserting spinal implants
US6102914 *23 Jul 199715 Aug 2000Biomat B.V.Detachably connecting cap for a screw used in orthopaedic surgery
US6120502 *27 May 199419 Sep 2000Michelson; Gary KarlinApparatus and method for the delivery of electrical current for interbody spinal arthrodesis
US6123705 *1 Oct 199626 Sep 2000Sdgi Holdings, Inc.Interbody spinal fusion implants
US6149650 *8 May 199821 Nov 2000Michelson; Gary KarlinThreaded spinal implant
US62104127 Jun 19953 Apr 2001Gary Karlin MichelsonMethod for inserting frusto-conical interbody spinal fusion implants
US622459520 Apr 19981 May 2001Sofamor Danek Holdings, Inc.Method for inserting a spinal implant
US62646568 May 199824 Jul 2001Gary Karlin MichelsonThreaded spinal implant
US62704987 Jun 19957 Aug 2001Gary Karlin MichelsonApparatus for inserting spinal implants
US6292699 *29 Jan 199918 Sep 2001Electro-Biology, Inc.Direct current stimulation of spinal interbody fixation device
US642306114 Mar 200023 Jul 2002Amei Technologies Inc.High tibial osteotomy method and apparatus
US643609816 Jan 199620 Aug 2002Sofamor Danek Holdings, Inc.Method for inserting spinal implants and for securing a guard to the spine
US660508923 Sep 199912 Aug 2003Gary Karlin MichelsonApparatus and method for the delivery of electrical current for interbody spinal arthrodesis
US6678562 *14 Mar 200013 Jan 2004Amei Technologies Inc.Combined tissue/bone growth stimulator and external fixation device
US675884918 Aug 20006 Jul 2004Sdgi Holdings, Inc.Interbody spinal fusion implants
US677007417 Nov 20013 Aug 2004Gary Karlin MichelsonApparatus for use in inserting spinal implants
US687521321 Feb 20035 Apr 2005Sdgi Holdings, Inc.Method of inserting spinal implants with the use of imaging
US69238107 Jun 19952 Aug 2005Gary Karlin MichelsonFrusto-conical interbody spinal fusion implants
US7172594 *6 Apr 20046 Feb 2007Spineco, Inc.Electro-stimulation and medical delivery device
US720799118 Mar 200224 Apr 2007Warsaw Orthopedic, Inc.Method for the endoscopic correction of spinal disease
US726462224 Oct 20034 Sep 2007Warsaw Orthopedic, Inc.System for radial bone displacement
US72911494 Oct 19996 Nov 2007Warsaw Orthopedic, Inc.Method for inserting interbody spinal fusion implants
US73262149 Aug 20035 Feb 2008Warsaw Orthopedic, Inc.Bone cutting device having a cutting edge with a non-extending center
US739930320 Aug 200215 Jul 2008Warsaw Orthopedic, Inc.Bone cutting device and method for use thereof
US74317226 Jun 20007 Oct 2008Warsaw Orthopedic, Inc.Apparatus including a guard member having a passage with a non-circular cross section for providing protected access to the spine
US74523597 Jun 199518 Nov 2008Warsaw Orthopedic, Inc.Apparatus for inserting spinal implants
US745567231 Jul 200325 Nov 2008Gary Karlin MichelsonMethod for the delivery of electrical current to promote bone growth between adjacent bone masses
US74912057 Jun 199517 Feb 2009Warsaw Orthopedic, Inc.Instrumentation for the surgical correction of human thoracic and lumbar spinal disease from the lateral aspect of the spine
US75342547 Jun 199519 May 2009Warsaw Orthopedic, Inc.Threaded frusto-conical interbody spinal fusion implants
US75690548 Nov 20054 Aug 2009Warsaw Orthopedic, Inc.Tubular member having a passage and opposed bone contacting extensions
US761507020 Apr 200410 Nov 2009Spineco, Inc.Electro-stimulation and medical delivery device
US7643867 *17 Oct 20035 Jan 2010Medtronic, Inc.Fiducial marker devices, tools, and methods
US76868051 Jul 200430 Mar 2010Warsaw Orthopedic, Inc.Methods for distraction of a disc space
US769114819 Mar 20056 Apr 2010Warsaw Orthopedic, Inc.Frusto-conical spinal implant
US7704282 *9 Jul 200427 Apr 2010Depuy Products, Inc.Orthopaedic element with self-contained data storage
US772261925 Apr 200625 May 2010Warsaw Orthopedic, Inc.Method of maintaining distraction of a spinal disc space
US782880018 May 20099 Nov 2010Warsaw Orthopedic, Inc.Threaded frusto-conical interbody spinal fusion implants
US788756518 Feb 200615 Feb 2011Warsaw Orthopedic, Inc.Apparatus and method for sequential distraction
US791453025 Apr 200629 Mar 2011Warsaw Orthopedic, Inc.Tissue dilator and method for performing a spinal procedure
US793511625 Nov 20083 May 2011Gary Karlin MichelsonImplant for the delivery of electrical current to promote bone growth between adjacent bone masses
US793883123 Aug 200510 May 2011Spineco, Inc.Implant device
US79429333 Apr 201017 May 2011Warsaw Orthopedic, Inc.Frusto-conical spinal implant
US799334727 Jul 20009 Aug 2011Warsaw Orthopedic, Inc.Guard for use in performing human interbody spinal surgery
US80574759 Nov 201015 Nov 2011Warsaw Orthopedic, Inc.Threaded interbody spinal fusion implant
US806670521 Feb 200329 Nov 2011Warsaw Orthopedic, Inc.Instrumentation for the endoscopic correction of spinal disease
US8070785 *20 Apr 20046 Dec 2011Spineco, Inc.Bone anchor prosthesis and system
US80837417 Jun 200527 Dec 2011Synthes Usa, LlcOrthopaedic implant with sensors
US814531911 Oct 200527 Mar 2012Ebi, LlcMethods and devices for treatment of osteonecrosis of the femoral head with core decompression
US820638721 Apr 201126 Jun 2012Michelson Gary KInterbody spinal implant inductively coupled to an external power supply
US822665214 Nov 201124 Jul 2012Warsaw Orthopedic, Inc.Threaded frusto-conical spinal implants
US825199729 Nov 201128 Aug 2012Warsaw Orthopedic, Inc.Method for inserting an artificial implant between two adjacent vertebrae along a coronal plane
US835390925 Apr 200615 Jan 2013Warsaw Orthopedic, Inc.Surgical instrument for distracting a spinal disc space
US840929217 May 20112 Apr 2013Warsaw Orthopedic, Inc.Spinal fusion implant
US867911823 Jul 201225 Mar 2014Warsaw Orthopedic, Inc.Spinal implants
US871879023 May 20136 May 2014Boston Scientific Neuromodulation CorporationSystems and methods for providing electrical stimulation of multiple dorsal root ganglia with a single lead
US873444727 Jun 200027 May 2014Warsaw Orthopedic, Inc.Apparatus and method of inserting spinal implants
US875834428 Aug 201224 Jun 2014Warsaw Orthopedic, Inc.Spinal implant and instruments
US876848821 May 20131 Jul 2014Boston Scientific Neuromodulation CorporationSystems and methods for electrically stimulating patient tissue on or around one or more bony structures
US20090054951 *3 Oct 200626 Feb 2009Washington UniversityElectrode for Stimulating Bone Growth, Tissue Healing and/or Pain Control, and Method of Use
US20100268313 *13 Apr 201021 Oct 2010Otologics, LlcReference electrode apparatus and method for neurostimulation implants
US20120143191 *17 Dec 20077 Jun 2012Brian FooteJoint fixator
DE3536823A1 *16 Oct 198515 May 1986Ewa HerbstElektrische elektrode und ein verfahren zum anbringen der elektrode an knochengewebe
EP0820736A1 *23 Jul 199628 Jan 1998Biomat B.V.Detachably connecting cap for a screw used in orthopaedic surgery
EP0901351A1 *26 May 199517 Mar 1999MICHELSON, Gary KarlinApparatus and method, delivery of electrical current
EP1931418A2 *3 Oct 200618 Jun 2008Washington UniversityElectrode for stimulating bone growth, tissue healing and/or pain control, and method of use
WO1985000293A1 *11 Jul 198431 Jan 1985Electro Biology IncModification of the growth, repair and maintenance behavior of living tissues and cells by a specific and selective change in electrical environment
WO1994006509A1 *8 Sep 199331 Mar 1994Stephan HeribertImplant for electrostimulation of tissues
WO1998003209A1 *23 Jul 199729 Jan 1998Biomat BvDetachably connecting cap for a screw used in orthopaedic surgery
WO2001051119A1 *27 Dec 200019 Jul 2001Amei Technologies IncCombined tissue/bone growth stimulator and external fixation device
WO2004032771A1 *2 Oct 200322 Apr 2004Biscup Robert SElectro-stimulation and medical delivery device
WO2008075097A1 *17 Dec 200726 Jun 2008Medica Surgical Innovations LtA joint fixator
WO2009045743A1 *18 Sep 20089 Apr 2009Depuy Spine IncAnti-microbial implant
WO2011000556A230 Jun 20106 Jan 2011Geiges, BjarnePolarization device and implantation device
WO2013177159A1 *21 May 201328 Nov 2013Boston Scientific Neuromodulation CorporationSystems and methods for electrically stimulating patient tissue on or around one or more bony structures
Classifications
U.S. Classification602/2, 607/51, 439/873
International ClassificationA61N1/05, A61N1/40, A61F2/28, A61B17/60, A61B17/56, A61B17/66, A61N2/02, A61N2/00, A61B17/64, A61N1/372, A61N1/32
Cooperative ClassificationA61N1/372, A61B17/66, A61N2/02, A61N1/40, A61B17/6441
European ClassificationA61N1/372, A61B17/64G, A61N1/40, A61N2/02