US3909668A - Variable duty cycle arc lamp modulator - Google Patents

Variable duty cycle arc lamp modulator Download PDF

Info

Publication number
US3909668A
US3909668A US605139A US60513966A US3909668A US 3909668 A US3909668 A US 3909668A US 605139 A US605139 A US 605139A US 60513966 A US60513966 A US 60513966A US 3909668 A US3909668 A US 3909668A
Authority
US
United States
Prior art keywords
arc lamp
current
switch
power
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US605139A
Inventor
Peter Laakmann
Charles U Boutin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Co
Original Assignee
Hughes Aircraft Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hughes Aircraft Co filed Critical Hughes Aircraft Co
Priority to US605139A priority Critical patent/US3909668A/en
Application granted granted Critical
Publication of US3909668A publication Critical patent/US3909668A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/30Circuit arrangements in which the lamp is fed by pulses, e.g. flash lamp
    • H05B41/34Circuit arrangements in which the lamp is fed by pulses, e.g. flash lamp to provide a sequence of flashes

Definitions

  • the disclosed variable are lamp modulator comprises a bistable switch connected in series with an arc lamp and a power supply, The switch is triggered ON (closed) by a series of pulses of constant frequency from a clock pulse generator, and the switch is triggered OFF (open) by a series of pulses from another pulsegenerator.
  • the time interval between the ON and OFF pulses is varied in accordance with the impedance of the arc lamp as detected by a current integrator and a level sensor.
  • This invention relates generally to are lamps and more particularly to a method and apparatus for electronically modulating arc lamps.
  • Arc lamps such as mercury vapor or xenon arc lamps used as optical signal sources, require that the current supplied thereto be controlled (this control is often referred to as modulating or keying the arc lamp).
  • This modulation serves the purpose of increasing the signal to noise ratio at the optical sensor by rejecting all signals that are not modulated (keyed) at the desired rate.
  • the signal in these systems is usually recovered through a narrow band filter at the keying rate.
  • This keying can cause severe instabilities in the arc discharge mechanism that can cause the arc to extinguish. This occurs particularly if the keying frequency is above about 1 Kl-l
  • the instabilities are caused by the exitation of acoustical plasma resonances that are exited by the keying frequency. Additional instabilitics can be caused by high frequency mechanical vibration or mechanical shock.
  • instabilities are in addition to the instabilities found even in unmodulated arcs such as temporary shifts in the attachment point of the are on the cathode due to, for example, thermal convection.
  • Instabilities due to all causes are characterized by an increase in arc impedance, and all of them occur at random times and may stretch over time intervals from seconds to fractions of milliseconds. When these instabilities occur, it is imperative to maintain the total power supplied to the arc lamp, or better to increase the power level, as this has the tendency to increase the electrode and plasma temperatures temporarily and will thereafter better maintain the emission process.
  • a constant current source has the capability to adjust the power flow to the arc lamp immediately. Since, in this case the ON current is constant, the power is proportional to the voltage drop. The voltage drop is always higher during periods of instability. A lamp operated in this mode will never extinguish during periods of increased arc impedance.
  • Another method is to modulate or key the arc lamp (intermittently apply power thereto).
  • the duty cycle is controlled in order to maintain and increase power to the arc lamp over some range of arc impedance, such controlling action has to be very fast.
  • instability has been observed to occur on a cycle to cycle basis, in extreme cases. It becomes apparent that any such control should have as little delay as possible.
  • the above complications have in the past required a DC supply of relatively high voltage and a large series resistance, all in series with a modulating electronic switch, for example, a transistor.
  • An alternate approach would be the use of a constant current regulator.
  • An arc lamp is provided with a power supply and a bistable switch in series with the arc lamp.
  • the electronic modulating system of this invention includes a clock pulse generator operating at the modulating frequency to deliver a series of narrow pulses at equal time intervals to trigger the bistable switch into the ON (closed) state.
  • a separate pulse generator is employed to turn the bistable switch OFF after a preset value of the time integral of the current which has passed through the arc lamp has been reached.
  • the bistable switch when the arc impedance is low, a high current is flowing and the bistable switch will be ON (closed) only for a short time. On the other hand, if the arc impedance is high only a small current will flow but for a longer portion of the cycle. If the are impedance changes during the ON cycle itself, the change will be immediately reflected in the integration and the bistable switch will only turn OFF after the preset value of the time integral of current has been reached.
  • the present invention thus provides a method and apparatus for controlling the duty cycle by varying the ON time of the keying circuit as a function of arc impedance with zero delay. Compared to the constant current method it is also much more efficient in delivering power from a supply to the arc lamp.
  • FIG. 1 is a block diagram which illustrates a preferred embodiment of the present invention.
  • FIG. 2 is a schematic circuit diagram of the embodiment shown in FIG. 1.
  • FIG. 1 shows an arc lamp 2, the operation of which is to be controlled by the present invention.
  • the are lamp 2 may consist of, for example, a mercury vapor arc lamp.
  • the circuit to be described was originally designed for an arc lamp to be used as an optical signal source on a one-shot mission. This invention, however, is applicable to any restartable arc modulator.
  • a power supply 4 provides power for the circuit.
  • the keying system consists of a clock pulse generator 6, operating at the modulating frequency, which delivers narrow pulses 8 to trigger a bistable semiconductor switch 10 into the ON (closed) state and a separate pulse generator 12 to turn the bistable switch 10 OFF (open) after the preset value of the time integral of current has been reached.
  • a current integrator 14 is provided in series with the arc lamp 2.
  • the current integrator 14 feeds a signal, corresponding to the time integral of current, to a level sensor 16.
  • the level sensor 16 feeds a signal to the turn-off pulse generator 12. This signal triggers the pulse generator 12 into delivering a pulse to the switch to turn it OFF. Consequently, when the arc impedance is low, a high current is flowing and the switch 10 will be closed for only a short time. On the other hand, if the arc impedance is high only a small current will flow but for a longer portion of the cycle.
  • the bistable semiconductor switch 10 shown in FIG. 1 comprises a power transistor V a silicon gate controlled switch V and a silicon transistor V in connection with the latching loop which comprises a resistor R and diodes D and D
  • the saturated transistor V removes the drive from the transistor V and charges the capacitor C through the resistor R to turn the gate controlled switch V ON. This in turn will turn ON the transistor V, by keying the base to collector path to be shorted.
  • the latch ing loop which comprises a resistor R and the diodes D and D will keep the transistor V cut off.
  • the transistor V is saturated periodically at the clock pulse rate by a standard unijunction relaxation oscillator which comprises a unijunction transistor V coupled in a relaxation oscillator circuit including a resistor R and a capacitor C
  • a standard unijunction relaxation oscillator which comprises a unijunction transistor V coupled in a relaxation oscillator circuit including a resistor R and a capacitor C
  • the transistor V is turned ONby the integrating unijunction transistor V This will cause a negative turn of pulse to appear at the gate of the switch V to turn off the arc lamp after the preset integral of current is passed therethrough.
  • the integration is performed in the capacitor C
  • the charging current which is proportional to the are current, is derived from the inverting transistor V
  • the collector current in the transistor V is proportional to the emitter current, which in turn is proportional to the voltage drop across the resistor R Saturation at the clock pulse rate of the transistor V resets the integrator at the start of each ON cycle.
  • the arc lamp 2 used in this embodiment is of the type which is started by means of a fusible wire link between the electrodes.
  • the integrator is inhibited by the capacitor C and the diode D
  • Arc lamps are two or three electrodedevices operating atgas pressures above one atmosphere, whose emission proof flash lamps is dueto higher-currents. Stability in flash lamps is no problem.
  • Apparatus. for controlling the supply of power from a power source to an arc lamp comprising:
  • an arc lamp a power supply connected to said are lamp; a'bistable switch connectedin series with the lamp and the power supply having an ON state in which the power supply is electrically connected to the arc lamp and an OFF state in which the power supply is not electrically connected to the arc lamp; first means to supply first electrical pulsesto the switch at regular intervalsto trigger the switch into the ONstate; and second means to supply second electrical pulses to the switch to trigger the switch into the OFF state, said second means comprising a current integrator for sensing current flow through the arc lamp and pulse generating means for generating the second 2.
  • pulse generating means comprises: integrating, with respect to time, the amount of curlevel sensor meansconnected to the current integrarent which flows through said arc lamp each time tor for receiving from the current integrator a sigsaid switch closes; and nal corresponding to the time integral of current 5 opening said switch when the time integral of current which has passed through the arc lamp, and for which passes through said are lamp reaches a pregenerating an electrical pulse when the signal from determined value.
  • the current integrator reaches a predetermined 4.
  • the method of controlling the supply of power value; and from a power supply to an arc lamp comprising: a turn-off pulse generator connected between the 10 initiating a flow of current from said power supply to level sensor and the switch for delivering a pulse to said are lamp at intermittent time intervals; the switch when the generator receives a stimulus integrating the amount of current which passes from the level sensor to trigger the switch into the through said arc lamp each time said flow of cur- OFF state. rent is initiated; and 3.
  • the method of controlling the supply of power interrupting said flow of current when the time intefrom a power supply to an arc lamp comprising: gral of current reaches a predetermined value.

Abstract

The disclosed variable arc lamp modulator comprises a bistable switch connected in series with an arc lamp and a power supply. The switch is triggered ON (closed) by a series of pulses of constant frequency from a clock pulse generator, and the switch is triggered OFF (open) by a series of pulses from another pulse generator. The time interval between the ON and OFF pulses is varied in accordance with the impedance of the arc lamp as detected by a current integrator and a level sensor.

Description

United States Patent Laakmann et al.
[4 1 Sept. 30, 1975 [75] Inventors: Peter Laakmann, Los Angeles,
C alif.; Charles U. Boutin, Tucson, Ariz [73] Assignce: Hughes Aircraft Company, Culver City, Calif.
[22] Filed: Dec. 22, 1966 [211 App]. No; 605,139
[52] U.S. Cl 315/209; 315/246 [5]] Int. Cl. HOlj 29/00 [58] Field of Search,..-... 315/209, 362, 246; 307/96, 307/97, 98, 99
[56] References Cited UNITED STATES PATENTS 3,265,930 8/1966 Powell 3l5/209 VARIABLE DUTY CYCLE ARC LAMP MODULATOR 3,278,800 l0/1966 Snell... ,3l5/209 Primary ExaminerMaynard R. Wilbur Assistanr E.\'aminerJ. M. Potenza Attornqv, Agenflor Firm-James K. Haskell; Paul M. Coble 5 7 ABSTRACT The disclosed variable are lamp modulator comprises a bistable switch connected in series with an arc lamp and a power supply, The switch is triggered ON (closed) by a series of pulses of constant frequency from a clock pulse generator, and the switch is triggered OFF (open) by a series of pulses from another pulsegenerator. The time interval between the ON and OFF pulses is varied in accordance with the impedance of the arc lamp as detected by a current integrator and a level sensor.
4 Claims, 2 Drawing Figures The invention herein described was made in the course of or under a contract or subcontract thereunder, (or grant) with the Department of the Army.
This invention relates generally to are lamps and more particularly to a method and apparatus for electronically modulating arc lamps.
Arc lamps, such as mercury vapor or xenon arc lamps used as optical signal sources, require that the current supplied thereto be controlled (this control is often referred to as modulating or keying the arc lamp). This modulation serves the purpose of increasing the signal to noise ratio at the optical sensor by rejecting all signals that are not modulated (keyed) at the desired rate. The signal in these systems is usually recovered through a narrow band filter at the keying rate.
This keying, however, can cause severe instabilities in the arc discharge mechanism that can cause the arc to extinguish. This occurs particularly if the keying frequency is above about 1 Kl-l The instabilities are caused by the exitation of acoustical plasma resonances that are exited by the keying frequency. Additional instabilitics can be caused by high frequency mechanical vibration or mechanical shock.
These instabilities are in addition to the instabilities found even in unmodulated arcs such as temporary shifts in the attachment point of the are on the cathode due to, for example, thermal convection. Instabilities due to all causes are characterized by an increase in arc impedance, and all of them occur at random times and may stretch over time intervals from seconds to fractions of milliseconds. When these instabilities occur, it is imperative to maintain the total power supplied to the arc lamp, or better to increase the power level, as this has the tendency to increase the electrode and plasma temperatures temporarily and will thereafter better maintain the emission process.
One of the present methods of powering arc lamps is to use as much of a constant current source as is possible. A constant current source has the capability to adjust the power flow to the arc lamp immediately. Since, in this case the ON current is constant, the power is proportional to the voltage drop. The voltage drop is always higher during periods of instability. A lamp operated in this mode will never extinguish during periods of increased arc impedance.
Another method is to modulate or key the arc lamp (intermittently apply power thereto). However, if the duty cycle is controlled in order to maintain and increase power to the arc lamp over some range of arc impedance, such controlling action has to be very fast. In keyed applications instability has been observed to occur on a cycle to cycle basis, in extreme cases. It becomes apparent that any such control should have as little delay as possible. The above complications have in the past required a DC supply of relatively high voltage and a large series resistance, all in series with a modulating electronic switch, for example, a transistor. An alternate approach would be the use of a constant current regulator.
Whether a high supply voltage is used or an electronic regulator, reliable arc lamp operation was in the past only possible by dissipating considerable power in the regulator or series resistance. Usually the power loss has to exceed the power delivered to the arc by a factor of two to five in order to achieve stable and reliable operation. In many instances such power loss is intolerable and it is always undesirable.
It is therefore a primary object, of the present invention to provide a method and apparatus for electronically modulating arc lamps.
It is another object of the present invention to control the power supplied to an arc lamp by varying the ON time of a keying circuit as a function of the arc impedance.
It is a further object of the present invention to provide a method and apparatus for controlling the duty cycle and power flow as a function of arc impedance with zero delay and with increased efficiency These objects are accomplished according to the present invention as follows. An arc lamp is provided with a power supply and a bistable switch in series with the arc lamp. The electronic modulating system of this invention includes a clock pulse generator operating at the modulating frequency to deliver a series of narrow pulses at equal time intervals to trigger the bistable switch into the ON (closed) state. A separate pulse generator is employed to turn the bistable switch OFF after a preset value of the time integral of the current which has passed through the arc lamp has been reached. Consequently, when the arc impedance is low, a high current is flowing and the bistable switch will be ON (closed) only for a short time. On the other hand, if the arc impedance is high only a small current will flow but for a longer portion of the cycle. If the are impedance changes during the ON cycle itself, the change will be immediately reflected in the integration and the bistable switch will only turn OFF after the preset value of the time integral of current has been reached.
The present invention thus provides a method and apparatus for controlling the duty cycle by varying the ON time of the keying circuit as a function of arc impedance with zero delay. Compared to the constant current method it is also much more efficient in delivering power from a supply to the arc lamp.
These and other features of the present invention will be more fully understood by reference to the following detailed description when read in conjunction with the accompanying drawings in which like reference characters refer to like elements, and in which:
FIG. 1 is a block diagram which illustrates a preferred embodiment of the present invention; and
FIG. 2 is a schematic circuit diagram of the embodiment shown in FIG. 1.
Referring now to the drawings, FIG. 1 shows an arc lamp 2, the operation of which is to be controlled by the present invention. The are lamp 2 may consist of, for example, a mercury vapor arc lamp. The circuit to be described was originally designed for an arc lamp to be used as an optical signal source on a one-shot mission. This invention, however, is applicable to any restartable arc modulator. A power supply 4 provides power for the circuit. The keying system consists of a clock pulse generator 6, operating at the modulating frequency, which delivers narrow pulses 8 to trigger a bistable semiconductor switch 10 into the ON (closed) state and a separate pulse generator 12 to turn the bistable switch 10 OFF (open) after the preset value of the time integral of current has been reached.
In order to measure the time integral of current a current integrator 14 is provided in series with the arc lamp 2. The current integrator 14 feeds a signal, corresponding to the time integral of current, to a level sensor 16. When the preset value of the time integral is reached at the level sensor 16, the level sensor 16 feeds a signal to the turn-off pulse generator 12. This signal triggers the pulse generator 12 into delivering a pulse to the switch to turn it OFF. Consequently, when the arc impedance is low, a high current is flowing and the switch 10 will be closed for only a short time. On the other hand, if the arc impedance is high only a small current will flow but for a longer portion of the cycle.
If the arc impedance changes during the ON cycle it-' power dissipated in the arc would be constant for a constant voltage power source. If the power source has internal resistance, the power dissipated in the lamp would increase with arc impedance. This is a more de sirable situation as was pointed out earlier. The presence of power source resistance (or additional series resistance), of course, does cause losses. These losses, however, are much smaller than the losses caused by operation with a high source voltage and series resistance for the same power regulation. In a practical case where the power source might be a battery, much resistance is usually present anyway.
. If efficiencies approaching 100 percent from a constant voltage power source are desired, the rising power versus rising arc resistance characteristics can be obtained easily by a nonlinear integration. Suchnonlinear integration can be obtained by weighting? high currents differently from low currents. For example, in a capacitive integrator a shunt resistor paralleled to the capacitor will do this effectively.
If a detector tuned to the fundamental of the modulating frequency is used, it is good design practice to limit the expected range of duty cycle to below 50 percent by the proper choice of supply voltage, average current and are impedance. The fundamental component falls off rapidly if the duty cycle exceeds 50 percent. Duty cycles less than 50 percent cause a slight increase in fundamental component for such detectors as silicon or lead sulfide, depending of course on the power versus peak arc current characteristic of the circurt.
Referring now to the circuit diagram of FIG. 2, the bistable semiconductor switch 10 shown in FIG. 1 comprises a power transistor V a silicon gate controlled switch V anda silicon transistor V in connection with the latching loop which comprises a resistor R and diodes D and D The saturated transistor V removes the drive from the transistor V and charges the capacitor C through the resistor R to turn the gate controlled switch V ON. This in turn will turn ON the transistor V, by keying the base to collector path to be shorted. The latch ing loop which comprises a resistor R and the diodes D and D will keep the transistor V cut off.
The transistor V is saturated periodically at the clock pulse rate by a standard unijunction relaxation oscillator which comprises a unijunction transistor V coupled in a relaxation oscillator circuit including a resistor R and a capacitor C The transistor V is turned ONby the integrating unijunction transistor V This will cause a negative turn of pulse to appear at the gate of the switch V to turn off the arc lamp after the preset integral of current is passed therethrough.
The integration is performed in the capacitor C The charging current, which is proportional to the are current, is derived from the inverting transistor V The collector current in the transistor V is proportional to the emitter current, which in turn is proportional to the voltage drop across the resistor R Saturation at the clock pulse rate of the transistor V resets the integrator at the start of each ON cycle. The arc lamp 2 used in this embodiment is of the type which is started by means of a fusible wire link between the electrodes. During the fusing period the integrator is inhibited by the capacitor C and the diode D The above described embodiment of the present invention was successfully operated using the following values for the components of the circuit.
V, 2N2359 R ohms V 2N3262 R 75 ohms V 2N2222 R, 330 ohms V 2N492A R 18K ohms V 2N492A R 5 l0 ohms V 2N398B R ohms V 2N2222 R I50 ohms V TlCll R 75 ohms D IN36OU' C In F o, IN36OO C .22 F' D IN360O C .022 F 1),, IN3600 C, 6.8 1. F R ,1 ohm C .(llu F R 25 ohms C lSu F R 560 ohms L, H
Since the present invention relates to are lamps, the
following definition thereof will be helpful. Arc lamps are two or three electrodedevices operating atgas pressures above one atmosphere, whose emission proof flash lamps is dueto higher-currents. Stability in flash lamps is no problem.
What is claimed is: 1. Apparatus. for controlling the supply of power from a power source to an arc lamp comprising:
an arc lamp; a power supply connected to said are lamp; a'bistable switch connectedin series with the lamp and the power supply having an ON state in which the power supply is electrically connected to the arc lamp and an OFF state in which the power supply is not electrically connected to the arc lamp; first means to supply first electrical pulsesto the switch at regular intervalsto trigger the switch into the ONstate; and second means to supply second electrical pulses to the switch to trigger the switch into the OFF state, said second means comprising a current integrator for sensing current flow through the arc lamp and pulse generating means for generating the second 2. The apparatus according to claim 2 in which the closing said switch at predetermined time intervals; pulse generating means comprises: integrating, with respect to time, the amount of curlevel sensor meansconnected to the current integrarent which flows through said arc lamp each time tor for receiving from the current integrator a sigsaid switch closes; and nal corresponding to the time integral of current 5 opening said switch when the time integral of current which has passed through the arc lamp, and for which passes through said are lamp reaches a pregenerating an electrical pulse when the signal from determined value. the current integrator reaches a predetermined 4. The method of controlling the supply of power value; and from a power supply to an arc lamp comprising: a turn-off pulse generator connected between the 10 initiating a flow of current from said power supply to level sensor and the switch for delivering a pulse to said are lamp at intermittent time intervals; the switch when the generator receives a stimulus integrating the amount of current which passes from the level sensor to trigger the switch into the through said arc lamp each time said flow of cur- OFF state. rent is initiated; and 3. The method of controlling the supply of power interrupting said flow of current when the time intefrom a power supply to an arc lamp comprising: gral of current reaches a predetermined value.
providing a switch in series with said arc lamp;

Claims (4)

1. Apparatus for controlling the supply of power from a power source to an arc lamp comprising: an arc lamp; a power supply connected to said arc lamp; a bistable switch connected in series with the lamp and the power supply having an ON state in which the power supply is electrically connected to the arc lamp and an OFF state in which the power supply is not electrically connected to the arc lamp; first means to supply first electrical pulses to the switch at regular intervals to trigger the switch into the ON state; and second means to supply second electrical pulses to the switch to trigger the switch into the OFF state, said second means comprising a current integrator for sensing current flow through the arc lamp and pulse generating means for generating the second pulses when a predetermined value of the time integral of the sensed current is provided by the integrator.
2. The apparatus according to claim 2 in which the pulse generating means comprises: level sensor means connected to the current integrator for receiving from the current integrator a signal corresponding to the time integral of current which has passed through the arc lamp, and for generating an electrical pulse when the signal from the current integrator reaches a predetermined value; and a turn-off pulse generator connected between the level sensor and the switch for delivering a pulse to the switch when the generator receives a stimulus from the level sensor to trigger the switch into the OFF state.
3. The method of controlling the supply of power from a power supply to an arc lamp comprising: providing a switch in series with said arc lamp; closing said switch at pRedetermined time intervals; integrating, with respect to time, the amount of current which flows through said arc lamp each time said switch closes; and opening said switch when the time integral of current which passes through said arc lamp reaches a predetermined value.
4. The method of controlling the supply of power from a power supply to an arc lamp comprising: initiating a flow of current from said power supply to said arc lamp at intermittent time intervals; integrating the amount of current which passes through said arc lamp each time said flow of current is initiated; and interrupting said flow of current when the time integral of current reaches a predetermined value.
US605139A 1966-12-22 1966-12-22 Variable duty cycle arc lamp modulator Expired - Lifetime US3909668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US605139A US3909668A (en) 1966-12-22 1966-12-22 Variable duty cycle arc lamp modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US605139A US3909668A (en) 1966-12-22 1966-12-22 Variable duty cycle arc lamp modulator

Publications (1)

Publication Number Publication Date
US3909668A true US3909668A (en) 1975-09-30

Family

ID=24422428

Family Applications (1)

Application Number Title Priority Date Filing Date
US605139A Expired - Lifetime US3909668A (en) 1966-12-22 1966-12-22 Variable duty cycle arc lamp modulator

Country Status (1)

Country Link
US (1) US3909668A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3999100A (en) * 1975-05-19 1976-12-21 Morton B. Leskin Lamp power supply using a switching regulator and commutator
US4097782A (en) * 1975-12-15 1978-06-27 Hiram Darden Chambliss Energy saving means reducing power used by lamps
FR2394958A1 (en) * 1977-06-14 1979-01-12 Lluelles Jean Claude AC derived supply for cold cathode discharge lamps - has relaxation oscillator with thyristor threshold control
US6495969B1 (en) * 1987-08-03 2002-12-17 Ole K. Nilssen Series-resonant ballast having overload control
ITBO20100479A1 (en) * 2010-07-28 2012-01-29 Blindato Effepi S R L SLIDING DOOR DEVICE

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3265930A (en) * 1962-05-03 1966-08-09 Gen Electric Current level switching apparatus for operating electric discharge lamps
US3278800A (en) * 1963-06-21 1966-10-11 Bell Telephone Labor Inc Ignition and current control system for gas discharge devices

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3265930A (en) * 1962-05-03 1966-08-09 Gen Electric Current level switching apparatus for operating electric discharge lamps
US3278800A (en) * 1963-06-21 1966-10-11 Bell Telephone Labor Inc Ignition and current control system for gas discharge devices

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3999100A (en) * 1975-05-19 1976-12-21 Morton B. Leskin Lamp power supply using a switching regulator and commutator
US4097782A (en) * 1975-12-15 1978-06-27 Hiram Darden Chambliss Energy saving means reducing power used by lamps
FR2394958A1 (en) * 1977-06-14 1979-01-12 Lluelles Jean Claude AC derived supply for cold cathode discharge lamps - has relaxation oscillator with thyristor threshold control
US6495969B1 (en) * 1987-08-03 2002-12-17 Ole K. Nilssen Series-resonant ballast having overload control
ITBO20100479A1 (en) * 2010-07-28 2012-01-29 Blindato Effepi S R L SLIDING DOOR DEVICE

Similar Documents

Publication Publication Date Title
US4275335A (en) Constant light intensity electronic flash device
US3648106A (en) Dynamic reactorless high-frequency vapor lamp ballast
US4398129A (en) Active lamp pulse driver circuit
US3611024A (en) Semiconductor apparatus for controlling the brightness of a discharge lamp
US4119887A (en) Starter for discharge lamp
US3909668A (en) Variable duty cycle arc lamp modulator
US3978368A (en) Discharge lamp control circuit
EP0248843B1 (en) Simplified gaseous discharge device simmering circuit
FR2489070A1 (en) DISCHARGE LAMP IGNITION DEVICE
US4347462A (en) Discharge lamp lighting device
US4656397A (en) Method and apparatus for controlling flash tube discharge
US3543087A (en) Lamp flashing circuit having independently adjustable rate and phase controls
US3675074A (en) Transistorized quenching arrangement for a duration-controlled flash tube
US5046152A (en) Ignition circuit for a gas discharge lamp
US4066931A (en) Shunt modulator for high current arc lamp
EP0615320A1 (en) Dual use power supply configuration for the double pulsed flash lamp pumped rod laser
US3444431A (en) Electric flash beacon
US3475619A (en) Electrical coded-pulse generator for marine signals
US3696268A (en) Arrangement including an electronic flash tube
US3486071A (en) Circuit for delivering constant energy impulses to a load
US3634725A (en) Modulated electronic flash control
US3514669A (en) High repetition rate strobe light
US3577174A (en) Circuit for starting and maintaining a discharge through a gas discharge tube
US3438023A (en) Synchronous switching circuit for controlling the flashing operation of a signal light
US2918607A (en) Flasher control circuit