US3908639A - Detecting impaired heart mechanical performance - Google Patents

Detecting impaired heart mechanical performance Download PDF

Info

Publication number
US3908639A
US3908639A US403202A US40320273A US3908639A US 3908639 A US3908639 A US 3908639A US 403202 A US403202 A US 403202A US 40320273 A US40320273 A US 40320273A US 3908639 A US3908639 A US 3908639A
Authority
US
United States
Prior art keywords
manoeuvre
impairment
heart
pressure
amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US403202A
Inventor
Kevin M Mcintyre
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US403202A priority Critical patent/US3908639A/en
Application granted granted Critical
Publication of US3908639A publication Critical patent/US3908639A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7239Details of waveform analysis using differentiation including higher order derivatives

Abstract

A pressure-sensitive device contacts the skin of a patient near an artery noninvasively to provide a signal representative of systemic arterial blood pressure both before and after a Valsalva Manoeuvre. This blood pressure signal is differentiated, and the changes in amplitude before and during the Valsalva Manoeuvre detected to indicate potential left ventricle failure when the change is to less than a predetermined value. Signals representative of pulse pressure, the mean systemic arterial blood pressure, heart rate and left ventricular ejection time are also provided to facilitate detection of impaired mechanical performance of the heart.

Description

United States Patent McIntyre 1*Sept. 30, 1975 [54] DETECTING IMPAIRED HEART 3,698,382 10/1972 Howell 128/205 V MECHANICAL PERFORMANCE 3,776,221 12/1973 Mclntyre 128/105 R [76] Inventor: Kevin M. McIntyre, 1 l 1 Perkins St., THER PUBLICATIONS Jamalca Plum Mass 02130 George et al., Medical Research Engineering," 4th Notice: The portion of the term of this w 1967, PP-
patent subsequent to Dec. 4, 1990, has been disclaimed. Primary Examiner-Wil1iam E. Kamm [22] Filed: Oct. 3, 1973 Atturnqv, Agent, or FzrmCharles Hieken; Jerry Cohen [21] Appl. No.: 403,202
Related US. Application Data [57] ABSTRACT Continuation-impart 0f N1 pril 2, A pressure-sensitive device contacts the skin of a pa- 1971* tient near an artery noninvasively to provide a signal representative of systemic arterial blood pressure both [52] US. Cl l28/2.05 R before and after a valsalva Manoeuvrc This blood [51] It'll. Cl Afilb 5/02 pressure Signal is differentiated, and the changs in [58] held of 128/205 amplitude before and during the Valsalva Manoeuvre 128/205 Gt 205 ML 205 detected to indicate potential left ventricle failure R when the change is to less than a predetermined value.
I Signals representative of pulse pressure, the mean sys- [561 References C'ted temic arterial blood pressure, heart rate and left ven- UNITED STATES PATENTS tricular ejection time are also provided to facilitate de- 3.1s4.0ee 10/1964 Grindheim et a1. 128/105 P tection of impaired mechanical Performance of the 3,412,729 11/1968 Smith, Jr 128/205 R heart.
3,570,474 3/1971 Jonson 128/2105 V 3,602,213 8/1971 Howell et a1. 128/205 P 6 Clams, 8 Drawmg Flgures COMPUTER ANALYSIS CONTROL RECOVERY MEANS OR\ HEART RATE LV EJECI. TIME 11 RI PULSE PRESS. w OR! MEAN PRESS PULSE I Pickup PEAK PREss g SELECTOR sP1-1YeMo TRANS AMPLIFIER WRITE our ,m
MANOMETER DUCER MEANS MEANs AND L VF l-o l2 IMPEDANCE PLETHYSMO 22 23 GRAPH I6 COMPUTER ANALYSIS DER'VAT'VE CONTROL RECOVERY MAx dp/dt MEANS DIFFERENTIATOR (a CD=QRP US. Patent FIG. 46'
Sept. 30,1975 Sheet 3 of 3 STRAIN RELEASE I I III :IZI
RECOVERY PERIPHERAL ARTERIAL PULSE dp/dt OF PERIPHERAL ARTERIAL PULSE PERIPHERAL ARTERIAL PULSE dp/di OF PERIPHERAL ARTERIAL PULSE I I I I I x I l I I I I I I I I I I I I I LVF), I MI 1 ADJUST SENSITIVITY TO BRING CONTROL dp/dI IN CONTACT WITH BOUNDARIES OF 'CONTROL LEVEL PERFORM VALSALVA, RECORDING dp/df @READ TRACING ACCORDING TO AMPLITUDE OF STRAIN PHASE ISI DERIVATIVE OF PERIPH. PULSE TRACING CONTROL vs. STRAIN IN VALSALVA MANEUVER DETECTING IMPAIRED HEART MECHANICAL PERFORMANCE CROSS REFERENCE TO RELATED APPLICATIONS This application is a continuation in part of my copending application, Ser. No. 130,572 filed Apr. 2, 197i, and now US. Pat. No. 3,776,221, dated Dec. 4, 1973.
BACKGROUND OF THE INVENTION The present invention relates in general to detecting impaired mechanical performance of the heart and/or cardiac failure, and more particularly concerns novel apparatus and techniques for detecting such potential impairment in a reliable manner through external measurements.
Since the introduction of aortic valvotomy, the assessment of aortic valve disease has become increasingly important. One approach to such an assessment involves studying recorded arterial pressure pulse tracings. Stenosis is the narrowing of a blood passage, such as the pulmonary artery or aortic valve. One approach to studying stenosis is the so-called Valsalva Manoeuvre. The patients blood pressure is recorded prior to holding his breath. Then the patient holds his breath and releases it while recording continues.
Reference is made to an article in 19 BRITISH HEART JOURNAL 525-3l( 1957) entitled THE VAL- SALVA MANOEUVRE IN AORTIC VALVE DISEASE by Doyle and Neilson, a copy of which is in the file history of the application. The article states that neither systolic upstroke time nor pulse pressure alone correlates well with the severity of stenosis and that the shape of the pulse derived during Valsalva Manoeuvre is an unreliable guide to the relative dominance of stenosis or incompetence. That article concludes that variations in pulse pressure during the Valsalva Manoeuvre or in atrial fibrillation and variations of upstroke time in the same pulses do have a linear relationship to the severity of stenosis when stenosis is present alone.
It is an important object of this invention to provide improved techniques for detecting left ventricular impairment.
It is a further object of the invention to achieve the preceding object with techniques that permit detection by relatively unskilled personnel.
SUMMARY OF THE INVENTION According to the invention, the time derivative of the systemic arterial pulse pressure is established at a control level in the subject patient. Then the patient performs a straining manoeuvre, such as a Valsalva manoeuvre, while recording the time derivative of the systemic arterial pulse pressure signal. Preferably, the systemic arterial pulse pressure, mean pressure, heart rate and left ventricular ejection time are also established and may be interpreted so that the presence or absence of impairment in the performance of the left ventricle may be detected. Specifically, the time derivative of systemic arterial pressure responds in a characteristic fashion in the presence of heart impairment; the other parameters are useful in defining the expected normal response of the time derivative of this pressure. Diminution of said time derivative relative to a control during the manoeuvre and/or increase of said time derivative relative to a control after said manoeuvre are detected and evaluated in light of the other parameters as determinants of probable mechanical impairment.
Numerous other features, objects and advantages of the invention will become apparent from the following specification when read in connection with the accompanying drawing in which:
BRIEF DESCRIPTION OF THE DRAWING FIG, 1 is a graphical representation of stroke volume as a function of end-diastolic pressure of the left ventricle during a Valsalva manoeuvre helpful in understanding the phenomena with which the invention is associated;
FIG. 2 is a block diagram illustrating the logical arrangement of a system according to the invention which includes means for detecting left ventricle me chanical impairment;
FIGS. 3 and 5 are graphical representations of time derivative of pressure waveforms helpful in under standing the operation of the invention; and
FIGS. 4A and 4C are graphical representations of typical peripheral arterial pulse waveforms generated during Valsalva Manoeuvre in the presence and absence, respectively, of heart impairment and FIGS. 48 and 4D are graphical representations of time derivatives of the 4A and 4C waveforms, respectively.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS With reference now to the drawing, and more particularly FIG. 1 thereof, there is shown a graphical representation of stroke volume as a function of enddiastolic pressure in the left ventricle during a Valsalva manoeuvre. Curve 11 illustrates this relationship for a normal left ventricle. Point 1 represents the normal stroke volume and end-diastolic pressure immediately prior to the patient holding his breath. As the patient holds his breath and makes a forceful expiratory effort without allowing air to escape from his lungs (equivalent to straining at stool), both pressure and stroke vol ume decrease along curve 11 to point 2 when the patient releases his breath. Stroke volume and enddiastolic pressure then begin to increase rapidly until point 3 is reached. This analysis indicates that the time derivative of the pressure signal ofa healthy patient will increase significantly when he releases his breath. Since other changes occur during the Valsalva manoeuvre which may on occasion independently influence the response of stroke volume and the time derivative of pressure, the influence of such changes as heart rate and left ventricular ejection time are also measured.
Curve 12 is the curve illustrating the relationship between stroke volume and end-diastolic pressure of the left ventricle of a person having left ventricle mechanical impairment. Point 1 is just before the patient holds his breath. He then makes a forceful expiratory effort without allowing air to escape. This initial pressure (EDP) is somewhat higher and the initial stroke volume (SV) usually somewhat lower than for a normal person, then decreases to point 2' shortly before the breath is released. When breath is released, the blood which was prevented from returning to the heart does so at an increased rate, causing an increase in end-diastolic pressure. During the positive pressure phase, pressure generated in the chest exceeds the pressure of returning blood.
In a patient with mechanical impairment of the heart, no increase in stroke volume occurs with a rise in enddiastolic pressure (position 3'), and this is detectable by a failure of the time derivative of the systemic arterial pulse pressure to increase. The range of changes which occur are acceptable in the individual patient depending to some extent on changes in other parameters, such as heart rate and left ventricular ejection time.
Referring to FIG. 2, there is shown a block diagram illustrating the logical arrangement of a system according to the invention. Basically the invention senses a recovery derivative signal to indicate left ventricular impairment when this amplitude is equal to or less than a predetermined value. To this end the invention may include a number of different sources of a pressure signal. One such source may be a piezoelectric pulse pickup 11, an impedance plethysmograph 12 or a sphygmomanometer 13 whose pressure signal is converted by transducer 14 into an electrical signal that is delivered to amplifier means 15. Each of these sources is a pressure sensitive means noninvasive of the human body and derives a signal from contact with the skin surface near an artery. Amplifier means 15 includes means for amplifying one of the selected pressure signals and providing the amplified pressure signal to differentiator 16 that provides a differentiated pressure signal for analysis.
The apparatus also may include computer analysis control recovery means 21, which may receive a pressure signal from amplifier means 15 and a computer analysis control recovery means 22 for responding to the time derivative pressure signal provided by differentiator 16. Computer analysis control recovery means 21 preferably responds to heart rate, systemic arterial pulse pressure, peak systemic pressure, systemic mean pressure and left ventricular ejection time so that changes in these latter parameters may be used to more accurately define the predicted normal range for the time derivative of systemic arterial pulse and to provide a 1 signal to indicate a condition consistent with left ventricular mechanical impairment and a 2 signal to indicate a signal inconsistent with left ventricular mechanical impairment. Similarly computer analysis control recovery means 22 provides a 1 signal consistent with left ventricular failure and a 2 signal consistent with no failure. These 1 signals are applied to an AND gate 23 which provides an output to indicate left ventricular mechanical impairment, and the 2 outputs are applied to the legs of a second AND gate 24 that provides an output to indicate no ventricular failure.
The invention may also comprise write-out means 25, which may be a graphical recorder whose output may be manually analyzed or appear on calibrated paper that automatically displays the presence or absence of mechanical impairment.
Referring to FIG. 3, there is shown three pairs of I than level 34, such as that of pulse pair 35, there is no left ventricular impairment.
If the height is less than level 34, such as that of pulse pair 33, then the heart rate signals, systemic pulse pressure signals, peak systemic pressure signals, mean systemic pressure signals and left ventricular ejection time signals are subjected to further computer analysis to determine the extent to which certain of these parameters may independently alter the time derivative signal. For example, if changes in heart rate, the systemic arterial pulse pressure, mean pressure, systolic peak pressure and left ventricular ejection time are greater than a predetermined level, a second independent reanalysis of the pressure derivative signal is provided which takes into account the possible influence of changes in the latter parameters on the time derivative of pressure. Such an analysis is unlikely to be required in routine use but will improve the accuracy of the instrument.
Details of the various elements of the system represented by the boxes have not been described to avoid obscuring the principles of this invention and because such elements are known to those having ordinary skill in the signal analysis art.
For example, heart rate is readily determined by a digital counter whose count is compared by known techniques with a predetermined reference count equal to a control heart rate. The other two pressures may be readily determined by analog comparison techniques or by first converting these signals to digital values and making the comparison digitally.
While the above embodiment of the invention contemplates utilizing both derivatives and other signals in sensing for mechanical impairment of the heart, the derivative signal itself provided by differentiator 16 is most significant. Those skilled in the art might also determine the derivative by analyzing the pressure signal.
An advantage of differentiating before analyzing is that shifts in d-c pressure levels are essentially removed so that the resultant output signal waveform clearly represents a manifestation of the change in rate of pressure as a function of time to facilitate diagnosing left ventricular impairment.
Referring to FIGS. 4A-4D, phenomena involved according to another important aspect of the invention may be explained. The single curves of each of these figures have a common time x-axis taken over a period encompassing the initiation and release of strain pursuant to a Valsalva manoeuvre, recovery therefrom and periods just prior to initiation of strain and following the beginning of recovery. FIGS. 4A and 4C have curves 1 1 1 and 1 12, respectively, which exemplify typical peripheral arterial pulse measurements for patients with normal and impaired hearts, respectively. During the time period A, the normal and impaired hearts produce similar pulse measurements. During the following period B, which includes at least the latter half of the manoeuvre, the normal heart produces progressively and markedly reduced pulse amplitudes relative to the amplitude initially induced during period A by the onset of strain. In the next subsequent period C, the normal heart produces at least some pulse peaks higher than the peaks measured before strain onset in period A. The impaired heart produces and maintains the new higher amplitude throughout the strain time with little or no diminution in period B. The recovery transition of the impaired heart in period C is unaccompanied by significant higher peaks compared to those preceding strain in period A.
Waveforms 121 in FIG. 4B and 122 in FIG. 4D are time derivatives of curves 111 in FIG. 4A and 112 in FIG. 4C, respectively. Diminution of peak height of 121 in period B for the normal heart and the essential absence of such diminution of peak height of curve 122 for the impaired heart provides a highly sensitive determinant of impairment, usable in addition to or in lieu of comparative behavior in periods A and C as described above in connection with FIGS. 1, 2 and 3.
The apparatus cited above in connection with FIG. 2 may be employed. The same patient preparation, apparatus manipulation and data acquisition techniques may be used. The data evaluation taught above in connection with FIG. 3 is however substituted or supplemented as follows.
Referring to FIG. 5, there is shown three pairs of time derivative pulses that might be recorded during the course of a Valsalva manoeuvre. The first pair of pulses 131 occurs prior to holding the breath. The gain of amplifier means (FIG. 2) is then adjusted so that the peak of the time derivative pressure waveform just reaches or slightly exceeds control line 132 with its baseline adjusted to 131A. During the manoeuvre if the pulses have a height such as that of pair 133, that is about the same as pulses 131, left ventricular mechanical impairment is probable. If they have a substantially lower height such as that of pulse pair 135, there is no left ventricular impairment. A control level 134 may be established. If the peak height is greater than level 134, such as that of pulse pair 133, then the heart rate signals, systemic pulse pressure signals, peak systemic pressure signals, mean systemic pressure signals and left ventricular ejection time signals are subjected to further computer analysis to determine the extent to which certain of these parameters may independently alter the time derivative signal. For example, if changes in heart rate, the systemic arterial pulse pressure, mean pressure, systolic peak pressure and left ventricular ejection time are greater than a predetermined level, a second independent reanalysis of the pressure derivative signal is provided which takes into account the possible influence of changes in the latter parameters on the time derivative of pressure. Such an analysis is unlikely to be required in routine use but will improve the accuracy of the instrument.
There has been described novel apparatus and techniques for facilitating the detection of mechanical heart impairment by relatively unskilled personnel. It is evident that those skilled in the art may now make numerous uses and modifications of and departures from the specific embodiments disclosed herein without departing from the inventive concepts. Consequently, the invention is to be construed as embracing each and every novel feature and novel combination of features present in or possessed by the apparatus and techniques herein disclosed and limited solely by the spirit and scope of the appended claims.
What is claimed is:
1. A method of detecting mechanical heart impairment which method includes the steps of,
noninvasively providing a blood. pressure signal representative of blood pressure by placing pressure sensitive means in contact with the skin of a patient near an artery,
differentiating said blood pressure signal,
subjecting said patient whose blood pressure is characterized by said pressure signal to a heart straining manoeuvre,
detecting the change in the amplitude of the differentiated pressure signal after initiating said straining manoeuvre from its amplitude before said manoeuvre,
and determining a probable mechanical impairment of the heart when the amplitude is not changed to a predetermined extent.
2. A method of detecting mechanical heart impairment in accordance with claim 1 wherein said detection of change in amplitude of the differentiated pressure signal after initiation of said manoeuvre is made with respect to a diminution, if any, of said amplitude before completion of said manoeuvre.
3. A method of detecting mechanical heart impairment in accordance with claim 2 wherein said heart straining manoeuvre is a Valsalva manoeuvre.
4. A method of detecting mechanical heart impairment in accordance with claim 3 wherein said Valsalva manoeuvre is involuntarily induced in said patient.
5. A method of detecting mechanical heart impairment in accordance with claim 2 and further including the steps of providing signals representative of systemic peak pressure, systemic mean pressure, heart rate, and left ventrical ejection time both before and after said manoeuvre and sensing the differences between respective signals before and during said manoeuvre.
6. A method of detecting mechanical heart impairment in accordance with claim 2 which method inclucles the steps of,
recording the differentiated blood pressure signal so that its peak amplitude before said manoeuvre is related to a predetermined control line,
and observing the amplitude of said differentiated blood pressure signal during said manoeuvre relative to a predetermined normal limit line spaced below said control line to determine potential mechanical impairment when the peak amplitude during said manoeuvre is above the normal limit line and no mechanical impairment when below said normal limit line.

Claims (6)

1. A method of detecting mechanical heart impairment which method includes the steps of, noninvasively providing a blood pressure signal representative of blood pressure by placing pressure sensitive means in contact with the skin of a patient near an artery, differentiating said blood pressure signal, subjecting said patient whose blood pressure is characterized by said pressure signal to a heart straining manoeuvre, detecting the change in the amplitude of the differentiated pressure signal after initiating said straining manoeuvre from its amplitude before said manoeuvre, and determining a probable mechanical impairment of the heart when the amplitude is not changed to a predetermined extent.
2. A method of detecting mechanical heart impairment in accordance with claim 1 wherein said detection of change in amplitude of the differentiated pressure signal after initiation of said manoeuvre is made with respect to a diminution, if any, of said amplitude before completion of said manoeuvre.
3. A method of detecting mechanical heart impairment in accordance with claim 2 wherein said heart straining manoeuvre is a Valsalva manoeuvre.
4. A method of detecting mechanical heart impairment in accordance with claim 3 wherein said Valsalva manoeuvre is involuntarily induced in said patient.
5. A method of detecting mechanical heart impairment in accordance with claim 2 and further including the steps of providing signals representative of systemic peak pressure, systemic mean pressure, heart rate, and left ventrical ejection time both before and after said manoeuvre and sensing the differences between respective signals before and during said manoeuvre.
6. A method of detecting mechanical heart impairment in accordance with claim 2 which method includes the steps of, recording the differentiated blood pressure signal so that its peak amplitude before said manoeuvre is related to a predetermined control line, and obsErving the amplitude of said differentiated blood pressure signal during said manoeuvre relative to a predetermined normal limit line spaced below said control line to determine potential mechanical impairment when the peak amplitude during said manoeuvre is above the normal limit line and no mechanical impairment when below said normal limit line.
US403202A 1971-04-02 1973-10-03 Detecting impaired heart mechanical performance Expired - Lifetime US3908639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US403202A US3908639A (en) 1971-04-02 1973-10-03 Detecting impaired heart mechanical performance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13057271A 1971-04-02 1971-04-02
US403202A US3908639A (en) 1971-04-02 1973-10-03 Detecting impaired heart mechanical performance

Publications (1)

Publication Number Publication Date
US3908639A true US3908639A (en) 1975-09-30

Family

ID=26828601

Family Applications (1)

Application Number Title Priority Date Filing Date
US403202A Expired - Lifetime US3908639A (en) 1971-04-02 1973-10-03 Detecting impaired heart mechanical performance

Country Status (1)

Country Link
US (1) US3908639A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4203451A (en) * 1978-03-17 1980-05-20 Panico Joseph J Cardiovascular analysis, method and apparatus
US4230125A (en) * 1979-07-09 1980-10-28 Schneider Daniel E Method and apparatus for effecting the prospective forewarning diagnosis of sudden brain death and heart death and other brain-heart-body growth maladies such as schizophrenia and cancer and the like
EP0060886A1 (en) * 1980-09-29 1982-09-29 Rush-Presbyterian-St.Luke's Medical Center System and method for determining hemodynamic characteristics
US4404974A (en) * 1981-08-07 1983-09-20 Possis Medical, Inc. Method and apparatus for monitoring and displaying heart rate and blood pressure product information
US4418700A (en) * 1981-03-11 1983-12-06 Sylvia Warner Method and apparatus for measurement of heart-related parameters
US4469107A (en) * 1979-01-02 1984-09-04 Asmar Raymond A Automatic blood pressure measurement device with threshold compensation circuitry and method for performing the same
WO1985000279A1 (en) * 1983-06-30 1985-01-31 Sri International Method and apparatus for diagnosis of coronary artery disease
EP0204394A1 (en) * 1985-06-03 1986-12-10 McIntyre, Kevin M. Apparatus for evaluating heart mechanical performance
US4649928A (en) * 1985-10-21 1987-03-17 Gms Engineering Corporation Noise-immune blood pressure measurement technique and system
WO1990011042A1 (en) * 1989-03-20 1990-10-04 Nims, Inc. Non-invasive cardiac function measurement
US4989611A (en) * 1988-08-19 1991-02-05 Seismed Instruments, Inc. Cardiac compression wave measuring system and method
US5086776A (en) * 1990-03-06 1992-02-11 Precision Diagnostics, Inc. Apparatus and method for sensing cardiac performance
US5159932A (en) * 1990-03-16 1992-11-03 Seismed Instruments, Inc. Myocardial ischemia detection system
US5162991A (en) * 1988-03-24 1992-11-10 Chio Shiu Shin Tuning of a heart pacemaker through the use of blood pressure and cardiovascular readings
US5178151A (en) * 1988-04-20 1993-01-12 Sackner Marvin A System for non-invasive detection of changes of cardiac volumes and aortic pulses
US5961467A (en) * 1993-04-02 1999-10-05 Shimazu; Hideaki Cardiovascular system observation method
US6726635B1 (en) 2000-05-12 2004-04-27 Lasala Anthony F. Cardiac impulse detector
US20040260193A1 (en) * 2000-05-12 2004-12-23 Lasala Anthony F. Cardiac impulse detector
US11540734B2 (en) 2018-08-27 2023-01-03 Verily Life Sciences Llc Apparatus for noninvasive measurement of a heart performance metric

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3154066A (en) * 1961-10-11 1964-10-27 Robert L Gannon Body function sensors
US3412729A (en) * 1965-08-30 1968-11-26 Nasa Usa Method and apparatus for continuously monitoring blood oxygenation, blood pressure, pulse rate and the pressure pulse curve utilizing an ear oximeter as transducer
US3570474A (en) * 1967-03-30 1971-03-16 Jaernhs Elektriska Ab Apparatus for quantitative indicating of small and rapid volume changes in a part of an extremity
US3602213A (en) * 1968-02-13 1971-08-31 Prototypes Inc Apparatus for photoelectric dermachromography
US3698382A (en) * 1970-10-15 1972-10-17 William L Howell Device for measuring veno capillary filling time
US3776221A (en) * 1971-04-02 1973-12-04 Intyre K Mc Detecting impaired heart mechanical performance and apparatus therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3154066A (en) * 1961-10-11 1964-10-27 Robert L Gannon Body function sensors
US3412729A (en) * 1965-08-30 1968-11-26 Nasa Usa Method and apparatus for continuously monitoring blood oxygenation, blood pressure, pulse rate and the pressure pulse curve utilizing an ear oximeter as transducer
US3570474A (en) * 1967-03-30 1971-03-16 Jaernhs Elektriska Ab Apparatus for quantitative indicating of small and rapid volume changes in a part of an extremity
US3602213A (en) * 1968-02-13 1971-08-31 Prototypes Inc Apparatus for photoelectric dermachromography
US3698382A (en) * 1970-10-15 1972-10-17 William L Howell Device for measuring veno capillary filling time
US3776221A (en) * 1971-04-02 1973-12-04 Intyre K Mc Detecting impaired heart mechanical performance and apparatus therefor

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4203451A (en) * 1978-03-17 1980-05-20 Panico Joseph J Cardiovascular analysis, method and apparatus
US4469107A (en) * 1979-01-02 1984-09-04 Asmar Raymond A Automatic blood pressure measurement device with threshold compensation circuitry and method for performing the same
US4230125A (en) * 1979-07-09 1980-10-28 Schneider Daniel E Method and apparatus for effecting the prospective forewarning diagnosis of sudden brain death and heart death and other brain-heart-body growth maladies such as schizophrenia and cancer and the like
EP0060886A1 (en) * 1980-09-29 1982-09-29 Rush-Presbyterian-St.Luke's Medical Center System and method for determining hemodynamic characteristics
EP0060886A4 (en) * 1980-09-29 1985-02-18 Rush Presbyterian St Luke System and method for determining hemodynamic characteristics.
US4418700A (en) * 1981-03-11 1983-12-06 Sylvia Warner Method and apparatus for measurement of heart-related parameters
EP0060116B1 (en) * 1981-03-11 1985-10-30 Warner, Sylvia Apparatus for measurement of heart-related parameters
US4404974A (en) * 1981-08-07 1983-09-20 Possis Medical, Inc. Method and apparatus for monitoring and displaying heart rate and blood pressure product information
WO1985000279A1 (en) * 1983-06-30 1985-01-31 Sri International Method and apparatus for diagnosis of coronary artery disease
EP0204394A1 (en) * 1985-06-03 1986-12-10 McIntyre, Kevin M. Apparatus for evaluating heart mechanical performance
US4649928A (en) * 1985-10-21 1987-03-17 Gms Engineering Corporation Noise-immune blood pressure measurement technique and system
WO1987002232A1 (en) * 1985-10-21 1987-04-23 Gms Engineering Corporation Noise-immune blood pressure measurement technique and system
US5162991A (en) * 1988-03-24 1992-11-10 Chio Shiu Shin Tuning of a heart pacemaker through the use of blood pressure and cardiovascular readings
US5178151A (en) * 1988-04-20 1993-01-12 Sackner Marvin A System for non-invasive detection of changes of cardiac volumes and aortic pulses
US4989611A (en) * 1988-08-19 1991-02-05 Seismed Instruments, Inc. Cardiac compression wave measuring system and method
WO1990011042A1 (en) * 1989-03-20 1990-10-04 Nims, Inc. Non-invasive cardiac function measurement
US5086776A (en) * 1990-03-06 1992-02-11 Precision Diagnostics, Inc. Apparatus and method for sensing cardiac performance
US5159932A (en) * 1990-03-16 1992-11-03 Seismed Instruments, Inc. Myocardial ischemia detection system
US5961467A (en) * 1993-04-02 1999-10-05 Shimazu; Hideaki Cardiovascular system observation method
US6726635B1 (en) 2000-05-12 2004-04-27 Lasala Anthony F. Cardiac impulse detector
US20040260193A1 (en) * 2000-05-12 2004-12-23 Lasala Anthony F. Cardiac impulse detector
US11540734B2 (en) 2018-08-27 2023-01-03 Verily Life Sciences Llc Apparatus for noninvasive measurement of a heart performance metric

Similar Documents

Publication Publication Date Title
US3776221A (en) Detecting impaired heart mechanical performance and apparatus therefor
US3908639A (en) Detecting impaired heart mechanical performance
Kelly et al. Noninvasive determination of age-related changes in the human arterial pulse.
Metzger et al. True isovolumic contraction time: Its correlation with two external indexes of ventricular performance
US3920004A (en) Device and method for noninvasive measurement of blood pressure, resistance inertance, compliance, impedance, blood flow rate, kinetic energy, flow velocity and pulse velocity of a segment in man
US5291895A (en) Evaluation of heart mechanical performance
CA2604337A1 (en) System and method for non-invasive cardiovascular assessment from supra-systolic signals obtained with a wideband external pulse transducer in a blood pressure cuff
Mounsey Praecordial ballistocardiography
US20180296104A1 (en) Non-invasive blood pressure measurement
US7887491B2 (en) Impedance based device for non-invasive measurement of blood pressure and ankle-brachial index
US20090012411A1 (en) Method and apparatus for obtaining electronic oscillotory pressure signals from an inflatable blood pressure cuff
EP3457929B1 (en) Non-invasive system and method for measuring blood pressure variability
US5687731A (en) Oscillometric method for determining hemodynamic parameters of the arterial portion of patient's circulatory system and a measuring system for its realization
US3085567A (en) Frequency selective method and apparatus for sphygmomanometry
Buchbinder et al. Arterial blood pressure in cases of auricular fibrillation, measured directly
US8409105B2 (en) Device for non-invasive measurement of blood pressure and ankle-brachial index
EP0204394B1 (en) Apparatus for evaluating heart mechanical performance
Manolas et al. Relationship between duration of systolic upstroke of apexcardiogram and internal indexes of myocardial function in man
US3623476A (en) Blood pressure measurement apparatus
Zoneraich et al. Computerized system for noninvasive techniques: I. Its value for systolic time intervals
RU2327414C1 (en) Method of blood pressure measurement based on three-dimensional compression oscillogram
EP0534022B1 (en) Evaluation of heart mechanical performance
Weaver et al. A study of noninvasive blood pressure measurement techniques
JP5006509B2 (en) Pulse wave velocity measurement method for measuring pulse wave velocity in a pulse wave velocity measuring device
Doyle et al. The Valsalva manoeuvre in aortic valve disease