Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3886938 A
Publication typeGrant
Publication date3 Jun 1975
Filing date23 Oct 1973
Priority date23 Oct 1973
Publication numberUS 3886938 A, US 3886938A, US-A-3886938, US3886938 A, US3886938A
InventorsDel Guercio Louis R M, Szabo Anthony W
Original AssigneeScala Anthony
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Power operated fluid infusion device
US 3886938 A
Images(2)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent 1 Szabo et a1.

3,886,938 June 3, 1975 1 1 POWER OPERATED FLUID INFUSION DEVICE [75] Inventors: Anthony W. Szabo, Livingston, N..l.;

Louis R. M. Del Guercio, Larchmont, NY.

[73] Assignee: Anthony Scala, Livingston, NJ. a

part interest [22] Filed: Oct. 23, 1973 [21] Appl. No; 408,264

[52] US. Cl 128/218 A; 128/214 F; 128/218 F [51] Int. Cl A6lm 5/20 [58] Field of Search 128/218 A, 218 F, 215, 128/234, 214 F, 218 R, DIG. l, DIG. 12, 214 R; 222/386 [56] References Cited UNITED STATES PATENTS 2,498,672 2/1950 123/218 A 2,531,267 11/1950 Harnisch 128/218 F 2,605,765 8/1952 Kollsman 128/218 F 2,671,448 3/1954 Harnisch 128/218 F 3,384,080 5/1968 Muller..................... 128/214 F 3,701,345 10/1972 Hellman et a1. 128/218 A 458,275 7/1950 Italy 128/218 A Primary Examiner-Richard A. Gaudet Assistant Examiner.l. C. McGowan Attorney, Agent, or Firm-Larson, Taylor and Hinds [57] ABSTRACT A portable, power operated fluid infusion device is disclosed for automatically, intraveneously administering a drug to a patient. The device comprises a housing which contains a mechanically operated timing mechanism, a rack in engagement with a pinion rotated by the timing mechanism, and spiral springs for longitudinally urging the rack in a forward direction. Attached to the forward end of the housing in axial alignment therewith and with the rack is a syringe which has an internal axially movable piston that is coupled to and longitudinally moved by the rack. The springs assist the slowly rotating pinion to positively move the rack, and hence the piston, in a longitudinal direction thereby permitting a controlled amount of the drug to be automatically expelled from the syringe over an extended period of time.

2 Claims, 5 Drawing Figures PATENTEDJUH 3 I975 SHEEY h U h 1 POWER OPERATED FLUID INFUSION DEVICE BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to portable, automatic fluid infusion devices and more particularly to a low pressure. highly reliable, completely mechanically driven infusion syringe device which permits automatically controlled drug infusion over an extended time period.

2. Description of the Prior Art In a modern hospital complex, medical personnel are increasingly being called upon to perform numerous, time consuming activities. Consequently, as constantly increasing demands are made for the time of limited number of medical personnel, it has been found that the frequency of late performance or omitted performance of the more routine activities, such as the administering of injections, has increased. Certain illnesses, such as pulmonary embolas require treatment by administering daily numerous, periodic injections of the same drug. By easing of the burden of repeatedly administering these injections by hospital personnel would provide more time for other activities. Furthermore, the omission of the delay in administering the injections can in some cases result in serious consequences. Not only is the frequent administering of the injections time consuming, it is also an additional expense for the patient.

One solution to the problem of having to frequently administer injections has been to confine the patient to a bed and to administer the medicine as a fluid with a gravity bed bottle system. The system comprises a bottle containing the fluid suspended above the patient, a needle inserted into a vein or artery of the patient, and tubing connecting the bottle to the needle. An obvious disadvantage of the bottle system is that it unnecessarily confines an other wise ambulatory patient to a bed. Other disadvantages of the bottle system are non-adaptibility for administering fluids to animals and non-capability of use with viscuous fluids.

There is prior art which attempts to remedy the aforementioned problems by utilizing syringes that are operated by electrical motors. Initially, it was believed that devices that use small electric motors to operate linkage which depresses the plunger of a standard syringe, would overcome all the aforementioned problems. However, these devices have proven unsatisfactory for a number of reasons. Most importantly, it was discovered that any introduction of electricity into the body, even on the order of microamperes and irrespective of whether the electricity is AC or DC, can cause heart fibrillations. In addition, besides being very expensive, these devices are not reliable since a loss of power, either due to a defective unit or a deenergized battery, would result in an undetectable inoperative device.

Thus, there is a need for a completely safe, nonelectrical, positiveacting, power operated syringe which is inexpensive and can be easily worn on the arm or leg of an ambulatory patient or can be strapped to the body of an animal. None of the known prior art devices have positive acting gearing mechanism for driving a memher to force a viscuous therapeutic drug fluid out of an infusion device.

SUMMARY OF THE INVENTION The present invention provides a highly reliable, portable fluid infusion device that automatically discharges a predetermined amount of fluid continuously over an extended time period. Furthermore, the present invention is completely portable, light weight, attachable to an ambulatory patient or animal, and can be inexpensively made so that after its use it can be permanently discarded.

Included in the present invention is a housing, a syringe mounted on the housing, the syringe comprising an elongated container having an orifice in one end thereof and a piston mounted for longitudinal movement within the container for forcing a fluid stored in the container through the orifice. and a mechanical timing mechanism mounted on the housing. The timing mechanism includes a main spring, an escapement mechanism, a gearing mechanism rotated by the main spring at a rate controlled by the escapement mechanism, a rotatable main shaft extending outwardly from the gearing mechanism and rotated thereby, the main shaft having a pinion mounted on the outwardly extending end thereof, and a member for winding the main spring of the timing mechanism. A rack engages the pinion of the timing mechanism and is integral with a longitudinally movable member which is coupled to the piston of the syringe, thereby longitudinally moving the piston at a predetermined rate and consequently forcing fluid at a predetermined rate through the orifice. The rack is urged in a longitudinal direction and into engagement with the piston for the longitudinal movement of the latter by a spring, the pinion of the timing mechanism restraining the longitudinal movement of the rack to a predetermined rate which is determined by the rotational speed of the pinion.

Other features and advantages of the invention will be set forth in, or apparent from, the detailed description of the presently preferred embodiments thereof found hereinbelow.

BRIEF DESCRIPTION OF THE DRAWINGS In the drawings in which like reference numerals denote like elements:

FIG. 1 is a perspective view of a presently preferred embodiment of the invention;

FIG. 2 is a front elevation view of the invention wherein one side of the housing has been removed for illustrating the internal parts thereof;

FIG. 3 is a longitudinal cross sectional view of the invention taken along line 3-3 of FIG. 2;

FIG. 4 is a transverse cross sectional view taken along line 4-4 of FIG. 2, and

FIG. 5 is a perspective view with part of the housing broken away of a section of a second embodiment of the invention.

DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT With reference to FIG. 1, a presently preferred embodiment of a fluid infusion apparatus 10 is shown according to the invention. Apparatus I0 is comprised of a longitudinally extending, rectangular housing 12 and a syringe l4 removably mounted at one end of housing 12 in axial alignment therewith with means such as mounting plate 16 and screws 18. A strap 20 is fixedly mounted on housing 12 and provides a means by which apparatus 10 can be attached to a body portion ofa patient.

Syringe 14 is comprised of an elongated cylindrical container 22 having an end 24 distal from housing 12. In distal end 24 is an orifice 26 for permitting communication between the interior of container 22 and a hypodermic needle (not shown) which can be reniovably attached at distal end 24. An elongated piston 28 is mounted for longitudinal movement inside container 22. Piston 28 is comprised of a head section 32 integral with an elongated shaft 30 which extends into the inside of housing 12. Head section 32 is divided into a forward section 34 and a rearward section 36. Forward section 34 and rearward section 36 form an annular forward and rearward seal, respectively, with the internal wall of container 22. Consequently. piston 28 divides the internal volume of container 22 into a forward chamber 38 for containing a fluid which is to be injected into the patient, and a rearward section 39 which is kept free from the fluid thrbugh the sealing action of forward section 34 and rearward section 36 of the piston head section 32. Container 22 is preferably made of a transparent, nonporous material, such as glass or a plastic. It is common practice to have graduations, such as graduations 40 in FIG. 2, etched or otherwise marked on the surface of container 22 so that the amount of fluid remaining in the chamber 38, and the position of piston 28 inside container 22 can be determined. Graduations 40 can be marked off either in fluid volume or in time intervals of, for example, every two hours.

Housing 12 of fluid infusion apparatus can conveniently be manufactured in relatively small dimensions such as, for example, I by 1 inch square in transverse cross section by two and a half inches long. In other embodiments of the invention, the housing can have different transverse cross sectional shapes, suchas rectangular or elliptical, and can have dimensions of, for example, three-quarter by 1 inch. Many, easily available, strong, and light weight materials can be used for the construction of housing 12 and include, for example, aluminum, stainless steel, and certain polymer plastic materials. Housing 12 is comprised of a forward end 42, a rear end 44, a front panel 46, a back panel 47, and lateral sides 48 which are removably mounted on ends 42 and 44 and front and back panels 46 and 47 with means such as screws 49.

With reference to FIG. 2, there is shown a coupling member 50 attached at a forward end to and in longitudinal axial alignment with shaft of piston 28. Member 50 extends through a seal 52 located in forward end 42 of housing 12 and into the interior of housing 12. Rigidly mounted near the rearward end of coupling member 50 is a base 54 which extends transversely to and slidably engages with sides 48 of housing 12. Base 54 centers and maintains the axial alignment of coupling member 50 with piston 28 in a first, transverse plane during the longitudinal movement of these components. As best shown in FIGS. 3 and 4, coupling member 50 terminates at its rearward end in a collar 56 which has an axial bore that extends in the first transverse plane. Rigidly mounted within the bore of collar 56 and extending on either side thereof is a shaft 58. Two threaded guide members 60 are mounted at re' spective ends of shaft 58 in a perpendicular direction thereto and are secured to shaft 58 with fastening means such as nuts 62. Guide members 60 slidably engage front panel 46 and back panel 47 of housing 12 for maintaining axial alignment between coupling member 50 and piston 28 in a second transverse plane, which is perpendicular to the aforementioned first transverse plane, during the longitudinal movement of coupling member 50 and piston 28.

Coupling member 50, and consequently piston 28, is urged in a forward longitudinal direction, indicated by an arrow 63, by two elongated helical springs 64 and 66. The forward ends of both spring 64 and spring 66 engage an anchoring member such as, for example, eye bolts 68. Bolts 68 are, in turn, fixedly mounted on forward end 42 of housing 12. The rearward end of springs 64 and 66 are rigidly secured to base 54 with means such as couplings 70. Thus, as springs 64 and 66 compress, piston 28 is urged into container 22 to force fluid out through the hypodermic needle.

Coupling member 50 includes along its midportion a rack 72 integral therewith, Engaging rack 72 is a pinion 73 mounted on and integral with the end of main shaft 74 which extends outwardly from a mechanical timing mechanism 75. Timing mechanism 75 is a conven' tional, manually wound time piece which includes a main spring 76 that conventionally operates or rotates a gearing mechanism 78 at a rate controlled by an escapement mechanism, generally shown at 80 in a manner that is well known in the art. Main spring 76 of timing mechanism 75 is manually wound by the rotation of winding screw 82, shown in FIG. 1. As is shown in FIG. 1, winding screw 82 is accessible from the exterior of housing 12 and is conveniently recessed in front panel 46. In another embodiment as shown in FIG. 2, screw 82 (not shown in the figure) is recessed in back panel 47.

In operation, fluid infusion apparatus 10 can be used to inject heparin, a drug which prevents blood clotting and is intraveneously administered over an extended period of time to patients who have had, for example, a pulmonary embolas. If fluid infusion apparatus 10 is of the reusable type. a prefilled syringe is mounted onto the housing 12 subsequent to the positioning of cou' pling member 50 in its most rearward position, as shown in FIG. 2. This is accomplished by rotating winding screw 82, and consequently pinion 73, which in turn, longitudinally positions rack 72 and coupling member 50. The hypodermic needle of syringe 14 is then inserted into the vein of the patient at an appropriate location, such as in the arm, and fluid infusion apparatus 10 is mounted on the arm by means of strap 20. Mechanical timing mechanism 75 is selected such that pinion 33 will permit the full longitudinal travel of coupling member 50 in the time period desired to administer the drug.

A second embodiment of a fluid infusion device according to the invention, denoted 90, is shown in FIG. 5 and is similar to fluid infusion device 10 described hereinabove, except that it further includes an elapsed time and expended fluid indicator. Fluid infusion device includes a mechanical timing mechanism 91 which is similar to mechanical timing mechanism 75 shown in FIGS. 2, 3 and 4 and also described hereinabove, However, mechanical timing mechanism 91 includes a main shaft 92 which extends completely through the housing 93 of fluid infusion device 90, and a pinion 94 mounted on main shaft 92 at the middle portion thereof. Located at one end of main shaft 92 is a winding screw 96, shown in phantom, for winding mechanical timing mechanism 90, and located at the other end of main shaft 92 is an indicator gauge 98 that is mounted on the exterior of housing 93. Gauge 98 has a pointer 100 which is connected by reduction gears 102 to main shaft 92 and rotated thereby. indicia on the face of gauge 98 indicates elapsed time in two hour increments at an outer ring 104 and expended solution in cubic centimeters at an inner ring 106. Thus, me chanical timing mechanism 91 can be wound by winding screw 96 to any desired time indicated by gauge 98. Furthermore, the amount of the fluid which has been injected and the elapsed time since the injection has started, or the time remaining to complete the injection, can be readily and easily determined by reading gauge 98.

It is apparent from the foregoing that the fluid infusion apparatus of this invention supplies a constant feeding of a therapeutic fluid in a controllable amount of flow over an extended period oftime. Other embodiments of the invention can provide for an automatic, periodic, intermittent, infusion of a fluid contained within the syringe, or for a manually controllable inter mittent infusion of the fluid. Furthermore, still another embodiment of the invention can provide for a variable flow rate of the fluid.

Although the invention has been described in detail with respect to an exemplary embodiment thereof, it will be understood by those of ordinary skill in the art that variations and modifications may be effected within the scope and spirit of the invention.

I claim:

1. Portable, automatic fluid infusion apparatus for administering a predetermined amount of fluid at a predetermined rate over an extended time period, the device comprising an elongate housing attachable to a user;

a syringe mounted at one end of said housing in axial alignment therewith said syringe comprising an elongated container having an orifice through one end thereof and a piston mounted for longitudinal movement within said container for forcing fluid through the said orifice;

a mechanical power means coupled to and in axial alignment with said piston for longitudinally mov-- ing said piston, said power means including rack means;

a mechanical timing mechanism mounted on said housing and coupled to said power means fo per mitting only a predetermined rate of longitudinal movement of said piston by said power means,

thereby providing a predetermined flow of said fluid from said syringe, said mechanical timing mechanism including a main spring, an escapement mechanism, gearing mechanism connected to and rotated by said main spring, said escapement mechanism permitting a controlled rate of rotation of said gearing mechanism, a rotatable main shaft extending outwardly from said gearing mechanism and rotated thereby, said main shaft having a pinion mounted at the outwardly extending end thereof and in engagement with said rack means, and means for winding said main spring;

a first centering means transversely rigidly mounted on said rack means for bearing against opposite sides of said housing during the longitudinal movement of said rack means for maintaining the axial alignment of said rack means and said piston in a first, transverse plane;

a second centering means transversely, rigidly mounted bn said rack means perpendicular to said first centering means for bearing against at least one further side of said housing, other than said opposite sides, during the longitudinal movement of said rack means for maintaining the axial alignment of said rack means and said piston in a second, transverse plane, said second transverse plane being perpendicular to said first transverse plane; and

a helical spring attached at a first end to the end of said housing at which said syringe is mounted and attached at the other end to said first centering means for longitudinally urging said rack means into engagement with said piston for the longitudinal movement thereof, said pinion of said mechani cai timing mechanism restraining the longitudinal movement of said rack means to a predetermined rate determined by the rotational speed of said pinion. and thereby permitting a predetermined amount of fluid to be forced by said piston through said orifice during a predetermined time.

2. Fluid infusion apparatus as claimed in claim 1 wherein said syringe is removably mounted at one end of said housing in axial alignment therewith, and said power means is mounted within and totally enclosed by said housing in axial alignment with said piston of said

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2498672 *26 May 194728 Feb 1950Antonina S GlassMotor drive for medical syringes
US2531267 *16 Oct 194721 Nov 1950Fritz HarnischHypodermic syringe operating device
US2605765 *5 Jun 19475 Aug 1952Kollsman PaulAutomatic syringe
US2671448 *19 Feb 19519 Mar 1954Georgiana W HarnischAutomatic hypodermic syringe
US3384080 *16 Oct 196421 May 1968Us Catheter & Instr CorpPortable spring powered infusion device having escapement means controlling speed ofinfusion
US3701345 *29 Sep 197031 Oct 1972Medrad IncAngiographic injector equipment
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3964139 *16 Jun 197522 Jun 1976Harvard Apparatus Company, Inc.Syringe holder
US4044764 *30 Oct 197530 Aug 1977Szabo Anthony WFluid infusion apparatus
US4059110 *7 Oct 197622 Nov 1977Timex CorporationClockwork driven hypodermic syringe
US4202333 *8 Nov 197813 May 1980Minnesota Mining And Manufacturing CompanyFluid dispensing device
US4298000 *28 Apr 19803 Nov 1981Minnesota Mining And Manufacturing CompanyFluid dispensing device
US4300554 *14 Feb 198017 Nov 1981Intermedicat GmbhPortable infusion apparatus
US4381006 *10 Nov 198026 Apr 1983Abbott LaboratoriesContinuous low flow rate fluid dispenser
US4382753 *10 Sep 198010 May 1983Avi, Inc.Nonpulsating IV pump and disposable pump chamber
US4391600 *15 Sep 19805 Jul 1983Avi, Inc.Nonpulsating IV pump and disposable pump chamber
US4410322 *10 Sep 198018 Oct 1983Avi, Inc.Nonpulsating TV pump and disposable pump chamber
US4597754 *7 Feb 19841 Jul 1986Minnesota Mining And Manufacturing CompanyLong capillary tube hose assembly for fluid dispensing device
US4601707 *22 May 198122 Jul 1986Albisser Anthony MInsulin infusion device
US4627835 *11 Mar 19859 Dec 1986Strato Medical CorporationTubing assembly for infusion device
US4648872 *15 Nov 198310 Mar 1987Kamen Dean LVolumetric pump with replaceable reservoir assembly
US4652260 *11 Mar 198524 Mar 1987Strato Medical CorporationInfusion device
US4681566 *30 Nov 198421 Jul 1987Strato Medical CorporationInfusion device
US4857048 *21 Mar 198815 Aug 1989Hewlett-Packard CompanyIV pump and disposable flow chamber with flow control
US5101679 *8 Jan 19907 Apr 1992Ivac CorporationScrew drive engagement/disengagement and decoupling mechanism
US5106375 *23 May 199121 Apr 1992Ivac CorporationDynamic lead screw engagement and indicator
US5236416 *23 May 199117 Aug 1993Ivac CorporationSyringe plunger position detection and alarm generation
US5320503 *23 Sep 199314 Jun 1994Patient Solutions Inc.Infusion device with disposable elements
US5545140 *5 Jul 199413 Aug 1996Ivac CorporationSyringe plunger driver
US5584667 *6 Jun 199517 Dec 1996Davis; David L.Method of providing uniform flow from an infusion device
US5803712 *14 Feb 19958 Sep 1998Patient Solutions, Inc.Method of measuring an occlusion in an infusion device with disposable elements
US6146109 *29 Jun 199814 Nov 2000Alaris Medical Systems, Inc.Infusion device with disposable elements
US62704794 Oct 19997 Aug 2001Pharmacia AbAutoinjector
US631222730 Mar 19936 Nov 2001I-Flow Corp.Infusion device with disposable elements
US637193924 Jan 200116 Apr 2002Pharmacia AbAutoinjector
US642850929 Jul 19996 Aug 2002Alaris Medical Systems, Inc.Syringe plunger driver system and method
US648218629 Sep 200019 Nov 2002Sterling Medivations, Inc.Reusable medication delivery device
US65442291 May 20008 Apr 2003Baxter International IncLinearly motile infusion pump
US67429927 Nov 20021 Jun 2004I-Flow CorporationInfusion device with disposable elements
US6752787 *23 Mar 200022 Jun 2004Medtronic Minimed, Inc.,Cost-sensitive application infusion device
US722024821 Jun 200522 May 2007M2 Medical A/SFlexible piston rod
US723242321 Jan 200519 Jun 2007M2 Medical A/SInfusion pump system, an infusion pump unit and an infusion pump
US7303268 *20 Dec 20044 Dec 2007Silverbrook Research Pty LtdInk refill unit for refilling a high speed print engine
US7399072 *20 Dec 200415 Jul 2008Silverbrook Research Pty LtdInk refill unit having a linearly actuated plunger assembly
US746786125 Nov 200723 Dec 2008Silverbrook Research Pty LtdInk refill unit with incremental ink ejection for a print cartridge
US753422618 Sep 200619 May 2009M2 Group Holdings, Inc.Dispensing fluid from an infusion pump system
US7695121 *23 Nov 200813 Apr 2010Silverbrook Research Pty LtdMethod of refilling a printing unit
US7699446 *22 Jul 200820 Apr 2010Silverbrook Research Pty LtdInk refill unit with incremental millilitre ink ejection for print cartridge
US7699447 *22 Jul 200820 Apr 2010Silverbrook Research Pty LtdInk refill unit with controlled incremental ink ejection for print cartridge
US7699448 *22 Jul 200820 Apr 2010Silverbrook Research Pty LtdInk refill unit with threaded incremental ink ejection for print cartridge
US770871715 Mar 20074 May 2010M2 Group Holdings, Inc.Operating an infusion pump system
US77132386 Apr 200611 May 2010M2 Group Holdings, Inc.Medicine dispensing device
US77179036 Sep 200718 May 2010M2 Group Holdings, Inc.Operating an infusion pump system
US7731698 *28 Sep 20058 Jun 2010Tecpharma Licensing AgDevice for administering an injectable product in doses
US775387928 Jan 200513 Jul 2010M2 Group Holdings, Inc.Disposable medicine dispensing device
US777603025 Oct 200717 Aug 2010Asante Solutions, Inc.Operating an infusion pump system
US778528821 Jun 200531 Aug 2010Asante Solutions, Inc.Disposable, wearable insulin dispensing device, a combination of such a device and a programming controller and a method of controlling the operation of such a device
US778985925 Oct 20077 Sep 2010Asante Solutions, Inc.Operating an infusion pump system
US779442621 May 200714 Sep 2010Asante Solutions, Inc.Infusion pump system with contamination-resistant features
US779442718 Sep 200614 Sep 2010Asante Solutions, Inc.Operating an infusion pump system
US779442825 Oct 200714 Sep 2010Asante Solutions, Inc.Operating an infusion pump system
US780287913 Jun 200828 Sep 2010Silverbrook Research Pty LtdInk refill unit for a print engine having a compression arrangement with actuation means operable by a controller of the print engine
US78285286 Sep 20079 Nov 2010Asante Solutions, Inc.Occlusion sensing system for infusion pumps
US783319621 May 200716 Nov 2010Asante Solutions, Inc.Illumination instrument for an infusion pump
US7857436 *23 Nov 200828 Dec 2010Silverbrook Research Pty LtdInk refill unit with incremental ink ejection mechanism
US78790267 Sep 20071 Feb 2011Asante Solutions, Inc.Controlled adjustment of medicine dispensation from an infusion pump device
US788716922 Jul 200815 Feb 2011Silverbrook Research Pty LtdInk refill unit with incremental ink ejection accuated by print cartridge cradle
US78875114 May 200515 Feb 2011Asante Solutions, Inc.Disposable wearable insulin dispensing device, a combination of such a device and a programming controller and a method of controlling the operation of such a device
US788751215 Mar 200715 Feb 2011Asante Solutions, Inc.Operating an infusion pump system
US789219921 May 200722 Feb 2011Asante Solutions, Inc.Occlusion sensing for an infusion pump
US791449928 Mar 200729 Mar 2011Valeritas, Inc.Multi-cartridge fluid delivery device
US792270815 Mar 200712 Apr 2011Asante Solutions, Inc.Operating an infusion pump system
US79350767 Sep 20073 May 2011Asante Solutions, Inc.Activity sensing techniques for an infusion pump system
US79351057 Sep 20073 May 2011Asante Solutions, Inc.Data storage for an infusion pump system
US793880313 Apr 200910 May 2011Asante Solutions, Inc.Dispensing fluid from an infusion pump system
US798108425 Oct 200719 Jul 2011Asante Solutions, Inc.Operating an infusion pump system
US798110221 May 200719 Jul 2011Asante Solutions, Inc.Removable controller for an infusion pump
US800239413 Apr 201023 Aug 2011Silverbrook Research Pty LtdRefill unit for fluid container
US800708313 Apr 201030 Aug 2011Silverbrook Research Pty LtdRefill unit for incrementally filling fluid container
US80322267 Sep 20074 Oct 2011Asante Solutions, Inc.User profile backup system for an infusion pump device
US80429229 Mar 201025 Oct 2011Silverbrook Research Pty LtdDispenser unit for refilling printing unit
US80476399 Apr 20101 Nov 2011Silverbrook Research Pty LtdRefill unit for incremental millilitre fluid refill
US805743622 Feb 200715 Nov 2011Asante Solutions, Inc.Dispensing fluid from an infusion pump system
US807072616 Dec 20086 Dec 2011Valeritas, Inc.Hydraulically actuated pump for long duration medicament administration
US80796839 Jan 201120 Dec 2011Silverbrook Research Pty LtdInkjet printer cradle with shaped recess for receiving a printer cartridge
US810527918 Sep 200631 Jan 2012M2 Group Holdings, Inc.Dispensing fluid from an infusion pump system
US810992117 May 20107 Feb 2012Asante Solutions, Inc.Operating a portable medical device
US815276513 Sep 201010 Apr 2012Asante Solutions, Inc.Infusion pump system with contamination-resistant features
US81923948 Nov 20065 Jun 2012Asante Solutions, Inc.Method and system for manual and autonomous control of an infusion pump
US820635325 Aug 200926 Jun 2012Medtronic Minimed, Inc.Reservoir barrier layer systems and methods
US82110625 Oct 20103 Jul 2012Asante Solutions, Inc.Illumination instrument for an infusion pump
US821109327 Apr 20113 Jul 2012Asante Solutions, Inc.Data storage for an infusion pump system
US822660813 Jul 201124 Jul 2012Asante Solutions, Inc.Medicine dispensing device
US828260124 Mar 20119 Oct 2012Asante Solutions, Inc.Dispensing fluid from an infusion pump system
US82875147 Sep 200716 Oct 2012Asante Solutions, Inc.Power management techniques for an infusion pump system
US832875411 Feb 201111 Dec 2012Asante Solutions, Inc.Activity sensing techniques for an infusion pump system
US836105325 Jan 201129 Jan 2013Valeritas, Inc.Multi-cartridge fluid delivery device
US837203916 Jun 201012 Feb 2013Asante Solutions, Inc.Infusion pump system
US840914222 Feb 20072 Apr 2013Asante Solutions, Inc.Operating an infusion pump system
US843084716 Jun 201030 Apr 2013Asante Solutions, Inc.Infusion pump system
US843949719 Dec 201114 May 2013Zamtec LtdImage processing apparatus with nested printer and scanner
US845457510 May 20124 Jun 2013Asante Solutions, Inc.Illumination instrument for an infusion pump
US845458116 Mar 20114 Jun 2013Asante Solutions, Inc.Infusion pump systems and methods
US846992018 Jun 201025 Jun 2013Asante Solutions, Inc.Wearable insulin dispensing device, and a combination of such a device and a programming controller
US84754088 Nov 20062 Jul 2013Asante Solutions, Inc.Infusion pump system
US848062314 Sep 20129 Jul 2013Asante Solutions, Inc.Method for dispensing fluid from an infusion pump system
US85510463 Oct 20118 Oct 2013Asante Solutions, Inc.Dispensing fluid from an infusion pump system
US85510703 Oct 20118 Oct 2013Asante Solutions, Inc.User profile backup system for an infusion pump device
US858565721 Jun 201119 Nov 2013Asante Solutions, Inc.Dispensing fluid from an infusion pump system
US859724420 Apr 20073 Dec 2013Asante Solutions, Inc.Infusion pump system, an infusion pump unit and an infusion pump
US861372619 Jan 201024 Dec 2013Medtronic Minimed, Inc.Control tabs for infusion devices and methods of using the same
US862296619 Jan 20117 Jan 2014Asante Solutions, Inc.Operating an infusion pump system
US862299014 Sep 20127 Jan 2014Asante Solutions, Inc.Activity sensing techniques for an infusion pump system
US864167314 Jun 20114 Feb 2014Asante Solutions, Inc.Removable controller for an infusion pump
US864730226 Mar 201211 Feb 2014Asante Solutions, Inc.Infusion pump system with contamination-resistant features
US867906016 Jun 201025 Mar 2014Asante Solutions, Inc.Infusion pump system
US868500210 May 20121 Apr 2014Asante Solutions, Inc.Data storage for an infusion pump system
US869663315 Jun 201115 Apr 2014Asante Solutions, Inc.Operating an infusion pump system
US870265519 Apr 201122 Apr 2014Medtronic Minimed, Inc.Reservoir barrier layer systems and methods
US874736825 Jan 201210 Jun 2014Asante Solutions, Inc.Dispensing fluid from an infusion pump system
US874736930 Jan 201210 Jun 2014Asante Solutions, Inc.Dispensing fluid from an infusion pump system
US879523312 Jan 20115 Aug 2014Asante Solutions, Inc.Disposable wearable insulin dispensing device, a combination of such a device and a programming controller and a method of controlling the operation of such a device
US88016555 Dec 201212 Aug 2014Asante Solutions, Inc.Wearable insulin dispensing device, and a combination of such a device and a programming controller
US882144319 Dec 20122 Sep 2014Valeritas, Inc.Multi-cartridge fluid delivery device
US88344203 May 201316 Sep 2014Asante Solutions, Inc.Illumination instrument for an infusion pump
DE3439322A1 *26 Oct 19847 May 1986Infors GmbhInfusionspumpe
EP0016343A1 *18 Feb 19801 Oct 1980Intermedicat GmbHContinuous-infusion device
EP0092712A2 *7 Apr 19832 Nov 1983B. Braun-SSC AGPressure infusion apparatus for medical applications
EP0143895A1 *16 Aug 198412 Jun 1985Disetronic AgPortable infusion apparatus
EP0167318A2 *14 Jun 19858 Jan 1986Daltex Medical Sciences, Inc.Fail-safe mechanical drive for syringe
EP0246158A1 *14 May 198719 Nov 1987Buffet, JacquesExternal device for medical injection
WO1988010129A1 *24 Jun 198829 Dec 1988Nova Medical Pty LimitedSlow delivery injection device
WO2009126596A2 *7 Apr 200915 Oct 2009Medtronic Minimed, Inc.Reservoir plunger head systems and methods
Classifications
U.S. Classification604/135
International ClassificationA61M5/145
Cooperative ClassificationA61M2005/14506, A61M5/14566, A61M5/1454
European ClassificationA61M5/145B4
Legal Events
DateCodeEventDescription
15 Oct 1982AS04License
Owner name: DALTEX INDUSTRIES, INC., P.O. BOX 262, LIVINGSTON,
Owner name: DEL GUERCIO, LOUIS, R.M. (M.D.)
Effective date: 19820901
Owner name: SZABO, ANTHONY W.
15 Oct 1982ASAssignment
Owner name: DALTEX INDUSTRIES, INC., P.O. BOX 262, LIVINGSTON,
Free format text: LICENSE;ASSIGNORS:SZABO, ANTHONY W.;DEL GUERCIO, LOUIS, R.M. (M.D.);REEL/FRAME:004055/0638
Effective date: 19820901