US3877965A - Conductive nylon substrates and method of producing them - Google Patents

Conductive nylon substrates and method of producing them Download PDF

Info

Publication number
US3877965A
US3877965A US264097A US26409772A US3877965A US 3877965 A US3877965 A US 3877965A US 264097 A US264097 A US 264097A US 26409772 A US26409772 A US 26409772A US 3877965 A US3877965 A US 3877965A
Authority
US
United States
Prior art keywords
substrate
silver
solution
water
nylon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US264097A
Inventor
Robert Broadbent
Sidney Melamed
Robert G Minton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm and Haas Co
Original Assignee
Rohm and Haas Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm and Haas Co filed Critical Rohm and Haas Co
Priority to US264097A priority Critical patent/US3877965A/en
Application granted granted Critical
Publication of US3877965A publication Critical patent/US3877965A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/285Sensitising or activating with tin based compound or composition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • C23C18/44Coating with noble metals using reducing agents
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06QDECORATING TEXTILES
    • D06Q1/00Decorating textiles
    • D06Q1/04Decorating textiles by metallising

Definitions

  • ABSTRACT A method for providing nylon substrates with a durable, adherent silver coating and product by electroless deposition from a plating bath comprising silver salt, ammonia, anionic surfactant, formaldehyde, and sufficient acid to bring the pH to about 8.4-9.4.
  • the substrates are sensitized with stannic chloride solution.
  • This invention relates to a method for plating nylon with silver.
  • the plating of metals such as silver onto a nylon substrate has been known for some time and can be effected with relative ease. For many purposes a minimum of adherence of the silver to the substrate is sufficient for the intended use of the plated substrate. In some instances, however, it is critical that the silver plating be extremely durable and adherent. It is extremely difficult to obtain such a durable and adherent coating on a consistent and readily reproducible basis by the techniques of the prior art.
  • the process of the present invention is applicable to nylon substrates irrespective of the substrate form. Thus, it is effective in the silver plating of monofilaments, nylon fabrics, including both knit and woven fabrics, bundles of filaments in yarn form, nylon staple and nylon films. Somewhat more massive nylon forms may also be treated by the process of the present invention, but the need for the exceptional characteristics provided by the present invention are less commonly required for such articles.
  • nylon is used in its broadest sense to cover fiber-and/or filmforming polyamides; the invention is of particular use, however, in the silver plating of polycaprolactam and polyhexamethylene adipamide.
  • any finishes on the substrate which tend to interfere with the plating process should be cleansed from the substrate prior to the process.
  • fabrics and fibers may have some sort of finish or lubricant which might interfere with the process; generally, these can be removed by treatment of the material with suitable surface active agents and- /or solvents.
  • the substrate is customarily sensitized by treatment with a water soluble salt having a polyvalent metal cation.
  • a water soluble salt having a polyvalent metal cation For example, an aqueous solution of stannous chloride is commonly used for this purpose.
  • Such solutions can also be used for the purposes of the present invention to the extent that suitable penetration of the sensitizer into the substrate surface can be effected and to the extent that interfering ions and/or precipitates can be removed by simple washing procedures prior to the silver deposition.
  • a stannic salt such as stannic chloride is utilized instead of the stannous salt, and a water-soluble organic solvent for the stannic salt is used instead of water to form a solution of the sensitizing agent.
  • Methanol offers no real advantage over water insofar as improving the activity of the sensitizing agent, although the use of methanol alone or in combination with the other sensitizer solvents can be employed as necessary to the particular practice contemplated.
  • silvering solutions prepared with a slight deficiency of ammonia i.e., less than the two equivalents of ammonia required to form the silver-ammonia complex, is utilized.
  • at least three mols of ammonia up to 4 mols of ammonia per mol of silver nitrate or its equivalent are incorporated in the silver plating bath. If less than this amount is included in the bath, the silver plating solution is insufficiently stable for effective deposition without bath decomposition.
  • the bath incorporates less than about 3.5 mols of ammonia per mol of silver nitrate.
  • the silvering bath should contain a small amount of anionic surfactant to stabilize the system and thereby to insure that the plating occurs essentially only on the sensitized surface without seriously affecting the metal of the silver coating applied to the substrate.
  • anionic surfactant typically, 0.01% up to about 0.1% defines the operable concentration of sodium lauryl sulfate. At the higher end of the range, this surfactant tends to destroy the boiling water resistance of the coating, while at the lower end of the range, the amount of surfactant present is not sufficient to give the necessary bath stabilization. In general, optimum results are obtained if the bath contains the equivalent of 0.025% of sodium lauryl sulfate.
  • the pH of the bath is in excess of 10, e.g., about 10.4. It has been found that if the pH is not reduced, the bath tends to decompose before the nylon substrate is silvered. More importantly, if the bath is not adjusted to a pH of about 9.4 or lower, the silver coating that does result is not particularly resistant to boiling water. However, if the pH is lowered to about 8.0, a good coating is not obtained. Accordingly, it has been found necessary to maintain the pH of the silvering bath at a value from about 8.4 up to about 9.4 to obtain results necessary for many substrate uses.
  • the ammonia can be introduced into the solution, e.g., as ammonium hydroxide, in which case it is necessary to add an acid to reduce the pH to the desired level.
  • Acetic acid is a typical acid useful for this purpose.
  • the ammonia stabilization and pH maintenance of the bath can be accomplished by other essentially equivalent means.
  • amines and/or certain ammonium salts may be used in place of ammonium hydroxide in which case the need for acid adjustment to obtain the desired pH may be minimized and/or eliminated. It is to be understood that such methods are contemplated as included within the scope of introducing ammonia and acid into the silvering solution to provide an amount of ammonia and acid in the silvering bath corresponding to the values previously described.
  • the sensitized nylon substrate is introduced into the silvering bath together with the customary reducing agents such as formaldehyde.
  • the reaction is standard and well known in the art and leads to the deposition of silver on the nylon substrate.
  • the resulting product is a silvered nylon in which the silver coating is extremely durable and adherent as well as electrically conductive.
  • the resulting product further possesses essentially all of the mechanical characteristics of the substrate despite the penetration, as shown by photomicrographs, of the silver into the surface of the substrate.
  • the durability and adherence of the silver plating on nylon is tested, inter alia, by a boiling water test.
  • a portion of the silvered nylon article is placed in a beaker of boiling deionized water for 30 minutes and dried by patting the excess water from the specimen with a paper towel.
  • Silvered portions of the specimen are placed across electrodes spaced 1.5 inches apart and the electrical resistance measured (e.g., using a Kiethley Electrometer Model 610C, or a Mura Corporation Model 80M Multimeter). Samples are considered non-conductive if their resistances is greater than a million ohms.
  • the substrate which was silvered was a knit nylon sleeve. For these articles, a sec tion at least two inches long was cut from the sleeve and several cut filaments were unravelled from different parts of the section (generally about ten) and tested in the manner just described. Other tests are described in the examples.
  • the invention is described with regard to the preferred practices of the invention which include use of the stannic salt-ethanol sensitizer and the treatment of knit fabrics. In its broadest scope, however, the invention is not limited thereto and is broadly useful in the manner described earlier herein.
  • An interesting facet of the invention is that the silvering of fabrics such as knitted and woven fabrics can be effected in a manner such that the silver coating on fibers removed from the fabric is continuous and does not apparently change at the fiber crossover points which were present in the fabric during the plating thereof.
  • the individual conductive filaments are basically nylon having the same modulus characteristics as the uncoated filaments. Filamentary materials can be uniformly silvered irrespective of the physical form of the filament, i.e., irrespective of whether the filament has been crimped, false twisted, or otherwise textured.
  • a silvering bath was prepared, by dissolving in 14,200 ml. of deionized water, 362 ml. of 1% aqueous sodium lauryl sulfate solution, 700 ml. of a solution of 37.0 grams of silver nitrate in deionized water, 325 ml. of 2.17N ammonium hydroxide and sufficient 1N acetic acid to reduce the pH to 9.0.
  • a sensitizing solution was prepared by dissolving grams of stannic chloride in 1500 ml. of denatured (one-half gallon of benzene per 100 gallons of 95% ethanol) alcohol. A three-inch diameter sleeve was knit from a lS-denier nylon monofilament. A 94 gram sam ple of the nylon sleeve was placed in the sensitizing solution for five minutes, then drained and washed with running water and placed in a bath of deionized water. To the silvering solution were then added 725 ml. of 2.4% formaldehyde solution.
  • the nylon sleeve after squeezing to remove water, was then fed into the silvering solution and allowed to stand therein for 90 minutes with periodic agitation. The sleeve was then removed from the silvering bath, rinsed with water, and dried for 2 hours at 65C. in a circulating air oven. The dried sleeve weighed 105.7 grams and 10 filaments removed thereof had an average resistance of 490 ohms per 1.5 inch length. After being subjected to the boiling water treatment described previously herein, the ten filaments had an average resistance of 600 ohms per 1.5 inch length. The average resistance of 15 denier nylon filament which has not been silvered is greater than the upper limit of the test machine employed which is 10 ohms.
  • EXAMPLE II A l00-gram sample of nylon sleeve of the type described in Example I was scoured with toctylphenoxypoly(9) ethoxyethanol and sodium tripolyphosphate to remove the finish therefrom. The scoured sample was then placed in 2000 ml. of a sensitizing solution comprising 20.0 grams of anhydrous stannic chloride in denatured alcohol (as described in Example I). The sleeve was soaked for five minutes, withdrawn from the sensitizing solution and passed under two water spray heads, passed through a aqueeze roll and then stored in 2,000 ml. of deionized water. A silvering bath was prepared by adding in sequence, to 6,300 ml. of water, 1.58 grams of sodium lauryl sulfate,
  • the products obtained by the present invention can be used for any of the purposes for which silvered nylon has been employed in the past.
  • the process provides an excellent method for the production of silvered fabrics, including films, for use as electrical components of various electronic devices.
  • the individual fibers can be used in such various items as womens apparel, including stockings and panty hose, and in carpeting and other like uses wherein it is desired to reduce the static charge accumulated on the article of which the silvered filament is a part.
  • Yarns prepared containing the silvered nylon may be subjected to the usual dyeing operations and scouring operations characteristic of carpet industry practice without substantial loss of the static-reducing conductivity.
  • the fact that the fiber is basically nylon and has the same modulus characteristics as the rest of the filaments in the yarn bundle permits use of the silvered filament in this manner without significantly changing the physical characteristics of the yarn bundle other than the tendency to build up a static charge.
  • Metal fibers used in this manner tend to be less durable in service due to the tendency of the metal filaments to break.
  • Previously silvered nylon filaments lacked the durability and silver adhesion to permit treatment of the filament in dyeing, scouring, and like operations.
  • the preferred products obtained by the practice of the present invention can be subjected to 30 minutes treatment at 180F, in an aqueous bath containing 0.5 weight percent of sodium lauryl sulfate and sufficient sodium tripolyphosphate, trisodium phosphate or tetrasodium pyrophosphate to provide a pH of 9, followed by two hours in a boiling acetic acid solution at a pH of 5 without the electrical resistance increasing beyond 10,000 ohms/inch.
  • the resistance will be less than about 1,000 ohms/inch.
  • a significant feature of the process defined herein is that both a nylon monofilament and a nylon multiflament yarn, whether crimped or uncrimped, can be processed to provide a silvercoated nylon monofilament or yarn having the desired electrical conductivity and resistance.
  • the yarn can be silvered as a warp proceeding from a beam in a manner similar to that used in slashing.
  • the monofilament or yarn can suitably be pretextured or not, as desired, to provide a package, i.e., a bobbin, spool, cone, pirn, tube, etc., of silvered monofilament or yarn in continuous form, i.e., in continuous lengths greater than 100 yards long.
  • the process can also be utilized with nylon staple fiber to provide a silvered staple fiber having the previously described characteristics.
  • a staple fiber yarn can be produced from the silvered staple fiber to provide a staple fiber yarn having conductivity characteristics consistent with those earlier defined.
  • a process for producing a silver-coated fibrous nylon substrate which comprises subjecting a fibrous nylon substrate to a sensitizing polyvalent metal salt bath, then washing the substrate with water, subjecting it to a bath of deionized water, removing it from the deionized water and squeezing excess water out of it, then allowing the resulting wet fibrous substrate to stand, with periodic agitation, within an aqueous solution consisting essentially of water, a silver salt dissolved therein, 3 to 3.5 mols of ammonia per mol of silver salt, 0.025 to 0.1 percent, based on the solution, of an anionic surfactant, formaldehyde, and sufficient acid to bring the solution to a pH of about 8.4 to about 9.4 prior to introduction of the substrate, rinsing the silvercoated fibrous substrate, and drying it, the time of the silvering step being sufficient to deposit a substantially continuous coating of silver on the substrate fiber without changing the modulus characteristics of the fiber.
  • anionic surfactant is sodium lauryl sulfate.
  • a process for producing a silver-coated fibrous nylon substrate which comprises subjecting a fibrous nylon substrate to a sensitizing ethanol solution of a stannic salt, then washing the substrate with water, subjecting it to a bath of deionized water, removing it from the deionized water and squeezing excess water out of it, then allowing the resulting wet fibrous substrate to stand, with occasionally stirring within an aqueous solution consisting essentially of water, silver nitrate, 3 to 3.5 mols of ammonia per mol of silver nitrate, 0.025 to 0.1 percent, based on the solution of sodium lauryl sulfate, formaldehyde in an amount sufficient to reduce the silver nitrate to metallic silver, and sufficient acid to bring the solution to a pH of about 8.4 to about 9.4 prior to introduction of the substrate, rinsing the silvercoated fibrous substrate, and drying it, the time of the silvering step being sufficient to deposit a substantially continuous coating of silver on the substrate fiber without changing

Abstract

A method for providing nylon substrates with a durable, adherent silver coating and product by electroless deposition from a plating bath comprising silver salt, ammonia, anionic surfactant, formaldehyde, and sufficient acid to bring the pH to about 8.49.4. The substrates are sensitized with stannic chloride solution.

Description

United States Patent Broadbent et al.
[451 Apr. 15, 1975 CONDUCTIVE NYLON SUBSTRATES AND METHOD OF PRODUCING THEM Inventors: Robert Broadbent, Philadelphia;
Sidney Melamed, Elkins Park; Robert G. Minton, Cornwells Heights, all of Pa.
Assignee: Rohm and Haas Company,
Philadelphia, Pa.
Filed: June 19, 1972 Appl. No.: 264,097
Related US. Application Data Division of Ser. No. 76,245, Sept. 28, 1970, abandoned.
US. Cl 427/304; 106/1 Int. Cl. C23c 3/02 Field of Search 117/l38.8 N, 47 A, 160 R,
Primary ExaminerCharles E. Van Horn Assistant Examiner-Michael W. Ball 57 ABSTRACT A method for providing nylon substrates with a durable, adherent silver coating and product by electroless deposition from a plating bath comprising silver salt, ammonia, anionic surfactant, formaldehyde, and sufficient acid to bring the pH to about 8.4-9.4. The substrates are sensitized with stannic chloride solution.
4 Claims, No Drawings CONDUCTIVE NYLON SUBSTRATES AND METHOD OF PRODUCING THEM This application is a division of our copending U.S. application Ser. No. 76,245, filed Sept. 28, 1970 now abandoned.
DESCRIPTION OF THE INVENTION This invention relates to a method for plating nylon with silver. The plating of metals such as silver onto a nylon substrate has been known for some time and can be effected with relative ease. For many purposes a minimum of adherence of the silver to the substrate is sufficient for the intended use of the plated substrate. In some instances, however, it is critical that the silver plating be extremely durable and adherent. It is extremely difficult to obtain such a durable and adherent coating on a consistent and readily reproducible basis by the techniques of the prior art.
It has now been found that a process involving a series of carefully controlled process steps can provide nylon substrates with a durable and adherent coating without significantly altering the basic mechanical characteristics of the product.
The process of the present invention is applicable to nylon substrates irrespective of the substrate form. Thus, it is effective in the silver plating of monofilaments, nylon fabrics, including both knit and woven fabrics, bundles of filaments in yarn form, nylon staple and nylon films. Somewhat more massive nylon forms may also be treated by the process of the present invention, but the need for the exceptional characteristics provided by the present invention are less commonly required for such articles. The term nylon is used in its broadest sense to cover fiber-and/or filmforming polyamides; the invention is of particular use, however, in the silver plating of polycaprolactam and polyhexamethylene adipamide.
As is customary in the art, any finishes on the substrate which tend to interfere with the plating process should be cleansed from the substrate prior to the process. Typically, fabrics and fibers may have some sort of finish or lubricant which might interfere with the process; generally, these can be removed by treatment of the material with suitable surface active agents and- /or solvents.
The substrate is customarily sensitized by treatment with a water soluble salt having a polyvalent metal cation. For example, an aqueous solution of stannous chloride is commonly used for this purpose. Such solutions can also be used for the purposes of the present invention to the extent that suitable penetration of the sensitizer into the substrate surface can be effected and to the extent that interfering ions and/or precipitates can be removed by simple washing procedures prior to the silver deposition. In the preferred and quite superior practice of the present invention, a stannic salt such as stannic chloride is utilized instead of the stannous salt, and a water-soluble organic solvent for the stannic salt is used instead of water to form a solution of the sensitizing agent. For example, lower molecular weight alcohols such as ethanol and isopropanol are quite effective. Methanol offers no real advantage over water insofar as improving the activity of the sensitizing agent, although the use of methanol alone or in combination with the other sensitizer solvents can be employed as necessary to the particular practice contemplated.
In order to obtain a product having the desired characteristics for the purposes of the present invention, careful control of the silvering solution is essential. In the normal practices of the prior art, silvering solutions prepared with a slight deficiency of ammonia, i.e., less than the two equivalents of ammonia required to form the silver-ammonia complex, is utilized. In accordance with the practice of the present invention at least three mols of ammonia up to 4 mols of ammonia per mol of silver nitrate or its equivalent are incorporated in the silver plating bath. If less than this amount is included in the bath, the silver plating solution is insufficiently stable for effective deposition without bath decomposition. If greater than this amount is used, the process proceeds too slowly, if at all, and it is difficult to obtain a good silver coating in a reasonable time. Preferably, the bath incorporates less than about 3.5 mols of ammonia per mol of silver nitrate.
The silvering bath should contain a small amount of anionic surfactant to stabilize the system and thereby to insure that the plating occurs essentially only on the sensitized surface without seriously affecting the metal of the silver coating applied to the substrate. Typically, 0.01% up to about 0.1% defines the operable concentration of sodium lauryl sulfate. At the higher end of the range, this surfactant tends to destroy the boiling water resistance of the coating, while at the lower end of the range, the amount of surfactant present is not sufficient to give the necessary bath stabilization. In general, optimum results are obtained if the bath contains the equivalent of 0.025% of sodium lauryl sulfate.
With the large quantities of ammonia recommended for the practice of the present invention, the pH of the bath is in excess of 10, e.g., about 10.4. It has been found that if the pH is not reduced, the bath tends to decompose before the nylon substrate is silvered. More importantly, if the bath is not adjusted to a pH of about 9.4 or lower, the silver coating that does result is not particularly resistant to boiling water. However, if the pH is lowered to about 8.0, a good coating is not obtained. Accordingly, it has been found necessary to maintain the pH of the silvering bath at a value from about 8.4 up to about 9.4 to obtain results necessary for many substrate uses.
The ammonia can be introduced into the solution, e.g., as ammonium hydroxide, in which case it is necessary to add an acid to reduce the pH to the desired level. Acetic acid isa typical acid useful for this purpose. It should be understood, however, that the ammonia stabilization and pH maintenance of the bath can be accomplished by other essentially equivalent means. Thus, e.g., amines and/or certain ammonium salts may be used in place of ammonium hydroxide in which case the need for acid adjustment to obtain the desired pH may be minimized and/or eliminated. It is to be understood that such methods are contemplated as included within the scope of introducing ammonia and acid into the silvering solution to provide an amount of ammonia and acid in the silvering bath corresponding to the values previously described.
In accordance with the practices of the present invention, the sensitized nylon substrate is introduced into the silvering bath together with the customary reducing agents such as formaldehyde. The reaction is standard and well known in the art and leads to the deposition of silver on the nylon substrate. The resulting product is a silvered nylon in which the silver coating is extremely durable and adherent as well as electrically conductive. The resulting product further possesses essentially all of the mechanical characteristics of the substrate despite the penetration, as shown by photomicrographs, of the silver into the surface of the substrate.
In the examples which follow, the durability and adherence of the silver plating on nylon is tested, inter alia, by a boiling water test. In that test, a portion of the silvered nylon article is placed in a beaker of boiling deionized water for 30 minutes and dried by patting the excess water from the specimen with a paper towel. Silvered portions of the specimen are placed across electrodes spaced 1.5 inches apart and the electrical resistance measured (e.g., using a Kiethley Electrometer Model 610C, or a Mura Corporation Model 80M Multimeter). Samples are considered non-conductive if their resistances is greater than a million ohms. In the examples which follow, the substrate which was silvered was a knit nylon sleeve. For these articles, a sec tion at least two inches long was cut from the sleeve and several cut filaments were unravelled from different parts of the section (generally about ten) and tested in the manner just described. Other tests are described in the examples.
The invention is described with regard to the preferred practices of the invention which include use of the stannic salt-ethanol sensitizer and the treatment of knit fabrics. In its broadest scope, however, the invention is not limited thereto and is broadly useful in the manner described earlier herein. An interesting facet of the invention is that the silvering of fabrics such as knitted and woven fabrics can be effected in a manner such that the silver coating on fibers removed from the fabric is continuous and does not apparently change at the fiber crossover points which were present in the fabric during the plating thereof. The individual conductive filaments are basically nylon having the same modulus characteristics as the uncoated filaments. Filamentary materials can be uniformly silvered irrespective of the physical form of the filament, i.e., irrespective of whether the filament has been crimped, false twisted, or otherwise textured.
EXAMPLE I A silvering bath was prepared, by dissolving in 14,200 ml. of deionized water, 362 ml. of 1% aqueous sodium lauryl sulfate solution, 700 ml. of a solution of 37.0 grams of silver nitrate in deionized water, 325 ml. of 2.17N ammonium hydroxide and sufficient 1N acetic acid to reduce the pH to 9.0.
A sensitizing solution was prepared by dissolving grams of stannic chloride in 1500 ml. of denatured (one-half gallon of benzene per 100 gallons of 95% ethanol) alcohol. A three-inch diameter sleeve was knit from a lS-denier nylon monofilament. A 94 gram sam ple of the nylon sleeve was placed in the sensitizing solution for five minutes, then drained and washed with running water and placed in a bath of deionized water. To the silvering solution were then added 725 ml. of 2.4% formaldehyde solution. The nylon sleeve, after squeezing to remove water, was then fed into the silvering solution and allowed to stand therein for 90 minutes with periodic agitation. The sleeve was then removed from the silvering bath, rinsed with water, and dried for 2 hours at 65C. in a circulating air oven. The dried sleeve weighed 105.7 grams and 10 filaments removed thereof had an average resistance of 490 ohms per 1.5 inch length. After being subjected to the boiling water treatment described previously herein, the ten filaments had an average resistance of 600 ohms per 1.5 inch length. The average resistance of 15 denier nylon filament which has not been silvered is greater than the upper limit of the test machine employed which is 10 ohms.
EXAMPLE II A l00-gram sample of nylon sleeve of the type described in Example I was scoured with toctylphenoxypoly(9) ethoxyethanol and sodium tripolyphosphate to remove the finish therefrom. The scoured sample was then placed in 2000 ml. of a sensitizing solution comprising 20.0 grams of anhydrous stannic chloride in denatured alcohol (as described in Example I). The sleeve was soaked for five minutes, withdrawn from the sensitizing solution and passed under two water spray heads, passed through a aqueeze roll and then stored in 2,000 ml. of deionized water. A silvering bath was prepared by adding in sequence, to 6,300 ml. of water, 1.58 grams of sodium lauryl sulfate,
625 ml. of 0.30N silver nitrate solution, 612 ml. of 1N ammonium hydroxide, ml. of 1N acetic acid (to bring the silvering bath pH to 9.0) and 371 ml. of 2.4% formaldehyde solution. The nylon sleeve was removed from the deionized water, squeezed to remove excess water, and placed in the silvering bath. The sleeve was retained in the bath for minutes with occasional stirring and then removed from the bath, rinsed with water to remove the silvering solution, and dried. Fi bers (about 10) removed from the sample had an average resistance of 860 ohms per 1.5 inch length. After being subjected to the boiling water test described previously, the sample had an average resistance of 570 ohms per 1.5 inch length. No non-conductive filaments were found in any of the samples.
The products obtained by the present invention can be used for any of the purposes for which silvered nylon has been employed in the past. In particular, however, the process provides an excellent method for the production of silvered fabrics, including films, for use as electrical components of various electronic devices. The individual fibers can be used in such various items as womens apparel, including stockings and panty hose, and in carpeting and other like uses wherein it is desired to reduce the static charge accumulated on the article of which the silvered filament is a part. In view of the extreme resistance of the silvered fiber to boiling water, it is particularly useful for incorporation in carpets in place of metal fibers employed in the past. Yarns prepared containing the silvered nylon may be subjected to the usual dyeing operations and scouring operations characteristic of carpet industry practice without substantial loss of the static-reducing conductivity. The fact that the fiber is basically nylon and has the same modulus characteristics as the rest of the filaments in the yarn bundle permits use of the silvered filament in this manner without significantly changing the physical characteristics of the yarn bundle other than the tendency to build up a static charge. Metal fibers used in this manner tend to be less durable in service due to the tendency of the metal filaments to break. Previously silvered nylon filaments lacked the durability and silver adhesion to permit treatment of the filament in dyeing, scouring, and like operations.
Accordingly, the preferred products obtained by the practice of the present invention can be subjected to 30 minutes treatment at 180F, in an aqueous bath containing 0.5 weight percent of sodium lauryl sulfate and sufficient sodium tripolyphosphate, trisodium phosphate or tetrasodium pyrophosphate to provide a pH of 9, followed by two hours in a boiling acetic acid solution at a pH of 5 without the electrical resistance increasing beyond 10,000 ohms/inch. In general, the resistance will be less than about 1,000 ohms/inch.
A significant feature of the process defined herein is that both a nylon monofilament and a nylon multiflament yarn, whether crimped or uncrimped, can be processed to provide a silvercoated nylon monofilament or yarn having the desired electrical conductivity and resistance. The yarn can be silvered as a warp proceeding from a beam in a manner similar to that used in slashing. The monofilament or yarn can suitably be pretextured or not, as desired, to provide a package, i.e., a bobbin, spool, cone, pirn, tube, etc., of silvered monofilament or yarn in continuous form, i.e., in continuous lengths greater than 100 yards long.
The process can also be utilized with nylon staple fiber to provide a silvered staple fiber having the previously described characteristics. A staple fiber yarn can be produced from the silvered staple fiber to provide a staple fiber yarn having conductivity characteristics consistent with those earlier defined.
What is claimed is:
l. A process for producing a silver-coated fibrous nylon substrate which comprises subjecting a fibrous nylon substrate to a sensitizing polyvalent metal salt bath, then washing the substrate with water, subjecting it to a bath of deionized water, removing it from the deionized water and squeezing excess water out of it, then allowing the resulting wet fibrous substrate to stand, with periodic agitation, within an aqueous solution consisting essentially of water, a silver salt dissolved therein, 3 to 3.5 mols of ammonia per mol of silver salt, 0.025 to 0.1 percent, based on the solution, of an anionic surfactant, formaldehyde, and sufficient acid to bring the solution to a pH of about 8.4 to about 9.4 prior to introduction of the substrate, rinsing the silvercoated fibrous substrate, and drying it, the time of the silvering step being sufficient to deposit a substantially continuous coating of silver on the substrate fiber without changing the modulus characteristics of the fiber.
2. A method in accordance with claim 1 wherein said anionic surfactant is sodium lauryl sulfate.
3. A method in accordance with claim 1 wherein said nylon substrate is sensitized with an alcohol solution of a stannic salt.
4. A process for producing a silver-coated fibrous nylon substrate which comprises subjecting a fibrous nylon substrate to a sensitizing ethanol solution of a stannic salt, then washing the substrate with water, subjecting it to a bath of deionized water, removing it from the deionized water and squeezing excess water out of it, then allowing the resulting wet fibrous substrate to stand, with occasionally stirring within an aqueous solution consisting essentially of water, silver nitrate, 3 to 3.5 mols of ammonia per mol of silver nitrate, 0.025 to 0.1 percent, based on the solution of sodium lauryl sulfate, formaldehyde in an amount sufficient to reduce the silver nitrate to metallic silver, and sufficient acid to bring the solution to a pH of about 8.4 to about 9.4 prior to introduction of the substrate, rinsing the silvercoated fibrous substrate, and drying it, the time of the silvering step being sufficient to deposit a substantially continuous coating of silver on the substrate fiber without changing the modulus characteristics of the fiber.

Claims (4)

1. A PROCESS FOR PRODUCING A SILVER-COATED FIBROUS NYLON SUBSTRATE WHICH COMPRISES SUBJECTING A FIBROUS NYLON SUBSTRATE TO A SENSITIZING POLYVALENT METAL SALT BATH, THEN WASHING THE SUBSTRATE WITH WATER, SUBJECTING IT TO A BATH OF DEIONIZED WATER, REMOVING IT FROM THE DEIONIZED WATER AND SQUEEZING EXCESS WATER OUT OF IT, THEN ALLOWING THE RESULTING WET FIBROUS SUBSTRATE TO STAND, WITH PERIODIC AGITATION, WITHIN AN AQUEOUS SOLUTION CONSISTING ESSENTIALLY OF WATER, A SILVER SALT DISSOLVED THEREIN, 3 TO 3.5 MOLS OF AMMONIA PER MOL OF SILVER SALT, 0.025 TO 0.1 PERCENT, BASED ON THE SOLUTION OF AN ANIONIC SURFACTANT, FORMALDEHYDE, AND SUFFICIENT ACID TO BRING THE SOLUTION TO A PH OF ABOUT 8.4 TO ABOUT 9.4 PRIOR TO INTRODUCTION OF THE SUBSTRATE, RINSING THE SILVER-COATED FIBROUS SUBSTRATE, AND DRYING IT, THE TIME OF THE SILVERING STEP BEING SUFFICIENT TO DEPOSIT A SUBSTANTIALLY CONTINUOUS COATING OF SILVER ON THE SUBSTRATE FIBER WITHOUT CHANGING THE MODULUS CHARACTERISTICS OF THE FIBER.
2. A method in accordance with claim 1 wherein said anionic surfactant is sodium lauryl sulfate.
3. A method in accordance with claim 1 wherein said nylon substrate is sensitized with an alcohol solution of a stannic salt.
4. A process for producing a silver-coated fibrous nylon substrate which comprises subjecting a fibrous nylon substrate to a sensitizing ethanol solution of a stannic salt, then washing the substrate with water, subjecting it to a bath of deionized water, removing it from the deionized water and squeezing excess water out of it, then allowing the resulting wet fibrous substrate to stand, with occasionally stirring within an aqueous solution consisting essentially of water, silver nitrate, 3 to 3.5 mols of ammonia per mol of silver nitrate, 0.025 to 0.1 percent, based on the solution of sodium lauryl sulfate, formaldehyde in an amount sufficient to reduce the silver nitrate to metallic silver, and sufficient acid to bring the solution to a pH of about 8.4 to about 9.4 prior to introduction of the substrate, rinsing the silver-coated fibrous substrate, and drying it, the time of the silvering step being sufficient to deposit a substantially continuous coating of silver on the substrate fiber without changing the modulus characteristics of the fiber.
US264097A 1970-09-28 1972-06-19 Conductive nylon substrates and method of producing them Expired - Lifetime US3877965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US264097A US3877965A (en) 1970-09-28 1972-06-19 Conductive nylon substrates and method of producing them

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US7624570A 1970-09-28 1970-09-28
US264097A US3877965A (en) 1970-09-28 1972-06-19 Conductive nylon substrates and method of producing them

Publications (1)

Publication Number Publication Date
US3877965A true US3877965A (en) 1975-04-15

Family

ID=26757851

Family Applications (1)

Application Number Title Priority Date Filing Date
US264097A Expired - Lifetime US3877965A (en) 1970-09-28 1972-06-19 Conductive nylon substrates and method of producing them

Country Status (1)

Country Link
US (1) US3877965A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986003050A1 (en) * 1984-11-13 1986-05-22 Raychem Corporation Shielding fabric and article
US4684762A (en) * 1985-05-17 1987-08-04 Raychem Corp. Shielding fabric
US4842932A (en) * 1988-03-08 1989-06-27 Basf Corporation Fiber-containing yarn possessing antimicrobial activity
US4925706A (en) * 1986-10-31 1990-05-15 Deutsche Automobilgesellschaft Mbh Process for the chemical metallizing of textile material
US5073984A (en) * 1990-02-28 1991-12-24 Nisshinbo Industries, Inc. Simple protective clothing for shielding from electromagnetic wave
US5395651A (en) * 1989-05-04 1995-03-07 Ad Tech Holdings Limited Deposition of silver layer on nonconducting substrate
US5547610A (en) * 1994-05-03 1996-08-20 Forbo Industries, Inc. Conductive polymeric adhesive for flooring containing silver-coated non-conductive fiber cores
US5694645A (en) * 1996-04-02 1997-12-09 Triplette; Walter W. Fencing garments made from stretchable, electrically conductive fabric
US5840245A (en) * 1992-04-15 1998-11-24 Johns Manville International, Inc. Air filter amd method for reducing the amount of microorganisms in contaminated air
US6395402B1 (en) 1999-06-09 2002-05-28 Laird Technologies, Inc. Electrically conductive polymeric foam and method of preparation thereof
US6579539B2 (en) 1999-12-22 2003-06-17 C. R. Bard, Inc. Dual mode antimicrobial compositions
US20030124256A1 (en) * 2000-04-10 2003-07-03 Omnishield, Inc. Omnishield process and product
US6596401B1 (en) 1998-11-10 2003-07-22 C. R. Bard Inc. Silane copolymer compositions containing active agents
US6703123B1 (en) * 2000-02-18 2004-03-09 Mitsubishi Materials Corporation Conductive fiber, manufacturing method therefor, apparatus, and application
WO2006023913A2 (en) 2004-08-23 2006-03-02 Noble Fiber Technologies, Llc Process of metallizing polymeric foam to produce an anti-microbial and filtration material
US20070116979A1 (en) * 2005-11-18 2007-05-24 Noble Fiber Technologies, Llc Conductive composites
US20070207335A1 (en) * 2004-07-30 2007-09-06 Karandikar Bhalchandra M Methods and compositions for metal nanoparticle treated surfaces
US20100101007A1 (en) * 2007-03-22 2010-04-29 Carraro S.R.L. Engineered textile yarn
US20100166832A1 (en) * 2008-12-29 2010-07-01 Edmund Michael Ingle Silver coated nylon fibers and associated methods of manufacture and use
CN109722017A (en) * 2017-10-30 2019-05-07 乐天尖端材料株式会社 Amilan polyamide resin composition and mechanograph comprising it
US11565513B2 (en) 2017-12-31 2023-01-31 Lotte Chemical Corporation Polyamide resin composition and molded article comprising the same
US11577496B2 (en) 2017-12-31 2023-02-14 Lotte Chemical Corporation Polyamide resin composition and molded article comprising the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2602757A (en) * 1948-04-09 1952-07-08 Morris S Kantrowitz Method and composition for producing silver coatings
US3245826A (en) * 1963-06-12 1966-04-12 Clevite Corp Magnetic recording medium and method of manufacture
US3300335A (en) * 1963-11-20 1967-01-24 Dow Chemical Co Electroless metal plating with foam
US3337350A (en) * 1963-01-11 1967-08-22 Mitsubishi Electric Corp Electroless silver plating
US3597267A (en) * 1969-02-26 1971-08-03 Allied Res Prod Inc Bath and process for chemical metal plating
US3666527A (en) * 1970-07-31 1972-05-30 Rca Corp Method of electroless deposition of metals with improved sensitizer
US3708313A (en) * 1971-05-21 1973-01-02 Du Pont Metalizing compositions

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2602757A (en) * 1948-04-09 1952-07-08 Morris S Kantrowitz Method and composition for producing silver coatings
US3337350A (en) * 1963-01-11 1967-08-22 Mitsubishi Electric Corp Electroless silver plating
US3245826A (en) * 1963-06-12 1966-04-12 Clevite Corp Magnetic recording medium and method of manufacture
US3300335A (en) * 1963-11-20 1967-01-24 Dow Chemical Co Electroless metal plating with foam
US3597267A (en) * 1969-02-26 1971-08-03 Allied Res Prod Inc Bath and process for chemical metal plating
US3666527A (en) * 1970-07-31 1972-05-30 Rca Corp Method of electroless deposition of metals with improved sensitizer
US3708313A (en) * 1971-05-21 1973-01-02 Du Pont Metalizing compositions

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986003050A1 (en) * 1984-11-13 1986-05-22 Raychem Corporation Shielding fabric and article
US4684762A (en) * 1985-05-17 1987-08-04 Raychem Corp. Shielding fabric
US4925706A (en) * 1986-10-31 1990-05-15 Deutsche Automobilgesellschaft Mbh Process for the chemical metallizing of textile material
US4842932A (en) * 1988-03-08 1989-06-27 Basf Corporation Fiber-containing yarn possessing antimicrobial activity
US5965204A (en) * 1989-05-04 1999-10-12 Ad Tech Holdings Limited Deposition of silver layer on nonconducting substrate
US5395651A (en) * 1989-05-04 1995-03-07 Ad Tech Holdings Limited Deposition of silver layer on nonconducting substrate
US6224983B1 (en) 1989-05-04 2001-05-01 Ad Tech Holdings Limited Deposition of silver layer on nonconducting substrate
US5747178A (en) * 1989-05-04 1998-05-05 Adtech Holding Deposition of silver layer on nonconducting substrate
US5073984A (en) * 1990-02-28 1991-12-24 Nisshinbo Industries, Inc. Simple protective clothing for shielding from electromagnetic wave
US5840245A (en) * 1992-04-15 1998-11-24 Johns Manville International, Inc. Air filter amd method for reducing the amount of microorganisms in contaminated air
US5547610A (en) * 1994-05-03 1996-08-20 Forbo Industries, Inc. Conductive polymeric adhesive for flooring containing silver-coated non-conductive fiber cores
US5694645A (en) * 1996-04-02 1997-12-09 Triplette; Walter W. Fencing garments made from stretchable, electrically conductive fabric
US6596401B1 (en) 1998-11-10 2003-07-22 C. R. Bard Inc. Silane copolymer compositions containing active agents
US6395402B1 (en) 1999-06-09 2002-05-28 Laird Technologies, Inc. Electrically conductive polymeric foam and method of preparation thereof
US6579539B2 (en) 1999-12-22 2003-06-17 C. R. Bard, Inc. Dual mode antimicrobial compositions
US6703123B1 (en) * 2000-02-18 2004-03-09 Mitsubishi Materials Corporation Conductive fiber, manufacturing method therefor, apparatus, and application
US20030124256A1 (en) * 2000-04-10 2003-07-03 Omnishield, Inc. Omnishield process and product
US8361553B2 (en) * 2004-07-30 2013-01-29 Kimberly-Clark Worldwide, Inc. Methods and compositions for metal nanoparticle treated surfaces
US20070207335A1 (en) * 2004-07-30 2007-09-06 Karandikar Bhalchandra M Methods and compositions for metal nanoparticle treated surfaces
WO2006023913A2 (en) 2004-08-23 2006-03-02 Noble Fiber Technologies, Llc Process of metallizing polymeric foam to produce an anti-microbial and filtration material
WO2006023913A3 (en) * 2004-08-23 2006-10-26 Noble Fiber Technologies Llc Process of metallizing polymeric foam to produce an anti-microbial and filtration material
US20070281093A1 (en) * 2004-08-23 2007-12-06 Chandra N S Process of metallizing polymeric foam to produce an anti-microbial and filtration material
US7666476B2 (en) 2004-08-23 2010-02-23 Noble Fiber Technologies, Llc Process of metallizing polymeric foam to produce an anti-microbial and filtration material
US20070116979A1 (en) * 2005-11-18 2007-05-24 Noble Fiber Technologies, Llc Conductive composites
US7297373B2 (en) 2005-11-18 2007-11-20 Noble Fiber Technologies, Llc Conductive composites
US20100101007A1 (en) * 2007-03-22 2010-04-29 Carraro S.R.L. Engineered textile yarn
US8495766B2 (en) * 2007-03-22 2013-07-30 Carraro S.R.L. Engineered textile yarn
US20100166832A1 (en) * 2008-12-29 2010-07-01 Edmund Michael Ingle Silver coated nylon fibers and associated methods of manufacture and use
CN109722017A (en) * 2017-10-30 2019-05-07 乐天尖端材料株式会社 Amilan polyamide resin composition and mechanograph comprising it
CN109722017B (en) * 2017-10-30 2022-05-17 乐天尖端材料株式会社 Polyamide resin composition and molded article comprising same
US11578206B2 (en) * 2017-10-30 2023-02-14 Lotte Advanced Materials Co., Ltd. Polyamide resin composition and molded article comprising the same
US11565513B2 (en) 2017-12-31 2023-01-31 Lotte Chemical Corporation Polyamide resin composition and molded article comprising the same
US11577496B2 (en) 2017-12-31 2023-02-14 Lotte Chemical Corporation Polyamide resin composition and molded article comprising the same

Similar Documents

Publication Publication Date Title
US3877965A (en) Conductive nylon substrates and method of producing them
US4042737A (en) Process for producing crimped metal-coated filamentary materials, and yarns and fabrics obtained therefrom
US3864148A (en) Process for production of metal-plated fibers
US5399382A (en) Electroless plated aramid surfaces
US5302415A (en) Electroless plated aramid surfaces and a process for making such surfaces
JPS6218670B2 (en)
US3000758A (en) Process for conferring antistatic properties and the resulting products
EP1130154B1 (en) Method for forming a conductive fibre
US5466485A (en) Process for batch-plating aramid fibers
US3686019A (en) Process for the manufacture of fibrous mixtures having superior antistatic characteristics
US5453299A (en) Process for making electroless plated aramid surfaces
US4645573A (en) Continuous process for the sequential coating of polyester filaments with copper and silver
DE2437157C2 (en) Process for silver-plating polyamide-based objects
US4645574A (en) Continuous process for the sequential coating of polyamide filaments with copper and silver
US5279899A (en) Sulfonated polyamides
US4643918A (en) Continuous process for the metal coating of fiberglass
US20030124256A1 (en) Omnishield process and product
US3792520A (en) Novel, sulfide-resistant antistatic yarn
JP4560750B2 (en) Metal-coated fibers and their applications
JP2001040578A (en) White electroconductive fiber, its production and device therefor
JPH02229268A (en) Fiber for chemical plating and production thereof
JPS61194272A (en) Production of metal plated fiber
JPH0377306B2 (en)
DE2147478A1 (en) Process for silver-plating nylon substrates
JPS62299567A (en) Production of metal coated fiber