US3875924A - Hydrazine fueled diver's heating system - Google Patents

Hydrazine fueled diver's heating system Download PDF

Info

Publication number
US3875924A
US3875924A US454657A US45465774A US3875924A US 3875924 A US3875924 A US 3875924A US 454657 A US454657 A US 454657A US 45465774 A US45465774 A US 45465774A US 3875924 A US3875924 A US 3875924A
Authority
US
United States
Prior art keywords
heat
generating means
fuel
heat generating
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US454657A
Inventor
John J Bayles
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Navy
Original Assignee
US Department of Navy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Department of Navy filed Critical US Department of Navy
Priority to US454657A priority Critical patent/US3875924A/en
Application granted granted Critical
Publication of US3875924A publication Critical patent/US3875924A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F7/02Compresses or poultices for effecting heating or cooling
    • A61F7/03Compresses or poultices for effecting heating or cooling thermophore, i.e. self-heating, e.g. using a chemical reaction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24VCOLLECTION, PRODUCTION OR USE OF HEAT NOT OTHERWISE PROVIDED FOR
    • F24V30/00Apparatus or devices using heat produced by exothermal chemical reactions other than combustion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F2007/0001Body part
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F2007/0054Heating or cooling appliances for medical or therapeutic treatment of the human body with a closed fluid circuit, e.g. hot water

Definitions

  • This invention relates to a water heater and more particularly to an apparatus for heating a liquid such as water to be used for the welfare and comfort ofdiver/- swimmers in cold water environments.
  • the present invention solves many of the above mentioned difficulties by providing a simple diver mounted apparatus which incorporates positive operation. Furthermore, this invention permits the diver/swimmer to be freed from any tether when the occasion arises. Desirable additional advantages are practicable when the invention is in use.
  • By-products of the fuel decomposition may be used to drive the pump which circulates a warmed liquid such as water through the tubing of the diver's garment or protective suit and may be used to warm the carbon dioxide absorbent canister when the diver is on a semiclosed or closed circuit mixed gas breathing system. The warming of the canister improves the efficiency of the absorbent.
  • the present apparatus for heating water or other suitable liquids for use in reducing the body heat losses of diver/swimmers in a cold water environment is simple, compact. serves more than one function and includes: a self-contained, self-pressurized fuel; a catalyst bed for decomposing the fuel exothermically; an insulated heat exchanger and a means for pumping heated water through a closed-circuit tubing divers dress.
  • an apparatus comprising a fuel canister; a means for pressurizing the fuel; a means for metering the fuel; a means for decomposing the fuel exothermically; a means for transferring the heat to a closed-circuit water system; a means for pumping the water through the closedcircuit; and exhausting the remaining heat over the CO absorbent canister for improving its efficiency.
  • the heat exchanger component is also provided with means for conserving heat.
  • the present heating system has use in other environments. such as in outer space.
  • Another object of the invention is to provide a water heating apparatus which will provide a means by which a reduction of diver/swimmer body heat losses will be achieved and overcome.
  • a further object of the invention is to provide means for untethered excursion by divers in a cold water environment to extend the range of underwater activity.
  • Still another object of the invention is to improve the efficiency of the CO absorbent in a divers mixed gas breathing system.
  • FIG. I is a diagrammatic view of one embodiment of the invention as worn by a diver.
  • FIG. 2 is a diagrammatic section view of the fuel container/heat exchanger of the present invention taken along line 22 of FIG. 1.
  • FIG. 3 is a diagrammatic view of another embodiment of the invention.
  • FIG. 1 an embodiment of the present invention com prising a fuel container/heat exchanger 10, a divers tubing suit 12, a water pump 14 on the end of fuel container l0, and a jacketed CO absorbent canister I6 carried on the divers back along with the air tank I7 that supplies air to a divers helmet which is not shown.
  • Water heated in fuel container 10 is circulated through suit 12 by means of a motor pump I4.
  • Tubing suit 12 is similar to the type used by astronauts. Heated water flows from the pump 14 to the suit via an outlet tube 18. Tubing in suit 12 normally has a manifold system, in the waist area, to distribute the heated water to several circuits throughout the suit. The water then returns to the fuel container/heat exchanger 10 via return tube 19.
  • FIG. 2 illustrates one embodiment of the fuel container/heat exchanger 10 where 20 is the fuel cavity enclosed by cylinder 22 and piston 24.
  • the fuel cavity 20 is filled with hydrazine through a port 26 shown closed by plug 28.
  • Fuel metering through orifice 30 is controlled by valve 32 which is operated by rotating con trol knob 34.
  • the O-rings 36 and 38 on piston 24 seal the fuel chamber at the piston.
  • Spring 40 acting under compression between cap 42 and piston 24 provides fuel pressurization above ambient pressure at any underwater depth because the chamber 44 containing spring 40 is open to ambient pressures through port 46.
  • Screws 48 secure cap 42 to the heat exchanger housing 50, by threading into drilled and tapped receivers 52.
  • the heat exchanger housing 50 is screwed onto cylinder 22 at 53 to assemble and retain cylinder 54 and end plate 56 in compression.
  • O-ring seal 58 ensures the integrity of the catalyst bed chamber 60 containing the catalyst 62 which decomposes the hydrazine fuel.
  • ramic pellets coated with Iridium are used as the catalyst.
  • the hydrazine will break down by exothermic reaction to form primarily Hydrogen, NH gas and some Nitrogen at around l,200F.
  • the resulting hot gases pass through multiple peripheral orifices 64 into the heat exchanger compartment 66 where heat exchanger coil 68 absorbs heat and transfers it to water, e.g., circulating through the coil from the inlet side 70 to the outlet side 72.
  • O-ring seal 74 ensures the integrity of the heat exchanger compartment 66.
  • Insulation 75, 76, 77 and 78 isolate heat exchanger coil 68 and catalyst bed 60, 62 and conserve the heat generated by the hydrazine fuel decomposition.
  • Insulation 78 can be a split disc.
  • Exhausting gas is ported through 80 where it enters motor and pump 14.
  • the hot gases operate a turbine motor. for example, which drives the pump.
  • Motor and pump 14 forces the heated water from heat exchanger coil 68 through the tubing system of the divers suit. Heated water exits the heat exchanger at 72 passes through motor and pump 14 into the suit via a valved quick connect tube 18.
  • the heated water is circulated through the tubing of the suit and then exits from the suit via another valved quick disconnect tube 19 for return to the heat exchanger 68.
  • the water may be pumped as it exits or as it returns to the heat exchanger, as a matter of choice.
  • the gases are then vented away through valve 88. Valve 88, may otherwise be located at the exit 84 from the motor and pump.
  • the CO absorbent typically is a combination of barium, calcium and potassium hydroxides.
  • the heated water is pumped from heat exchanger 10 into the heat circulation system of the diver suit 90 via a valved quick disconnect tube 18, as in FIG. 1, and after circulating through the suit is returned via valved quick disconnect tube 19 to the heat exchanger.
  • gas exhaust tube 86 can be connected to the jacket about a C0 absorbent canister in a helmet 92 as shown in FIG. 3, and the gases vented away through a valve 94.
  • the diver air supply is provided to helmet 92 through an air supply line 96 from the surface.
  • air to the helmet can be supplied from air tanks carried on the divers back, as in FIG. 1.
  • a tether line is provided to supply air from the surface, such as in FIG. 3, another source of energy, e.g.. electric, when desired, could be provided to power the motor and pump 14 rather than using the hot gases from the heat exchanger.
  • another source of energy e.g.. electric
  • the multiple use of the hot gases from the heat exchanger is an added advantage ofthis invention.
  • the hot gases in addition to heating the water which in turn heats the diver suit, also drive the motor and pump. and heat the CO canister, thereby eliminating the need for an umbilical line to the surface for providing power to the motor and pump.
  • a self-contained, portable heating system for pro viding warmth to a wearer in a low temperature environment comprising:
  • a body protective suit having a heat distributing means therein for distribution of heat throughout the suit;
  • a heat generating means connected to the heat dis tributing means of said protective suit for providing a portable heat source therefor;
  • pump means cooperating with said heat generating means and heat distributing means for pumping said heat transfer fluid through said heat generating means and throughout the heat distributing means of said protective suit;
  • said heat generating means comprising:
  • a heat exchanger housing including a heat exchanger coil through which said heat transfer fluid is circulated
  • a fuel metering means between said fuel container and said catalyst bed for controlling the flow of hydrazine fuel to said catalyst where it is converted by exothermic reaction into hot gases
  • a breathing system including a C0 absorbent canister also carried by the wearer of said protective suit wherein hot gases exhausted from said heat generating means are used to heat the CO absorbent canister for more efficient operation thereof.
  • a pump means attached to said expended hot gas exhaust means operates to pump the heat transfer fluid through 6 said heat exchanger coil for circulation throughout said system following heating of said CO canister. heat distributing means.
  • said fuel metering 7.
  • an exhaust port is means is an adjustable valved passageway. provided for venting said expended hot gases from the

Abstract

Apparatus for heating water used for the welfare of divers in cold water ironments comprising a hydrazine fuel canister, a means of pressurizing the fuel, a means of transferring heat from the fuel to a closed water system and a pump device for circulating water through a closed circuit in the diver''s suit. Extra heat may be used in heating a CO.sub.2 absorbent canister.

Description

United States Patent 11 1 Bayles 1 Apr. 8, 1975 1 1 HYDRAZINE FUELED DIVERS HEATING 3.182.653 5/1965 Mauleds et a1. 126/204 SYSTEM 3.385.286 5/1968 Jones 126/204 3,556,205 1/1971 Harwood 126/204 5] In nt r: John J. Bayles. Oxnard. Calif. 3.583.386 6/1971 Slack 126/204 [73] Assignee: The United Suites of America as 31730.90) 5/1973 Armstrong et a1 60/218 l d b (h t flh 2 :3 w f g an, 0 8 Primary Examiner-William F. ODea I Assistant Examiner-Peter D. Ferguson 1 1 Flledi fl 1974 Attorney. Agent, or Firm-Richard S. Sciascia; Joseph M. St. Amand AB TRACT [52] US. Cl. 126/204; 60/218; 126/263; [57] S 128/|42; 128/19] R Apparatus for heatmg water used for the welfare of 511 161. c1. A6lf 7/06 divers cold Water environments wmprising a y 5 Fidd f Search 60/218 126/204, zine fuel canister, a means of pressurizing the fuel, a 123/142 191 R means of transferring heat from the fuel to a closed water system and a pump device for circulating water 5 References Cited through a closed circuit in the divers suit. Extra heat UNITED STATES PATENTS may be used in heating a C0 absorbent canister.
311111.595 3/1963 Ruse 60/219 x 8 Claims. 3 Drawing Figures /-|O 54 52 48 4o 77 5s 64 so 76 74 '8 TO 4 T2 HEATED WATER W 46 26 78 1 HEATED v ATER- 84 ge 32 8O 75 HO sAs HOT GAS VENT PUMP 34 i E 62 1L g 1. L 1 L. H 24 r13 3 1 38 RETURN WATER w. E k\\\ M13 lg PATENIEUAPR 81975 SUCH 2 2 llllll mm ms ON m 20E 5?; zmnEm v EOPOE mh om mm; B HEB:
EMF/ES owbqmI HYDRAZINE FUELED DIVERS HEATING SYSTEM BACKGROUND OF THE INVENTION This invention relates to a water heater and more particularly to an apparatus for heating a liquid such as water to be used for the welfare and comfort ofdiver/- swimmers in cold water environments.
For military and commercial purposes it is becoming increasingly desirable to place divers in hostile cold water environments below the ocean surface, sometimes at great depths. Hence the necessity to provide means for conserving the divers body heat to improve his efficiency and effectually preserve his life in extreme circumstance. Various means have been approached, with varying degrees of success. An attempt to solve the problem through use of an isotopic heating element has proved both impracticable and exorbitantly expensive. A method utilizing heat of crystallization is still in an early experimental stage. A more suc cessful method has heated water in a fuel fired water heater and the heated water pumped from the surface to the diver. Electrical grid resistance suits have been experimented with and a diver mounted electrical water heater has received some attention. Each of these last methods requires that the diver/swimmer be tethered by one or more umbilicals. Use of umbilicals presents a number of disadvantages including reduced efficiency of the systems and restriction of diver capability.
The present invention solves many of the above mentioned difficulties by providing a simple diver mounted apparatus which incorporates positive operation. Furthermore, this invention permits the diver/swimmer to be freed from any tether when the occasion arises. Desirable additional advantages are practicable when the invention is in use. By-products of the fuel decomposition may be used to drive the pump which circulates a warmed liquid such as water through the tubing of the diver's garment or protective suit and may be used to warm the carbon dioxide absorbent canister when the diver is on a semiclosed or closed circuit mixed gas breathing system. The warming of the canister improves the efficiency of the absorbent.
SUMMARY OF THE INVENTION The present apparatus for heating water or other suitable liquids for use in reducing the body heat losses of diver/swimmers in a cold water environment is simple, compact. serves more than one function and includes: a self-contained, self-pressurized fuel; a catalyst bed for decomposing the fuel exothermically; an insulated heat exchanger and a means for pumping heated water through a closed-circuit tubing divers dress.
Advantages over other diver heating systems are achieved in the present invention by providing an apparatus comprising a fuel canister; a means for pressurizing the fuel; a means for metering the fuel; a means for decomposing the fuel exothermically; a means for transferring the heat to a closed-circuit water system; a means for pumping the water through the closedcircuit; and exhausting the remaining heat over the CO absorbent canister for improving its efficiency. The heat exchanger component is also provided with means for conserving heat. In addition to use underwater, the present heating system has use in other environments. such as in outer space.
OBJECTS OF THE INVENTION It is an object of the invention to provide a water heating apparatus which is simply constructed, reliable and compact.
Another object of the invention is to provide a water heating apparatus which will provide a means by which a reduction of diver/swimmer body heat losses will be achieved and overcome.
A further object of the invention is to provide means for untethered excursion by divers in a cold water environment to extend the range of underwater activity.
Still another object of the invention is to improve the efficiency of the CO absorbent in a divers mixed gas breathing system.
Other objects, advantages and novel features of the invention will become apparent from the following description of the invention when considered in conjunc tion with the accompanying drawings wherein:
BRIEF DESCRIPTION OF THE DRAWINGS FIG. I is a diagrammatic view of one embodiment of the invention as worn by a diver.
FIG. 2 is a diagrammatic section view of the fuel container/heat exchanger of the present invention taken along line 22 of FIG. 1.
FIG. 3 is a diagrammatic view of another embodiment of the invention.
DESCRIPTION OF THE PREFERRED EMBODIMENT Referring now to the drawings, wherein like reference numerals designate like parts, there is shown in FIG. 1 an embodiment of the present invention com prising a fuel container/heat exchanger 10, a divers tubing suit 12, a water pump 14 on the end of fuel container l0, and a jacketed CO absorbent canister I6 carried on the divers back along with the air tank I7 that supplies air to a divers helmet which is not shown. Water heated in fuel container 10 is circulated through suit 12 by means of a motor pump I4.
Tubing suit 12 is similar to the type used by astronauts. Heated water flows from the pump 14 to the suit via an outlet tube 18. Tubing in suit 12 normally has a manifold system, in the waist area, to distribute the heated water to several circuits throughout the suit. The water then returns to the fuel container/heat exchanger 10 via return tube 19.
FIG. 2 illustrates one embodiment of the fuel container/heat exchanger 10 where 20 is the fuel cavity enclosed by cylinder 22 and piston 24. The fuel cavity 20 is filled with hydrazine through a port 26 shown closed by plug 28. Fuel metering through orifice 30 is controlled by valve 32 which is operated by rotating con trol knob 34. The O- rings 36 and 38 on piston 24 seal the fuel chamber at the piston. Spring 40 acting under compression between cap 42 and piston 24 provides fuel pressurization above ambient pressure at any underwater depth because the chamber 44 containing spring 40 is open to ambient pressures through port 46.
Screws 48 secure cap 42 to the heat exchanger housing 50, by threading into drilled and tapped receivers 52. The heat exchanger housing 50 is screwed onto cylinder 22 at 53 to assemble and retain cylinder 54 and end plate 56 in compression. O-ring seal 58 ensures the integrity of the catalyst bed chamber 60 containing the catalyst 62 which decomposes the hydrazine fuel. Ce-
ramic pellets coated with Iridium, for example, are used as the catalyst. Depending upon the design of catalyst bed 60, the hydrazine will break down by exothermic reaction to form primarily Hydrogen, NH gas and some Nitrogen at around l,200F. As the hydrazine fuel from cavity 20 is metered at valve 32, by manipulation of control 34, through orifice 30 into catalyst bed 60, the resulting hot gases pass through multiple peripheral orifices 64 into the heat exchanger compartment 66 where heat exchanger coil 68 absorbs heat and transfers it to water, e.g., circulating through the coil from the inlet side 70 to the outlet side 72. O-ring seal 74 ensures the integrity of the heat exchanger compartment 66. Insulation 75, 76, 77 and 78 isolate heat exchanger coil 68 and catalyst bed 60, 62 and conserve the heat generated by the hydrazine fuel decomposition. Insulation 78 can be a split disc.
Exhausting gas is ported through 80 where it enters motor and pump 14. The hot gases operate a turbine motor. for example, which drives the pump. Motor and pump 14 forces the heated water from heat exchanger coil 68 through the tubing system of the divers suit. Heated water exits the heat exchanger at 72 passes through motor and pump 14 into the suit via a valved quick connect tube 18. The heated water is circulated through the tubing of the suit and then exits from the suit via another valved quick disconnect tube 19 for return to the heat exchanger 68. The water may be pumped as it exits or as it returns to the heat exchanger, as a matter of choice.
The exhausting gases which pass through and drive motor and pump 14 exit at vent 84 where the gases can pass via tubing 86 to the jacket about the CO absorbent canister 16 where the hot gases are used to heat the CO canister. Heating of the CO canister serves to improve the operation thereof since the absorbent in the canister absorbs more CO in the breathing system air supply 17 when warm than it does when cold. The gases are then vented away through valve 88. Valve 88, may otherwise be located at the exit 84 from the motor and pump. The CO absorbent typically is a combination of barium, calcium and potassium hydroxides.
As illustrated in FIG. 3, the heated water is pumped from heat exchanger 10 into the heat circulation system of the diver suit 90 via a valved quick disconnect tube 18, as in FIG. 1, and after circulating through the suit is returned via valved quick disconnect tube 19 to the heat exchanger. Where an air supply back pack is not used, gas exhaust tube 86 can be connected to the jacket about a C0 absorbent canister in a helmet 92 as shown in FIG. 3, and the gases vented away through a valve 94. As shown in FIG. 3, if desired, the diver air supply is provided to helmet 92 through an air supply line 96 from the surface. However, air to the helmet can be supplied from air tanks carried on the divers back, as in FIG. 1.
Where a tether line is provided to supply air from the surface, such as in FIG. 3, another source of energy, e.g.. electric, when desired, could be provided to power the motor and pump 14 rather than using the hot gases from the heat exchanger. However, the multiple use of the hot gases from the heat exchanger is an added advantage ofthis invention. In the present system. the hot gases, in addition to heating the water which in turn heats the diver suit, also drive the motor and pump. and heat the CO canister, thereby eliminating the need for an umbilical line to the surface for providing power to the motor and pump.
Obviously many modifications and variations of the present invention are possible in the light of the above teachings. It is therefore to be understood that within the scope of the appended claims the invention may be practiced otherwise than as specifically claimed.
What is claimed is:
l. A self-contained, portable heating system for pro viding warmth to a wearer in a low temperature environment, comprising:
a. a body protective suit having a heat distributing means therein for distribution of heat throughout the suit;
b. a heat generating means connected to the heat dis tributing means of said protective suit for providing a portable heat source therefor;
0. heat transfer fluid operatively associated with said heat generating means and said heat distributing means;
d. pump means cooperating with said heat generating means and heat distributing means for pumping said heat transfer fluid through said heat generating means and throughout the heat distributing means of said protective suit;
e. said heat generating means comprising:
l. a fuel container containing hydrazine fuel,
2. a heat exchanger housing including a heat exchanger coil through which said heat transfer fluid is circulated,
3. an enclosed catalyst bed containing suitable catalyst material for exothermic decomposition of said hydrazine fuel connected between said fuel container and said heat exchanger housing,
4. a fuel metering means between said fuel container and said catalyst bed for controlling the flow of hydrazine fuel to said catalyst where it is converted by exothermic reaction into hot gases,
5. passageways between said catalyst bed and said heat exchanger housing whereby the hot gases generated are permitted to flow about said heat exchanger coil for heating the heat transfer fluid circulated therein f. means for exhausting expended hot gases from said heat generating means;
g. a breathing system including a C0 absorbent canister also carried by the wearer of said protective suit wherein hot gases exhausted from said heat generating means are used to heat the CO absorbent canister for more efficient operation thereof.
2. A system as in claim 1, wherein hot gases from said heat generating means are used to operate said pump means.
3. A heat generating means as in claim I wherein said catalyst material consists of iridium coated ceramic pellets.
4. A heat generating means as in claim I wherein said hot generated gases are at a temperature of about ],200F.
5. A heat generating means as in claim 1 wherein said heat exchanger and catalyst bed are insulated to conserve heat generated by said hydrazine fuel decomposition.
6. A heat generating means as in claim 1 wherein a pump means attached to said expended hot gas exhaust means operates to pump the heat transfer fluid through 6 said heat exchanger coil for circulation throughout said system following heating of said CO canister. heat distributing means. 8. A system as in claim I wherein said fuel metering 7. A system as in claim 1 wherein an exhaust port is means is an adjustable valved passageway. provided for venting said expended hot gases from the

Claims (8)

1. A self-contained, portable heating system for providing warmth to a wearer in a low temperature environment, comprising: a. a body protective suit having a heat distributing means therein for distribution of heat throughout the suit; b. a heat generating means connected to the heat distributing means of said protective suit for providing a portable heat source therefor; c. heat transfer fluid operatively associated with said heat generating means and said heat distributing means; d. pump means cooperating with said heat generating means and heat distributing means for pumping said heat transfer fluid through said heat generating means and throughout the heat distributing means of said protective suit; e. said heat generating means comprising: 1. a fuel container containing hydrazine fuel, 2. a heat exchanger housing including a heat exchanger coil through which said heat transfer fluid is circulated, 3. an enclosed catalyst bed containing suitable catalyst material for exothermic decomposition of said hydrazine fuel connected between said fuel container and said heat exchanger housing, 4. a fuel metering means between said fuel container and said catalyst bed for controlling the flow of hydrazine fuel to said catalyst where it is converted by exothermic reaction into hot gases, 5. passageways between said catalyst bed and said heat exchanger housing whereby the hot gases generated are permitted to flow about said heat exchanger coil for heating the heat transfer fluid circulated therein f. means for exhausting expended hot gases from said heat generating means; g. a breathing system including a CO.sub.2 absorbent canister also carried by the wearer of said protective suit wherein hot gases exhausted from said heat generating means are used to heat the CO.sub.2 absorbent canister for more efficient operation thereof.
2. A system as in claim 1, wherein hot gases from said heat generating means are used to operate said pump means.
3. A heat generating means as in claim 1 wherein said catalyst material consists of iridium coated ceramic pellets.
4. A heat generating means as in claim 1 wherein said hot generated gases are at a temperature of about 1,200.degree.F.
5. A heat generating means as in claim 1 wherein said heat exchanger and catalyst bed are insulated to conserve heat generated by said hydrazine fuel decomposition.
6. A heat generating means as in claim 1 wherein a pump means attached to said expended hot gas exhaust means operates to pump the heat transfer fluid through said heat exchanger coil for circulation throughout said heat distributing means.
7. A system as in claim 1 wherein an exhaust port is provided for venting said expended hot gases from the system following heating of said CO.sub.2 canister.
8. A system as in claim 1 wherein said fuel metering means is an adjustable valved passageway.
US454657A 1974-03-25 1974-03-25 Hydrazine fueled diver's heating system Expired - Lifetime US3875924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US454657A US3875924A (en) 1974-03-25 1974-03-25 Hydrazine fueled diver's heating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US454657A US3875924A (en) 1974-03-25 1974-03-25 Hydrazine fueled diver's heating system

Publications (1)

Publication Number Publication Date
US3875924A true US3875924A (en) 1975-04-08

Family

ID=23805532

Family Applications (1)

Application Number Title Priority Date Filing Date
US454657A Expired - Lifetime US3875924A (en) 1974-03-25 1974-03-25 Hydrazine fueled diver's heating system

Country Status (1)

Country Link
US (1) US3875924A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4157270A (en) * 1977-09-12 1979-06-05 The United States Of America As Represented By The Secretary Of The Army Hydrogen gas generator from hydrazine/ammonia
US4223661A (en) * 1979-08-13 1980-09-23 Sergev Sergius S Portable diver heat generating system
US4236502A (en) * 1976-06-16 1980-12-02 Kuehl Hans Portable heating system
US5105799A (en) * 1991-09-25 1992-04-21 Wigdahl Arthur G Portable fluid heater
US20040149422A1 (en) * 2003-02-03 2004-08-05 Jungwirth Curtis A. Wine must temperature control apparatus
US20090294097A1 (en) * 2008-05-27 2009-12-03 Rini Technologies, Inc. Method and Apparatus for Heating or Cooling
US8336536B1 (en) * 2008-06-23 2012-12-25 The United States Of America As Represented By The Secretary Of The Navy Active heating system for underwater diver
US20130305438A1 (en) * 2011-02-02 2013-11-21 Fraunhofer-Gesellschaft Zur Foerderung Der Angewan Dten Forschung E.V. Protective suit for use in a cooling chamber

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3081595A (en) * 1960-06-15 1963-03-19 Thompson Ramo Wooldridge Inc Rocket propulsion method employing catalytic decomposition of hydrazine
US3182653A (en) * 1961-12-05 1965-05-11 Avien Inc Lithium hydride body heating device
US3385286A (en) * 1967-01-25 1968-05-28 Westinghouse Electric Corp Hydrogen-oxygen catalytic heater
US3556205A (en) * 1968-12-02 1971-01-19 Aro Corp Underwater heat generator
US3583386A (en) * 1969-05-29 1971-06-08 Don S Slack Heating units
US3730909A (en) * 1966-04-05 1973-05-01 Shell Oil Co Hydrazine decomposition catalyst

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3081595A (en) * 1960-06-15 1963-03-19 Thompson Ramo Wooldridge Inc Rocket propulsion method employing catalytic decomposition of hydrazine
US3182653A (en) * 1961-12-05 1965-05-11 Avien Inc Lithium hydride body heating device
US3730909A (en) * 1966-04-05 1973-05-01 Shell Oil Co Hydrazine decomposition catalyst
US3385286A (en) * 1967-01-25 1968-05-28 Westinghouse Electric Corp Hydrogen-oxygen catalytic heater
US3556205A (en) * 1968-12-02 1971-01-19 Aro Corp Underwater heat generator
US3583386A (en) * 1969-05-29 1971-06-08 Don S Slack Heating units

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4236502A (en) * 1976-06-16 1980-12-02 Kuehl Hans Portable heating system
US4157270A (en) * 1977-09-12 1979-06-05 The United States Of America As Represented By The Secretary Of The Army Hydrogen gas generator from hydrazine/ammonia
US4223661A (en) * 1979-08-13 1980-09-23 Sergev Sergius S Portable diver heat generating system
US5105799A (en) * 1991-09-25 1992-04-21 Wigdahl Arthur G Portable fluid heater
US20040149422A1 (en) * 2003-02-03 2004-08-05 Jungwirth Curtis A. Wine must temperature control apparatus
US20090294097A1 (en) * 2008-05-27 2009-12-03 Rini Technologies, Inc. Method and Apparatus for Heating or Cooling
US8336536B1 (en) * 2008-06-23 2012-12-25 The United States Of America As Represented By The Secretary Of The Navy Active heating system for underwater diver
US20130305438A1 (en) * 2011-02-02 2013-11-21 Fraunhofer-Gesellschaft Zur Foerderung Der Angewan Dten Forschung E.V. Protective suit for use in a cooling chamber
US9381385B2 (en) * 2011-02-02 2016-07-05 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Protective suit for use in a cooling chamber
EP2670265B1 (en) * 2011-02-02 2019-04-03 Fraunhofer-Gesellschaft zur Förderung der Angewandten Forschung e.V. Protective suit for use in a cooling chamber

Similar Documents

Publication Publication Date Title
US6463925B2 (en) Hot water heater for diver using hydrogen catalytic reactions
US3367319A (en) Apparatus for heating a diver clothed in a suit and immersed in cold water
SU474173A1 (en) Gas and Heat Suit
US4294225A (en) Diver heater system
GB1581589A (en) Protective suits
US3875924A (en) Hydrazine fueled diver's heating system
US3898978A (en) Breathing gas heater
US4191028A (en) Dry ice, liquid pulse pump cooling system
US3227208A (en) Thermally stabilized environmental system
US3569669A (en) Portable heat storage unit
US3815573A (en) Diving suit heater
US3599625A (en) Deep submergence heating system
US4224804A (en) Hot-water supply for submarines and the like
GB1316794A (en) Combined heating and cooling system
US3572314A (en) Heated diving suit
US3648289A (en) Deep-sea dive suit
GB1186292A (en) Garment with a Fluid Heating System.
US3182653A (en) Lithium hydride body heating device
US4014384A (en) Breathing gas heater for use by a diver comprising double walled cylinder and inner container filled with hot liquid prior to use
US3831594A (en) Life support system
US4167932A (en) Diver heater system
US3583386A (en) Heating units
US4430988A (en) Heating of underwater equipment
US3670518A (en) Garment cooling system
US3556205A (en) Underwater heat generator