US3858202A - Pushbutton keyboard system - Google Patents

Pushbutton keyboard system Download PDF

Info

Publication number
US3858202A
US3858202A US00347026A US34702673A US3858202A US 3858202 A US3858202 A US 3858202A US 00347026 A US00347026 A US 00347026A US 34702673 A US34702673 A US 34702673A US 3858202 A US3858202 A US 3858202A
Authority
US
United States
Prior art keywords
conductive
preselected
paths
support
conductive elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00347026A
Inventor
H Boulanger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texas Instruments Inc
Original Assignee
Texas Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texas Instruments Inc filed Critical Texas Instruments Inc
Priority to US00347026A priority Critical patent/US3858202A/en
Priority to US05/492,670 priority patent/US4163125A/en
Application granted granted Critical
Publication of US3858202A publication Critical patent/US3858202A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H13/00Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch
    • H01H13/50Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a single operating member
    • H01H13/64Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a single operating member wherein the switch has more than two electrically distinguishable positions, e.g. multi-position push-button switches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06CDIGITAL COMPUTERS IN WHICH ALL THE COMPUTATION IS EFFECTED MECHANICALLY
    • G06C7/00Input mechanisms
    • G06C7/02Keyboards
    • G06C7/08Keyboards with one set of keys for all denominations, e.g. ten-key board
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H13/00Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch
    • H01H13/70Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard
    • H01H13/7006Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard comprising a separate movable contact element for each switch site, all other elements being integrated in layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H13/00Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch
    • H01H13/70Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard
    • H01H13/702Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard with contacts carried by or formed from layers in a multilayer structure, e.g. membrane switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2203/00Form of contacts
    • H01H2203/006Staples

Abstract

A keyboard system in which a plurality of spaced sets of conductive members including U and rivet shaped are arranged at a surface of a support in electrical communication with conductive paths on an opposite surface of the support. A plurality of actuatable conductive elements, one for each set of conductive members, are provided to establish bridging electrical connection between conductive members of a set upon application of a preselected deflecting force to the conductive elements.

Description

United States Patent [1 1 Boulanger PUSHBUTTON KEYBOARD SYSTEM [75] Inventor: Henry J. Boulanger, Cumberland,
[73] Assignee: Texas Instruments Incorporated,
Dallas, Tex.
The portion of the term of this patent subsequent to Apr. 10, 1990, has been disclaimed.
Apr. 2 1973 Notice:
22 Filed:
' [21] Appl. No.: 347,026
- Related US. Application Data 7 [62] Division of Ser. No. 148,503, June 1, 1971, Pat. No.
52 us. Cl. 340/365 R, 340/365 A, 200/1 R,
g h 200/5 A 51 rm. c1 H04g 3/00 58 Field or Search 340/365 R; 178/17 0;
179/90 K; 197/98; 200/1 R, 5 R, 5 A, 11 K, 159 R, 166 ED, 211
[56] References Cited UNITED STATES PATENTS 2,848,568 8/1958 Berkeley 200/11 K 111 3,858,202 1*Dec, 31, 1974 3,600,528 8/1971 Leposavic 200/159 R 3,617,660 11/1971 Krakinowski... 200/1 R 3,684,842 8/1972 Boulanger 200/5 A 3,725,907 4/1973 Boulanger v 340/365 A 3,808,384 4/1974 Boulanger 340/365 Primary EXaminerJohn W. Caldwell Assistant ExaminerRichard P. Lange Attorney, Agent, or Firm-John A. Haug;'James P. McAndrews [57] ABSTRACT A keyboard system in which a plurality of spaced sets of conductive members including U and rivet shaped are arranged at a surface of a support in electrical Communication with conductive paths on an opposite surface of the support. A plurality of actuatable conduetive elements, one for each set of conductive members, are provided to establish bridging electrical connection between conductive members of a set upon application of a preselected deflecting force to the conductive elements.
3 Claims, 7 Drawing Figures The present invention relates generally to keyboard systems and more particularly is directed to an im-' proved pushbutton keyboard system for establishing electrical connections in response to actuation.
In resent years numerous types of keyboard systems have been developed for use in transmitting coded electrical information for incorporation in various types of business machines such as electronic calculators. Typically such keyboard systems utilize pushbnutton members appropriately symbolized in a manner indicative of a numeric or mathematical function gener- FIG. 4 is an exploded perspective view of an alternative embodiment of a keyboard system similar to that illustrated in FIG. 1;
FIG. 5 is a vertical sectional view through the keyboard system illustrated in FIG. 4;
FIG. 6 is a plan view of the underside of the system illustrated in FIG. 5; and
FIG. 7 is a perspective view illustrating a typical variety of electronic calculator incorporating a keyboard system such as that illustrated in the preceding embodiments.
Referring generally to the drawings, wherein corresponding-elements in the various views are indicated by ated in response to depression of the pushbutton member to establish electrical connections between various conductive. paths and/or various circuit elements coupled to the system in order to achieve a desired function. However, particularly as the cost of associated equipment has decreased dramatically in recent years coupled with an increase in the use and availability of various device incorporating such systems the need has arisen for extremely inexpensive readily manufacturable keyboardsyste'mswhich may be economically and accurately produced on amass production basis with a high degree of accurate repeatability. For example, the need for miniaturized electronic calculators, units for addressing-computer systems, credit cards verifiers, etc. which necessarily require various types of keyboard arrangements has enormously increased in recent years requiring the provision of inexpensive and extremely durable keyboard systems which maybe manufactured in a simple and'economical manner on a relatively large volume basis. Particularly, in the computer field the need for durable, inexpensive keyboard systems which can accurately address electrical information either directly toa system or through a remote terminal or the like, while occupying a minimal amount of space, has become increasingly urgent.
Accordingly,it is' an object of the present invention to provide an improved keyboard system adapted for selectively establishing electrical interconnections in response to mechanical actuation.
It is another object of the present invention to provide an improved pushbutton keyboard system in which actuation of individual pushbutton members establishes positive electrical interconnections for transmitting electrical information.
It is a further object of the present invention to provide an improved miniaturized pushbutton keyboard system which is relatively rugged and durable and which is extremely economical to fabricate on a mass production basis, and which is adapted for incorporation in various devices, such as electronic calculators, computer systems, etc.
Various additional objects and advantages of the present invention will become readily apparent from the following detailed description and accompanying drawings wherein:
FIG. 1 is an exploded perspective view illustrating a preferred'embodiment of -a keyboard system in accordance with the present invention;
FIG. 2 is a vertical sectional view through the key board system illustrated in FIG. 1;
FIG. 3 is a partial plan view of the underside of the system illustrated in FIG. 2;
common reference numerals, and in particular initially to FIGS. 1-3, a keyboard system 10 in accordance with the present invention is illustrated. The system generally includes a non-conductive or insulating support member 12 having a generally planar first surface 14 on which a plurality of conductive paths 16 are disposed and arranged in a preselected pattern for transmitting electrical information in response to selective interconnections of portions thereof. At a second opposite surface 18 of the insulating support member 12 a plurality of sets 20 of conductive supportmembers are provided which are arranged in a preselected configuration. in electrical communication with first preselected portions 16a of the conductive path 16. Associated with each of the conductive support-members are conductive contact members 22 similarly arranged at the second surface 18 of the insulating supporting layer in electrically isolated relationship with the conductive support members and'in electrical communication with second preselected portions 16b of the conductive paths 16. A plurality of selectively actuatable conductive elements 24 are also arranged adjacent the second surface 18 of the insulating support layer and are respectively .supported by and maintained in continuous electrical contact with each of the sets 20 of conductive support members and in selective disengagement with the associated conductive contact members 22. The conductive elements 24 are adapted to be deflected into a position of engagement with the conductive contact members 22 in response to the application of a preselected deflecting force thereto so as to establish a bridging electrical contact between one of the sets 20 of conductive support members and its associated conductive contact member 22, thereby electrically connecting the first and second preselected portions 16a,
' 16b of the conductive paths 16. Actuation of the conductive elements 24 so as to effect the establishment of the aforementioned bridging electrical connection may be effected in various ways, but in the illustrated embodiment it is accomplished by the provision of a plurality of manually'actuable pushbutton members 26 which are carried in a suitable casing 28 supported adjacent the second surface 18 of the insulating support member 12 whereby the application of a preselected deflecting force to the conductive elements 24 is effected by actuation of a selected pushbutton member 26 by the application of a mechanical force thereto such as through the fingertips of an operator. As a result of manual actuation of a selected pushbutton member 26 the preselected deflecting force is applied to the conductive element to effect deflection thereof into a position of engagement with the conductive contact member 22, thereby establishing the bridging electrical connection between the set of conductive support circuit shown in phantom and indicated generally by the reference numeral 30 may be carried by the insulat- .ing support member 12 and suitably connected to selected portions of the conductive paths 16 so as to process the signals established by the interconnection of various portions of the conductive paths in response to the establishment of the bridging electrical connections. Similarly, if desired, a power supply (not shown) may be also carried on th'e support member 12 to provide a self-contained composite unit, or an external source of power may be utilized as the sole source of power or as an additional or alternative energy source.
i More particularly, the insulating support'member 12 is fabricated ofa relatively rigid, non-conductive mate rialwhich is: adapted to provide support for the keyboard s'ystem, as well as associated electronic circuitry, power supplies, display means, etc. when the unit is to be incorporated in an electronic calculator system, a, computer input system, etc. In this regard the member 12 may be fabricated ofa suitable, relatively rigid, insulation material such as epoxy bonded glass cloth generally under the trade description G- by the Formica Company. The material may have a thickness of ap proximately l/ 16th inch which has been generally found sufficient to provide adequate mechanical strength for a miniaturized device of this nature. As previously mentioned, the conductive paths l6 including the first andv second preselected portions thereof l6a,l6b respectively are arranged in a desired pattern at the first surface 14 (the underside of the support member l2,'as illustrated in FIG. 2) in order to permit the transmission of electrical information inresponse to selective interconnection of various portions of the conductive paths upon the establishment of the bridging electrical connections. The pattern of conductive paths may be deposited on the surface 14 of the support layer utilizing conventional printed circuit art techniques, such as masking, etching, engraving etc. In addition, a plurality 'of apertures32 are provided extending through the thickness of the support member 12 between the first surface 14 and the second surface 18 thereof so as to permit the selective establishment of electrical communication between the conductive paths at the surface 14 and the conductive support members 20 and contact members 22 arranged at the opposite surface 18. In this regard the apertures may be provided prior to or subsequent to the'deposition of the conductive paths, thereby providing a prepunched support board prepared for further fabrication operations.
In the illustrative embodiment the sets or conductive support members 20 are arranged, to define a plurality of spaced sets of pairs of generally U-sghaped, conductive members preferably comprising staples arranged at the surface 18 of the support layer '12. Such an arrangement has been found to be extremely advantageous in.
the staples 20 each include a main body portion 34'of a generally looped configuration terminating in a pair of legs 36 which are received within the apertures 32 rigid mechanical connection is established and the electrical contact may be improved by soldering the crimped portions of the legs into position. In addition,
as shown, the main body portion 34 of each of the'staples comprising the-plurality of sets of support members projects a first preselected distance outwardly from the surface 18 of the support member 12 so asto define conductive support areas spaced from the surthe second preselected portions 16b. The legs 40 ex- I tend through the apertures 42 with the outer ends thereof being crimped againstthe surface 14 of the sup port layer 12 preferably in contact with other portions of the conductive paths 16, such as the second preselected portions 165. The apertures 42 are of a size sufficient to accommodate-the legs 40 of the staple 22-while the outer ends of the legs 40 are crimped against the surface 14 in contact with the second preselected portions' 16b of the conductive paths to rigidly secure the staple to the member 12. In addition, the outer ends of the legs 40 crimped in position against thesecond preselected portions .16b of the conductive paths 16 may be soldered in. this portion to provide electrical contact as shown. One of the contact staples 22 is arranged intermediate each of the pairs of support staples 20 and may be of a slightly smaller-gauge such that its main body portion 38 projects outwardly from the surface 181 a second preselected distance different than the first preselected. distance which the body portion 34'of the support staples 20 projects from the surface so as to facilitate maintenance of selective disengagement between the conductive elements 24 and the contact staples 22, as will be subsequently explained. The conductive supportstaples 20 and the conductive contact staples may be fabricated of various materials and material combinations depending upon the properties desired. For example, in one preferred embodiment the staples are fabricated of gold-plated nickel wire in order to provide a relatively non-reactive material having good surface contact properties. As other examples, the staples may be fabricated of gold-plated stainless with a flash of nickel intermediate the stainless steel core and the gold plating, or of beryllium copper.
The conductive elements 24 preferably comprise a plurality of generally circular, disc shaped elements formed of a segment of a hollow body having a double curved outer surface such as a segment of an oblique spheroid and are each illustrated as including a generally convex surface of curvature when in an unactuated or rest state which is in facing relationship with the pushbutton members 26. The element 24 is'selected such that it has an overcenter position when its central portion is subjected to a'preselected deflecting force while automatically returning to its original position upon removal of the force, whereby the element is provided with a memory function. Of course, segments of other hollow bodies having double curved surfaces may be utilized in providing the conductive elements. The element 24 may be arranged such that it undergoes a snap-action deflection into its overcenter position in order to establish the aforementioned bridging electri.-. cal contact. In this regard referring particularly to FIG. 2, one of the elements indicated by the numeral 24a is shown in its overcenter position in response to actuation by a depressed pushbutton member indicated by reference numeral 26a. However, it should be noted that in certain instances the central portion of conductive element 24 may be sufficiently closely spaced to the contact staple 22 that the element 24 need not be completely deflected into its overcenter position in order to contact the staple 22-for establishing the requisite bridging contact. Thus, upon application of the preselected deflecting force to the central portion of the conductive element 24 in response to actuation or depression of the pushbutton member 26 the element associated conductive contact staples 22. The sheet 44 includes a plurality of apertures 46 which are of a size 24 is caused to undergo a snap-action deflection into its overcenter position, In addition, as a result of this snapaction deflection a tactile feed-back is provided which may be sensed in the'finger tips of the operatoractuating a particular pushbutton. Furthermore, an audible acknowledgment of deflection may' accompany the snap-action deflection which may be further sensed by the operator as an additional indication of actuation of a pushbutton member to transmit a desired electrical signal. The conductive elements 24 preferably comprise gold-plated stainless steel discs and in one preferred embodiment may be fabricated of A.I.S.I. (American Iron and Steel lnsitutelType 302 Stainless Steel, which comprises by weight approximately 0.15% carbon, 2.00% (max.) manganese, 1.00% (max.) silicontact surfaces.
.Each of the conductive elements'24 is maintained in axial registry with the conductive contact staple 22 associated with each of the sets of support staples 20 with the central portion thereof spaced from the contact staple 22. The marginal edges of the conductive elements 24 are supported on the main body portions 34 of the support staples 20 of each set such that the conductive element 24 is in continuous electrical contact therewith and hence with the first preselected portions 16a of the conductive paths 16. Similarly, the central portionof the conductive elements 24 which are in registry with the main body portion 38.of the contact staples 22 remain in selective disengagement with the contact staples until deflected by actuation of a pushbutton member 26, whererupon the bridging electrical connection is established between a set of conductive support staples 20 and its associated conductive contact staple 22 and hence between the first and second preselected portions 16a, 16b of the conductive path 16.
In order to further support each of the conductive elements 24 and provide lateral restraint therefor a carrier sheet of insulating material 44 is disposed adjacent the surface 18 of the support member 12 overlying the plurality of sets of conductive support staples 20 and sufficient to accommodate the conductive elements 24 therein and arranged in registry with the plurality of sets of conductive support staples 20 and the associated conductive contact staples 22. More particularly, the conductive elements 24 are disposed within the apertures 46, which are of a size slightly larger than the spacing intermediate the staples comprising each of the sets of conductive support staples. Accordingly the sheet 44 may be maintained essentially in abutment with the surface 18 of the support member 12 with the main body portions 34 of the conductive support staples 20 which support the elements 24 extending slightly into the apertures 46. The conductive elements 24 are arranged within the apertures 46 and haveopposed marginal portions resting on the main body portions 34 of the conductive support staples 20. Thus, support, as well as lateral restraint for the conductive elements 24 is provided. In addition, as may be noted, particularly in FIG. 1, each of the apertures 46 is of a preselected shape including a pair of opposed parallel walls 46a which are of a generally straight-line configuration, these generally straight-line wall portions being arranged to bound the main body portions 34 of the conductive support staples 20 which extend into the apertures 46. The other pair of opposed wall portions 46b of each of the apertures 46 are arranged in a generally curvilinear configuration curving outwardly from the center of the apertures 46 so as to more efficiently accommodate the generally circular conductive elements or discs 24. In this regard by virtueof providing the apertures 46 having a shape as illustrated certain con, 17% to 19% chromium, 8% to 10% nickel and the balance iron, with a thin gold plating over its exposed advantages are achieved in that the overall space occupied by the apertures'is minimized, since only one of the two dimensions of the apertures are increased while the other dimension is minimized, thereby maximizing the amount of material which remains to define the layer 44 in order to enhance its structural strength and rigidity. This is advantageous in view of the small size of the layer 44.and the large number of apertures which are employed. The sheet 44 maybe fabricated of a suitable nonconductive material such as a suitable glass cloth reinforced epoxyl In addition, the marginal portions of the sheet 44 which extend beyond the sets of support staples 20 at opposed sides of the support board 12 preferably-are bonded or sealed to the marginal portions of support member 12 so as to facilitate the formation of an environmentally sealed unit.
In certain instances, it has been found desirable to further restrain the conductive elements 24 in their respective positions by providing a relatively thin, flexible sheet or film of an insulating force transmitting overlayer sheet or film 48, as shown, which is arranged in-v termediate the sheet 44 and the casing 28 which supports the pushbutton members 26. The over-layer 48 may comprise a material, such as polyethylene terephthalate, commonly sold under the trade name Mylar, and may be suitably bonded or sealed to the exposed surface of the layer 44 and hence functions to prevent the conductive elements 24 from inadvertently being removed or falling from their desired positions within the apertures 46, as well as completing an environmental seal for the unit.
The pushbutton members 26 are each appropriately symbolized at their outer exposed surfaces in a manner indicative of the electronic function associated with ac- 7 tuation-of a selected pushbutton member which establishes the requisite bridging electrical connection be-' tween the conductive support staples 20 and the con- I ductive contact staple 22 and hence between the first and second preselected portions 16a, 16b of the 'conductive paths 16. In addition', each of the pushbutton members includes an opposed, protruding surface portion 50 which depends from the main body thereof and is maintained in' abuttment-with the generally central region of the conductive element 24 and is adapted to apply therequisite deflecting force thereto in response to actuation of the pushbutton member. Each of the pushbuttonmembers 26 is preferably fabricated of a relatively rigid non-conductive plastic material, and is supportingly carried within the support casing 28 which includes a plurality of slots 51 for accommodating the larly fabricated of asuitablerigid, non-conductive plastic material, or the like. In this regard each of the push members normal to the planar surface of the casing 28 upon actuation thereof.- In addition, the casing 28 includes a pair of depending flange members 56 the spacingtherebetween being of a size sufficient to accommodate the marginal edge portions l-2a, 12b of the support member 12 if it is desired to provide an environmental seal between these marginal edge portions 12a, 12b and the inner surfaces of the flangemembers 56, when the casing 28 ispositioned in abuttm'ent with the overlayer sheet 48 with the pushbutton members aligned with the respective-conductive elements 24. Thus, in operation the pushbutton members are precluded from lateral movement within. the casing but are permitted to be moved from a retracted to an actuating position in response to application of a mechanical force to the exposedsurfaces thereof so as to effect deflection ofan associated conductive element 24. Accordingly, upon actuation of a selected pushbutton member the conductive element -24-is caused toexecute'a snap-action deflection into its over-center position in which it is in engagement with one of the associated contact staples 22, as well as with the set of supporting staples 20, establishing a bridging electrical contact between the contact staple 22 and the set of support staples 20 associated therewith.
v Referring now to FIGS. 4-6 an alternate embodiment of a keyboard system similar to that illustrated in FIGS. 1-3 is shown in which a modified arrangement for can rying the conductive elements is provided. More particularly, in this embodiment a support member of insulatbody of the members 26. The casing 28 may be simicooperating apertures ,72 which are provided extending through the thicknessof the support board 60.betweenv the first and second surfaces 64, 68 so as to permit electrical communication to be established between each set of conductive support members 66 and first prese-, lected portions 62a of the conductive paths 62, when these conductive support members are inserted within the apertures 72 while a plurality of additional apertures 74 similarly extend through the thickness of thesupport member 60 for accommodating the associated contact members 70, the apertures 74 permitting electrical communication to beestablished between theconductive contact members 70' and second preselected portions 62b of the conductive paths 62, when the conductive contact members 70 are inserted within the respective apertures. Each of the sets of conductive support members 66 is adapted to define a generally planar support area for supportingly receiving a conductive element 76 similar to the conductive element 24. The conductive element 76 is supported in continuous electrical contact with the set of support member 66 and-hence in contact with the first preselected portions 62aof the conductive paths 62. In addition, the conductive element 76 remains inselective disengagement with the associated conductive-contact member 70 and accordingly, each set of support members remains electrically isolated from its associated contact member 70 until deflection of the conductive element 76 is effected. Such deflection is accomplished in a manner similar to that described in connectionwith the preceding embodiment in response to the application of a preselected deflecting force to the conductive element 76' to establish engagement between the conduc- I .tive element-76'and the conductive contact member 70, thereby establishing a bridging electrical contact between the set of conductive support members 66 and the conductive contact member 70 and hence between the first and preselected portions 62a, 62b of theconductive paths 62. Theapplication of the preselected deflecting force to the conductive element 76 is again accomplished by'the provision of aplurality of pushbuttonmembers 78 maintained in-registr'y with the respective conductive elements 76 such that actuation or depression of a pushbutton member 78 is effective to cause deflection of a conductive element in order to cause it to engage its associated conductive contact member thereby establishing the requisite bridging electrical contact. The pushbutton members 78 are similarly carried within a suitable support casing 80 which includes a plurality of slots 82 for receiving the body of the pushbutton members 78 therein, the pushbutton members being movable from a retracted to an actuating position in response to the application of a mechanical force to the exposed surfaces thereof, such as by manual actuation.
As previously mentioned, in accordance with an important advantage of the present invention a keyboard system is provided which is particularly suitable for fabrication by rapid, accurate, and inexpensive mass production techniques. The embodiment illustrated in FIGS. 4-6 similarly provides such advantages in that the support board 60 may be similarly provided in a prepunched configuration including the apertures 72, 74 for accommodating the conductive support members and the conductive contact members, while a desired pattern of conductive paths may be deposited on thesurface 64 thereof utilizing conventional printed circuit art techniques to permit the selected electrical connections to be made between respective portions of the conductive paths. However, rather than employing staples, as in the preceding embodiment each of the sets of conductive support members 66 preferably comprises a plurality of collared rivets each of which includes a shank 82 and a flanged collar 84 with the tions 62a of the conductive path 62, therebymechanically restraining the rivet in position with respect to the support member and the conductive path 62. In addition, the-crimped end 86 may be soldered in position to assure a good electrical contact with the first preselected conductive path 62a. In the illustrated embodiment each set 66 includes four of the previously described rivets arranged to define a generally enclosed area with the flanged collar portions 84 of each of the rivets defining a generally planar support area for the conductive element 76. It should be noted that a lesser or greater number of rivets, of course, may be utilized, In addition, the associated conductive contact member 70 is arranged generally centrally within the area defined by the four rivets 66 and preferably comprises a headed rivet including a shank portion 88 which is disposed within the aperture 74 with one end 90 being crimped against the surface 64 of the support board 60 as shown while its opposite end terminates in a head 92 of a larger diameter than the aperture 74 such that the rivet 70 is mechanically restrained with respect to the support member 60, subsequent to thecrimping of its end 90 against the surface 64.'The crimped end 90 is in electrical contact with the second preselected conductive path 62b and similarly may be soldered in position to assure a good electrical contact therewith. In addition, as shown the head 92 of the rivet 70 may be displaced outwardly from the surface 68 of the support member 60 a lesser distance than the collar 84 of the support rivets 66 such that the central portion of the conductive element 76 may be maintained in selective disengagement therewith, as will now be explained in detail.
More particularly, the conductive elements 76 are generally similar to the elements 24, as described in connection with the embodiment illustrated in FIGS. 1-3. The element 76 is arranged such that'it similarly undergoes deflection movement into its overcenter position in order to establish the aforementioned bridging electrical contact between the set of support rivets 66 and the contact rivet 70 and hence between the first and second preselected portions62a, 62b of the conductive paths. In this regard the marginal portions of the element 78 are supported by and rest upon the flanged collar portion 84'of the support rivets 66 such that the element 76 is maintained in constant electrical contact with the set of support rivets 66 while its central portion remains in selective disengagement with the head 92 of the contact rivet 70. Upon application of a preselected deflecting force to the central portion of the conductive element 76 in response to actuation or depression of the selected pushbutton member 78 the element 76 is caused to undergo a snap-action deflection into its overcenter position and engages the head 92 of the contact rivet 70 thereby establishing an abrupt, instantaneous and positive bridging electrical contact between the support rivets 66 and the contact rivet 70 and hence between the first and second preselected portions 62a, 62b of the conductive paths 62. In addition, similarly to the preceding embodiment, as a resultof this snap-action deflecting a tactile feed-back is provided which may be sensed in the finger tips ofthe operator actuating a particular push-button, and an audible acknowledgment of deflection may accompany the snap-action deflection and may be further sensed by the operator as an additional indication of actuation of a pushbutton member to transmit a desired electrical signal.
In order to further aid in maintaining the elements 76 in position as well as to facilitate the formation of an environmental seal, it has been found advantageous in certain instances to provide an overlayer 94 of a flexible force transmitting material arranged intermediate the pushbutton members 78 and the conductive elements 76. In this regard lateral movement of the conductive elements 76 is precluded by virtue of the disposition of the elements 76 within the area defined by each of the sets of support rivets 66 resting on the flanged collar portions 84, with the marginal edges of the conductive elements 76 being laterally restrained by the portions of the shanks 82 which project outwardly beyond the collars 84. However, in order to prevent the elements 76 from being inadvertently removed from or falling from the unit the overlayer 94 may be provided, as shown, and may be suitably bonded to the marginal edge portions of the support board to form an environmental seal. The overlayer 94 may be fabricated of a strong, flexible, thin insulation material, such as polyethylene terphthalate, commonly sold under the trade-name Mylar.
As previously mentioned, the pushbutton elements '78 are suitably carried within the slots 82 in the casing 80 and as shown have outer exposed surfaces which are appropriately symbolized in accordance with the electrical information which is to be transmitted in response to actuation thereof. In addition, a generally centrally located protruding member 96 extends from the opposed surfaces of each of the pushbutton members and is arranged in axial registry with the central portions of each of the conductive elements 76 so as to apply the preselective deflecting force thereto in response to actuation or depression of the pushbutton members 78. A pushbutton member 78a is illustrated in FIG.v 5 in its depression or actuated condition to show the establishment of the bridging electrical contact between the set of conductive support rivets 66 and the conductive contact rivet 70, whereby the requisite bridging electrical contact is established between selected portions of the conductive paths 62. Each of the pushbutton members 718, similar to the preceding embodiment, also may include a pair of opposed ronmentallysealed unit. The casing 80 as well as the lected portion 62a, 62b of the conductive paths 62 so as to permit the transmission of an appropriate electrical signal. In addition, as illustrated in FIGS. 4 and 6, if desired, suitable semiconductor devices or the like illustrated in phantom as a dual-in-line package integrated circuit 100 may be provided with its lead members 102 extending through suitable apertures 104 in the support board 60 and maintained in contact with requisite portions of the conductive paths 62 so as to Various changes and modifications in the abovedescribed embodiments will be readily apparent to those skilled in the art and any of such changes or modiflcations are deemed to be within the spirit and scope of the present invention as set forth in the appended claims.
I claim: 1. In a selectively energizable keyboard system comprising an electrically insulating support member' havselective couple the various circuit elements thereof (not shown) to-the paths 62 in order to process the electronic information being transmitted upon interconnection of selected portions of the conductive paths. Similarly,-if desired, a suitable power supply means (not shown) may be also mounted on the support member 60.
Referring to the FIG. 7 embodiment a composite unit indicated generally by the reference numeral104 is illustrated, including a plurality of pushbutton members 106 supported within a casing 108 which is mounted in overlying relationship with a support board 110 which .may. include conductive support areas, conductive contact areas, conductive elements, conductive paths, etc., all as shown and described in the preceding embodirnents. In addition, the unit 104 includes a visual display window 112 so as to provide a visual indication of operation of the unit when it is being utilized, as an electronic calculator, for example, as an input to a computer system, etc. Similarly, if desired, the unit 104 may include a suitable print out mechanism to provide a permanent record, if desired.
Thus, a unique keyboard system has been described in detail in which a particularly advantageous bridging electrical contact system is provided the system being particularly adapted for incorporation in various sys-' tems such as electronic calculators, computer systems, etc.
ing a surface on which a plurality of conductive paths are disposed arranged in a preselected pattern adapted to transmit electrical information in response to selective interconnection of portions of said paths; a plurality of spaced apart generally U-shaped conductive members arranged in a preselected configuration on said support member in electrical communication with preselected portions of said paths, means for selectively establishing electrical connection for the conduction of electrical current between certain of said paths including' a plurality of selectively actuable conductive elements, and means mounting said conductive elements adjacent but spaced from a surface of said support member, at least one of said conductive members being disposed adjacent each of said conductive elements, said conductive-elements each being adapted for selective deflection into engagement with its said at least oneconductive member in response to the application of a preselected deflecting force to said conductive element, thereby selectively to establish paths for the flow of electrical current between selected portions of said path.
configuration having a convex surface of curvature adapted to receive the preselected deflecting force in registration with an associated U-shaped conductive member, said convex surface being adapted to be deflecting into a concave configuration in engagement with said U-shaped conductive member in response to the application of the preselected force.
3. A system in accordance with claim 1 wherein a relatively thin flexible insulating, force-transmitting overlayer is secured to said insulating support board in overlying relationship with respect to said conductive elements so as to maintain said conductive elements in position.
2. A system in accordance withclaim l wherein said conductive elements are each of a generally circular

Claims (3)

1. In a selectively energizable keyboard system comprising an electrically insulating support member having a surface on which a plurality of conductive paths are disposed arranged in a preselected pattern adapted to transmit electrical information in response to selective interconnection of portions of said paths; a plurality of spaced apart generally U-shaped conductive members arranged in a preselected configuration on said support member in electrical communication with preselected portions of said paths, means for selectively establishing electrical connection for the conduction of electrIcal current between certain of said paths including a plurality of selectively actuable conductive elements, and means mounting said conductive elements adjacent but spaced from a surface of said support member, at least one of said conductive members being disposed adjacent each of said conductive elements, said conductive elements each being adapted for selective deflection into engagement with its said at least one conductive member in response to the application of a preselected deflecting force to said conductive element, thereby selectively to establish paths for the flow of electrical current between selected portions of said path.
2. A system in accordance with claim 1 wherein said conductive elements are each of a generally circular configuration having a convex surface of curvature adapted to receive the preselected deflecting force in registration with an associated U-shaped conductive member, said convex surface being adapted to be deflecting into a concave configuration in engagement with said U-shaped conductive member in response to the application of the preselected force.
3. A system in accordance with claim 1 wherein a relatively thin flexible insulating, force-transmitting overlayer is secured to said insulating support board in overlying relationship with respect to said conductive elements so as to maintain said conductive elements in position.
US00347026A 1971-06-01 1973-04-02 Pushbutton keyboard system Expired - Lifetime US3858202A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US00347026A US3858202A (en) 1971-06-01 1973-04-02 Pushbutton keyboard system
US05/492,670 US4163125A (en) 1971-06-01 1974-07-29 Pushbutton keyboard system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14850371A 1971-06-01 1971-06-01
US00347026A US3858202A (en) 1971-06-01 1973-04-02 Pushbutton keyboard system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14850371A Division 1971-06-01 1971-06-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/492,670 Division US4163125A (en) 1971-06-01 1974-07-29 Pushbutton keyboard system

Publications (1)

Publication Number Publication Date
US3858202A true US3858202A (en) 1974-12-31

Family

ID=26845927

Family Applications (1)

Application Number Title Priority Date Filing Date
US00347026A Expired - Lifetime US3858202A (en) 1971-06-01 1973-04-02 Pushbutton keyboard system

Country Status (1)

Country Link
US (1) US3858202A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3928741A (en) * 1974-09-16 1975-12-23 Texas Instruments Inc Momentary contact single pole switch
US4253774A (en) * 1974-02-22 1981-03-03 Canon Kabushiki Kaisha Information output device
US4310734A (en) * 1978-05-09 1982-01-12 Minolta Camera Kabushiki Kaisha Electric circuit unit
US4311996A (en) * 1972-08-10 1982-01-19 Ise Electronics Corporation Hand held type electronic calculators
US4314112A (en) * 1971-08-23 1982-02-02 Hewlett-Packard Company Keyboard having switches with tactile feedback

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2848568A (en) * 1956-03-12 1958-08-19 Berkeley Entpr Inc Variable circuit construction devices and switches therefor
US3600528A (en) * 1969-09-25 1971-08-17 Lematex Corp Multiple switch construction
US3617660A (en) * 1970-01-23 1971-11-02 Ibm Keyboard actuating mechanism for diaphragm electric switch contact array
US3684842A (en) * 1970-07-01 1972-08-15 Texas Instruments Inc Pushbutton keyboard switch assembly with improved over center diaphragm contact
US3725907A (en) * 1971-06-01 1973-04-03 Texas Instruments Inc Pushbutton keyboard system
US3808384A (en) * 1971-06-01 1974-04-30 Texas Instruments Inc Pushbutton keyboard system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2848568A (en) * 1956-03-12 1958-08-19 Berkeley Entpr Inc Variable circuit construction devices and switches therefor
US3600528A (en) * 1969-09-25 1971-08-17 Lematex Corp Multiple switch construction
US3617660A (en) * 1970-01-23 1971-11-02 Ibm Keyboard actuating mechanism for diaphragm electric switch contact array
US3684842A (en) * 1970-07-01 1972-08-15 Texas Instruments Inc Pushbutton keyboard switch assembly with improved over center diaphragm contact
US3725907A (en) * 1971-06-01 1973-04-03 Texas Instruments Inc Pushbutton keyboard system
US3808384A (en) * 1971-06-01 1974-04-30 Texas Instruments Inc Pushbutton keyboard system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4314112A (en) * 1971-08-23 1982-02-02 Hewlett-Packard Company Keyboard having switches with tactile feedback
US4311996A (en) * 1972-08-10 1982-01-19 Ise Electronics Corporation Hand held type electronic calculators
US4253774A (en) * 1974-02-22 1981-03-03 Canon Kabushiki Kaisha Information output device
US3928741A (en) * 1974-09-16 1975-12-23 Texas Instruments Inc Momentary contact single pole switch
US4310734A (en) * 1978-05-09 1982-01-12 Minolta Camera Kabushiki Kaisha Electric circuit unit

Similar Documents

Publication Publication Date Title
US3725907A (en) Pushbutton keyboard system
US3808384A (en) Pushbutton keyboard system
US3684842A (en) Pushbutton keyboard switch assembly with improved over center diaphragm contact
US3806673A (en) Pushbutton keyboard switch assembly with improved disc spring contact and printed circuit structure
US3996427A (en) Pushbutton keyboard system and method of making same
US3290439A (en) Data encoding keyboard
US3973091A (en) Pushbutton keyboard assembly having pole and inner contacts simultaneously engaged by a bridging contact
US3971902A (en) Keyboard switch assembly having one piece plural pushbutton actuator and resilient mounting structure for plural cantilever beam contacts
US4035593A (en) Flexible pressure sensitive switch actuator module adaptable to a keyboard surface having fixed contact array
JPS6023918A (en) Drive device used for selectively closing electric circuit
US4163125A (en) Pushbutton keyboard system
US3627927A (en) Monolithic keyboard and method for making same
US3928741A (en) Momentary contact single pole switch
US3996428A (en) Pushbutton keyboard assembly with over center diaphragm contact
US4892988A (en) Membrane panel switch
US5218177A (en) Screened pattern causing gaps around keyboard membrane spacer hole to increase venting and reduced bounce
US3858202A (en) Pushbutton keyboard system
US4677529A (en) Circuit board
US4207444A (en) Planar multiple switch
US4658104A (en) Printed wiring board
US6333477B1 (en) Switch having improved contact performance
US4937932A (en) Membrane panel switch
JPS6220206A (en) Push button switch and manufacture thereof
US3839785A (en) Pushbutton keyboard system
US3959611A (en) Pushbutton keyboard system having plural level wire-like contact