US3857009A - Microwave browning means - Google Patents

Microwave browning means Download PDF

Info

Publication number
US3857009A
US3857009A US00395469A US39546973A US3857009A US 3857009 A US3857009 A US 3857009A US 00395469 A US00395469 A US 00395469A US 39546973 A US39546973 A US 39546973A US 3857009 A US3857009 A US 3857009A
Authority
US
United States
Prior art keywords
load
enclosure
converting
dielectric
members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00395469A
Inventor
G Macmaster
K Dudley
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Co
Original Assignee
Raytheon Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Raytheon Co filed Critical Raytheon Co
Priority to US00395469A priority Critical patent/US3857009A/en
Priority to ZA00745189A priority patent/ZA745189B/en
Priority to US05/497,445 priority patent/US3934106A/en
Priority to AU72369/74A priority patent/AU478076B2/en
Priority to GB3699574A priority patent/GB1464293A/en
Priority to NL7411396A priority patent/NL7411396A/en
Priority to CA208,007A priority patent/CA980871A/en
Priority to FR7429707A priority patent/FR2243575B1/fr
Priority to IT52821/74A priority patent/IT1019173B/en
Priority to BE148150A priority patent/BE819467A/en
Priority to SE7411368A priority patent/SE392199B/en
Priority to JP10429774A priority patent/JPS5318740B2/ja
Priority to CH1231074A priority patent/CH576107A5/xx
Priority to DE2443173A priority patent/DE2443173A1/en
Application granted granted Critical
Publication of US3857009A publication Critical patent/US3857009A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/72Radiators or antennas
    • H05B6/725Rotatable antennas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/6408Supports or covers specially adapted for use in microwave heating apparatus
    • H05B6/6411Supports or covers specially adapted for use in microwave heating apparatus the supports being rotated
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/647Aspects related to microwave heating combined with other heating techniques
    • H05B6/6482Aspects related to microwave heating combined with other heating techniques combined with radiant heating, e.g. infrared heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/647Aspects related to microwave heating combined with other heating techniques
    • H05B6/6491Aspects related to microwave heating combined with other heating techniques combined with the use of susceptors
    • H05B6/6494Aspects related to microwave heating combined with other heating techniques combined with the use of susceptors for cooking

Definitions

  • One embodiment comprises parallel abutting plates with alternate plates of a high dielectric constant material to provide a predetermined phase lag and with the intervening low dielectric constant sections to provide alternating fringing electric fields, illustratively, in the pi or any other desired mode pattern.
  • Alternate embodiments include microwave strip transmission lines comprising conductive strips separated by a dielectric substrate to couple and convert the free space waves into the desired heating mode pattern.
  • a load supporting shelf within the microwave oven may be-readily adapted to include the alternating dielectric materials to provide the desired fringing electric field patterns.
  • Conveyer belts may also be adapted to incorporate browning surface means by strips of a high dielectric material on the belt material.
  • Further embodiments include microwave oven enclosures radiated by horn means which may be cross-polarized, as well as, the combination of horn radiators coupled to microwave browning plates.
  • Such apparatus typically includes an energy source such as a magnetron with the energy fed within a conductive wall oven enclosure through waveguide transmission means.
  • the electromagnetic waves are radiated and reflected within the enclosure in free space and are distributed by such means as mode stirrers to uniformly surround and be absorbed by the load to result in high frequency oscillatory movements of the molecules to cause heating by molecular friction.
  • the allocated frequencies for such heating apparatus are assigned by the Federal Communications Commission and are 915 i 13 MHz and 2,450i50 MHz.
  • the term microwaves is intended to define electromagnetic energy radiation having wavelengths in the. order of 1 meter to 1 millimeter and frequencies in the order of 300 MHZ to 3 GH z. v
  • Prior art techniques for browning include the incorporation of electric or gas broiling elements in the microwave oven.
  • Another method involves the coating of the outer surfaces with a food additive having a higher energy absorbing characteristic which will lead to more rapid heating of the outer surfaces, while the remainder of the load achieves the desired degree of cooking.
  • Still another example of prior art teachings involves the use of lossy ovenware or utensils having a selective heating capability by means of the use of conductive materials.
  • Such conductive materials may be incorporated in a shelf of a dielectric material supporting the load or comprise radiating means having a plurality of rods with a predetermined spacing to cause the rapid absorption of the microwave energy by the rods as shown in U.S. Pat. No. 3,591,751, issued July 6, 1971 to CE.
  • Such materials include alloys of manganese, tin and copper, or manganese, alumnium and copper as well as alloys of iron and sulphur, such as pyrrhotite, whose crystals have the form of hexagonal prisms.
  • alloys of manganese, tin and copper, or manganese, alumnium and copper as well as alloys of iron and sulphur, such as pyrrhotite, whose crystals have the form of hexagonal prisms.
  • Examples of such materials are zircomates of lead and barium and the titanates of lead, barium and strontium.
  • a plate, dish, shelf or any load supporting means is provided with substantially parallel alternating regions of varying dielectric characteristics to result in intense alternating electric fields in close proximity of a load with said fields rapidly decaying a short distance from the load surfaces.
  • the pi-mode or electric fields out-of-phase is an illustrative electric field pattern for browning the load surfaces.
  • the free space electromagnetic waves within the oven enclosure are converted by the nonfrequency-responsive and nonresonant means comprising the dielectric members from plane waves into the desired alternating fringing electric field patterns.
  • constant materials provide a phase reversal or phase lag relative to the intervening low constant dielectric or ir-filled members whighi provsm is e d dagta ztsg QLLV X yst ms or complete shelves in addition to plates or utensils to provide the frin in field patterns.
  • a plane wave entering the bottom of the microwave coupling and transformer means will effectively charge all the conductive strips to convert the waves into the desired mode patterns.
  • all the embodiments of the invention utilizing parallel plates or conductive strips of varying propagation characteristics may be disposed on both sides of the load to shorten the browning time.
  • Ceramic materials having a dielectric constant of 25-50 have been utilized in exemplary embodiments and a rule of thumb for the high dielectric materials for the energy coupling and trans-.
  • former browning means to obtain the desired phase reversal would be to use a material having a dielectric value approximately equal to the square root of the dielectric constant value of the material being heated.
  • the materials utilized can be readily cleaned and are of a more durable nature than the lossy type ovenware utilizing ferromagnetic materials which become very brittle and are easily broken at the temperatures encountered in the oven.
  • the invention may also be adapted to any desired mode field patterns-such as TM which would be useful for illustratively baking potatoes.
  • a rotisserie arrangement is also possible and horn radiators for feeding the microwave energy into the oven enclosure are utilized with the horns being cross-polarized.
  • the microwave coupling and transformer means can also be used in combination to couple the energy from the feed means to further enhance the advantages of microwave cooking.
  • FIG. 1 is a vertical cross-sectional view of the microwave apparatus embodying the invention
  • FIG. 2 is a diagramatic representation to assist in the understanding of the invention
  • FIG. 3 is a' diagramatic representation of a browning plate embodiment of the invention illustrating the alternating fringing electric field orientation along the top surface;
  • FIG. 4A is a top view of a partial portion of a conveyor belt embodiment utilizing the invention.
  • FIG. 4B is a diagramatic representation of the alternating fringing electric fields disposed in close proximity to the top surface of the embodiment in FIG. 4A;
  • FIG. 5 is a top view of a browning plate embodiment shown supporting a load;
  • FIG. 6 isan end view of the browning plate embodiment shown in FIG. 5; I
  • FIG. 7 is a bottom view of a strip microwave transmission line embodiment of the invention.
  • FIG. 8 is a cross-sectional view taken along the line 8-8 in FIG. 7;
  • FIG. 9 is a cross-sectional view of an embodiment of the invention utilized as a shelf in a microwave oven.
  • FIG. 10 is a perspective view of a microwave oven adapted for a rotisserie and radiated by horn-type radiators with cross-polarized fields;
  • FIG. 11 is a perspective view of the apparatus shown in FIG. 10 in combination with the microwave coupling and transformer browning means embodying the invention.
  • a case 18 surrounds the oven enclosure and is provided with a front panel member 20 for mounting timers 22 and 24, as well as, buttons 26, 28 and 30 for actuation, respectively, of the start, stop and light circuits.
  • the microwave energy is coupled to the resonant cavity enclsoure 16 by means of an antenna 34 within a dielectric member 36 extending into the launching rectangular waveguide 38.
  • a terminating end wall 40 is disposed at one end of the launching means spaced approximately one-quarter of a wavelength from the antenna 34 for maximum launching efficiency.
  • the opposing end is open as at 42 to provide for the radiation of the energy within the enclosure.
  • Such launched energy represented by plane waves 44 is distributed in a cyclically varying manner by such means as a mode stirrer 46 having a plurality of vanes 48 which are rotated by a motor 50.
  • the energy waves bounce off the conductive walls at the top, back, side and bottom of the oven enclosure.
  • the load 52 to be heated and browned, such as a steak or roast, is supported on the energy coupling and transformer means 54 of the invention which converts the plane waves into the fringing electric field patterns of rapidly decreasing intensity in close proximity to the exterior surfaces of the load.
  • the browning means 54 comprise an arrangement of parallel plate members having varying dielectric characteristics with members 56 of a high dielectric constant value while the intervening spaces 58 may be filled with a low constant dielectric material or ai
  • the spaces 58 are lined with a conductive material 60, such as copper or other metal tape to provide a capacitor effect.
  • the energy coupling and transformer browning plate means 54 is supported on a spacer 62 of a microwave permeable material having a thickness to provide for the entrance of the plane bouncing waves from the bottom wall 12.
  • the invention is also practiced by the provision of another microwave coupling and transformer browning plate means 64 on the opposing side of the load 52 to thereby simultaneously brown both sides of the product.
  • Plane waves 44 distributed within enclosure 16 have no specific field orientations and have a wavelength of approximately 4.8 inches for 2,450 MH
  • mode transformer region 68 to evolve the fringing electric fields 70 adjacent to the steak 52.
  • the function of transforming of free space waves into the fringing electric field patterns may be achieved by an integral assembly or the mode transformer portion may be separate with a superimposed top plate member.
  • the invention essentially all of the energy entering the transformer region 68 is transformed into a desired heating pattern, illustratively, the pi-mode where the electric fields alternate out-ofphase as shown diagramatically in FIG. 3.
  • the assembly comprises a plurality of parallel plates stacked together in an array with alternate plates providing a high dielectric constant to obtain a desired degree of phase reversal or phase lag for the resultant pattern.
  • This fringing field configuration plane waves indicated by vectors 74, enter the bottom of the browning plate means 72 and in-the low dielectric constant or air-filled regions 76 a field orientation and E-field vector 78 is obtained extending perpendicular to the direction of transport of the plane waves.
  • Alternate parallel plates 811 are provided of a high dielectric material such as K-SO or the material sold under the name Stycast with the electric field orientations now reversed as shown by vectors 78.
  • the H or magnetic field vector extends in an orthogonal direction, designated by the vector 82, parallel to the'longitudinal axis of the plate 72.
  • the alternating fringing electric fields are indicated by arrows 4.
  • These fringing field patterns are of high intensity adjacent to the top surface of the plate 72' and decay rapidly in a direction perpendicular to the plate.
  • Unique means for achieving rapid browning" and searing of the exterior surfaces of load are thereby achieved utilizing the structure of the invention.
  • a conveyer belt 911 of a dielectric material having good microwave transmission characteristics is provided with a plurality of high dielectric constant material stri'psor a coating material while arrows 98 indicate the phase reversal provided by the high dielectric constant regions 92. It is common in conveyorized systems-to have the energy distributed from a position above or below the conveyor belt as desired. In either case the invention will provide the fringing electric fields in' close proximity to the conveyor belt surfaces.
  • FIG. '5 a microwave browning plate means 101) is illustrated carrying'a load 111 2 which is capable of being readily inserted and removed from the oven enclosure.
  • the parallel plates 11M define the regions of low dielectric constant material which is readily permeable to microwave energy and parallel plate members 106.
  • the configuration of the high dielectric constant members 1116 will be noted having slightly tapered surfaces 1116a and 1116b.
  • the waves represented by the E-vectors 108 entering the bottom portion are coupled and transformed into the fringing fields exiting from the top surface as represented by the arrows 110. It will be noted that the fringing electric fields adjacent to load 102 extend a short distance from the top surface and, therefore, the desired browning effect is readily obtained on the exterior surfaces of the load 102.
  • FIGS. 7 and 8 represent a strip microwave transmission line embodiment of the invention.
  • a dielectric substrate body 112 is provided on the bottom side with parallel strips 114 of a highly conductive materials such as copper.
  • the upper portion of the substrate 112 is provided with twice as many conductor strips 116.
  • Alternate conductive strips 116a are connected to the bottom strips 114 by wires 118 to thereby achieve an alternating electric field as indicated by the and signs of the alternate upper strip members.
  • the unconnected strips form capacitors with the bottom conductive strips 114.
  • Plane waves fed into the bottom as indi cated by the E-vectors 120 charge all the conductive strips 1 141 on the bottom side at the same potential.
  • This configuration of the invention represents a low cost method of making a nonreasonant means for coupling and transforming microwave energy into any desired fringing electrical field pattern.
  • FIG. 9 illustrates an alternative embodiment of the invention comprising a shelf member 124 made up of alternate parallel plate sections of dielectrics 126 and 126. Such an embodiment is mounted on brackets attached to the oven enclosures sidewalls 14 to space the shelf at any desired height from bottom walls 12. Parallel sections 126 "earnin s the low dielectric constant material while the intervening sections 128 comprise the high dielectric constant material. The fringing electric fields provided by .this arrangement are indicated by the arrows 130.
  • FIGS. 10 and 11 illustrate another embodiment of a microwave oven apparatus with the microwave energy from a source 132 fed through the bottom wall 134 by means of horn radiators 135 and 136.
  • the load 138 comprising a fowl is supported on a rotisserie arrangement including a rod member 1411 supported by the sidewalls 142 and actuated by motor means (not shown).
  • the energy radiated from horn 135 comprises radiated waves 144 with the energy polarized in a direction to provide the E-vector 146 and the H-vector 14%.
  • These vectors are the orthogonal components of the plane wave indicated by vector 150.
  • the adjacent horn radiator 136 also provides for the' I that the E-vector 152 and H-vector 1541 are approximately out-of-phase with the orthogonal distribution from the radiator 135. l
  • the oven enclosure 156 may be largerthan present day microwave ovens since the energy is radiated directly from the radiators and 136 and'the distribution effectively controlled by the angle of radiation. The energy reflected from the surfaces of the load 138 as the load rotates are redirected into the meat because of the reflection from the oven enclosure walls.
  • a microwave plate member 158 similar to that described in FIG. Q, having alternate dielectric constant material members 160 and 162 is supported on brackets 16 1. Parallel plate regions 160 represent the high dielectric constant material and the intervening members 162 represent the low dielectric constant material.
  • said converting and transformer means comprise a dielectric substrate member having spaced conductive strips on opposing sides with a greater number of strips on one side and means for interconnecting alternate strips on said side with the strips on the remaining side.
  • Microwave heating apparatus comprising:
  • said load supporting means including means for converting and transforming free space energy waves into a fringing electric field pattern having a substantially phase differential in close proximity to the exterior surfaces of said load;
  • said converting and transformer means comprising regions of alternately high and low dielectric constant characteristics.
  • said load supporting conveyer belt comprise means of a low dielectric constant material for transporting a load through said enclosure having spaced strips of a high dielectric loss material disposed on the load carrying surface.
  • said load-supporting means comprise a dielectric substrate member having spaced conductive lines on opposing sides with the number of lines on one side being substantially greater and means for electrically interconnecting said lines to provide the predetermined fringing electric field pat-tern.

Abstract

Apparatus is disclosed for heating with microwave energy utilizing nonresonant means for converting and transforming free space plane waves within the oven enclosure into fringing electric field patterns to brown or sear the load surfaces similar to broiling. One embodiment comprises parallel abutting plates with alternate plates of a high dielectric constant material to provide a predetermined phase lag and with the intervening low dielectric constant sections to provide alternating fringing electric fields, illustratively, in the pi or any other desired mode pattern. Alternate embodiments include microwave strip transmission lines comprising conductive strips separated by a dielectric substrate to couple and convert the free space waves into the desired heating mode pattern. A load supporting shelf within the microwave oven may be readily adapted to include the alternating dielectric materials to provide the desired fringing electric field patterns. Conveyer belts may also be adapted to incorporate browning surface means by strips of a high dielectric material on the belt material. Further embodiments include microwave oven enclosures radiated by horn means which may be cross-polarized, as well as, the combination of horn radiators coupled to microwave browning plates.

Description

United States Patent [191 MacMaster et al.
[ Dec. 24, 11974 MICROWAVE BROWNING MEANS [75] Inventors: George H. MacMaster, Lexington;
. Kenneth W. Dudley, Sudbury, both of Mass.
[7TH Asslgncc: ltaytheon (,ompany, Lexington,
- Mass.
[22] Filed: Sept. 10, 1973 21 Appl. No: 395,469
[52 us. (2|. .f. 219/1055 [51] int. Cl. H05b 9/06 [58] Field of Search 219/1055 [56] References Cited UNITED STATES PATENTS 2,612,596 9/1952 Gross 219/1055 3,271,169 9/1966 Baker et al. 219/1055 X 3,302,632 2/1967 Fichtner 219/1055 X 3,353,968 11/1967 Kucejewski 99/192 3,490,580 l/l970 Brumfield et al. 219/1055 X 3,525,840 8/1970 Dreman 219/1055 3,601,448 8/1971 Stone 219/1055 X 3,740,514 6/1973 Anderson 219/1055 Primary Examiner-Bruce A. Reynolds Attorney, Agent, or Firm-Edgar O. Rost; Joseph D. Pannone; Harold A. Murphy 57 ABSTRACT Apparatus is disclosed for heating with microwave energy utilizing nonresonant means for converting and transforming free space plane waves within the oven enclosure into fringing electric field patterns to brown or scar the load surfaces similar to broiling. One embodiment comprises parallel abutting plates with alternate plates of a high dielectric constant material to provide a predetermined phase lag and with the intervening low dielectric constant sections to provide alternating fringing electric fields, illustratively, in the pi or any other desired mode pattern. Alternate embodiments include microwave strip transmission lines comprising conductive strips separated by a dielectric substrate to couple and convert the free space waves into the desired heating mode pattern. A load supporting shelf within the microwave oven may be-readily adapted to include the alternating dielectric materials to provide the desired fringing electric field patterns. Conveyer belts may also be adapted to incorporate browning surface means by strips of a high dielectric material on the belt material. Further embodiments include microwave oven enclosures radiated by horn means which may be cross-polarized, as well as, the combination of horn radiators coupled to microwave browning plates.
14 Claims, 12 Drawing Figures 9 D O R 5 3 3 W l mu W S a W aw 2 m B m m Du 6 1 R F l NPUT II Ill FRINGING FIELD CUT OFF REGION l MODE TRANSFORMER FREE SPACE 76 T80 7750 L74 T PAIENTED DEIIZ 4 I974 SHEEI 3 0F 3 MICROWAVE ROTISSI ERIE WITH RADIATORS 62 Mmmmmrvw lwm an ROTISSIERIE WITH RADIATORS AND BROWNING SHELF 1. Field of the Invention The invention relates to microwave heating and apparatus for producing broiled surfaces on a radiated load.
2.-Description of the Prior Art The heating of articles by microwave energy has become widely accepted both here and abroad in recent years due to the rapid preparation times resulting from the so-called dielectric heating phenomenon. Such apparatus typically includes an energy source such as a magnetron with the energy fed within a conductive wall oven enclosure through waveguide transmission means. The electromagnetic waves are radiated and reflected within the enclosure in free space and are distributed by such means as mode stirrers to uniformly surround and be absorbed by the load to result in high frequency oscillatory movements of the molecules to cause heating by molecular friction. The allocated frequencies for such heating apparatus are assigned by the Federal Communications Commission and are 915 i 13 MHz and 2,450i50 MHz. The term microwaves is intended to define electromagnetic energy radiation having wavelengths in the. order of 1 meter to 1 millimeter and frequencies in the order of 300 MHZ to 3 GH z. v
All materials exposed to electromagnetic radiation have differing dielectric constant and loss tangent characteris'tics and, therefore, the rate of heating becomes a varying factor. Accordingly, the varying absorption of the radiated energy causes the depth of penetration and surface coloration of loads to vary. Where a browned surface is desired, similar to broiling,-this is difficult to achieve without long exposure which results in overcooking of the interior regions because the microwave oven enclosure is coolerrelative to electric and gas apparatus so that the exterior load surfaces tend to be cooler than the interior and there is heat loss due to evaporation of moisture. Microwave cooked exterior surfaces, therefore, have been treated in a slightly different manner to produce the desirable coloration.
Prior art techniques for browning include the incorporation of electric or gas broiling elements in the microwave oven. Another method involves the coating of the outer surfaces with a food additive having a higher energy absorbing characteristic which will lead to more rapid heating of the outer surfaces, while the remainder of the load achieves the desired degree of cooking. Still another example of prior art teachings involves the use of lossy ovenware or utensils having a selective heating capability by means of the use of conductive materials. Such conductive materials may be incorporated in a shelf of a dielectric material supporting the load or comprise radiating means having a plurality of rods with a predetermined spacing to cause the rapid absorption of the microwave energy by the rods as shown in U.S. Pat. No. 3,591,751, issued July 6, 1971 to CE. Goltsos U.S. Pat. No. 2,830,162, issued Apr. 8, 1958 to DA. Copson et a1. and assigned to the assignee of the present invention, utilizes a utensil of a ferromagnetic material responsive to the energy impinging thereon up to the Curie temperature point. Thereafter, the utensil becomes substantially nonresponsive and is pervious to 'the electromagnetic energy. Ferromagnetic materials sustain the alternating electric and magnetic fields and, characteristically have high energy loss at the temperatures below the Curie point. Such materials include alloys of manganese, tin and copper, or manganese, alumnium and copper as well as alloys of iron and sulphur, such as pyrrhotite, whose crystals have the form of hexagonal prisms. Examples of such materials are zircomates of lead and barium and the titanates of lead, barium and strontium.
Other examples of the prior art are found in U.S. Pat. No. 3,219,460 issued Nov. 23, 1965 to E.-Brown which discloses containers of a dielectric material having electrically conductive shields such as aluminum wrapped completely around the side and bottom surfaces. Other geometric patterns are achieved in the aluminum foil. U.S. Pat. No. 3,302,632 issued Feb. 7, 1967 to EC. Fichtner also relates to a plastic-type package having varying microwave transparent characteristics. Such containers are readily adaptable to the preparation of frozen foods, such as TV. dinners.
The prior art radiant heaters, selected heating packaging and lossy utensils have been utilized, however, a need still exists for a simple, less costly apparatus which will not be subject to breakage; require additional cleaning or reduce the amount of power available for heating.
SUMMARY OF THE INVENTION In accordance with the teachings of the present invention a plate, dish, shelf or any load supporting means is provided with substantially parallel alternating regions of varying dielectric characteristics to result in intense alternating electric fields in close proximity of a load with said fields rapidly decaying a short distance from the load surfaces. The pi-mode or electric fields out-of-phase is an illustrative electric field pattern for browning the load surfaces. The free space electromagnetic waves within the oven enclosure are converted by the nonfrequency-responsive and nonresonant means comprising the dielectric members from plane waves into the desired alternating fringing electric field patterns. The alternate dielectric members of high dielectric. constant materials provide a phase reversal or phase lag relative to the intervening low constant dielectric or ir-filled members whighi provsm is e d dagta ztsg QLLV X yst ms or complete shelves in addition to plates or utensils to provide the frin in field patterns.
Alternateembodiie nts of the i nv ritfinmaybe realized using strip microwave transmission line techniques providing a capacitor effect between conductive strips on opposing sides of the dielectric substrate. A plane wave entering the bottom of the microwave coupling and transformer means will effectively charge all the conductive strips to convert the waves into the desired mode patterns. Alternatively, all the embodiments of the invention utilizing parallel plates or conductive strips of varying propagation characteristics may be disposed on both sides of the load to shorten the browning time. Ceramic materials having a dielectric constant of 25-50 have been utilized in exemplary embodiments and a rule of thumb for the high dielectric materials for the energy coupling and trans-.
former browning means to obtain the desired phase reversal would be to use a material having a dielectric value approximately equal to the square root of the dielectric constant value of the material being heated.
In all embodiments it is noted that in view of the rapidly decaying fields a short distance from the load relatively little splattering or heat is generated along the oven walls. Further, the materials utilized can be readily cleaned and are of a more durable nature than the lossy type ovenware utilizing ferromagnetic materials which become very brittle and are easily broken at the temperatures encountered in the oven. The invention may also be adapted to any desired mode field patterns-such as TM which would be useful for illustratively baking potatoes. A rotisserie arrangement is also possible and horn radiators for feeding the microwave energy into the oven enclosure are utilized with the horns being cross-polarized. The microwave coupling and transformer means can also be used in combination to couple the energy from the feed means to further enhance the advantages of microwave cooking.
BRIEF DESCRIPTION OF THE DRAWINGS Details of the illustrative embodiments of the invention will be described with reference to the accompanying drawings, wherein;
FIG. 1 is a vertical cross-sectional view of the microwave apparatus embodying the invention;
FIG. 2 is a diagramatic representation to assist in the understanding of the invention;
FIG. 3 is a' diagramatic representation of a browning plate embodiment of the invention illustrating the alternating fringing electric field orientation along the top surface;
FIG. 4A is a top view of a partial portion of a conveyor belt embodiment utilizing the invention;
FIG. 4B is a diagramatic representation of the alternating fringing electric fields disposed in close proximity to the top surface of the embodiment in FIG. 4A; FIG. 5 is a top view of a browning plate embodiment shown supporting a load;
FIG. 6 isan end view of the browning plate embodiment shown in FIG. 5; I
FIG. 7 is a bottom view of a strip microwave transmission line embodiment of the invention;
FIG. 8 is a cross-sectional view taken along the line 8-8 in FIG. 7;
FIG. 9 is a cross-sectional view of an embodiment of the invention utilized as a shelf in a microwave oven;
FIG. 10 is a perspective view of a microwave oven adapted for a rotisserie and radiated by horn-type radiators with cross-polarized fields; and
FIG. 11 is a perspective view of the apparatus shown in FIG. 10 in combination with the microwave coupling and transformer browning means embodying the invention.
DESCRIPTION OF THE PREFERRED EMBODIMENTS monly used in such apparatus of the side or bottomhinged type. A case 18 surrounds the oven enclosure and is provided with a front panel member 20 for mounting timers 22 and 24, as well as, buttons 26, 28 and 30 for actuation, respectively, of the start, stop and light circuits.
A magnetron energy generator 32 of the type described in thetex t Microwave Magnetrons," Radiation Laboratory Series, Volume 6, by G.B. Collins, McGraw-Hill Book Company, Inc., 1948 is mounted behind the front panel member. Such sources are energize d by rectified line voltages of approximately 3,000 to 6,000 volts DC and the electrical circuits, as well as details of the energy source have been purposely omitted since they are considered to be well-known in the art. The microwave energy is coupled to the resonant cavity enclsoure 16 by means of an antenna 34 within a dielectric member 36 extending into the launching rectangular waveguide 38. A terminating end wall 40 is disposed at one end of the launching means spaced approximately one-quarter of a wavelength from the antenna 34 for maximum launching efficiency. The opposing end is open as at 42 to provide for the radiation of the energy within the enclosure. Such launched energy represented by plane waves 44 is distributed in a cyclically varying manner by such means as a mode stirrer 46 having a plurality of vanes 48 which are rotated by a motor 50. The energy waves bounce off the conductive walls at the top, back, side and bottom of the oven enclosure. The load 52 to be heated and browned, such as a steak or roast, is supported on the energy coupling and transformer means 54 of the invention which converts the plane waves into the fringing electric field patterns of rapidly decreasing intensity in close proximity to the exterior surfaces of the load.
The browning means 54 comprise an arrangement of parallel plate members having varying dielectric characteristics with members 56 of a high dielectric constant value while the intervening spaces 58 may be filled with a low constant dielectric material or ai The spaces 58 are lined with a conductive material 60, such as copper or other metal tape to provide a capacitor effect. Where desired the energy coupling and transformer browning plate means 54 is supported on a spacer 62 of a microwave permeable material having a thickness to provide for the entrance of the plane bouncing waves from the bottom wall 12. The invention is also practiced by the provision of another microwave coupling and transformer browning plate means 64 on the opposing side of the load 52 to thereby simultaneously brown both sides of the product.
Referring now to FIG. 2 the principle of the invention will be explained. Plane waves 44 distributed within enclosure 16 have no specific field orientations and have a wavelength of approximately 4.8 inches for 2,450 MH From the free space region 66 the plane waves are coupled by mode transformer region 68 to evolve the fringing electric fields 70 adjacent to the steak 52. It is noted that the function of transforming of free space waves into the fringing electric field patterns may be achieved by an integral assembly or the mode transformer portion may be separate with a superimposed top plate member. With the invention essentially all of the energy entering the transformer region 68 is transformed into a desired heating pattern, illustratively, the pi-mode where the electric fields alternate out-ofphase as shown diagramatically in FIG. 3. In this view the assembly comprises a plurality of parallel plates stacked together in an array with alternate plates providing a high dielectric constant to obtain a desired degree of phase reversal or phase lag for the resultant pattern. To obtain this fringing field configuration plane waves, indicated by vectors 74, enter the bottom of the browning plate means 72 and in-the low dielectric constant or air-filled regions 76 a field orientation and E-field vector 78 is obtained extending perpendicular to the direction of transport of the plane waves. Alternate parallel plates 811 are provided of a high dielectric material such as K-SO or the material sold under the name Stycast with the electric field orientations now reversed as shown by vectors 78. In the reorientation of the plane waves, the H or magnetic field vector extends in an orthogonal direction, designated by the vector 82, parallel to the'longitudinal axis of the plate 72. The alternating fringing electric fields are indicated by arrows 4. These fringing field patterns are of high intensity adjacent to the top surface of the plate 72' and decay rapidly in a direction perpendicular to the plate. Unique means for achieving rapid browning" and searing of the exterior surfaces of load are thereby achieved utilizing the structure of the invention.
Referring next to FIGS. lAand 48 another embodiment of the invention will be discussed. A conveyer belt 911 of a dielectric material having good microwave transmission characteristics is provided with a plurality of high dielectric constant material stri'psor a coating material while arrows 98 indicate the phase reversal provided by the high dielectric constant regions 92. It is common in conveyorized systems-to have the energy distributed from a position above or below the conveyor belt as desired. In either case the invention will provide the fringing electric fields in' close proximity to the conveyor belt surfaces.
In FIG. '5 a microwave browning plate means 101) is illustrated carrying'a load 111 2 which is capable of being readily inserted and removed from the oven enclosure. The parallel plates 11M define the regions of low dielectric constant material which is readily permeable to microwave energy and parallel plate members 106.
comprise the high dielectric constant material. In FIG. 6 the configuration of the high dielectric constant members 1116 will be noted having slightly tapered surfaces 1116a and 1116b. The waves represented by the E-vectors 108 entering the bottom portion are coupled and transformed into the fringing fields exiting from the top surface as represented by the arrows 110. It will be noted that the fringing electric fields adjacent to load 102 extend a short distance from the top surface and, therefore, the desired browning effect is readily obtained on the exterior surfaces of the load 102.
FIGS. 7 and 8 represent a strip microwave transmission line embodiment of the invention. A dielectric substrate body 112 is provided on the bottom side with parallel strips 114 of a highly conductive materials such as copper. The upper portion of the substrate 112 is provided with twice as many conductor strips 116. Alternate conductive strips 116a are connected to the bottom strips 114 by wires 118 to thereby achieve an alternating electric field as indicated by the and signs of the alternate upper strip members. The unconnected strips form capacitors with the bottom conductive strips 114. Plane waves fed into the bottom as indi cated by the E-vectors 120 charge all the conductive strips 1 141 on the bottom side at the same potential. The unconnected strips 116 on the top which are separated by spaces 122 result in an out-of-phase fringing electric field being established across the top surface in the alternating pi-mode. This configuration of the invention represents a low cost method of making a nonreasonant means for coupling and transforming microwave energy into any desired fringing electrical field pattern.
FIG. 9 illustrates an alternative embodiment of the invention comprising a shelf member 124 made up of alternate parallel plate sections of dielectrics 126 and 126. Such an embodiment is mounted on brackets attached to the oven enclosures sidewalls 14 to space the shelf at any desired height from bottom walls 12. Parallel sections 126 "earnin s the low dielectric constant material while the intervening sections 128 comprise the high dielectric constant material. The fringing electric fields provided by .this arrangement are indicated by the arrows 130.
FIGS. 10 and 11 illustrate another embodiment of a microwave oven apparatus with the microwave energy from a source 132 fed through the bottom wall 134 by means of horn radiators 135 and 136. The load 138 comprising a fowl is supported on a rotisserie arrangement including a rod member 1411 supported by the sidewalls 142 and actuated by motor means (not shown). In this embodiment the energy radiated from horn 135 comprises radiated waves 144 with the energy polarized in a direction to provide the E-vector 146 and the H-vector 14%. These vectors are the orthogonal components of the plane wave indicated by vector 150.
The adjacent horn radiator 136 also provides for the' I that the E-vector 152 and H-vector 1541 are approximately out-of-phase with the orthogonal distribution from the radiator 135. l
In this embodiment the oven enclosure 156 may be largerthan present day microwave ovens since the energy is radiated directly from the radiators and 136 and'the distribution effectively controlled by the angle of radiation. The energy reflected from the surfaces of the load 138 as the load rotates are redirected into the meat because of the reflection from the oven enclosure walls. In FIG. 11 a microwave plate member 158, similar to that described in FIG. Q, having alternate dielectric constant material members 160 and 162 is supported on brackets 16 1. Parallel plate regions 160 represent the high dielectric constant material and the intervening members 162 represent the low dielectric constant material.
It is evident that numerous other variations, modifications and alterations may be practiced by those skilled in the-art, for example, it is possible toprovide an energy coupling and transformer-browning means with a TIVI mode field pattern. Such a pattern would be suited for baking potatoes. It is intended, therefore,
that the foregoing description of the embodiment of the invention be considered broadly and not in a limiting sense.
We claim:
1. In combination:
an enclosure;
means for radiating microwave electromagnetic eninate rial and afiernateififiervening spaces vvFhTlTe walls of said dielectric members facing said spaces being coated with a conductive material.
3. The combination according to claim 1 wherein said converting and transformer means comprise an array of parallel members of a high dielectric constant material and alternate intervening spaces with the walls or dielectric members facing said spaces being tapered in a direction to .provide the larger intervening space regions in closer proximity to the load. I
4.. The combination-according to claim 1 wherein said converting and transformer means comprise a dielectric substrate member having spaced conductive strips on opposing sides with a greater number of strips on one side and means for interconnecting alternate strips on said side with the strips on the remaining side.
5. The combination according to claim 1 wherein said load supporting means comprise a conveyor belt of a high dielectric loss material.
6. The combination according to claim 5 wherein said high dielectric constant members are disposed in a direction transverse to the direction oftravel of said conveyor belt. 1
a low loss dielectric material having spaced members of 7. The combination according to claim 5 wherein said high dielectric loss members are disposed in a direction parallel to the direction of travel of said conveyor belt.
8. Microwave heating apparatus comprising:
an enclosure;
means for radiating microwave electromagnetic energy within said enclosure;
means for supporting a load within said enclosure;
said load supporting means including means for converting and transforming free space energy waves into a fringing electric field pattern having a substantially phase differential in close proximity to the exterior surfaces of said load;
said converting and transformer means comprising regions of alternately high and low dielectric constant characteristics.
9. The apparatus according to claim 8 wherein said converting and transformer means comprise a plurality of abutting parallel dielectric regions forming a plate member.
10. The apparatus according to claim 9 wherein one of said plate members simultaneously contact opposing surfaces of said load.
11. The apparatus according to claim 8 wherein said load supporting conveyer belt comprise means of a low dielectric constant material for transporting a load through said enclosure having spaced strips of a high dielectric loss material disposed on the load carrying surface.
12. The apparatus according to claim 8 wherein said converting and transformer means comprise a plurality f disliqtriLme of atelx high n low dielectric constant characteristics forming a shelf within said enclosure.
13. The apparatus according to claim 8 wherein said energy radiating means are disposed below said load supporting means.
14. The apparatus according to claim 8 wherein said load-supporting means comprise a dielectric substrate member having spaced conductive lines on opposing sides with the number of lines on one side being substantially greater and means for electrically interconnecting said lines to provide the predetermined fringing electric field pat-tern.
UNITED STATES PATENT oEETc CERTIFICATE oE Patent No. 3 857 O09 Dated December 24 n, 1974 Inventor) George H. MacMasteT 6% Kenneth W. Dudley It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
In the Specification Column 2, line 64 after "having a insert high Column 4, line 42 change "low constant dielectric" to low dielectric: constant Column 5, line 56 after "high" insert loss I r 1 the Claims Claim 5, line 3 delete "loss"; and after "dielectric" insert constant Claim 7, line 2 delete "loss" and insert constant Claim 11, line 5 delete "loss" and insert constant Signed and sealed this 15th day of July 1.975a
(SEAL) Attest:
' I C. MARSHALL DANN RUTH C. MASON Commissioner of Patents Attesting Officer and Trademarks

Claims (14)

1. In combination: an enclosure; means for radiating microwave electromagnetic energy within said enclosure; a load; and means for supporting said load within said enclosure comprising means for converting and transforming free space energy waves into a fringing electric field pattern having a substantially 180* phase differential in close proximity to the exterior surfaces of said load; said converting and transformer means comprising alternate regions of high and low dielectric loss characteristics
2. The combination according to claim 1 wherein said converting and transformer means comprise an array of parallel members of a high dielectric loss material and alternate intervening spaces with the walls of said dielectric members facing said spaces being coated with a conductive material.
3. The combination according to claim 1 wherein said converting and transformer means comprise an array of parallel members of a high dielectric loss material and alternate intervening spaces with the walls or dielectric members facing said spaces being tapered in a direction to provide the larger intervening space reGions in closer proximity to the load.
4. The combination according to claim 1 wherein said converting and transformer means comprise a dielectric substrate member having spaced conductive strips on opposing sides with a greater number of strips on one side and means for interconnecting alternate strips on said side with the strips on the remaining side.
5. The combination according to claim 1 wherein said load supporting means comprise a conveyor belt of a low loss dielectric material having spaced members of a high dielectric loss material.
6. The combination according to claim 5 wherein said high dielectric loss members are disposed in a direction transverse to the direction of travel of said conveyor belt.
7. The combination according to claim 5 wherein said high dielectric loss members are disposed in a direction parallel to the direction of travel of said conveyor belt.
8. Microwave heating apparatus comprising: an enclosure; means for radiating microwave electromagnetic energy within said enclosure; means for supporting a load within said enclosure; said load supporting means including means for converting and transforming free space energy waves into a fringing electric field pattern having a substantially 180* phase differential in close proximity to the exterior surfaces of said load; said converting and transformer means comprising regions of alternately high and low dielectric loss characteristics.
9. The apparatus according to claim 8 wherein said converting and transformer means comprise a plurality of abutting parallel dielectric regions forming a plate member.
10. The apparatus according to claim 9 wherein one of said plate members simultaneously contact opposing surfaces of said load.
11. The apparatus according to claim 8 wherein said load supporting conveyer belt comprise means of a low loss dielectric material for transporting a load through said enclosure having spaced strips of a high dielectric loss material disposed on the load carrying surface.
12. The apparatus according to claim 8 wherein said converting and transformer means comprise a plurality of dielectric members of alternately high and low loss characteristics forming a shelf within said enclosure.
13. The apparatus according to claim 8 wherein said energy radiating means are disposed below said load supporting means.
14. The apparatus according to claim 8 wherein said load supporting means comprise a dielectric substrate member having spaced conductive lines on opposing sides with the number of lines on one side being substantially greater and means for electrically interconnecting said lines to provide the predetermined fringing electric field pattern.
US00395469A 1973-09-10 1973-09-10 Microwave browning means Expired - Lifetime US3857009A (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
US00395469A US3857009A (en) 1973-09-10 1973-09-10 Microwave browning means
ZA00745189A ZA745189B (en) 1973-09-10 1974-08-13 Microwave browning means
US05/497,445 US3934106A (en) 1973-09-10 1974-08-14 Microwave browning means
AU72369/74A AU478076B2 (en) 1973-09-10 1974-08-14 Microwave browning means
GB3699574A GB1464293A (en) 1973-09-10 1974-08-22 Microwave heating apparatus
NL7411396A NL7411396A (en) 1973-09-10 1974-08-27 DEVICE FOR HEATING WITH MICROWAVEENER
CA208,007A CA980871A (en) 1973-09-10 1974-08-28 Microwave browning means
FR7429707A FR2243575B1 (en) 1973-09-10 1974-08-30
IT52821/74A IT1019173B (en) 1973-09-10 1974-08-30 IMPROVEMENT IN MICRO WAVE OVENS FOR BROWNING OR GRILLED ROASTING
BE148150A BE819467A (en) 1973-09-10 1974-09-02 HYPER FREQUENCY BROWNING DEVICE
SE7411368A SE392199B (en) 1973-09-10 1974-09-09 HEATING DEVICE BY MICROVAGOR
JP10429774A JPS5318740B2 (en) 1973-09-10 1974-09-10
CH1231074A CH576107A5 (en) 1973-09-10 1974-09-10
DE2443173A DE2443173A1 (en) 1973-09-10 1974-09-10 MICROWAVE DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00395469A US3857009A (en) 1973-09-10 1973-09-10 Microwave browning means

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/497,445 Division US3934106A (en) 1973-09-10 1974-08-14 Microwave browning means

Publications (1)

Publication Number Publication Date
US3857009A true US3857009A (en) 1974-12-24

Family

ID=23563174

Family Applications (1)

Application Number Title Priority Date Filing Date
US00395469A Expired - Lifetime US3857009A (en) 1973-09-10 1973-09-10 Microwave browning means

Country Status (12)

Country Link
US (1) US3857009A (en)
JP (1) JPS5318740B2 (en)
BE (1) BE819467A (en)
CA (1) CA980871A (en)
CH (1) CH576107A5 (en)
DE (1) DE2443173A1 (en)
FR (1) FR2243575B1 (en)
GB (1) GB1464293A (en)
IT (1) IT1019173B (en)
NL (1) NL7411396A (en)
SE (1) SE392199B (en)
ZA (1) ZA745189B (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3941968A (en) * 1975-03-27 1976-03-02 Raytheon Company Microwave browning plate
US3943320A (en) * 1975-06-19 1976-03-09 Raytheon Company Frankfurt searing tray for use with microwave energy
US3946188A (en) * 1975-06-19 1976-03-23 Raytheon Company Microwave heating apparatus with browning feature
US3946187A (en) * 1975-03-03 1976-03-23 Raytheon Company Microwave browning utensil
US3949184A (en) * 1975-05-02 1976-04-06 Raytheon Company Folding microwave searing and browning means
JPS5254051U (en) * 1975-10-16 1977-04-18
US4184061A (en) * 1977-03-11 1980-01-15 Nippon Electric Glass Company, Limited Browning vessels which used together with microwave ovens
US4296298A (en) * 1978-06-12 1981-10-20 Raytheon Company Dielectric cooking apparatus
US4717802A (en) * 1979-06-11 1988-01-05 Plastics, Inc. Microwave oven rotisserie assembly
US4806718A (en) * 1987-06-01 1989-02-21 General Mills, Inc. Ceramic gels with salt for microwave heating susceptor
US4808780A (en) * 1987-09-10 1989-02-28 General Mills, Inc. Amphoteric ceramic microwave heating susceptor utilizing compositions with metal salt moderators
US4810845A (en) * 1987-06-01 1989-03-07 General Mills, Inc. Solid state ceramic microwave heating susceptor
US4816632A (en) * 1987-01-08 1989-03-28 U.S. Philips Corporation Multi-resonant microwave oven having an improved microwave distribution
US4818831A (en) * 1987-06-25 1989-04-04 General Mills, Inc. Amphoteric ceramic microwave heating susceptor
US4825024A (en) * 1987-06-01 1989-04-25 General Mills, Inc. Solid state ceramic microwave heating susceptor utilizing compositions with metal salt moderators
US4950857A (en) * 1987-06-01 1990-08-21 General Mills, Inc. Solid state ceramic microwave heating susceptor compositions with metal salt moderators
US4956533A (en) * 1987-06-01 1990-09-11 General Mills, Inc. Solid state ceramic microwave heating susceptor compositions
US4965423A (en) * 1987-06-25 1990-10-23 General Mills, Inc. Amphoteric ceramic microwave heating susceptor compositions
US4965427A (en) * 1987-09-10 1990-10-23 General Mills, Inc. Amphoteric ceramic microwave heating susceptor compositions with metal salt moderators
US4968865A (en) * 1987-06-01 1990-11-06 General Mills, Inc. Ceramic gels with salt for microwave heating susceptor
US5079398A (en) * 1989-11-27 1992-01-07 Pre Finish Metals Incorporated Container with ferrite coating and method of making ferrite-coated sheet
US5117078A (en) * 1990-02-02 1992-05-26 Beckett Industries Inc. Controlled heating of foodstuffs by microwave energy
US5139826A (en) * 1989-11-27 1992-08-18 Pre Finish Metals, Incorporated Container with ferrite coating and method of making ferrite-coated sheet
US5183787A (en) * 1987-09-10 1993-02-02 General Mills, Inc. Amphoteric ceramic microwave heating susceptor compositions with metal salt moderators
US5236727A (en) * 1991-11-14 1993-08-17 Roy Huston Taco shell
US5254820A (en) * 1990-11-19 1993-10-19 The Pillsbury Company Artificial dielectric tuning device for microwave ovens
US5331135A (en) * 1993-02-12 1994-07-19 Kansas State University Research Foundation Microwave baking pan
US5400704A (en) * 1991-11-14 1995-03-28 Huston; Roy Tortilla cooking apparatus and method
US6608292B1 (en) 2002-07-26 2003-08-19 Neal Patrick Barnes Microwave grilling appliance
US20110297671A1 (en) * 2010-06-04 2011-12-08 Whirlpool Corporation Microwave heating apparatus with rotatable antenna and method thereof
US20120199580A1 (en) * 2009-08-20 2012-08-09 Electrolux Home Products Corporation N.V. wave stirrer for a microwave oven
US11412584B2 (en) 2017-12-08 2022-08-09 Alkar-Rapidpak, Inc. Ovens with metallic belts and microwave launch box assemblies for processing food products

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5112443A (en) * 1974-07-22 1976-01-31 Matsushita Electric Ind Co Ltd KOSHUHAKANETSUKI
JPS5254050U (en) * 1975-10-16 1977-04-18
DE102019112517B4 (en) 2019-05-14 2022-05-25 Miele & Cie. Kg Method for operating a device, in particular a cooking device, and device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2612596A (en) * 1947-02-18 1952-09-30 Raytheon Mfg Co Microwave heating
US3271169A (en) * 1963-02-01 1966-09-06 Litton Prec Products Inc Food package for microwave heating
US3302632A (en) * 1963-12-06 1967-02-07 Wells Mfg Company Microwave cooking utensil
US3353968A (en) * 1963-02-01 1967-11-21 Litton Prec Products Inc Food package for use in microwave heating apparatus
US3490580A (en) * 1968-07-29 1970-01-20 Robert C Brumfield Containers and process for asepsis
US3525840A (en) * 1967-11-13 1970-08-25 Cryodry Corp Take-apart belt for microwave oven
US3601448A (en) * 1969-04-21 1971-08-24 Gas Dev Corp Method for fracturing concrete and other materials with microwave energy
US3740514A (en) * 1970-07-01 1973-06-19 Litter Syst Inc Mode-shifting system for microwave ovens

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2612596A (en) * 1947-02-18 1952-09-30 Raytheon Mfg Co Microwave heating
US3271169A (en) * 1963-02-01 1966-09-06 Litton Prec Products Inc Food package for microwave heating
US3353968A (en) * 1963-02-01 1967-11-21 Litton Prec Products Inc Food package for use in microwave heating apparatus
US3302632A (en) * 1963-12-06 1967-02-07 Wells Mfg Company Microwave cooking utensil
US3525840A (en) * 1967-11-13 1970-08-25 Cryodry Corp Take-apart belt for microwave oven
US3490580A (en) * 1968-07-29 1970-01-20 Robert C Brumfield Containers and process for asepsis
US3601448A (en) * 1969-04-21 1971-08-24 Gas Dev Corp Method for fracturing concrete and other materials with microwave energy
US3740514A (en) * 1970-07-01 1973-06-19 Litter Syst Inc Mode-shifting system for microwave ovens

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3946187A (en) * 1975-03-03 1976-03-23 Raytheon Company Microwave browning utensil
US3941968A (en) * 1975-03-27 1976-03-02 Raytheon Company Microwave browning plate
US3949184A (en) * 1975-05-02 1976-04-06 Raytheon Company Folding microwave searing and browning means
US3943320A (en) * 1975-06-19 1976-03-09 Raytheon Company Frankfurt searing tray for use with microwave energy
US3946188A (en) * 1975-06-19 1976-03-23 Raytheon Company Microwave heating apparatus with browning feature
JPS5254051U (en) * 1975-10-16 1977-04-18
US4184061A (en) * 1977-03-11 1980-01-15 Nippon Electric Glass Company, Limited Browning vessels which used together with microwave ovens
US4296298A (en) * 1978-06-12 1981-10-20 Raytheon Company Dielectric cooking apparatus
US4717802A (en) * 1979-06-11 1988-01-05 Plastics, Inc. Microwave oven rotisserie assembly
US4816632A (en) * 1987-01-08 1989-03-28 U.S. Philips Corporation Multi-resonant microwave oven having an improved microwave distribution
US4956533A (en) * 1987-06-01 1990-09-11 General Mills, Inc. Solid state ceramic microwave heating susceptor compositions
US4968865A (en) * 1987-06-01 1990-11-06 General Mills, Inc. Ceramic gels with salt for microwave heating susceptor
US4810845A (en) * 1987-06-01 1989-03-07 General Mills, Inc. Solid state ceramic microwave heating susceptor
US4825024A (en) * 1987-06-01 1989-04-25 General Mills, Inc. Solid state ceramic microwave heating susceptor utilizing compositions with metal salt moderators
US4950857A (en) * 1987-06-01 1990-08-21 General Mills, Inc. Solid state ceramic microwave heating susceptor compositions with metal salt moderators
US4806718A (en) * 1987-06-01 1989-02-21 General Mills, Inc. Ceramic gels with salt for microwave heating susceptor
US4818831A (en) * 1987-06-25 1989-04-04 General Mills, Inc. Amphoteric ceramic microwave heating susceptor
US4965423A (en) * 1987-06-25 1990-10-23 General Mills, Inc. Amphoteric ceramic microwave heating susceptor compositions
US5183787A (en) * 1987-09-10 1993-02-02 General Mills, Inc. Amphoteric ceramic microwave heating susceptor compositions with metal salt moderators
US4808780A (en) * 1987-09-10 1989-02-28 General Mills, Inc. Amphoteric ceramic microwave heating susceptor utilizing compositions with metal salt moderators
US4965427A (en) * 1987-09-10 1990-10-23 General Mills, Inc. Amphoteric ceramic microwave heating susceptor compositions with metal salt moderators
US5079398A (en) * 1989-11-27 1992-01-07 Pre Finish Metals Incorporated Container with ferrite coating and method of making ferrite-coated sheet
US5139826A (en) * 1989-11-27 1992-08-18 Pre Finish Metals, Incorporated Container with ferrite coating and method of making ferrite-coated sheet
US5117078A (en) * 1990-02-02 1992-05-26 Beckett Industries Inc. Controlled heating of foodstuffs by microwave energy
US5254820A (en) * 1990-11-19 1993-10-19 The Pillsbury Company Artificial dielectric tuning device for microwave ovens
US5400704A (en) * 1991-11-14 1995-03-28 Huston; Roy Tortilla cooking apparatus and method
US5236727A (en) * 1991-11-14 1993-08-17 Roy Huston Taco shell
US5331135A (en) * 1993-02-12 1994-07-19 Kansas State University Research Foundation Microwave baking pan
US6608292B1 (en) 2002-07-26 2003-08-19 Neal Patrick Barnes Microwave grilling appliance
US20120199580A1 (en) * 2009-08-20 2012-08-09 Electrolux Home Products Corporation N.V. wave stirrer for a microwave oven
US20110297671A1 (en) * 2010-06-04 2011-12-08 Whirlpool Corporation Microwave heating apparatus with rotatable antenna and method thereof
US9538585B2 (en) * 2010-06-04 2017-01-03 Whirlpool Corporation Microwave heating apparatus with rotatable antenna and method thereof
US11191134B2 (en) 2010-06-04 2021-11-30 Whirlpool Corporation Microwave heating apparatus with rotatable antenna and method thereof
US11412584B2 (en) 2017-12-08 2022-08-09 Alkar-Rapidpak, Inc. Ovens with metallic belts and microwave launch box assemblies for processing food products
US11751296B2 (en) 2017-12-08 2023-09-05 Alkar-Rapidpak, Inc. Ovens with metallic belts and microwave launch box assemblies for processing food products

Also Published As

Publication number Publication date
NL7411396A (en) 1975-03-12
CA980871A (en) 1975-12-30
JPS5055946A (en) 1975-05-16
AU7236974A (en) 1976-02-19
ZA745189B (en) 1975-08-27
CH576107A5 (en) 1976-05-31
FR2243575B1 (en) 1978-04-28
IT1019173B (en) 1977-11-10
FR2243575A1 (en) 1975-04-04
SE392199B (en) 1977-03-14
JPS5318740B2 (en) 1978-06-16
SE7411368L (en) 1975-03-11
BE819467A (en) 1974-12-31
DE2443173A1 (en) 1975-03-13
GB1464293A (en) 1977-02-09

Similar Documents

Publication Publication Date Title
US3857009A (en) Microwave browning means
US3934106A (en) Microwave browning means
US3845266A (en) Microwave cooking utensil
US3946187A (en) Microwave browning utensil
US3271169A (en) Food package for microwave heating
US3271552A (en) Microwave heating apparatus
US3353968A (en) Food package for use in microwave heating apparatus
US3941968A (en) Microwave browning plate
US3946188A (en) Microwave heating apparatus with browning feature
US4464554A (en) Dynamic bottom feed for microwave ovens
US3806689A (en) Apparatus and method for heating simultaneously with microwaves of two widely different frequencies
US4296298A (en) Dielectric cooking apparatus
US4455467A (en) Metal rack for microwave oven
EP0585143A1 (en) Wave guide system of a microwave oven
US4460814A (en) Oven antenna probe for distributing energy in microwave
US4320274A (en) Cooking utensil for uniform heating in microwave oven
US2827537A (en) Electronic heating apparatus
Kashyap et al. Methods for improving heating uniformity of microwave owens
JP2533896B2 (en) Microwave cookware
EP0274164B1 (en) A microwave oven
US3805009A (en) Apparatus for supplying microwave energy to foods as they are fried
US6034362A (en) Circularly polarized microwave energy feed
US5935477A (en) Continuous microwave cooking grill having a plurality of spaced segments
US3562471A (en) Microwave oven and antenna structure therefor
US3430022A (en) Microwave oven