US3848273A - Shank for bone implants - Google Patents

Shank for bone implants Download PDF

Info

Publication number
US3848273A
US3848273A US00327803A US32780373A US3848273A US 3848273 A US3848273 A US 3848273A US 00327803 A US00327803 A US 00327803A US 32780373 A US32780373 A US 32780373A US 3848273 A US3848273 A US 3848273A
Authority
US
United States
Prior art keywords
shank
depressions
set forth
bone
microns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00327803A
Inventor
O Frey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sulzer AG
Original Assignee
Sulzer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sulzer AG filed Critical Sulzer AG
Application granted granted Critical
Publication of US3848273A publication Critical patent/US3848273A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/36Femoral heads ; Femoral endoprostheses
    • A61F2/3662Femoral shafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/38Joints for elbows or knees
    • A61F2/3804Joints for elbows or knees for elbows
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/42Joints for wrists or ankles; for hands, e.g. fingers; for feet, e.g. toes
    • A61F2/4261Joints for wrists or ankles; for hands, e.g. fingers; for feet, e.g. toes for wrists
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30112Rounded shapes, e.g. with rounded corners
    • A61F2002/30136Rounded shapes, e.g. with rounded corners undulated or wavy, e.g. serpentine-shaped or zigzag-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30838Microstructures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30904Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves serrated profile, i.e. saw-toothed
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2002/30906Special external or bone-contacting surface, e.g. coating for improving bone ingrowth shot- sand- or grit-blasted
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/36Femoral heads ; Femoral endoprostheses
    • A61F2/3609Femoral heads or necks; Connections of endoprosthetic heads or necks to endoprosthetic femoral shafts
    • A61F2002/3625Necks
    • A61F2002/3631Necks with an integral complete or partial peripheral collar or bearing shoulder at its base
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2002/4631Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor the prosthesis being specially adapted for being cemented
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0004Rounded shapes, e.g. with rounded corners

Definitions

  • Bone implants such as joints for the hip, elbow and wrist, usually have shanks which are engaged in corresponding passages in the particular bone concerned and are anchored in the passage by means of a quicksetting bone cement such as methylmethacrylate.
  • a quicksetting bone cement such as methylmethacrylate.
  • the invention provides a shank having texturized zones of depressions in an external surface for anchoring a bone implant in a bone.
  • the zones are generally disposed in the load bearing zones of the surface of the shank while the shank narrows in cross-section toward one end.
  • the shank is secured in a bone by a suitable bone cement so that the cement fills the spaces within the texturized zones of depressions.
  • the depth of the depressions in each zone is between and 100 microns (1.1.). Shallower depths lead to unreliable adhesion between the cement and the shank surface, and depths of more than 100 microns (u) readily result in air bubbles remaining when the shank is driven into the bone cement, the bubbles impairing adhesion. Also, the possibility of withdrawing the shank from the bone is impaired in increasing proportion as the depressions are made deeper. The optimum depth is governed very largely by the particular bone cements used, more particularly their viscosity, changes in volume and their ability to make good contact, i.e., the extent to which they can mate accurately with a texture on the shank surface to provide a faithful copy in reverse of the texture.
  • At least the bearing and load-taking surfaces are provided with the texturized zones of depressions.
  • these surfaces are provided with regular toothing extending transversely of the direction in which the implant is introduced into and withdrawn from the bone. In this event, to facilitate withdrawal, the distance between discrete teeth can increase towards the narrow end of the shank.
  • Textures in the form of recesses of a shape resembling shells or troughs have proved satisfactory in other embodiments of the invention. Both kinds of texture can, of course, be used with advantage simultaneously.
  • the load-taking and the bearing surfaces can have toothing while the other surfaces can have shell-like recessings.
  • the texturized shank surface can also be roughened, eg by sand blast-- ing with 0.05 to 0.2 millimeters (mm) diameter silica pellets.
  • the edges and corners at junctions between the various surfaces which make up a multi-surface polygonal shank, and the raised and recessed junctions between the various teeth and between and in the troughs are very rounded and free from projections.
  • FIG. 1 illustrates a sectional view through a femur fitted with a prosthetic head having a shank according to the invention
  • FIG. 2 diagrammatically illustrates a sectional view through an arm fitted with an artificial elbow joint using shanks in accordance with the invention
  • FIG. 3 diagrammatically illustrates a sectional view of a prosthetic wrist joint fitted in a forearm and a carpal bone using shanks according to the invention
  • FIG. 4 illustrates a considerably'enlarged and diagrammatic plan view of atexturized zone of depressions in the form of regularly disposed trough-like recesses
  • FIG. 5 illustrates a vew taken on line VV of FIG.
  • FIG. 6 illustrates a side elevational view of a cutting bit for forming the depressions shown in FIGS. 3 and 4;
  • FIG. 7 illustrates a plan view of the bit of FIG. 6.
  • a prosthetic femur head 1 has been implanted in a femur 2 which has been appropriately prepared by surgery.
  • the head 1 includes a shank 3 anchored by means of a bone cement 4, e.g. methyl methacrylate, in a passage or recess 5 in the femur bone 2 whose relatively compact cortical substance is shown more darkly dotted than the porous spongy substance.
  • the shank 3 has a polygonal large-area shape with rounded comers and edges.
  • the shank cross-sectional shape resembles a kite (FIG.
  • the surface of the shank 3 which is non-porous has a texturized zone which is, indicated in FIG. 1 by trough-like discrete unconnect recesses or depressions between teeth of a regular or uniformly formed toothing.
  • An endeavor is also made to show, in diagrammatic and sketch form, the toothing formed as texturizing on the surfaces 6, 7 which appear just as section lines. Also indicated is an increase in tooth spacing towards the exposed end of shank 3.
  • an elbow joint 8 has a shank 9 on one part which shank 9 narrows on all sides.
  • the shank 9 is introduced into a recess or passage or the like in a humerus 10 and retained by bone cement 4.
  • a shank 11 on the other part of the joint 8 is anchored similarly in an ulna 12.
  • one shank 14 is retained by bone cement 4 in a radius bone 25 and another shank 26 is anchored by bone cement 4 in a carpal bone and/or metacarpal bone 27.
  • the texturizing can take the form e.g. of trough-like or shell-like recesses or depressions 15 disposed regularly in rows a, b, c. If the raised parts between the discrete shells 15 are also removed inside the various rows a, b, c, the resulting toothing is very advantageous for the surfaces 6 and 7.
  • the advantages of toothing are that, in cooperation with a shank shape that narrows on all sides and continuously, a fitted shank can be removed simply by applying a force sufficient just to release the shank by one toothing step in the withdrawal direction. Thereafter, the shank can readily be withdrawn from the cement bed.
  • the shank material 16 is usually one of the known metal alloys which are conventionally used for bone implants.
  • the depth 1 of the depressions in the texturized zones can be between and 100 ;1.
  • From 20 to 30 microns ([1,) has been found a very good value for the depth 1 in existing shanks where methyl methacrylate is used as the bone cement.
  • satisfactory dimensions for a single shell of shell-like texturizing are given by a ratio of length u to width v to depth t of 12 4: l.
  • the surface 17 of the texturized shank 3 has the texturizing roughened as well, to further improve adhesion between the cement 4 and the shank 3. That is, the portions between the depressions which are rounded so that the depressions mergetogether smoothly, can be roughened. As mentioned, this roughness is produced by blasting with silica pellets of from 0.05 to 0.2 millimeters (mm) diameter.
  • a technique which has proved satisfactory for producing the shell-like texturing is the cutting or milling of the periphery of the shank transversely of a longitudinal direction.
  • a suitable tool 20 for this can be seen in FIGS. 6 and 7.
  • the cutting bit has, at the junction between the cylindrical portion and the circular end face, a radius r of curvature which is adapted to the bit diameter d and to the required trough size.
  • the bit has a central plane surface s which is also of aparticular diameter.
  • the bit 20 has six lips 21 a, 21
  • the trough depth t arising from the cutting or milling operation is mainly governed by the cutting radius r.
  • the length u can be controlled to some extent by cutter speed and/or the rate of feed, and the width v can be varied within limits by varying the line spacing of the cutting operation.
  • the same tool 20 can be used to produce toothing, but instead of cutting being performed by the cutting edges of radius r, the cutting is performed by the side walls of the cutting edges.
  • the cutter 20 has the diameter d of 8 millimeters (mm), the radius r of curvature of approximately 3.25 millimeters (mm) and the diameter of the plane surface s of approximately 1.5 millimeters (mm).
  • the feed in this case is 250 mm/min. and cutter speed is approximately 8 meters/minute (m/min).
  • the texturizing can also be formed in the shank surface e.g. by means of forming punches.
  • a solid shank for implanting in a bone cement to anchor a bone implant in a bone said shank having a narrowing cross-sectional area towards one end and an external non-porous surface having discrete unconnected depressions therein between raised portions of said shank, said depressions being between 10 microns and microns depth.
  • a shank as set forth in claim 1 having a longitudinal axis and wherein said surface includes at least two load bearing zones having said depressions therein, each zone having a regular toothing extending transversely of said longitudinal axis to fonn said depressions.
  • a shank as set forth in claim 4 wherein said regular toothing includes transverse rows of spaced apart teeth with the spacing between discrete teeth increasing toward said one end of said shank.
  • a shank as set forth in claim I having a plurality of longitudinal side walls defining a generally trapezoidal cross-sectional area, at least two of said side walls having said depressions therein.

Landscapes

  • Health & Medical Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)

Abstract

The shank is provided with texturized zones in the external surface to insure uniform contact between the bone cement and the shank when the shank is implanted. The texturized zones allow the shank to be withdrawn readily from a bone and can be formed to depths of 10 to 100 Mu .

Description

United States Patent 1191 Frey Nov. 19, 1974 SHANK FOR BONE IMPLANTS OTHER PUBLICATIONS [75] Inventor: Otto Frey, Winterthur, Switzerland V1ta1l1um Surg1ca1 Appliances, (catalog) by Austenal 1 Asslgneei sulzer Brothers e th 00., New York, NY. 1964, page 23, F. R. Thompson,
Swltzerland Hip Prosthesis Relied Upon. [22] il J 1973 Surgical Implants-The Role of Surface Porosity in Fixation to Bone & Acr Iic b R. Peter Welsh et al. 1, N .1 7 803 Y Y 1 [211 App 0 32 The Journal of Bone & Joint Surgery, Vol. 53-A, No.
5, July 1971. [30] Foreign Application Priority Data Feb. 2, 1972 Switzerland 1550/72 Primary E i h Gaudet Assistant Examiner-Ronald L. Frinks [52] U.S. C1. 3/1, 128/92 C, 128/92 CA Attorney, Agent, or Firm Kenyon & Kenyon Remy [51] Int. Cl. A6lf l/24 c & Chapin [58] Field of Search.... 3/1; 128/92 C, 92 CA, 92 B, 128/92 BA, 92 BC; 32/10 A [57] ABSTRACT [56] References Cited UNITED STATES PATENTS The shank is provided with texturized zones in the external surface to insure uniform contact between the 2,719,522 10 1955 Hudack 128/92 CA bone cement and the Shank when the Shank is 2,721,387 10/1955 Ashucklan 32/10 A 3,067,740 12/1962 Haboush 1213/92 CA Plamed- The textumed Zones allow the Shank be 3314420 4/1967 Smith a 28/92 C withdrawn readily from a bone and can be formed to 3,605,123 9/1971 Hahn 3/1 depths 011010 FOREIGN PATENTS OR APPLICATIONS 5/1952 Italy 128/92 CA 8 Claims, 7 Drawing Figures 1 SHANK FOR BONE IMPLANTS This invention relates to a shank for a bone implant.
Bone implants, such as joints for the hip, elbow and wrist, usually have shanks which are engaged in corresponding passages in the particular bone concerned and are anchored in the passage by means of a quicksetting bone cement such as methylmethacrylate. It has been found that the bone cement, while curing, often changes volume either by increasing or, and more frequently, by contracting. Because of this, and particularly where the volume changes occur lengthwise of the shank, the volume changes are very often the cause of the bone cement becoming detached from some parts of the shank surface. The parts affected then cease to be able to transmit any load from the shank to the bone. This, in turn, leads to recession of the bones in s the parts concerned, so that the shank starts to work loose. The load also tends to become increasingly concentrated in the remaining unloosened partsof the shank, often to such an extent that the shank ruptures.
A main reason for the above problems is that presentday bone cements cure rapidly and are relatively highly viscous plastics with poor contact properties, i.e., the cements do not readily form an accurate negative of the shank surface.
Daily practice with bone implants and their shanks has also shown the need for the implant and the anchorage of the implant to be so devised that the implant can be withdrawn readily from the bone at any time without damage to the bone surrounding the shank.
Accordingly, it is an object of the invention to provide a shank for an implant which is capable of compensating for changes in volume in a bone cement during setting.
It is another object of the invention to preclude the loosening of bone implant shanks in a bone due to changes in the volume of a bone cement.
Briefly, the invention provides a shank having texturized zones of depressions in an external surface for anchoring a bone implant in a bone. The zones are generally disposed in the load bearing zones of the surface of the shank while the shank narrows in cross-section toward one end.
In use, the shank is secured in a bone by a suitable bone cement so that the cement fills the spaces within the texturized zones of depressions.
Advantageously, the depth of the depressions in each zone is between and 100 microns (1.1.). Shallower depths lead to unreliable adhesion between the cement and the shank surface, and depths of more than 100 microns (u) readily result in air bubbles remaining when the shank is driven into the bone cement, the bubbles impairing adhesion. Also, the possibility of withdrawing the shank from the bone is impaired in increasing proportion as the depressions are made deeper. The optimum depth is governed very largely by the particular bone cements used, more particularly their viscosity, changes in volume and their ability to make good contact, i.e., the extent to which they can mate accurately with a texture on the shank surface to provide a faithful copy in reverse of the texture.
In order to ensure satisfactory adhesion, at least the bearing and load-taking surfaces are provided with the texturized zones of depressions. For example, in one embodiment these surfaces are provided with regular toothing extending transversely of the direction in which the implant is introduced into and withdrawn from the bone. In this event, to facilitate withdrawal, the distance between discrete teeth can increase towards the narrow end of the shank.
Textures in the form of recesses of a shape resembling shells or troughs have proved satisfactory in other embodiments of the invention. Both kinds of texture can, of course, be used with advantage simultaneously.
For instance, in the case of a multiple polygonal shank, the load-taking and the bearing surfaces can have toothing while the other surfaces can have shell-like recessings. To further improve adhesion, the texturized shank surface can also be roughened, eg by sand blast-- ing with 0.05 to 0.2 millimeters (mm) diameter silica pellets.
Conveniently, to improve the fatigue strength of the shank, the edges and corners at junctions between the various surfaces which make up a multi-surface polygonal shank, and the raised and recessed junctions between the various teeth and between and in the troughs, are very rounded and free from projections.
These and other objects and advantages of the invention will become more apparent from the following detailed description and appended claims taken in conjunction with the accompanying drawings in which:
FIG. 1 illustrates a sectional view through a femur fitted with a prosthetic head having a shank according to the invention;
FIG. 2 diagrammatically illustrates a sectional view through an arm fitted with an artificial elbow joint using shanks in accordance with the invention;
FIG. 3 diagrammatically illustrates a sectional view of a prosthetic wrist joint fitted in a forearm and a carpal bone using shanks according to the invention;
FIG. 4 illustrates a considerably'enlarged and diagrammatic plan view of atexturized zone of depressions in the form of regularly disposed trough-like recesses;
FIG. 5 illustrates a vew taken on line VV of FIG.
FIG. 6 illustrates a side elevational view of a cutting bit for forming the depressions shown in FIGS. 3 and 4; and
FIG. 7 illustrates a plan view of the bit of FIG. 6.
Referring to FIG. 1, a prosthetic femur head 1 has been implanted in a femur 2 which has been appropriately prepared by surgery. The head 1 includes a shank 3 anchored by means of a bone cement 4, e.g. methyl methacrylate, in a passage or recess 5 in the femur bone 2 whose relatively compact cortical substance is shown more darkly dotted than the porous spongy substance. In the part near the head 1, the shank 3 has a polygonal large-area shape with rounded comers and edges. In order to prevent accidental turning, the shank cross-sectional shape resembles a kite (FIG. 6) and in the end-distal from the exposed end merges, on the assumption that the shape narrows on all sides and continuously, into a substantially trapezoidal cross-section The surface of the shank 3 which is non-porous has a texturized zone which is, indicated in FIG. 1 by trough-like discrete unconnect recesses or depressions between teeth of a regular or uniformly formed toothing. An endeavor is also made to show, in diagrammatic and sketch form, the toothing formed as texturizing on the surfaces 6, 7 which appear just as section lines. Also indicated is an increase in tooth spacing towards the exposed end of shank 3.
Referring to FIG. 2 as another example of implant shanks having texturized surfaces, an elbow joint 8 has a shank 9 on one part which shank 9 narrows on all sides. The shank 9 is introduced into a recess or passage or the like in a humerus 10 and retained by bone cement 4. A shank 11 on the other part of the joint 8 is anchored similarly in an ulna 12.
Referring to FIG. 3, for a wrist joint 13, one shank 14 is retained by bone cement 4 in a radius bone 25 and another shank 26 is anchored by bone cement 4 in a carpal bone and/or metacarpal bone 27.
Referring to FIGS. 4 and which are views' to a considerably enlarged scale, the texturizing can take the form e.g. of trough-like or shell-like recesses or depressions 15 disposed regularly in rows a, b, c. If the raised parts between the discrete shells 15 are also removed inside the various rows a, b, c, the resulting toothing is very advantageous for the surfaces 6 and 7. The advantages of toothing are that, in cooperation with a shank shape that narrows on all sides and continuously, a fitted shank can be removed simply by applying a force sufficient just to release the shank by one toothing step in the withdrawal direction. Thereafter, the shank can readily be withdrawn from the cement bed.
Referring to FIG. 5, the shank material 16 is usually one of the known metal alloys which are conventionally used for bone implants. As already emphasized, the depth 1 of the depressions in the texturized zones can be between and 100 ;1.. From 20 to 30 microns ([1,) has been found a very good value for the depth 1 in existing shanks where methyl methacrylate is used as the bone cement. Experiments by the Applicant has also shown that satisfactory dimensions for a single shell of shell-like texturizing are given by a ratio of length u to width v to depth t of 12 4: l.
The surface 17 of the texturized shank 3 has the texturizing roughened as well, to further improve adhesion between the cement 4 and the shank 3. That is, the portions between the depressions which are rounded so that the depressions mergetogether smoothly, can be roughened. As mentioned, this roughness is produced by blasting with silica pellets of from 0.05 to 0.2 millimeters (mm) diameter.
A technique which has proved satisfactory for producing the shell-like texturing, is the cutting or milling of the periphery of the shank transversely of a longitudinal direction. A suitable tool 20 for this can be seen in FIGS. 6 and 7. The cutting bit has, at the junction between the cylindrical portion and the circular end face, a radius r of curvature which is adapted to the bit diameter d and to the required trough size. Also, the bit has a central plane surface s which is also of aparticular diameter. As FIG. 7 shows, the bit 20 has six lips 21 a, 21
b. Two lips 21 a are disposed opposite one another to cover the whole bit along a diameter, whereas the'other four-lips 21 b extend only to the edge of the plane surface. While being texturized, the shank 3 is positioned relatively to the cutter bit 20 in the manner visible in FIG. 6. v
As already mentioned, the trough depth t arising from the cutting or milling operation is mainly governed by the cutting radius r. The length u can be controlled to some extent by cutter speed and/or the rate of feed, and the width v can be varied within limits by varying the line spacing of the cutting operation. The same tool 20 can be used to produce toothing, but instead of cutting being performed by the cutting edges of radius r, the cutting is performed by the side walls of the cutting edges.
As an example, for a texturizing of the kind specified with the ratio ofu to v tot 12:4: 1 and with t to z 20 microns t), the cutter 20 has the diameter d of 8 millimeters (mm), the radius r of curvature of approximately 3.25 millimeters (mm) and the diameter of the plane surface s of approximately 1.5 millimeters (mm). The feed in this case is 250 mm/min. and cutter speed is approximately 8 meters/minute (m/min).
The texturizing can also be formed in the shank surface e.g. by means of forming punches.
What is claimed is:
l. A solid shank for implanting in a bone cement to anchor a bone implant in a bone, said shank having a narrowing cross-sectional area towards one end and an external non-porous surface having discrete unconnected depressions therein between raised portions of said shank, said depressions being between 10 microns and microns depth.
2. A shank as 'set forth in claim 1 wherein said depressions are separated by roundedportions to merge together smoothly.
3. A shank as set forth in claim 1 wherein said depressions extend into said surface for a depth of between 20 microns and 30 microns.
4. A shank as set forth in claim 1 having a longitudinal axis and wherein said surface includes at least two load bearing zones having said depressions therein, each zone having a regular toothing extending transversely of said longitudinal axis to fonn said depressions.
5. A shank as set forth in claim 4 wherein said regular toothing includes transverse rows of spaced apart teeth with the spacing between discrete teeth increasing toward said one end of said shank.
6. A shank as set forth in claim 1 wherein said zones includes a plurality of regularly disposed trough-shaped depressions.
7. A shank as set forth in claim I having a plurality of longitudinal side walls defining a generally trapezoidal cross-sectional area, at least two of said side walls having said depressions therein.
8. A shank as set forth in claim 10 wherein said depressions are each formed as a single shell of a length (u) to width (v) to depth (t) ratio of 12:4:1.
UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTIQN Patent No. 3,848,273 Dated November 19, 1974 OTTO FREY Inventor(s) It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Column l, line 59, "10" should be --l--.
Signed and sealed this 4th day of February" 1975.
(SEAL) Attest:
McCOY M. GIBSON JR. Attesting Officer c. MARSHALL DANN Commissioner of Patents FORM P0405) (10459) uscoMM-oc 60376-P69 U.$. GOVERNMENT PIINTIIQG OFFICE 2 I", -':'l3.

Claims (8)

1. A solid shank for implanting in a bone cement to anchor a bone implant in a bone, said shank having a narrowing crosssectional area towards one end and an external non-porous surface having discrete unconnected depressions therein between raised portions of said shank, said depressions being between 10 microns and 100 microns depth.
2. A shank as set forth in claim 1 wherein said depressions are separated by rounded portions to merge together smoothly.
3. A shank as set forth in claim 1 wherein said depressions extend into said surface for a depth of between 20 microns and 30 microns.
4. A shank as set forth in claim 1 having a longitudinal axis and wherein said surface includes at least two load bearing zones having said depressions therein, each zone having a regular toothing extending transversely of said longitudinal axis to form said depressions.
5. A shank as set forth in claim 4 wherein said regular toothing includes transverse rows of spaced apart teeth with the spacing between discrete teeth increasing toward said one end of said shank.
6. A shank as set forth in claim 1 wherein said zones includes a plurality of regularly disposed trough-shaped depressions.
7. A shank as set forth in claim 1 having a plurality of longitudinal side walls defining a generally trapezoidal cross-sectional area, at least two of said side walls having said depressions therein.
8. A shank as set forth in claim 10 wherein said depressions are each formed as a single shell of a length (u) to width (v) to depth (t) ratio of 12:4:1.
US00327803A 1972-02-02 1973-01-29 Shank for bone implants Expired - Lifetime US3848273A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH155072A CH547631A (en) 1972-02-02 1972-02-02 SHAFT FOR BONE IMPLANTS.

Publications (1)

Publication Number Publication Date
US3848273A true US3848273A (en) 1974-11-19

Family

ID=4213024

Family Applications (1)

Application Number Title Priority Date Filing Date
US00327803A Expired - Lifetime US3848273A (en) 1972-02-02 1973-01-29 Shank for bone implants

Country Status (11)

Country Link
US (1) US3848273A (en)
AT (1) AT343792B (en)
BE (1) BE794808A (en)
CA (1) CA994956A (en)
CH (1) CH547631A (en)
DE (1) DE2205808C3 (en)
FR (1) FR2169945B1 (en)
GB (1) GB1416267A (en)
IT (1) IT978715B (en)
NL (1) NL149368B (en)
SE (1) SE399177B (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4021865A (en) * 1974-08-29 1977-05-10 John Charnley Femoral prosthesis
US4064567A (en) * 1976-09-15 1977-12-27 The Sampson Corporation Prosthesis-to-bone interface system
US4064566A (en) * 1976-04-06 1977-12-27 Nasa Method of adhering bone to a rigid substrate using a graphite fiber reinforced bone cement
US4153953A (en) * 1977-04-21 1979-05-15 Grobbelaar Charl J Prosthetic hip joint
US4266302A (en) * 1978-10-11 1981-05-12 Etablissements Tornier Femoral pin for hip prosthesis
US4287617A (en) * 1978-10-11 1981-09-08 Etablissements Tornier Femoral pin for hip prosthesis
US4608052A (en) * 1984-04-25 1986-08-26 Minnesota Mining And Manufacturing Company Implant with attachment surface
GB2181354A (en) * 1985-10-08 1987-04-23 Finsbury Improvements relating to orthopaedic implants
JPS62501132A (en) * 1984-12-14 1987-05-07 ドレナ−ト・クラウス bone substitute material
US4714467A (en) * 1985-03-30 1987-12-22 M A N Technologie Gmbh Reinforced fiber bone replacement implant having treated surfaces and a method for its manufacture
US4865603A (en) * 1988-02-04 1989-09-12 Joint Medical Products Corporation Metallic prosthetic devices having micro-textured outer surfaces
US5507833A (en) * 1992-02-10 1996-04-16 Kim-Med, Inc. Hip replacement system and method for implanting the same
US5522894A (en) * 1984-12-14 1996-06-04 Draenert; Klaus Bone replacement material made of absorbable beads
US6120544A (en) * 1997-05-16 2000-09-19 Eska Implants Gmbh & Co. Femur endoprosthesis for articial hip joint
US20020133232A1 (en) * 1993-11-02 2002-09-19 Ricci John L. Microstructured dual sided membrane for tissue growth and regeneration
US20030074079A1 (en) * 1998-04-14 2003-04-17 Osteoimplant Technology, Inc. Differential porosity prosthetic hip system
US20080015616A1 (en) * 1993-11-02 2008-01-17 John Ricci Orthopedic implants having ordered microgeometric surface patterns
US20110015755A1 (en) * 2002-03-26 2011-01-20 T.J. Smith & Nephew Limited Hip joint prosthesis
US20110125284A1 (en) * 2008-05-28 2011-05-26 University Of Bath Improvements in or Relating to Joints and/or Implants
US20120191200A1 (en) * 2011-01-26 2012-07-26 Choren John A Orthopaedic implants and methods of forming implant structures
US20130006354A1 (en) * 2010-02-26 2013-01-03 Limacorporate Spa Integrated prosthetic element
US20170150977A1 (en) * 2013-03-13 2017-06-01 K2M, Inc. Fixation implant and method of insertion

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0016480B1 (en) * 1979-03-15 1983-02-16 GebràœDer Sulzer Aktiengesellschaft Hose-like lining for the anchoring shank of an endoprosthesis
SE444640B (en) * 1980-08-28 1986-04-28 Bergentz Sven Erik IN ANIMAL OR HUMAN IMPLANTABLE KERLPROTES AND SET FOR ITS MANUFACTURING
US4407302A (en) * 1981-04-06 1983-10-04 Telectronics Pty., Ltd. Cardiac pacemaker electrode tip structure
US4408604A (en) * 1981-04-06 1983-10-11 Teletronics Pty, Limited Porous pacemaker electrode tip
CH656525A5 (en) * 1982-10-15 1986-07-15 Sulzer Ag ANCHOR STEM FOR ANCHORING A JOINT REPLACEMENT.
US4673409A (en) * 1984-04-25 1987-06-16 Minnesota Mining And Manufacturing Company Implant with attachment surface
DE3445709A1 (en) * 1984-12-14 1986-06-19 Klaus Dr.med. Dr.med.habil. 8000 München Draenert SURGICAL MATERIAL CLOSURE
DE3445711A1 (en) * 1984-12-14 1986-06-19 Klaus Dr.med. Dr.med.habil. 8000 München Draenert BONE REPLACEMENT MATERIAL AND ITS USE
FR2638351A1 (en) * 1988-11-02 1990-05-04 Jose Adrey FEMORAL HIP PROSTHESIS
EP0800802B1 (en) * 1996-04-10 2002-06-19 Sulzer Orthopädie AG Metallic implant having a surface and method of producing the surface
ES2180015T3 (en) 1996-04-10 2003-02-01 Sulzer Orthopaedie Ag METALLIC IMPLANT THAT INCLUDES A SURFACE AND PROCEDURE TO MANUFACTURE THE SURFACE.
AT406637B (en) * 1997-10-30 2000-07-25 Stratec Medical Ag Femoral component for a hip-joint endoprosthesis
DE50305740D1 (en) * 2003-01-23 2007-01-04 Dinkelacker Wolfgang Bone implant and method for its production

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2719522A (en) * 1952-07-08 1955-10-04 Stephen S Hudack Articular replacement
US2721387A (en) * 1953-07-13 1955-10-25 Edward S Ashuckian Artificial tooth
US3067740A (en) * 1959-09-08 1962-12-11 Edward J Haboush Hip joint prosthesis
US3314420A (en) * 1961-10-23 1967-04-18 Haeger Potteries Inc Prosthetic parts and methods of making the same
US3605123A (en) * 1969-04-29 1971-09-20 Melpar Inc Bone implant

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2719522A (en) * 1952-07-08 1955-10-04 Stephen S Hudack Articular replacement
US2721387A (en) * 1953-07-13 1955-10-25 Edward S Ashuckian Artificial tooth
US3067740A (en) * 1959-09-08 1962-12-11 Edward J Haboush Hip joint prosthesis
US3314420A (en) * 1961-10-23 1967-04-18 Haeger Potteries Inc Prosthetic parts and methods of making the same
US3605123A (en) * 1969-04-29 1971-09-20 Melpar Inc Bone implant

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Surgical Implants The Role of Surface Porosity in Fixation to Bone & Acrylic by R. Peter Welsh et al., The Journal of Bone & Joint Surgery , Vol. 53 A, No. 5, July 1971. *
Vitallium Surgical Appliances, (catalog) by Austenal Co., New York, N.Y. 1964, page 23, F. R. Thompson, Hip Prosthesis Relied Upon. *

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4021865A (en) * 1974-08-29 1977-05-10 John Charnley Femoral prosthesis
US4064566A (en) * 1976-04-06 1977-12-27 Nasa Method of adhering bone to a rigid substrate using a graphite fiber reinforced bone cement
US4064567A (en) * 1976-09-15 1977-12-27 The Sampson Corporation Prosthesis-to-bone interface system
US4153953A (en) * 1977-04-21 1979-05-15 Grobbelaar Charl J Prosthetic hip joint
US4266302A (en) * 1978-10-11 1981-05-12 Etablissements Tornier Femoral pin for hip prosthesis
US4287617A (en) * 1978-10-11 1981-09-08 Etablissements Tornier Femoral pin for hip prosthesis
US4608052A (en) * 1984-04-25 1986-08-26 Minnesota Mining And Manufacturing Company Implant with attachment surface
JPS62501132A (en) * 1984-12-14 1987-05-07 ドレナ−ト・クラウス bone substitute material
US5522894A (en) * 1984-12-14 1996-06-04 Draenert; Klaus Bone replacement material made of absorbable beads
US4714467A (en) * 1985-03-30 1987-12-22 M A N Technologie Gmbh Reinforced fiber bone replacement implant having treated surfaces and a method for its manufacture
GB2181354B (en) * 1985-10-08 1989-10-04 Finsbury Improvements relating to orthopaedic implants
GB2181354A (en) * 1985-10-08 1987-04-23 Finsbury Improvements relating to orthopaedic implants
US4865603A (en) * 1988-02-04 1989-09-12 Joint Medical Products Corporation Metallic prosthetic devices having micro-textured outer surfaces
US5507833A (en) * 1992-02-10 1996-04-16 Kim-Med, Inc. Hip replacement system and method for implanting the same
US20080015616A1 (en) * 1993-11-02 2008-01-17 John Ricci Orthopedic implants having ordered microgeometric surface patterns
US20020133232A1 (en) * 1993-11-02 2002-09-19 Ricci John L. Microstructured dual sided membrane for tissue growth and regeneration
US6120544A (en) * 1997-05-16 2000-09-19 Eska Implants Gmbh & Co. Femur endoprosthesis for articial hip joint
US20030074079A1 (en) * 1998-04-14 2003-04-17 Osteoimplant Technology, Inc. Differential porosity prosthetic hip system
US7323013B2 (en) 1998-04-14 2008-01-29 Encore Medical Asset Corporation Differential porosity prosthetic hip system
US20110015755A1 (en) * 2002-03-26 2011-01-20 T.J. Smith & Nephew Limited Hip joint prosthesis
US8177852B2 (en) * 2002-03-26 2012-05-15 Smith & Nephew, Inc. Hip joint prosthesis
US8808391B2 (en) 2002-03-26 2014-08-19 T.J. Smith & Nephew, Limited Hip joint prosthesis
US20110125284A1 (en) * 2008-05-28 2011-05-26 University Of Bath Improvements in or Relating to Joints and/or Implants
US9370426B2 (en) * 2008-05-28 2016-06-21 Renishaw Plc Relating to joints and/or implants
US20130006354A1 (en) * 2010-02-26 2013-01-03 Limacorporate Spa Integrated prosthetic element
US8864826B2 (en) * 2010-02-26 2014-10-21 Limacorporate Spa Integrated prosthetic element
US20120191200A1 (en) * 2011-01-26 2012-07-26 Choren John A Orthopaedic implants and methods of forming implant structures
US9034048B2 (en) * 2011-01-26 2015-05-19 John A. Choren Orthopaedic implants and methods of forming implant structures
US20170150977A1 (en) * 2013-03-13 2017-06-01 K2M, Inc. Fixation implant and method of insertion

Also Published As

Publication number Publication date
DE2205808B2 (en) 1974-08-22
IT978715B (en) 1974-09-20
NL7202255A (en) 1973-08-06
FR2169945B1 (en) 1978-03-24
DE2205808C3 (en) 1975-04-24
CA994956A (en) 1976-08-17
SE399177B (en) 1978-02-06
ATA1054172A (en) 1977-10-15
FR2169945A1 (en) 1973-09-14
CH547631A (en) 1974-04-11
BE794808A (en) 1973-07-31
NL149368B (en) 1976-05-17
DE2205808A1 (en) 1973-08-16
AT343792B (en) 1978-06-12
GB1416267A (en) 1975-12-03

Similar Documents

Publication Publication Date Title
US3848273A (en) Shank for bone implants
US7018418B2 (en) Textured surface having undercut micro recesses in a surface
US5002579A (en) Prosthesis component and method for its manufacture
US4624673A (en) Device system for dental prosthesis fixation to bone
US4187559A (en) Body joint endoprosthesis
US6015937A (en) Implantable anchoring element and anchoring assembly for prostheses
US4244689A (en) Endosseous plastic implant
US4199864A (en) Endosseous plastic implant method
US4530116A (en) Anchoring shank for a bone implant
US4186486A (en) Dental prosthesis
US3781918A (en) Artificial joint socket
CA2207950A1 (en) Design process for skeletal implants to optimize cellular response
ES260568U (en) Straight blade like shaft for a joint endoprosthesis.
WO1996018356A9 (en) Design process for skeletal implants to optimize cellular response
JPS62502169A (en) Femoral prosthesis joint member
GR3002953T3 (en) Anchoring member for permanent anchorage in bone tissue
JPS6339257B2 (en)
US3924275A (en) Artifical joint prosthesis using Al{hd 2{b O{HD 3{B {0 material
EP0179626A2 (en) Improvements relating to bone implants
US20150190215A1 (en) Implant fixture
AU2017258279A1 (en) Bionic implants and manufacturing methods thereof
DE58902775D1 (en) SCREW IMPLANT FOR ANCHORING PROSTHETIC FINAL CONSTRUCTIONS IN THE MOUTH.
US4919677A (en) Prosthetic acetabulum
FR2395011A1 (en) Artificial implant for repairing hip joint - has hollow cylindrical body with interrupted external thread embedded in iliac bone
CA2069733A1 (en) Apparatus and method for dental prosthesis