US3840377A - Supersensitized silver halide photographic emulsions - Google Patents

Supersensitized silver halide photographic emulsions Download PDF

Info

Publication number
US3840377A
US3840377A US00237041A US23704172A US3840377A US 3840377 A US3840377 A US 3840377A US 00237041 A US00237041 A US 00237041A US 23704172 A US23704172 A US 23704172A US 3840377 A US3840377 A US 3840377A
Authority
US
United States
Prior art keywords
group
silver halide
alkyl group
beta
halide photographic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00237041A
Inventor
A Sato
A Ogawa
M Sonoda
N Miyasaka
K Shiba
H Takei
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Application granted granted Critical
Publication of US3840377A publication Critical patent/US3840377A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/06Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein with non-macromolecular additives
    • G03C1/08Sensitivity-increasing substances
    • G03C1/28Sensitivity-increasing substances together with supersensitising substances
    • G03C1/29Sensitivity-increasing substances together with supersensitising substances the supersensitising mixture being solely composed of dyes ; Combination of dyes, even if the supersensitising effect is not explicitly disclosed

Definitions

  • ABSTRACT A silver halide photographic emulsion containing a supersensitizing amount of the combination comprising at least one of the sensitizing -naphthoxazole represented by the following General Formulatl).
  • the present invention relates to a gelatino silver halide photographic emulsion which is spectrally sensitized by at least two sensitizing dyes exhibiting a super sensitizing effect on each other and in particular, it relates to a silver halide photographic emulsion having an increased spectral sensitivity in the green wave length region. 2.
  • the approach in spectral sensitization techniques for the green-sensitive silver halide emulsion for a natural color sensitive material is to locate the maximum sensitive wave length in the wave length region of from 560 nm. to 570 nm. and to increase the sensitivity at the shorter wave length side of from 520 nm. to 530 nm.
  • intensifying screens or fluorescent screens are frequently used together with silver halide photographic films for increasing the re cording sensitivity to X-rays. Because excessive exposure to X-ray radiation is hazardous to humans various attempts have been made for increasing the recoding sensitivity to X-rays to improve the reproducibility of details by using X-rays in an amount as low as possible and by expanding the X-ray recording range. For example, not only techniques for highly sensitizing silver halide photographic emulsions but also systems for using an X-ray image intensifier and for using a solid-state light amplifier have been developed. In any of these cases, however, the X-ray image is recorded finally on a gelatino silver halide light-sensitive material as a fluorescent image.
  • blue fluorescent substances such as calcium tungstate, zinc sulfide activated by silver, and barium sulfate activated by silver
  • green fluorescent substances such as zinc sulfide cadmium activated by silver.
  • the maximum emission energy of the latter fluorescent substance is about 540 nm. and the intensity distribution of the emission energy is as shown in FIG. 7 of the accompanyingdrawings. Also, as is clear from the above explanation, the
  • such a fluorescent substance is suitable as a fluorescent substance which is used for observing X-rays directly with the naked eye. That is to say, it is advantageous to use a fluorescent screen in which the fluorescent substance for reproducing an X-ray image on a fluorescent screen and observing the reproduced image with the naked eye or taking X-ray photograph of the image.
  • a fluorescent screen employing a green fluorescent substance is used in such an X-ray photographic method.
  • an X-ray light-sensitive material which is usually a socalled indirect X-ray photographic material, be treated easily in processings such as development and fixing and in particular it is desirable that such a lightsensitive material be handled in a room in whichthe level of light is as high as possible.
  • Such an X-ray photographic material is, in fact, handled under a safety light by using, for instance, Filter No. 7 made by the Fuji Photo Film Co., Ltd.
  • the spectral transmittance curve of Filter No. 7 is illustrated in FIG. 8 of the accompanying drawings.
  • an X-ray photographic material having a silver halide photographic emulsion layer be highly sensitive to the radiation emitted from a green fluorescent substance excited by X- rays and not very sensitive to ordinary light.
  • the fluorescent substance, P-2 has at least one maximum emission energy at about 545 nm., P-4 at about 560 nm., P-22D at about 525 nm., P-3l at about 520 nm., and P-2O at about 560 nm.
  • the developing and fixing steps of light-sensitive materials using silver halide photographic emulsions are shortened to 60 to seconds each.
  • the sensitizing dyes contained in the photographic emulsion layers of the light-sensitive materials are hardly washed out and then the photographs obtained by the processings are apt to be stained by the remaining dyes, which is one factor by which the photographic images are degraded.
  • the spectral sensitization in the green wavelength region is also conducted by'a merocyanine dye, a hemicyanine dye, or a trinuclear cyanine dye.
  • a technique is unsuitable for sensitization in a narrow and specific wave length region and the spectral sensitivity distribution obtained by such a sensitizing means is too broad.
  • it is difficult to obtain a high sensitivity and in particular, such a technique is disadvantageous in the spectral sensitization of high-sensitive silver iodo-bromide photographic emulsions due to its low sensitizing power.
  • F urthermore the aforesaid spectral sensitization has the disadvantage that it is not easy to find a super-sensitizer for the sensitizing dye.
  • An object of this invention is, therefore','to provide a silver halide photographic emulsion which is spectrally sensitized, which has a high green sensitivity and which gives rise to less color stains.
  • a second object of this invention is to provide a silver halide photographic emulsion which is suitable for making medical X-ray photographic light-sensitive materials having a high sensitivity to the radiation emitted from a green fluorescent substance and having a high stability to a safety light.
  • a third object of this invention is to provide a silver halide photographic emulsion having a high sensitivity in, particularly, in the wave length region of 520 540 nm. and giving less color stains.
  • a fourth object of this invention is to provide a silver halide photographic emulsion having a spectral sensitivity which is suitable for recording in a cathode ray tube type display system.
  • a fifth object of this invention is to provide a spectrally sensitized silver halide photographic emulsion which is suitable for use in a rapid processing system yet which is resistant to the formation of color stains as well as the harmful actions of antifoggants and a developing promotors.
  • Z represents a non-metallic atomic group necessary for forming a benzthiazole nucleus or a benzselenazole nucleus
  • Z represents a non-metallic atomic group necessary for forming a benzene nucleus
  • R and R each represents an alkyl group having from one to about six carbon atoms, a substituted lower alkyl group conventionally used in cyanine dyes, or an aliphatic hydrocarbon group having an unsaturated bond
  • X represents an anion and m is lor 2, m being I when the dye forms an intramolecular salt; and at least one of the sensitizing dyes represented by the General Formula a I.
  • General Formula (II) wherein Z, represents a non-metallic atomic group necessary for forming a benzoxazole nucleus, at B, B-naphthoxazole nucleus, or a.,8-naphthoxazole nucleus; Z represents a non-metallic atomic group necessary for forming a benzene nucleus; R and R each represents an alkyl group having from one to about six carbon atoms, a substituted alkyl group conventionally used in cyanine dyes, or an aliphatic hydrocarbon group having an unsaturated bond; at least one of said R and R being an alkyl group having at least one of a sulfo group, a carboxyl group or-a hydroxyl group; R represents an alkyl group having from one to about six carbon atoms, a substituted alkyl group conventionally used in cyanine dyes, an ary
  • Z represents an atomic group necessary for forming a benzthiazole nucleus or a benzselenazole nucleus
  • benzene nucleus of Z may be unsubstituted or may be substituted by a lower alkyl group having from one to about six, preferably from one to four, carbon atoms (such as a S-methyl group, a 6-methyl group, a S-ethyl group, a 6-propyl group, etc.,), an alkoxyl group (such as a 6-methoxy group, a 4-ethoxy group, etc.,), a hydroxyl group (such as a S-hydroxyl group, a 4-hydroxyl group, etc.,), a halogen atom (such as a 5-chloro substituent, a 6-bromo substituent, etc.,), an aryl group (such as a S-phenyl group etc., a sulfoaryl group (such as a 5-sulfophenyl group, etc.,), a carboxy aryl group, a N-alkyl .substituted amino group (such as a N
  • the benzene nucleus may be unsubstituted or may be substituted by lower alkyl group having from one to about six, preferably from one to four, carbon atoms (such as a S-methyl group, a 4-ethy1 group, etc.,), a halogen atom (such as a chlorine atom, a bromine atom, an iodine atom, etc.,), or an alkoxyl group (such as a S-methoxy group, etc.,).
  • lower alkyl group having from one to about six, preferably from one to four, carbon atoms (such as a S-methyl group, a 4-ethy1 group, etc.,), a halogen atom (such as a chlorine atom, a bromine atom, an iodine atom, etc.,), or an alkoxyl group (such as a S-methoxy group, etc.,).
  • R, and R each represents a lower alkyl group having from one to about six, preferably from one to four, carbon atoms (such as an ethyl group, a propyl group, a butyl group, etc.,) or such a substituted alkyl group as is conventionally used in cyanine dyes such as an aralkyl group (e.g., a benzyl group), an alkyl group having a sulfo group (e.g., a sulfoalkyl group such as a sulfobutyl group, a hydroxy sulfo alkyl group such as a B-hydroxysulfoethyl group, a sulfoalkoxyalkyl group such as a sulfopropoxyethyl group, a sulfoarylalkyl group such as a p-sulfophenylethyl group, a sulfoalkyl aminoal
  • a sulfoalkylthioalkyl group such as a C H,SC H SO H group, etc.,
  • an alkyl group having a carboxyl group and an alophatic hydrocarbon group having an unsaturated bond (e.g., allyl).
  • X represents an anion conventionally used for forming a cyanine dye such as a bromide ion, an iodide ion, a p-toluene-sulfonic acid ion, a perchlorate ion, a methyl sulfate ion, an ethyl sulfate ion, or a benzenesulfonate ion.
  • m is 1 or 2; and where m is 1 the sensitizing dye of the General Formula (1) forms a intramolecular salt (betaine like structure), i.e., in such a case no extra anion need be present.
  • the General Formula (l1) 2 represents an atomic group necessary for forming a B,,8-naphthoxazole nucleus, a B-naphthoxazole nucleus, or a benzoxazole nucleus, in which the nucleus may be unsubstituted or may be substituted with a lower alkyl group having from one to six, preferably from one to four, carbon atoms (such as a 6-methyl group, a S-ethyl group, etc.,) a halogen atom (such as a 5-chloro substituent, a S-bromo substituent, etc., an alkyl group (such as a 6-methyl group, etc.,), an alkoxyl group (such.
  • a S-methoxy group such as a S-methoxy group, 7-ethoxy group, etc.,
  • a hydroxyalkyl group such as a 5- hydroxymethyl group, etc.,
  • an alkoxycarbonyl group such as a S-methoxycarbonyl group, etc.,
  • an aryl group such as a S-phenyl group etc.,
  • a sulfoaryl group such as a 5-sulfophenyl group, or a carboxyaryl group etc.,).
  • Z represents a non-metallic atomic group necessary for forming a benzene nucleus, in which the benzene nucleus may be unsubstituted or may be substituted by a substituent conventionally known as a substituent of the benzimidazole nucleus in a cyanine dye nucleus.
  • the substituent can be a halogen atom such as a chlorine atom, a bromine atom, an iodine atom; a cyano group; an alkoxycarbonyl group; a trifluoromethyl group; a carbamoyl group, an alkyl substituted carbamoyl group, such as a methylcarbamoyl group or a dimethylcarbamoyl group; a sulfamoyl group, an alkyl substituted sulfamoyl group, such as methyl sulfamoyl and dimethyl sulfamoyl, etc.
  • a halogen atom such as a chlorine atom, a bromine atom, an iodine atom
  • a cyano group such as a methylcarbamoyl group or a dimethylcarbamoyl group
  • a sulfamoyl group an alkyl substituted sulfamoy
  • R and R each represents a lower alkyl group having from one to six, preferably from one to four carbon atoms e.g., a methyl group, an ethyl group, a propyl group, a butyl group, an isobutyl group, an unsaturated aliphatic hydrocarbon group for instance, an allyl group, or a substituted alkyl group conventionally used as a substituent on a nitrogen atom in the cyanine nucleus.
  • Such nucleus N-substituted groups can be groups such as a hydroxyalkyl group, an alkyl group having a sulfo group (such as a y-sulfobutyl group, a y-sulfobutyl group, a sulfopropoxy ethoxy ethoxy ethyl group etc.,),analkyl group having a carboxy'gr'oup (such as a B-carboxyethyl group; a 2-(2 carboxyethoxy) ethyl group etc.,), or an aralkyl group (such as a benzyl group etc.,).
  • R and R may further represent a B-methoxyethyl group, a B-ethoxyelthyl group, a- ,B-methallyl group, a benzyl group, a ,B-phenylethyl group, a B-acetoxyethyl
  • Groups R and R may be substituted by the substituents described in the specifications of, e.g., German Pat. No. 929,080; US. Pat. Nos. 2,537,880 and 2,776,280; British Pat. No. 1,001,480; and Japanese I Patent Publication No. 4843/1965; Japanese Patent Publication No. 5829/1960; Japanese Patent Publication No. 141 12/ 1965; Japanese Patent Publication No.
  • R or R is alkyl group having at least one of sulfo group, carb oxyl group and hydroxyl group.
  • R represents a lower alkyl group having from one to about six, preferably from one to four, (such as a methyl group, an ethyl group, a propyl group, etc.,), an unsaturated aliphatic hydrocarbon'group (such as an allyl group, etc.,), a substituted alkyl group and an aryl group (such as a phenyl group).
  • an aralkyl group such as a benzyl group, etc.,
  • a hydroxyalkyl group such as a ,B-hydroxylethyl group, etc.
  • R and R each represents a sulfoalkyl group or an alkyl group; at least one of R and R being a sulfoalkyl group.
  • An important feature of this invention is the discovery of the imidaoxacarbocyanine dye of a so-called' asymmetric nucleus represented by the General Formula (II) and the pseudocyanine dye represented by the General Formula (I).
  • the pseudocyanine dye of the General Formula (I) when used together with the carbocyanine dye of the General Formula (II), the maximum sensitivity can be obtained by employing the pseudocyanine dye of the General Formula (I) at a level of only a few percent of the amount required where the pseudocyanine dye is used alone. Consequently. the aforesaid difficulties are overcome by the present invention.
  • the sensitizing dye of the General Formula (II) sensitizes essentially in the wave length region substantially corresponding to the objects of this invention in giving a strong and sharp J-aggregate, i.e., a J-band.
  • the sensitizing dye of the General Formula (II) is used together with the pseudocyanine dye of the General F ormula (l)
  • the J-aggregate is properly partitioned and the spectra] absorption region is shifted toward the blue to give a spectral sensitivity distribution corresponding better the emission energy distribution shown in FIG. 7 of the accompanying drawings.
  • the maximum sensitivity is obtained in a small range of the amount of the dye and the formation of color stains is less.
  • the formation of color stains tends to increase rapidly when the amount of the same dye added is increased and the stronger aggregates are formed. Accordingly, the fundamental features of this invention will be understood on consideration of these circumstances.
  • sensitizing dyes used in this invention are illustrated herein below although the sensitizing dyes of this invention are not to be interpreted as limited to these specific dyes.
  • Examples of the sensitizing dyes represented by the General Formula (I) are as follows:
  • GHzCHaOHCHs CzHs (CHzhBOr' tion is particularly advantageous for the spectral sensitization of gelatino silver halide photographic emulsions.
  • the spectral sensitizing method of this invention is also usefully applied to a photographic emulsion containing other hydrophilic polymers than gelatin, such as agar-agar, collodion, water-soluble cellulose derivatives, polyvinyl alcohols, copolymers of polyvinyl pyrrolidone, synthetic hydrophilic resins, natural hydrophilic polymers, and gelatin derivatives.
  • a mixed silver halide emulsion containing silver chloride, silver bromide, or silver iodide or a mixed silver halide thereof such as silver bromoiodide and silver iodochlorobromide is suitable.
  • conventional methods of sensitization may be employed on a silver halide photographic emulsion which is spectrally sensitized by the sensitizing method of this invention, for instance, chemical sensitization such as sulfur sensitization, reduction sensitization, gold sensitization, sensitization by a metal belonging to the Group VIII of the periodic table and Noble metals. Combinations of these methods may also be used.
  • the photographic emulsion spectrally sensitized by the present invention may be preparedby incorporating the sensitizing dyes represented by the General Formula (l) and the General Formula (II) in the photographic emulsion using conventional techniques.
  • Each of the sensitizing dyes of the general formulae is generally added to a photographic emulsion as a solution-thereof in a water-miscible solvent such as methanol, ethanol, water, cellosolve, or a water-miscible ketone such as methylethyl ketone, methyl ketone and ethyl ketone.
  • the sensitizing dye may be added to a photographic emulsion as a dispersion of a solution in a weakly soluble 'oil in water or a hydrophilic colloid.
  • the addition ratio of the sensitizing dye of the General Formula (I) to the sensitizing dye of the General Formula (ll) to be incorporated in the photographicemulsion may be varied over a wide range, for example,
  • the amount of each of the sensitizing dyes employed in this invention range from I X mol to l X 10 mol per mol of silver depending upon the characteristics of the photographic emulsion.
  • the photographic emulsion of this invention may further be subjected to conventional supersensitization techniques.
  • the spectrally sensitized photographic emulsion of this invention may further contain additives conventionally employed in the art, such as sensitizers, stabilizers, color toning agents, hardening agents, surface active agents, antifoggants, plasticizers, developing promotors, color couplers, and fluorescent brightening agents.
  • the photographic emulsion of this invention may be applied to an appropriate support such as a glass sheet, a cellulose ester derivative film, a polyethylene terephthalate film, a synthetic resin film, a barayta-coated paper, a resin-coated paper, or a synthetic paper using conventional techniques.
  • an appropriate support such as a glass sheet, a cellulose ester derivative film, a polyethylene terephthalate film, a synthetic resin film, a barayta-coated paper, a resin-coated paper, or a synthetic paper using conventional techniques.
  • the silver halide photographic emulsion of this invention may be used as a light-sensitive material suitable for cathode ray tube display.
  • a silver halide photographic emulsion was prepared by using individually each of the sensitizing dyes of the General Formula (I) and the General Formula (ll) and also a comparison silver halide photographic emulsion was prepared by using each of the comparison sensitizing dyes represented by the Formula (T) and Formula (U) shown below.
  • Each of the silver halide photographic emulsions thus prepared was applied to a triacetyl cellulose film base.
  • the light-sensitive photographic films thus prepared were each exposed to day light radiation of 64 lux (corresponding to 5,400 K) through a yellow filter (made by the Fuji Photo Film Co., a filter passing light of wave lengths longer than 460'nm.), a green filter (made by the Fuji Photo Film Co., a filter passing'light of wave lengths of 480-620 nm. and having a maximum penetration coefficient at a wave length of 530 nm.), or a blue filter (made by the Fuji Photo Film Co., a filter passing light of wave lengths of 400-490nrn. and having a maximum penetration coefficient at a wave length of 450 nm.). They were then developed for 2 mi utes at 24C in a developing solution haveing the following composition:
  • the yellow sensitivity and the .green sensitivity are the relative values when the sensic o m parison Dye CIzH CzHs
  • FIG 1(1) FIG.I(2)
  • a green filter made by the Fuji Photo Film Co., a filter passing light of wave lengths of 480-650 nm., having a maximum penetration coefficient at a wave length of 530 nm.
  • a green filter made by the Fuji Photo Film Co., a filter passing light of wave lengths of 480-650 nm., having a maximum penetration coefficient at a wave length of 530 nm.
  • the sensitivity is shown by the relative sensitivity when the sensitivity of the silver halide photographic emulsion containing the dye (20) amples l 29.
  • the results obtained are shown in the From measure shown in thetablsfitcaii b seen that the green sensitivity is super-additively increased, which is one of the objects of this invention, by using at least one of the sensitizing dyes of the General Formula (l) and at least one of the sensitizing dyes of the General Formula (II).
  • FIG. 1, FIG. 2, FIG. 3 and FIG. 4 are spectrograms obtained by using the combinations of the sensitizing dyes of the General Formula (I) and the General Formula (II) according to the present invention.
  • FIG. 5 and FIG. 6 are the spectrograms obtained by using'the comparison sensitizing dyes of the Formula (T) and the Formula (U) respectively.
  • the numbers in the parentheses the examples shown in the above table to which the curves correspond.
  • FIG. 7 is a graph showing the spectral energy distribution of light emitted by exciting by X-rays the fluoresecnt substance of a fluorescent screen usually used for X-ray photography.
  • FIG. 8 is a graph showing the spectral penetrationco-.
  • the sensitized region of the light-sensitive film extends to 596 nm. as shown by the curve (4) of FIG. 2 but when the dye (N) is used together with the sensitizing dye (5) of the General Formula (II), the sensitized wave length end of the light-sensitive film shifts to the shorter wave length side and also the sensitivity reduction in the longer wave length side is sharp as is shown by the curve (6) of FIG. 2.
  • the green sensitivity of the light-sensitive film prepared by using the combination of the sensitizing dyes according to the present invention is about 1.6 times higher than that of the light-sensitive film obtained by using the sensitizing dye individually.
  • the photographic emulsion of this invention is less fogged by exposure to a safety light and also the spectral sensitivity distribution of the photographic emulsion fits the energy distribution of the light emitted from the green fluorescent substance of the X-ray fluorescent screen as shown in FIG. 7.
  • a silver halide photographic emulsion containing a supersensitizing amount of the combination comprising at least one of the sensitizing dyes represented by the following General Formula (I) l l )m1 General Formula (I) wherein Z, represents a non-metallic atomic group necessary for forming a benzothiazole nucleus or a benzoselenazole nucleus; Z represents a non-metallic atomic group necessary for forming a benzene nucleus; R, and R each represent an alkyl group having from one to about six carbon atoms, a substituted lower alkyl group conventionally used in cyanine dyes selected from the General Formula (II) wherein 2;, represents a benzoxazole nucleus, Z, represents a non-metallic atomic group necessary for forming a benzene nucleus; R and R each represents an alkyl group having from one to about six carbon atoms, a substituted alkyl group conventionally used in cyanine dye
  • An photographic light-sensitive material comprising a support havingthereon at least one layer of the silver halide photographic emulsion as set forth in claim 1.
  • alkyl group having a sulfo group is selected from the group consisting of a sulfo alkyl group, a hydroxy(sulfo) alkyl group, a sulfo alkoxy alkyl group, a sulfo phenyl alkyl group, a sulfo-alkyl amino alkyl group, a sulfo-alkyl amino alkyl group and a sulfoalkyl thio-alkyl group.
  • An photographic light-sensitive material comprising a support having thereon at least one layer of the silver halide photographic emulsion as set forth in claim 4.
  • a silver halide photographic emulsion containing a supersensitizing amount of the combination comprising at least one of the sensitizing dyes represented by the following General Formula (I') gi z General Formula (I') wherein R and R each represents a methyl group, an
  • R represents a hydrogen atom, a methyl group, or an ethyl group; and at least one of the sensitizing dyes represented by the following General Formula (ll') General Formula (11) wherein W, and W; each represents a hydrogen atom, a chlorine atom, or a methoxycarbonyl group and R and R each represents a sulfoalkyl group or an alkyl group; at least one of R ⁇ , and R being a sulfoalkyl group.
  • both of R and R have at least one sulfo group.

Abstract

wherein Z3 represents a non-metallic atomic group necessary for forming a benzoxazole nucleus, a Beta , Beta naphthoxazole nucleus, or a Beta -naphthoxazole nucleus; Z4 represents a nonmetallic atomic group necessary for forming a benzene nucleus; R3 and R4, each represents an alkyl group having from one to six carbon atoms, a substituted alkyl group conventionally used in cyanine dyes, or an aliphatic hydrocarbon group having an unsaturated bond; at least one of said R3 and R4 being an alkyl group having at least one of a sulfo group, a carboxyl group or a hydroxyl group; R5 represents an alkyl group having from one to about six carbon atoms, a substituted alkyl group conventionally used in cyanine dye, an aryl group, or an unsaturated aliphatic hydrocarbon group; X2 represents an anion; and n is 1 or 2, said n being 1 when the dye forms an intramolecular salt is disclosed.

wherein Z1 represents a non-metallic atomic group necessary for forming a benzthiazole nucleus or a benzselenazole nucleus; Z2 represents a non-metallic atomic group necessary for forming a benzene nucleus; R1 and R2 each represents an alkyl group having from one to about six carbon atoms, a substituted lower alkyl group conventionally used in cyanine dyes, or an aliphatic hydrocarbon group having an unsaturated bond; X1 represents an anion and m is 1 or 2, said m being 1 when the dye forms an intramolecular salt; and at least one of the sensitizing dyes represented by the General Formula (II)

A silver halide photographic emulsion containing a supersensitizing amount of the combination comprising at least one of the sensitizing -naphthoxazole represented by the following General Formula (I).

Description

United States Patent [191 Shiba et al.
[451 Oct. 8, 1974 SUPERSENSITIZED SILVER HALIDE PHOTOGRAPHIC EMULSIONS [75] Inventors: Keisuke Shiba; Haruo Takei;
Minoru Sonoda; Nobuaki Miyasaka; Akira Sato; Akira Ogawa, all of Kanagawa, Japan [73] Assignee: Fuji Photo Film Co., Ltd.,
Kanagawa, Japan [22] Filed: Mar. 22, 1972 [21] Appl. No; 237,041
[30] Foreign Application Priority Data Primary Examiner-J. Travis Brown Attorney, Agent, or Firm-Sughrue, Rothwell, Mion, Zinn & Macpeak [57] ABSTRACT A silver halide photographic emulsion containing a supersensitizing amount of the combination comprising at least one of the sensitizing -naphthoxazole represented by the following General Formulatl).
l R1(Xr)m-1 General Formula (I) wherein Z represents a non-metallic atomic group necessary for forming a benzthiazole nucleus or a benzselenazole nucleus; 2; represents a non-metallic atomic group necessary for forming a benzene nucleus; R, and R each represents an alkyl group having from one to about six carbon atoms, a substituted lower alkyl group conventionally used in cyanine dyes, or an aliphatic hydrocarbon group having an unsaturated bond; X, represents an anion and m is l or 2, said m being 1 when the dye forms an intramolecular salt; and at least one of the sensitizing dyes represented by the General Formula (II) Ra 2) u-l I General Formula (II) R represents an alkyl group having from one to about sixcarbon atoms, a substituted alkyl group conventionally used in cyanine dye, an aryl group, or an unsaturated aliphatic hydrocarbon group; X{ represents an anion; and n is 1 or 2, said n being 1 when the dye forms an intramolecular salt is disclosed.
10 Claims, 8 Drawing Figures PATENTEDum 81574 SBEEI 20? 2 FIG 1 550 I WAVE LENGTH FIG '8 WAVE LENGTH IN MILLIMICRONS SUPERSENSITIZED SILVER HALIDE PHOTOGRAPHIC EMULSIONS BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gelatino silver halide photographic emulsion which is spectrally sensitized by at least two sensitizing dyes exhibiting a super sensitizing effect on each other and in particular, it relates to a silver halide photographic emulsion having an increased spectral sensitivity in the green wave length region. 2. Description of the Prior Art In the production of light-sensitive materials, it is well known to expand the light-sensitive wave length region, of a silver halide photographic emulsion, that is to say, to apply a spectral sensitization to the silver halide photographic emulsion. In particular, the sensitization in the green wave length region among the spectral sensitization techniques is important since the maximum sensitivity of the human eye is near 545 nm. and the human eye is quite sensitive to the light in the green wave length region.
It is known, in natural color sensitive materials, that even slight differences in the light sensitivity and the spectral sensitivity distribution of the green-sensitive emulsion layers influence to a great extent the color reproducibility of color images and as a result much activity exists in this area. If the maximum sensitive wave length in the green wave length region of from 500 nm. to 600 nm. is shifted too much to a longer wave length, the yellow tones become too strong, which reduces the color reproducibility for green, whereas if the sensitivity in the shorter wave length region of from 500 nm. to 540 nm. is low, a clear green' color reproduction is difficult to obtain. Therefore, the approach in spectral sensitization techniques for the green-sensitive silver halide emulsion for a natural color sensitive material is to locate the maximum sensitive wave length in the wave length region of from 560 nm. to 570 nm. and to increase the sensitivity at the shorter wave length side of from 520 nm. to 530 nm.
In X-ray recording materials, intensifying screens or fluorescent screens are frequently used together with silver halide photographic films for increasing the re cording sensitivity to X-rays. Because excessive exposure to X-ray radiation is hazardous to humans various attempts have been made for increasing the recoding sensitivity to X-rays to improve the reproducibility of details by using X-rays in an amount as low as possible and by expanding the X-ray recording range. For example, not only techniques for highly sensitizing silver halide photographic emulsions but also systems for using an X-ray image intensifier and for using a solid-state light amplifier have been developed. In any of these cases, however, the X-ray image is recorded finally on a gelatino silver halide light-sensitive material as a fluorescent image. As the fluorescent substances used for this purpose, there are illustrated blue fluorescent substances such as calcium tungstate, zinc sulfide activated by silver, and barium sulfate activated by silver and green fluorescent substances such as zinc sulfide cadmium activated by silver. The maximum emission energy of the latter fluorescent substance is about 540 nm. and the intensity distribution of the emission energy is as shown in FIG. 7 of the accompanyingdrawings. Also, as is clear from the above explanation, the
human eye is particularly sensitive to light emitted from the latter type of fluorescent substance. Therefore, such a fluorescent substance is suitable as a fluorescent substance which is used for observing X-rays directly with the naked eye. That is to say, it is advantageous to use a fluorescent screen in which the fluorescent substance for reproducing an X-ray image on a fluorescent screen and observing the reproduced image with the naked eye or taking X-ray photograph of the image.
In fact, a fluorescent screen employing a green fluorescent substance is used in such an X-ray photographic method. On the other hand, it is desirable that an X-ray light-sensitive material, which is usually a socalled indirect X-ray photographic material, be treated easily in processings such as development and fixing and in particular it is desirable that such a lightsensitive material be handled in a room in whichthe level of light is as high as possible. Such an X-ray photographic material is, in fact, handled under a safety light by using, for instance, Filter No. 7 made by the Fuji Photo Film Co., Ltd. The spectral transmittance curve of Filter No. 7 is illustrated in FIG. 8 of the accompanying drawings. In other words, it is desirable that an X-ray photographic material having a silver halide photographic emulsion layer be highly sensitive to the radiation emitted from a green fluorescent substance excited by X- rays and not very sensitive to ordinary light.
In this information conscious age, the development of faster'information communicating systems has become necessary and various systems have been developed. For instance, there are the press facsimile system, the high speed photo-typesetting system, the cathode ray tube display system, the high speedphotographic recording system employing high speed photography, in particular, photography, and the printing method of photo-masks using in an IC plate producing step conducted at a high speed.
For the cathode ray tube display system, the emissions on the order of micro-seconds from various kinds of fluorescent substances are used. The fluorescent substance, P-2 has at least one maximum emission energy at about 545 nm., P-4 at about 560 nm., P-22D at about 525 nm., P-3l at about 520 nm., and P-2O at about 560 nm.
The developing and fixing steps of light-sensitive materials using silver halide photographic emulsions are shortened to 60 to seconds each. Thus, the sensitizing dyes contained in the photographic emulsion layers of the light-sensitive materials are hardly washed out and then the photographs obtained by the processings are apt to be stained by the remaining dyes, which is one factor by which the photographic images are degraded.
The spectral sensitization in the green wavelength region is also conducted by'a merocyanine dye, a hemicyanine dye, or a trinuclear cyanine dye. However, such a technique is unsuitable for sensitization in a narrow and specific wave length region and the spectral sensitivity distribution obtained by such a sensitizing means is too broad. Also, with such a technique, it is difficult to obtain a high sensitivity and in particular, such a technique is disadvantageous in the spectral sensitization of high-sensitive silver iodo-bromide photographic emulsions due to its low sensitizing power. F urthermore, the aforesaid spectral sensitization has the disadvantage that it is not easy to find a super-sensitizer for the sensitizing dye.
For this purpose the application of a .l-aggregate type cyanine dye is profitable and many such cyanine dyes are known. For instance, using imidazolocarbocyanine dyes as disclosed in the specifications of US. Pat. Nos. 2,701,198; 2,945,763; 2,973,264; 3,173,791; 3,364,031; 3,397,060; and 3,506,443, the specification of Japanese Patent Publication No. 4936/1968, the specifications of German Offenelgungsschriften Nos. 1,944,751; 2,011,879; 2,018,687; and 2,030,326 using oxacarbocyanine dyes as disclosed in the specification of Japanese Patent Publication No. 32753/1969 and the specification of German Offenlegungsschriften No. 1,928,295, and using pseudocyanine dyes as disclosed in the specification of German Offenlegungsschriften No. 1,936,262 and the specification of French Pat. No. 1,488,057 are known techniques.
However, although such prior art techniques may give high sensitivity, many of them are useless for practical purposes since the wave length to which such prior art techniques sensitize extends to the longer wave length side and color stains are formed to too great an extent.
Techniques of using styryl type dyes as the supersensitizer are known by, for instance, as disclosed in the specification of British Pat. No. 498,031, the specification of German Pat. No. 1,051,] 16, and the specifications of US. Pat. Nos. 2,313,922; 2,316,268; 2,533,426; and 2,852,385. However, when such a technique is applied to the case in which the exposure period of time is on the order of a microsecond'which is far shorter than an ordinary exposure period of time, only a low sensitivity is obtained. In other words, the above-mentioned sensitization techniques are accompanied by the difficulty in obtaining high sensitivity when the exposure period of time is short.
An object of this invention is, therefore','to provide a silver halide photographic emulsion which is spectrally sensitized, which has a high green sensitivity and which gives rise to less color stains.
A second object of this invention is to provide a silver halide photographic emulsion which is suitable for making medical X-ray photographic light-sensitive materials having a high sensitivity to the radiation emitted from a green fluorescent substance and having a high stability to a safety light.
A third object of this invention is to provide a silver halide photographic emulsion having a high sensitivity in, particularly, in the wave length region of 520 540 nm. and giving less color stains.
A fourth object of this invention is to provide a silver halide photographic emulsion having a spectral sensitivity which is suitable for recording in a cathode ray tube type display system.
A fifth object of this invention is to provide a spectrally sensitized silver halide photographic emulsion which is suitable for use in a rapid processing system yet which is resistant to the formation of color stains as well as the harmful actions of antifoggants and a developing promotors.
The above objects and additional objects of this invention will become apparent from the descriptions contained in this specification in detail.
SUMMARY OF THE INVENTION The above-described objects of this invention can be attained by incorporating in a silver halide emulsion a supersensitizing amount of the combination comprising at least one of the sensitizing dyes represented by the General Formula (I).
1( 1')m1 General Formula (I) wherein Z, represents a non-metallic atomic group necessary for forming a benzthiazole nucleus or a benzselenazole nucleus; Z represents a non-metallic atomic group necessary for forming a benzene nucleus; R and R each represents an alkyl group having from one to about six carbon atoms, a substituted lower alkyl group conventionally used in cyanine dyes, or an aliphatic hydrocarbon group having an unsaturated bond; X, represents an anion and m is lor 2, m being I when the dye forms an intramolecular salt; and at least one of the sensitizing dyes represented by the General Formula a I. Z3 C=CH-OH=CHG Z4 l \g x General Formula (II) wherein Z, represents a non-metallic atomic group necessary for forming a benzoxazole nucleus, at B, B-naphthoxazole nucleus, or a.,8-naphthoxazole nucleus; Z represents a non-metallic atomic group necessary for forming a benzene nucleus; R and R each represents an alkyl group having from one to about six carbon atoms, a substituted alkyl group conventionally used in cyanine dyes, or an aliphatic hydrocarbon group having an unsaturated bond; at least one of said R and R being an alkyl group having at least one of a sulfo group, a carboxyl group or-a hydroxyl group; R represents an alkyl group having from one to about six carbon atoms, a substituted alkyl group conventionally used in cyanine dyes, an aryl group, or an unsaturated aliphatic hydrocarbon group; X; represents an anion; and n is 1 or 2, n being 1 when the dye forms an intramolecular salt.
BRIEF DESCRIPTION OF THE ACCOMPANYING DRAWINGS DETAILED DESCRIPTION OF THE INVENTION As described above, in the General Formula (I) Z represents an atomic group necessary for forming a benzthiazole nucleus or a benzselenazole nucleus, the
benzene nucleus of Z, may be unsubstituted or may be substituted by a lower alkyl group having from one to about six, preferably from one to four, carbon atoms (such as a S-methyl group, a 6-methyl group, a S-ethyl group, a 6-propyl group, etc.,), an alkoxyl group (such as a 6-methoxy group, a 4-ethoxy group, etc.,), a hydroxyl group (such as a S-hydroxyl group, a 4-hydroxyl group, etc.,), a halogen atom (such as a 5-chloro substituent, a 6-bromo substituent, etc.,), an aryl group (such as a S-phenyl group etc., a sulfoaryl group (such as a 5-sulfophenyl group, etc.,), a carboxy aryl group, a N-alkyl .substituted amino group (such as a N, N dimethylamino group, etc.,), or an alkoxycarbonyl group (such as a S-methoxy carbonyl group, etc.,).
2 represents a non-metallic atomic group necessary for forming a benzene nucleus; the benzene nucleus may be unsubstituted or may be substituted by lower alkyl group having from one to about six, preferably from one to four, carbon atoms (such as a S-methyl group, a 4-ethy1 group, etc.,), a halogen atom (such as a chlorine atom, a bromine atom, an iodine atom, etc.,), or an alkoxyl group (such as a S-methoxy group, etc.,). l
R, and R each represents a lower alkyl group having from one to about six, preferably from one to four, carbon atoms (such as an ethyl group, a propyl group, a butyl group, etc.,) or such a substituted alkyl group as is conventionally used in cyanine dyes such as an aralkyl group (e.g., a benzyl group), an alkyl group having a sulfo group (e.g., a sulfoalkyl group such as a sulfobutyl group, a hydroxy sulfo alkyl group such as a B-hydroxysulfoethyl group, a sulfoalkoxyalkyl group such as a sulfopropoxyethyl group, a sulfoarylalkyl group such as a p-sulfophenylethyl group, a sulfoalkyl aminoalkyl group such as a sulfopropylaminoethyl group, a sulfoalkylamidoalkyl group such as a sulfobutylamidoethyl group. a sulfoalkylthioalkyl group such as a C H,SC H SO H group, etc.,) and an alkyl group having a carboxyl group, and an alophatic hydrocarbon group having an unsaturated bond (e.g., allyl).
X represents an anion conventionally used for forming a cyanine dye such as a bromide ion, an iodide ion, a p-toluene-sulfonic acid ion, a perchlorate ion, a methyl sulfate ion, an ethyl sulfate ion, or a benzenesulfonate ion. m is 1 or 2; and where m is 1 the sensitizing dye of the General Formula (1) forms a intramolecular salt (betaine like structure), i.e., in such a case no extra anion need be present.
As described above, in the General Formula (l1) 2;, represents an atomic group necessary for forming a B,,8-naphthoxazole nucleus, a B-naphthoxazole nucleus, or a benzoxazole nucleus, in which the nucleus may be unsubstituted or may be substituted with a lower alkyl group having from one to six, preferably from one to four, carbon atoms (such as a 6-methyl group, a S-ethyl group, etc.,) a halogen atom (such as a 5-chloro substituent, a S-bromo substituent, etc., an alkyl group (such as a 6-methyl group, etc.,), an alkoxyl group (such. as a S-methoxy group, 7-ethoxy group, etc.,), a hydroxyalkyl group (such as a 5- hydroxymethyl group, etc.,), an alkoxycarbonyl group (such as a S-methoxycarbonyl group, etc.,), an aryl group (such as a S-phenyl group etc.,), a sulfoaryl group (such as a 5-sulfophenyl group, or a carboxyaryl group etc.,).
Z, represents a non-metallic atomic group necessary for forming a benzene nucleus, in which the benzene nucleus may be unsubstituted or may be substituted by a substituent conventionally known as a substituent of the benzimidazole nucleus in a cyanine dye nucleus. For example, the substituent can be a halogen atom such as a chlorine atom, a bromine atom, an iodine atom; a cyano group; an alkoxycarbonyl group; a trifluoromethyl group; a carbamoyl group, an alkyl substituted carbamoyl group, such as a methylcarbamoyl group or a dimethylcarbamoyl group; a sulfamoyl group, an alkyl substituted sulfamoyl group, such as methyl sulfamoyl and dimethyl sulfamoyl, etc.
R and R each represents a lower alkyl group having from one to six, preferably from one to four carbon atoms e.g., a methyl group, an ethyl group, a propyl group, a butyl group, an isobutyl group, an unsaturated aliphatic hydrocarbon group for instance, an allyl group, or a substituted alkyl group conventionally used as a substituent on a nitrogen atom in the cyanine nucleus. Such nucleus N-substituted groups can be groups such as a hydroxyalkyl group, an alkyl group having a sulfo group (such as a y-sulfobutyl group, a y-sulfobutyl group, a sulfopropoxy ethoxy ethoxy ethyl group etc.,),analkyl group having a carboxy'gr'oup (such as a B-carboxyethyl group; a 2-(2 carboxyethoxy) ethyl group etc.,), or an aralkyl group (such as a benzyl group etc.,).ln addition, R and R may further represent a B-methoxyethyl group, a B-ethoxyelthyl group, a- ,B-methallyl group, a benzyl group, a ,B-phenylethyl group, a B-acetoxyethyl group, a y-acetoxyp'ropyl group, a carbomethoxymethyl group, a ,B-carbomethoxyethyl group, a carbethoxymethyl group, a B-carbethoxyethyl group, a phenylmercaptomethyl group, a phenoxymethyl group, a ,B-phenylmercaptoethyl group, a B-phenoxyethyl group, and a 2-(2-hydroxy-3- sulfopropxy) ethyl group and a carbamylmethyl group. Groups R and R, may be substituted by the substituents described in the specifications of, e.g., German Pat. No. 929,080; US. Pat. Nos. 2,537,880 and 2,776,280; British Pat. No. 1,001,480; and Japanese I Patent Publication No. 4843/1965; Japanese Patent Publication No. 5829/1960; Japanese Patent Publication No. 141 12/ 1965; Japanese Patent Publication No.
23 ,467/1 965; Japanese Patent Publication No. 27,164/1967; Japanese Patent Publication No. 27,165/1967; Japanese Patent Publication No. 27,166/1967; Japanese Patent Publication No. 27,167/1967; Japanese Patent Publication No. 2607/1968; Japanese Patent Publication No. 15,894/1970; Japanese Patent Publication No. 27,672/1970; Japanese Patent Publication No. 27,673/ 1970; and Japanese Patent Publication No.
32,740/1970; at least one of R or R; is alkyl group having at least one of sulfo group, carb oxyl group and hydroxyl group.
R represents a lower alkyl group having from one to about six, preferably from one to four, (such as a methyl group, an ethyl group, a propyl group, etc.,), an unsaturated aliphatic hydrocarbon'group (such as an allyl group, etc.,), a substituted alkyl group and an aryl group (such as a phenyl group). The substituted alkyl group can be a group such as an aralkyl group (such as a benzyl group, etc.,), a hydroxyalkyl group (such as a ,B-hydroxylethyl group, etc.,), or an acetoxyalkyl group (such as a ,8=acetoxyethyl group, a y-acetoxypropyl group, etc.,).
General Formula (I) wherein R and R each represents a methyl group, an ethyl group, or an allyl group; X, represents an anion; and R represents a hydrogen atom, a methyl group, or an ethyl group; and at least one of the sensitizing dyes represented by the following General Formula (ll) General Formula (11') wherein W and W each represents a hydrogen atom,
a chlorine atom, or a methoxycarbonyl group and R and R each represents a sulfoalkyl group or an alkyl group; at least one of R and R being a sulfoalkyl group.
An important feature of this invention is the discovery of the imidaoxacarbocyanine dye of a so-called' asymmetric nucleus represented by the General Formula (II) and the pseudocyanine dye represented by the General Formula (I).
By the discovery of the super-sensitizing action of these sensitizing dyes, the difficulties caused by the use of the sensitizing dyes individually can be overcome and the advantages of these dyes can be utilized effectively. That is to say, when the pseudocyanine dye of the General Formula (I) is used individually, it gives rise to a low sensitivity only. However, it is known that pseudocyanine dye described in the specification of some German Offenlegungsschrift gives an exceptionally high sensitivity but in order to obtain such a high sensitivity using the sensitizing dye of the German Patent application, the dye must be used at 4 to 8 times on a molar basis the amount usually employed in this art. Thus, the use of such a large amount of the dye gives rise to disadvantages in that the formation of color stains increases, the spectrally sensitized region extends to the longer wave length side, and the lightsensitive material containing the sensitizing dye tends to be fogged even under a safety light.
On the other hand, when the pseudocyanine dye of the General Formula (I) is used together with the carbocyanine dye of the General Formula (II), the maximum sensitivity can be obtained by employing the pseudocyanine dye of the General Formula (I) at a level of only a few percent of the amount required where the pseudocyanine dye is used alone. Consequently. the aforesaid difficulties are overcome by the present invention.
The sensitizing dye of the General Formula (II) sensitizes essentially in the wave length region substantially corresponding to the objects of this invention in giving a strong and sharp J-aggregate, i.e., a J-band. When the sensitizing dye of the General Formula (II) is used together with the pseudocyanine dye of the General F ormula (l), the J-aggregate is properly partitioned and the spectra] absorption region is shifted toward the blue to give a spectral sensitivity distribution corresponding better the emission energy distribution shown in FIG. 7 of the accompanying drawings. Moreover, in the present invention, the maximum sensitivity is obtained in a small range of the amount of the dye and the formation of color stains is less. In general, the formation of color stains tends to increase rapidly when the amount of the same dye added is increased and the stronger aggregates are formed. Accordingly, the fundamental features of this invention will be understood on consideration of these circumstances.
Specific examples of the sensitizing dyes used in this inventionare illustrated herein below although the sensitizing dyes of this invention are not to be interpreted as limited to these specific dyes. Examples of the sensitizing dyes represented by the General Formula (I) are as follows:
GHzCHaOHCHs CzHs (CHzhBOr' tion is particularly advantageous for the spectral sensitization of gelatino silver halide photographic emulsions. However, the spectral sensitizing method of this invention is also usefully applied to a photographic emulsion containing other hydrophilic polymers than gelatin, such as agar-agar, collodion, water-soluble cellulose derivatives, polyvinyl alcohols, copolymers of polyvinyl pyrrolidone, synthetic hydrophilic resins, natural hydrophilic polymers, and gelatin derivatives.
As the photographic emulsion used in this invention, a mixed silver halide emulsion containing silver chloride, silver bromide, or silver iodide or a mixed silver halide thereof such as silver bromoiodide and silver iodochlorobromide is suitable. Furthermore, conventional methods of sensitization may be employed on a silver halide photographic emulsion which is spectrally sensitized by the sensitizing method of this invention, for instance, chemical sensitization such as sulfur sensitization, reduction sensitization, gold sensitization, sensitization by a metal belonging to the Group VIII of the periodic table and Noble metals. Combinations of these methods may also be used.
The photographic emulsion spectrally sensitized by the present invention may be preparedby incorporating the sensitizing dyes represented by the General Formula (l) and the General Formula (II) in the photographic emulsion using conventional techniques.
Each of the sensitizing dyes of the general formulae is generally added to a photographic emulsion as a solution-thereof in a water-miscible solvent such as methanol, ethanol, water, cellosolve, or a water-miscible ketone such as methylethyl ketone, methyl ketone and ethyl ketone. Also, the sensitizing dye may be added to a photographic emulsion as a dispersion of a solution in a weakly soluble 'oil in water or a hydrophilic colloid.
The addition ratio of the sensitizing dye of the General Formula (I) to the sensitizing dye of the General Formula (ll) to be incorporated in the photographicemulsion may be varied over a wide range, for example,
from 9:1 to 1:10 on a molar basis, in accordance with v the effects or advantages desired. Also,.it is preferred that the amount of each of the sensitizing dyes employed in this invention range from I X mol to l X 10 mol per mol of silver depending upon the characteristics of the photographic emulsion.
The photographic emulsion of this invention may further be subjected to conventional supersensitization techniques. Moreover, the spectrally sensitized photographic emulsion of this invention may further contain additives conventionally employed in the art, such as sensitizers, stabilizers, color toning agents, hardening agents, surface active agents, antifoggants, plasticizers, developing promotors, color couplers, and fluorescent brightening agents.
The photographic emulsion of this invention may be applied to an appropriate support such as a glass sheet, a cellulose ester derivative film, a polyethylene terephthalate film, a synthetic resin film, a barayta-coated paper, a resin-coated paper, or a synthetic paper using conventional techniques.
Furthermore, as described before,the silver halide photographic emulsion of this invention may be used as a light-sensitive material suitable for cathode ray tube display.
This invention will now be explained in greater detail by reference to the examples given below.
14 EXAMPLES l 29 A silver halide photographic emulsion was prepared by incorporating the sensitizing dyes represented by the General Formula (I) and the General Formula (II) shown in the tables below in the amounts set forth in a gelatino silver iodo-bromide emulsion (Agl: AgBr 7 mol%: 93 mol%, gelatin (g)AgNO, 1.3: 0.26 mol silver salt/kg emulsion). Also, for comparison, a silver halide photographic emulsion was prepared by using individually each of the sensitizing dyes of the General Formula (I) and the General Formula (ll) and also a comparison silver halide photographic emulsion was prepared by using each of the comparison sensitizing dyes represented by the Formula (T) and Formula (U) shown below.
Each of the silver halide photographic emulsions thus prepared was applied to a triacetyl cellulose film base. The light-sensitive photographic films thus prepared were each exposed to day light radiation of 64 lux (corresponding to 5,400 K) through a yellow filter (made by the Fuji Photo Film Co., a filter passing light of wave lengths longer than 460'nm.), a green filter (made by the Fuji Photo Film Co., a filter passing'light of wave lengths of 480-620 nm. and having a maximum penetration coefficient at a wave length of 530 nm.), or a blue filter (made by the Fuji Photo Film Co., a filter passing light of wave lengths of 400-490nrn. and having a maximum penetration coefficient at a wave length of 450 nm.). They were then developed for 2 mi utes at 24C in a developing solution haveing the following composition:
Metol 2.2 g Sodium Sulfite 96 g Hydroquinone 8.8 g Sodium Carbonate (mono-hydrate) 56 g Potassium Bromide 5 g Water added to make the total volume 1 liter. In the following table, the yellow sensitivities and the green sensitivities obtained by adding the sensitizing dyes illustrated above individually and the comparison sensitizing dyes shown below and the yellow sensitivities and the green sensitivities obtained by adding the sensitizing dyes as combinations thereof are shown together with the intrinsic sensitivities of the silver halide photographic emulsion containing the sensitizing dye or dyes relative to the intrinsic sensitivity of the original silver halide photographic emulsion which did not contain a sensitizing dye.
In the following table, the yellow sensitivity and the .green sensitivity are the relative values when the sensic o m parison Dye CIzH CzHs
Table Spectrogram Intrinsic sens.
Rel.
Rel.
Max.
yellow green sens. sens sens. (n
AAAA
III!) AAA CCCC
AAA
FIG 1(1) FIG.I(2)
FIG.I(3)
III
V Tabf-(oritinucd H 7 Ex. ScnsDyc ScnsDyc Max. Rcl. Rel. Intrinsic Spectro- (amounl) (umuunt') sens. yellow green sens. gram h (nm) sens. sens.
P 4) s38 22 104 3 P (8) 538 38 28 104 F1G,4 10
P 8 21 2) 54m 210 216 96 FlG.4(12
J (2) 556 107 100 98 J 4 558 135 135 98 J (8) 558 158 164 98 K (2) 560 135 135 100 K 4 560 170 170 100 K 8 560 178 185 96 H (2) 540 42 28 100 H 4 s 46 100 H (8) 540 66 100 15 H (2) 3 (1) 560 76 78 96 H 2 3 (2 V 562 110 96 94 N 4 560 158 152 96 N (8) 560 200 200 96 FIG. 2 4 N (12) 560 224 208 96 Table Continued Ex. SensDye SensDye Max. Rel. Rel. Intrinsic Spectro- (umuum') (umoum) sens. yellow green sens. gram (nm) sens. sens.
N (l) 16 (8) 552 193 208 110 17 N (2) 16 (8) 552 210 240 110 N (4) 16 (8) 554 234 260 110 545 5 (8) 540; 158 178 110 FIG. 2 (5) N (4) 5 (8) 560 260 280 120 FIG. 2 (6) Q (2) s20 30 19 100 Q (4) 520 38 100 O (6) 520 42 29 98 17 (2) 550 88 85 94 17 (4) 550 110 110 90 R (4) 522 32 20 100 R (6) I 522 37 27 100 B (4) 536 42 104 B (8) S36 40 104 FIG. 3 (7) 20 (0.5) 560 76 69 94 20 (1) 560 99 96 20 (2) 560 110 128 85 FIG. 3
(8) 2O (2) 530/ 185 215 108 FIG. 3
B (2 10 4 560 96 96 7e 26 B (4) 10 (4) 560 100 96 76 Table Continued Ex. SensDye Sens.Dye Max. Rel. Rel. Intrinsic Spectro- (umount) (amount) sens. yellow green sens. gram (nm) sens. sens.
B (4) l2 (4) 564 I78 I85 94 27 B (2) l2 (8) 564 I58 I58 85 I5 (2) 540 70 78 92 I5 (4) 540 86 90 88 I5 (8) 540 90 96 83 l (2) l5 (8) 540 I28 I30 90 28 L (4) l5 (8) 540 I35 I52 90 I3 (4) 540 I20 I40 I04 l3 (8) 540 I45 I58 104 N (2) l3 (8) 560 228 2l6 I 29 N (4) l3 (8) 560 246 250 I00 T (4) 582 180 H0 85 T (8) 584 I85 I20 76 FIG.
(1 T (12) 584 I85 I 72 U (4) 574 I78 I06 90 U (8) 574 182 I14 66 FIG. 6
(1 U (12) 574 I80 I10 62' amount I0" mill/kg emulsion 7' EXAMPIQE 30 Two kinds of spectrally sensitized silver halide photographic emulsions were prepared by adding the dye (2) show above alone and the dye (B) and the dye in the combination according to this invention to a silver iodo-bromide emulsion (Agl AgBr= l.5 mol 98.5 mol%, gelatin (g)/AgNo (g) 0.4, 0.75 mol silver salt/kg emulsion). Each of the photographic emulsions penetration coefficient at a wave length of 450 nm.) or
a green filter (made by the Fuji Photo Film Co., a filter passing light of wave lengths of 480-650 nm., having a maximum penetration coefficient at a wave length of 530 nm.) and then developed for 4 minutes at 20C in the same developing solution as used in the above Exfollowing table.
In the following table, the sensitivity is shown by the relative sensitivity when the sensitivity of the silver halide photographic emulsion containing the dye (20) amples l 29. The results obtained are shown in the From measure shown in thetablsfitcaii b seen that the green sensitivity is super-additively increased, which is one of the objects of this invention, by using at least one of the sensitizing dyes of the General Formula (l) and at least one of the sensitizing dyes of the General Formula (II).
The results obtained by the above examples are also shown in the accompanying drawings. That is to say, FIG. 1, FIG. 2, FIG. 3 and FIG. 4 are spectrograms obtained by using the combinations of the sensitizing dyes of the General Formula (I) and the General Formula (II) according to the present invention. FIG. 5 and FIG. 6 are the spectrograms obtained by using'the comparison sensitizing dyes of the Formula (T) and the Formula (U) respectively. In addition, the numbers in the parentheses the examples shown in the above table to which the curves correspond. g
FIG. 7 is a graph showing the spectral energy distribution of light emitted by exciting by X-rays the fluoresecnt substance of a fluorescent screen usually used for X-ray photography.
FIG. 8 is a graph showing the spectral penetrationco-.
efficient curve of a safety light filter usually used in 'a dark room for obtaining safety light in the case of developing direct X ray photographic films.
Now, as clear from the results of Example 18, when the dye (N), which is one of the sensitizing dyes repres5 shown above in an amount of 4 X 10 mol per kg of sented by the General Formula (I) IS added in such a the emulsion is defined as 100. large amount so as to give the maximum g'reensensitivy a Table 3 v Example Sens. Dye Sens. Dye Maximum Relative Relative (amount)" (amountl Sensitization Green Sens. Blue Sens.
20 (4) 560 nm 100 20(8) 560 100 20 (I0) 560 I30 90 B (1.7) 20 (4) 560 95 30 B 3.4) 20(8) 560 191 95 a 4.0) 20 10 560 23s 95 l0"" mol/kg emulsion ity, the sensitized region of the light-sensitive film extends to 596 nm. as shown by the curve (4) of FIG. 2 but when the dye (N) is used together with the sensitizing dye (5) of the General Formula (II), the sensitized wave length end of the light-sensitive film shifts to the shorter wave length side and also the sensitivity reduction in the longer wave length side is sharp as is shown by the curve (6) of FIG. 2. Besides the above-described advantages the green sensitivity of the light-sensitive film prepared by using the combination of the sensitizing dyes according to the present invention is about 1.6 times higher than that of the light-sensitive film obtained by using the sensitizing dye individually.
From the results shown above, it will aslo be understood that the photographic emulsion of this invention is less fogged by exposure to a safety light and also the spectral sensitivity distribution of the photographic emulsion fits the energy distribution of the light emitted from the green fluorescent substance of the X-ray fluorescent screen as shown in FIG. 7.
Furthermore, on investigating the results of the table obtained in the Examples 1 29 and the results shown in FIG. 1 to FIG. 6 of the accompanying drawings, it will be understood that the objects of this invention are well attained by using the sensitizing dye of the General Formula (I) together with the sensitizing dye of the General Formula (II).
Also, from the results of the examples, it will be understood that the present invention can be applied effectively to various fields in a practical manner.
What is claimed is:
1. A silver halide photographic emulsion containing a supersensitizing amount of the combination comprising at least one of the sensitizing dyes represented by the following General Formula (I) l l )m1 General Formula (I) wherein Z, represents a non-metallic atomic group necessary for forming a benzothiazole nucleus or a benzoselenazole nucleus; Z represents a non-metallic atomic group necessary for forming a benzene nucleus; R, and R each represent an alkyl group having from one to about six carbon atoms, a substituted lower alkyl group conventionally used in cyanine dyes selected from the General Formula (II) wherein 2;, represents a benzoxazole nucleus, Z, represents a non-metallic atomic group necessary for forming a benzene nucleus; R and R each represents an alkyl group having from one to about six carbon atoms, a substituted alkyl group conventionally used in cyanine dyes selected from the group consisting of an alkoxyalkyl group, an alkallyl group, an aralkyl group, an acetoxyalkyl group, a carboalkoxyalkyl group, an arylmercaptoalkyl group, an aryloxyalkyl group, a hydroxysulfoalkoxyalkyl group and a carbamylalkyl group, an aralkyl group for an aliphatic hydrocarbon group having an unsaturated bond; at least one of said R and R being an-alkyl' group having at least one of a sulfo group, a carboxyl group or a hydroxyl group; R represents an alkyl group having from one to about six carbon atoms, a substituted alkyl group conventionally used in cyanine dyes, selected from the group consisting of an aralkyl group, a hydroxyalkyl group, and an acetoxyalkyl group, an aryl group, or an unsaturated aliphatic hydrocarbon group; X; represents an anion; and n is l or 2; said n being 1 when the dye forms an intramolecular salt, and said emulsion having a high sensitivity to the radiation emitted from a green fluorescent substance and having a high stability to a safety light. l
2. An photographic light-sensitive material comprising a support havingthereon at least one layer of the silver halide photographic emulsion as set forth in claim 1.
3. A silver halide photographic emulsion containing at least one of the sensitizing dyes represented by the General Formula (I) N I v l R 1( 1.)m-i a General Formula (I) wherein Z, represents an atomic group necessary for forming a benzothiazole nucleus or a benzoselenazole nucleus, in which the benzene ring moiety of said nucleus may be unsubstituted or substituted by a lower alkyl group having from one to about six carbon atoms, an alkoxyl group, a hydroxyl group, a halogen atom, an aryl group, a sulfoaryl group, an N-alkyl substituted amino group, a carboxyaryl group or an alkoxycarbonyl group; wherein Z represents a non-metallic atomic group necessary for forming a benzene nucleus, which may be unsubstituted or substituted by a lower alkyl group having from one to about six carbon atoms, a halogen atom, or an alkoxy group; wherein R and R each represents an alkyl group having from one to about six carbon atoms, an aralkyl group, an alkyl group having a sulfo group, an allyl group, or an alkyl group having a carboxyl group; wherein X, represents an anion and m is l or 2, in which when m is 1 an intramolecular salt is formed, and at least one of the sensitizing dyes represented by the General Formula (II) General Formula (II) wherein Z represents a benzoxazole nucleus, which may be unsubstituted or substituted with a lower alkyl group having from one to about six carbon atoms, a halogen atom, an alkoxyl group, a hydroxyalkyl group, an alkoxycarbonyl group, an aryl group, a carboxyaryl group or a sulfoaryl group; wherein Z, represents a non-metallic atomic group necessary for forming :1 benzene nucleus, in which said nucleus may be unsubstituted or substituted with a halogen atom, a cyano group, an alkoxycarbonyl group, a trifluoromethyl group, a carbamoyl group, an alkyl-substituted carbamoyl group, a sulfamoyl group, or an alkyl-substituted sulfamoyl group; wherein R and R each represents an alkyl group having from one to about six carbon atoms, an allyl group, a hydroxyalkyl group, an alkyl group having a sulfo group, an alkyl group having a carboxyl group, or an aralkyl group, and wherein at least one of R and R is an alkyl group having at least one of a sulfo group, a carboxy group or a hydroxy group, R is a lower alkyl group having from one to about six carbon atoms, an allyl group, a hydroxy-alkyl group, an aralkyl group, an acetoxyalkyl group, or a aryl group wherein X; represents an anion and n is 1 or 2, in which when n is 1, an intramolecular salt is formed, and said emulsion having a high sensitivity to the radiation emitted from a green fluorescent substance and having a high stability to a safety light.
4. The silver halide photographic emulsion of claim 3, wherein said alkyl group having a sulfo group is selected from the group consisting of a sulfo alkyl group, a hydroxy(sulfo) alkyl group, a sulfo alkoxy alkyl group, a sulfo phenyl alkyl group, a sulfo-alkyl amino alkyl group, a sulfo-alkyl amino alkyl group and a sulfoalkyl thio-alkyl group.
5. An photographic light-sensitive material comprising a support having thereon at least one layer of the silver halide photographic emulsion as set forth in claim 4.
6. A silver halide photographic emulsion containing a supersensitizing amount of the combination comprising at least one of the sensitizing dyes represented by the following General Formula (I') gi z General Formula (I') wherein R and R each represents a methyl group, an
ethyl group, or an allyl group; Xfrepresents an anion;
and R represents a hydrogen atom, a methyl group, or an ethyl group; and at least one of the sensitizing dyes represented by the following General Formula (ll') General Formula (11) wherein W, and W; each represents a hydrogen atom, a chlorine atom, or a methoxycarbonyl group and R and R each represents a sulfoalkyl group or an alkyl group; at least one of R}, and R being a sulfoalkyl group.
7. The silver halide photographic emulsion of claim 1 wherein the molar ratio of the sensitizing dye of the General Forumula (l) to the sensitizing dye of the General Formula'(II) ranges from 9:1 to 1:10 and wherein the amount of each of said dyes to the silver halide ranges from 1X10 to l X 10 mole per mole of silver.
sulfopropxy) ethyl group and a carbamylmethyl group.
9. A silver halide photographic emulsion as set forth in claim 1 wherein 2, represents a non-metallic atomic group necessary for forming a benzthiazole nucleus.
10. A silver halidephotographic emulsion as set forth in claim 9 wherein R, and R each represents an alkyl group having from one to about six carbon atoms, and
wherein both of R and R, have at least one sulfo group.

Claims (10)

1. A SILVER HALIDE PHOTOGRAPHIC EMULSION CONTAINING A SUPERSENSITIZING AMOUNT OF THE COMBINATION COMPRISING AT LEAST ONE OF THE SENSITIZING DYES REPRESENTED BY THE FOLLOWING GENERAL FORMULA (I)
2. An photographic light-sensitive material comprising a support having thereon at least one layer of the silver halide photographic emulsion as set forth in claim 1.
3. A silver halide photographic emulsion containing at least one of the sensitizing dyes represented by the General Formula (I)
4. The silver halide photographic emulsion of claim 3, wherein said alkyl group having a sulfo group is selected from the group consisting of a sulfo alkyl group, a hydroxy(sulfo) alkyl group, a sulfo alkoxy alkyl group, a sulfo phenyl alkyl group, a sulfo-alkyl amino alkyl group, a sulfo-alkyl amino alkyl group and a sulfo-alkyl thio-alkyl group.
5. An photographic light-sensitive material comprising a support having thereon at least one layer of the silver halide photographic emulsion as set forth in claim 4.
6. A silver halide photographic emulsion containing a supersensitizing amount of the combination comprising at least one of the sensitizing dyes represented by the following General Formula (I'')
7. The silver halide photographic emulsion of claim 1 wherein the molar ratio of the sensitizing dye of the General Forumula (I) to the sensitizing dye of the General Formula (II) ranges from 9:1 to 1:10 and wherein the amount of each of said dyes to the silver halide ranges from 1 X 10 4 to 1 X 10 3 mole per mole of silver.
8. The emulsion of claim 1 wherein R3 and R4 if substituted alkyl are selected from the group consisting of a Beta -methoxyethyl group, a Beta -ethoxyethyl group, a Beta -methallyl group, a benzyl group, a Beta -phenylethyl group, a Beta -acetoxyethyl group, a Beta -acetoxypropyl group, a carbomethoxymethyl group, a Beta -carbomethoxyethyl group, a carbethoxymethyl group, a Beta -carbethoxyethyl group, a phenylmercaptomethyl group, a phenoxymethyl group, a Beta -phenylmercaptoethyl group, a Beta -phenoxyethyl group, and a 2-(2-hydroxy-3-sulfopropxy) ethyl group and a carbamylmethyl group.
9. A silver halide photographic emulsion as set forth in claim 1 wherein Z1 represents a non-metallic atomic group necessary for forming a benzthiazole nucleus.
10. A silver halide photographic emulsion as set forth in claim 9 wherein R1 and R2 each represents an alkyl group having from one to about six carbon atoms, and wherein both of R3 and R4 have at least one sulfo group.
US00237041A 1971-03-23 1972-03-22 Supersensitized silver halide photographic emulsions Expired - Lifetime US3840377A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP46016424A JPS5121340B1 (en) 1971-03-23 1971-03-23

Publications (1)

Publication Number Publication Date
US3840377A true US3840377A (en) 1974-10-08

Family

ID=11915841

Family Applications (1)

Application Number Title Priority Date Filing Date
US00237041A Expired - Lifetime US3840377A (en) 1971-03-23 1972-03-22 Supersensitized silver halide photographic emulsions

Country Status (5)

Country Link
US (1) US3840377A (en)
JP (1) JPS5121340B1 (en)
DE (1) DE2214208A1 (en)
FR (1) FR2135136B1 (en)
GB (1) GB1392211A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005056689A2 (en) 2003-12-05 2005-06-23 Molecular Probes, Inc. Cyanine dye compounds
US7598390B2 (en) 2005-05-11 2009-10-06 Life Technologies Corporation Fluorescent chemical compounds having high selectivity for double stranded DNA, and methods for their use
US7776529B2 (en) 2003-12-05 2010-08-17 Life Technologies Corporation Methine-substituted cyanine dye compounds

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2014896A1 (en) * 1969-03-27 1970-11-05 Fuji Photo Film Co., Ltd., Kanagawa (Japan) Spectrally Sensitized Silver Halide Photographic Emulsions

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100120051A1 (en) * 2003-12-05 2010-05-13 Life Technologies Corporation Cyanine dye compounds
WO2005056689A3 (en) * 2003-12-05 2005-10-13 Molecular Probes Inc Cyanine dye compounds
US7446202B2 (en) 2003-12-05 2008-11-04 Molecular Probes, Inc. Cyanine dye compounds
US20090047683A1 (en) * 2003-12-05 2009-02-19 Invitrogen Corporation Cyanine dye compounds
WO2005056689A2 (en) 2003-12-05 2005-06-23 Molecular Probes, Inc. Cyanine dye compounds
US7655409B2 (en) 2003-12-05 2010-02-02 Life Technologies Corporation Cyanine dye compounds
US9040561B2 (en) 2003-12-05 2015-05-26 Life Technologies Corporation Methine-substituted cyanine dye compounds
US7776529B2 (en) 2003-12-05 2010-08-17 Life Technologies Corporation Methine-substituted cyanine dye compounds
US7842811B2 (en) 2003-12-05 2010-11-30 Life Technologies Corporation Cyanine dye compounds
US10005908B2 (en) 2003-12-05 2018-06-26 Life Technologies Corporation Methine-substituted cyanine dye compounds
US8470529B2 (en) 2003-12-05 2013-06-25 Life Technologies Corporation Methine-substituted cyanine dye compounds
EP2607431A1 (en) * 2003-12-05 2013-06-26 Life Technologies Corporation Cyanine dye compounds
US9403985B2 (en) 2003-12-05 2016-08-02 Life Technologies Corporation Methine-substituted cyanine dye compounds
US7598390B2 (en) 2005-05-11 2009-10-06 Life Technologies Corporation Fluorescent chemical compounds having high selectivity for double stranded DNA, and methods for their use
US9115397B2 (en) 2005-05-11 2015-08-25 Life Technologies Corporation Fluorescent chemical compounds having high selectivity for double stranded DNA, and methods for their use
US9366676B2 (en) 2005-05-11 2016-06-14 Life Technologies Corporation Fluorescent chemical compounds having high selectivity for double stranded DNA, and methods for their use
US8865904B2 (en) 2005-05-11 2014-10-21 Life Technologies Corporation Fluorescent chemical compounds having high selectivity for double stranded DNA, and methods for their use
US7943777B2 (en) 2005-05-11 2011-05-17 Life Technologies Corporation Fluorescent chemical compounds having high selectivity for double stranded DNA, and methods for their use

Also Published As

Publication number Publication date
JPS5121340B1 (en) 1976-07-01
DE2214208A1 (en) 1972-10-26
FR2135136B1 (en) 1978-03-03
GB1392211A (en) 1975-04-30
FR2135136A1 (en) 1972-12-15

Similar Documents

Publication Publication Date Title
US3953215A (en) Silver halide photographic emulsions
US3703377A (en) Supersensitized light-sensitive silver halide photographic emulsion
JPS6373241A (en) Material having photoresponsiveness
US3630744A (en) Selectively desensitized silver halide emulsion materials
US3867146A (en) Holographic reproduction using carbocyanine dye sensitized, fine-grain silver halide emulsions and neon-helium lasers
US3458318A (en) Supersensitized silver halide emulsions
US3922170A (en) Spectrally sensitized silver halide photographic emulsion
US4040841A (en) Silver halide photographic emulsion
US3840377A (en) Supersensitized silver halide photographic emulsions
US3969116A (en) Silver halide photographic sensitive element for flash exposure
US3971664A (en) Fine grain silver halide emulsions with polyheteronuclear sensitizing dyes
US3573920A (en) Fine grain silver halide emulsions containing novel dye combinations
JP3193527B2 (en) Radiation detection element
US3982950A (en) Silver halide photographic emulsion for use in flash exposure
US2944901A (en) Multicontrast photographic emulsions
US3988513A (en) Silver halide emulsions for recording electron rays
US3782957A (en) Fogged,direct-positive silver halide emulsion layer containing a cyanine dye and a compound containing a metal of group viii of the periodic table
US3567456A (en) Photographic direct-reversal emulsions
US3881936A (en) Silver halide photographic emulsion containing three sensitizing dyes
US3702251A (en) Light-sensitive silver halide photographic emulsion for microfilm use
US3788859A (en) Fine grain silver halide photographic emulsion containing hemicyanine sensitizing dye
JPH0778609B2 (en) Silver halide photographic light-sensitive material
US3769026A (en) Spectrally sensitized silver halide photographic emulsion
US3677765A (en) Silver halide supersensitized photographic emulsion
US3508921A (en) Light-developable photographic material and recording process