US3828775A - Self-packaged hypodermic syringe - Google Patents

Self-packaged hypodermic syringe Download PDF

Info

Publication number
US3828775A
US3828775A US00157744A US15774471A US3828775A US 3828775 A US3828775 A US 3828775A US 00157744 A US00157744 A US 00157744A US 15774471 A US15774471 A US 15774471A US 3828775 A US3828775 A US 3828775A
Authority
US
United States
Prior art keywords
syringe
needle
bore
continuous bore
reduced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00157744A
Inventor
J Armel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iso Nuclear Corp
Original Assignee
Iso Nuclear Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iso Nuclear Corp filed Critical Iso Nuclear Corp
Priority to US00157744A priority Critical patent/US3828775A/en
Application granted granted Critical
Publication of US3828775A publication Critical patent/US3828775A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/002Packages specially adapted therefor, e.g. for syringes or needles, kits for diabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M2005/3117Means preventing contamination of the medicament compartment of a syringe
    • A61M2005/3118Means preventing contamination of the medicament compartment of a syringe via the distal end of a syringe, i.e. syringe end for mounting a needle cannula
    • A61M2005/312Means preventing contamination of the medicament compartment of a syringe via the distal end of a syringe, i.e. syringe end for mounting a needle cannula comprising sealing means, e.g. severable caps, to be removed prior to injection by, e.g. tearing or twisting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M2005/3117Means preventing contamination of the medicament compartment of a syringe
    • A61M2005/3121Means preventing contamination of the medicament compartment of a syringe via the proximal end of a syringe, i.e. syringe end opposite to needle cannula mounting end
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/32Needles; Details of needles pertaining to their connection with syringe or hub; Accessories for bringing the needle into, or holding the needle on, the body; Devices for protection of needles
    • A61M5/3202Devices for protection of the needle before use, e.g. caps

Definitions

  • ABSTRACT contemplates a self-packaged hypoderr'nic syringe wherein the body of the syringe is itself an important part of the package. Removable end seals complete the packaged article and respectively provide actuating access to the plunger at the rear end, and to the needle at the forward end.
  • the needle As long as the syringe is stored, the needle is in a retracted position, protected against mechanical abuse or contact; upon plunger actuation, the needle is displaced to its forwardly projected position, in readiness for use.
  • the syringe body and the seal or closure structures are of a suitable plastic, shaped for localized frangibility when exposed to gamma irradiation of such dosage as to achieve sterility of the entire contents of the sealed structure.
  • hypodermic syringes require individual containers to assure sterility, and special packaging is required to permit sterilization by gas.
  • the packaging must be permeable to gas and, therefore, the package is generally flimsy and may easily be ruptured aftergas sterilization, thus destroying its sterile condition.
  • a hermetically sealed container made of durable and puncture-proof material, usually plastic, can be sterilized by gamma radiation.
  • the bulk now involved in using individual outer containers represents an undesirable limitation on loading density, should it be desired to sterilize through gamma irradiation.
  • Still another object is to achieve the foreoing objects without need for further packaging-theindividual item,
  • a still further object is to meet the above objects with a construction in which greater packing density is achievable than at present, thus enabling a larger number of units to be gamma-sterilized, per unit volume of space, and thus also providing storage convenience.
  • a general object is to achieve the highest quality sterile product, at reduced cost of manufacture, and inherently lending itself to the further saving of cost in sterilizing, storage, and shipping.
  • FIG. 1 is a longitudinal sectional view of a selfpackaged syringe of the invention, shown fully sealed, as for storage;
  • FIG. 2 is a view similar to FIG. 1, but with the selfstored needle projected in readiness for taking-on an injection charge;
  • FIG. 3 is another similar view. to show the plunger or piston fully retracted, as after the injection charge has been loaded into the syringe;
  • FIGS. 4, 5 and 6 are views similar to FIGS. 1, 2 and 3, respectively, to show similar manipulations for an alternative construction.
  • the invention contemplates a selfpackaged hypodermic syringe wherein the body of the syringe is itself an important part of the package.
  • Removable end seals complete the packaged article and respectively provide actuating access to the plunger at the rear end, and to the needle at the forward end.
  • the needle is in a retracted position, protected against mechanical abuse or contact; upon plunger actuation, the needle is displaced to its forwardly projected position, in readiness for use.
  • the syringe body and the seal or closure structures are of a suitable plastic, shaped for localized frangibility the same being exposed to gamma irradiation of such dosage as to achieve sterility of the entire contents of the sealed structure.
  • FIGS. 1 to 3 of the drawings the invention is shown in application to a self-packaged, sterilized, hypodermic syringe comprising an elongated tubular body 10 having a barrel 11 with a continuous bore 12 which is open at the rear or actuating end, and which is substantially closed at the forward or injection end. Substantial closure is achieved at an integral forwardly projecting neck 13, connected to the barrel 11 by a tapering or frusto-conical wall 14.
  • the neck 13 has an elongated reduced bore 15 to substantially reduced diameter, sized to accommodate and centrally support a hypodermic needle 16.
  • the needle 16 is formed as part of a retracted subassembly which includes a support or piloting structure 20, deriving, from the larger bore 12, central guided support for the rear end of needle 16.
  • the piloting structure comprises a dished frusto-conical element 21 riding bore 12 and including a central, forwardly projecting hub or boss 22 for the firmly bonded and well-rooted attachment of the rear end of needle 16.
  • the conical tapers at 14-21 match one another, and a counterbore 23 in the root end of the reduced bore 15 is sized ultimately to receive boss 22 with a snug fit.
  • a plunger assembly 25 includes a piston 26 having liquid-sealing, guided engagement with the continuous bore 12, and an elongated stem which, in the selfpackaged position shown in FIG. 1, projects rearwardly of body 10 atleast substantially to the extent that piston 26 is spaced from the closed end of the body.
  • Piston 26 is shown with a short, central, forwardly projecting boss 27 for abutment with the base of dished element 21.
  • Piston 26 may be formed integrally with the rearwardly extending stem structure but it is preferably a separate element, having the desired contourconforming local resilience to achieve liquid-sealing engagement with bore 12.
  • piston 26 is thus seen as essentially a button which may have snap-fitted or detent engagement with a suitable formation at the forward end of the stem; details of such a connected-relationship form no part of the claimed invention and are therefore not shown.
  • the stem pilots on bore 12 throughout its overlap therewith, and it is structured to conserve the plastic material of which it is made.
  • the stem comprises plural angularly spaced elongated radial blades 28-29-30, integrally contiguous on the plunger axis and deriving outer-edge support from bore 12.
  • a front disc 31 and a rear disc 32 are integrally formed with blades 282930, as are appropriately spaced reinforcing sector members, as at 33-34.
  • the rear disc 32 is radially enlarged to exceed the bore 12, for ease of thumb manipulation.
  • the rearwardly projecting end of the stem is sealed to the body when in self-packaged condition. This may be achieved by dipping the rear end of body 10 and the rearwardly projecting end of the stem into a bath of liquid plastic which does not adhere to the stem material, and by allowing a plastic coat to harden to form a continuous protecting skin or sheath that is hermetically sealed to the rear end of body 10; such a sheath may be readily removed when desired, by rip-strip techniques known in the art.
  • the stem enclosure is afforded by a cup 35 circumferentially secured, as by known heat-sealing techniques, to the rear or open end of the body 10.
  • body 10 terminates in a radially outward flange 36, for ultimate ease of manual actuation of the syringe.
  • Flange 36 also affords a convenient means of positioning the open end of the envelope or cup 35, as by overlap with a circular positioning ring or ridge 37 formed integrally with flange 36.
  • a short outward flange 39 on cup 35 abuts body flange 36 and facilitates circumferential application of axial squeezing pressure during the heat-sealing process.
  • the frangible section of cup 35 is indicated at a circumferential groove 38 near the location of body attachment, whereby the thickness of cup material at this location is materially reduced, as discussed above for the frangible section 18 at the other end of the device.
  • the plastic material for the body 10 and for the envelope 35 is selected, as from the polypropylenes, and the reduced thickness at 18 and 38 is selected for locally enhanced frangibility at 18 and 38, the sealed syringe and envelope being exposed to a sterilizing dose of gamma radiation.
  • the stress necessary to effect rupture at the relatively thin portions (l838) is reduced as a result of gamma radiation sufficient to provide sterilization.
  • the complete self-packaged device will thereafter remain hermetically sealed, in sterile condition, regardless of outside contaminating environments.
  • frangible sections 18 and 38 are simply severed.
  • a manually applied side thrust of knob 17, with the thumb applied at 18, is operative to develop rupture stress to sever the neck at 18 and thus to open the reduced passage 15.
  • a manual squeeze applied to any diameter at the central region of envelope 35 will develop rupture stress to at least partially, if not completely, sever the envelope from the body, at 38. Local squeezing at angularly displaced locations is thereafter effective to complete the removal of the envelope 35.
  • the syringe is then grasped, at 36 by two fingers of one hand (diametrically spanning the body 10), and at 32 by applying thumb pressure.
  • Such pressure advances the plunger and the needle subassembly to the full forward position shown in FIG. 2, at which point the skirt 21 of the needle-piloting subassembly has entered into locked one-way-engaging relation with plural angularly spaced ridges or ribs 40 formed in the continuous bore 12 of the body.
  • the ridges 40 are shown as gentle ramps rising from the bore 12, in the radially inward direction and in the forward direction; ridges 40 terminate at an abrupt wall to establish a locking hold on the skirt 21 as it clears the ends of the locking ramps.
  • the boss 22 is snugly fitted into the counterbore 23, thus establishing a firmly rooted and locked support for the needle 16, which is now fully forward and in readiness for use.
  • operation of the syringe is conventional, by submerging the exposed needle in any serum or other liquid to be injected, while withdrawing the plunger in order to fill the body 10.
  • Such withdrawn or fully loaded condition involves the relation of parts illustrated in FIG. 3. Once the desired injection has been made, the entire assembly may be discarded.
  • FIGS. 4 to 6 many of the same parts will be recognized from FIGS. 1 to 3, and therefore the same reference numerals have been employed, but with primed notation.
  • the embodiments of FIGS. 4 to 6 merely illustrate alternative provision of frangible closures for the respective ends of the selfpackaged syringe.
  • closure of the reduced passage 15 for the retracted needle 16' is effected at a diaphragm 50 formed integrally with the body 10, and of such substantially reduced thickness as to exhibit the brittle characteristics discussed above in connection with the grooves 18-38.
  • FIG. 4 further illustrates alternative provision of the removable enclosure for the rearwardly extending end of the stem of the plunger.
  • the closing envelope 35 may be cut from straight tubular material, and the body flange 36 and diameter of thumb piece 32 sized to the same circumferential proportions, whereby the tube 35 may be overlapped with both of members 32' and 36'; alternatively, as shown, the closing envelope 35' may be of cup-shape, sized at its open end for overlap with flange 36, the thumb piece 32 being the bottom of the cup shape. Circumferential sealing is accomplished at the axial overlap of these members, and the package is thus effectively closed and hermetically sealed.
  • Circumferential grooves at 51 near the body flange 36' and at 52 near the thumb piece 32', establish frangible sections in the manner discussed above in connection with the groove 38 that the desired local embrittlement is again the result of design of reduced section thickness at 51-52, for the particular plastic material and for the gamma-radiation dosage required to establish sterility of the contents.
  • a squeeze of the central region of the envelope 35' is adequate to sever the frangible sections 51-52.
  • Such parting may be facilitated by additionally providing one or more elongated generally longitudinal grooves as suggested at 53 (between grooves 51-52) in the envelope 35' so that upon circumferential severance at 51-52, the circumferential continuity of envelope 35 may also be broken, and the broken material removed, freeing the plunger for use.
  • the plunger may then be forwardly projected to break the diaphgram 50 and establish the needle 16 in its locked firmly positioned forward position. Thereafter, operation is as described for FIGS. 1 to 3.
  • the invention lends itself to inexpensive mass-production, affording a sterile instrument at minimum cost.
  • all parts except the needle itself may be of injectionmolded plastic, formed, for example, in multiple-cavity molds in accordance with present technology.
  • a self-packaged hypodermic syringe comprising an elongated tubular body having means providing a continuous bore that is open at a rear end and substan tially closed at the other end, said closed end including an axially outwardly extending neck having means providing a relatively reduced elongated bore, first removable means closing the open end of the reduced bore means, piston means having a position spaced a predetermined distance from the closed end of said body and having guided support in the continuous bore means, said piston means including a stem extending rearwardly beyond the open end of the continuous bore means to at least the extent of said predetermined distance and including a flange of radial extent exceeding that of the continuous bore means, an elongated needle having its forward end positioned within the reduced bore means, piloting means positioned by the continuous bore means and forwardly of the piston means for centrally supporting the rearward end of said needle, second removable means includinga frangible portion peripherally continuously connected to said flange and body at the rear end of the continuous bore means and effectively encapsulating
  • a self-packaged hypodermic syringe comprising an elongated tubular body having continuous bore means that is open at a rear end and substantially closed at the other end; said closed end having means providing a relatively reduced central elongated bore closed near an end thereof, an elongated needle adapted to be centrally and slidably supported by and within said bore means, a piston movably guided within said continuous bore means and positioned rearwardly of the needle and having a stem projecting rearwardly beyond the rear end of said continuous bore means, said stem including a radially outwardly extending peripheral flange at its rearwardly projecting end, and a hermetically sealed enveloping enclosure for the rear end of said stem and peripherally continuously connecting said flange to said body; said body and said envelope being of a plastic material for which, at a sufficiently thin section and for a predetermined gammaradiation exposure, the stress necessary to effect rupture at the thin section will be reduced, such exposure being adequate to achieve desired sterilization within said body; said body being
  • said interlocking means includes an elongated ramp detent formed radially inwardly in the continuous bore means near the forward end thereof, said ramp terminating in a locking shoulder.

Abstract

The invention contemplates a self-packaged hypodermic syringe wherein the body of the syringe is itself an important part of the package. Removable end seals complete the packaged article and respectively provide actuating access to the plunger at the rear end, and to the needle at the forward end. As long as the syringe is stored, the needle is in a retracted position, protected against mechanical abuse or contact; upon plunger actuation, the needle is displaced to its forwardly projected position, in readiness for use. In the preferred forms which are described, the syringe body and the seal or closure structures are of a suitable plastic, shaped for localized frangibility when exposed to gamma irradiation of such dosage as to achieve sterility of the entire contents of the sealed structure.

Description

- tent 1" SELF-PACKAGED HYPODERMIC SYRINGE [75] Inventor: Jack Armel, New York, NY.
[73] Assignee: Iso Nuclear (Zorn, Ballston Spa,
[22] Filed: June 28, 1971 [21] Appl. No.: 157,744
Related US. Application Data [63] Continuation of Ser. No. 797,095, Feb. 6, 1969,
[58] Field of Search... 128/215, 216, 218 R, 218 N, 128/218 D, 122 D, 220; 206/622 R, 622 A, 63.3
[56] References Cited UNITED STATES PATENTS 2,371,086 3/1945 Watson et al 128/216 2,408,323 9/1946 Lockhart 128/220 2,880,725 4/1959 128/218 N 2,887,l08 5/1959 Kendall 128/218 N 2,902,995 9/1959 Loper 128/215 2,935,067 5/1960 Bouet 128/216 2,997,043 8/1961 Flynn 206/63.2 R X 3,098,483 7/1963 Nielsen 128/220 3,110,309 11/1963 Higgins 128/218 D 3,315,802 4/1967 Lonholdt et a1. 206/62.3 R X [451 Aug. 113, 1974 3,584,626 6/1971 Johansson 128/218 N FOREIGN PATENTS OR APPLICATIONS Primary ExaminerJoseph S. Beich Attorney, Agent, or FirmSand0e, Hopgood & Calimafde [5 7] ABSTRACT The invention contemplates a self-packaged hypoderr'nic syringe wherein the body of the syringe is itself an important part of the package. Removable end seals complete the packaged article and respectively provide actuating access to the plunger at the rear end, and to the needle at the forward end. As long as the syringe is stored, the needle is in a retracted position, protected against mechanical abuse or contact; upon plunger actuation, the needle is displaced to its forwardly projected position, in readiness for use. In the preferred forms which are described, the syringe body and the seal or closure structures are of a suitable plastic, shaped for localized frangibility when exposed to gamma irradiation of such dosage as to achieve sterility of the entire contents of the sealed structure.
8 Claims, 6 Drawing Figures 1 SELF-PACKAGED HYPODERMIC SYRINGE Thisapplication is a continuation of copending application Ser. No. 797,095, filed Feb. 6, 1969, now abandoned.
According to present techniques, hypodermic syringes require individual containers to assure sterility, and special packaging is required to permit sterilization by gas. To assure sterility, the packaging must be permeable to gas and, therefore, the package is generally flimsy and may easily be ruptured aftergas sterilization, thus destroying its sterile condition. A hermetically sealed container made of durable and puncture-proof material, usually plastic, can be sterilized by gamma radiation. Moreover, the bulk now involved in using individual outer containers represents an undesirable limitation on loading density, should it be desired to sterilize through gamma irradiation.
It is accordingly an object of the invention to provide an improved syringe and package construction.
It is another object to provide a construction meeting the above object and substantially reducing the handling costs, while assuring the highest standards of sterility in the packaged article.
It is a specific object to achieve the foregoing objects with a construction and method which provide positive assurance of initial sterility and which prevent any further bacterial contamination from the outside environment.
Still another object is to achieve the foreoing objects without need for further packaging-theindividual item,
as in an envelope, box or tube.
It is also an object to provide an improved hypodermic-syringe construction which permits storing the needle in a fully retracted and protected position until ready for use.
It is a specific object to achieve the immediately preceding object with a construction in which the needle, when projected for use, is automatically locked and positively referenced to the body of the syringe.
A still further object is to meet the above objects with a construction in which greater packing density is achievable than at present, thus enabling a larger number of units to be gamma-sterilized, per unit volume of space, and thus also providing storage convenience.
A general object is to achieve the highest quality sterile product, at reduced cost of manufacture, and inherently lending itself to the further saving of cost in sterilizing, storage, and shipping.
Other objects and various further features of novelty and invention will be pointed out or will occur to those skilled in the art from a reading of the following specification, in conjunction with the accompanying drawings. In said drawings, which show, for illustrative purposes only, preferred forms of the invention:
FIG. 1 is a longitudinal sectional view of a selfpackaged syringe of the invention, shown fully sealed, as for storage;
FIG. 2 is a view similar to FIG. 1, but with the selfstored needle projected in readiness for taking-on an injection charge;
FIG. 3 is another similar view. to show the plunger or piston fully retracted, as after the injection charge has been loaded into the syringe; and
FIGS. 4, 5 and 6 are views similar to FIGS. 1, 2 and 3, respectively, to show similar manipulations for an alternative construction.
Briefly stated, the invention contemplates a selfpackaged hypodermic syringe wherein the body of the syringe is itself an important part of the package. Removable end seals complete the packaged article and respectively provide actuating access to the plunger at the rear end, and to the needle at the forward end. As long as the syringe is stored, the needle is in a retracted position, protected against mechanical abuse or contact; upon plunger actuation, the needle is displaced to its forwardly projected position, in readiness for use. In the preferred forms which are described, the syringe body and the seal or closure structures are of a suitable plastic, shaped for localized frangibility the same being exposed to gamma irradiation of such dosage as to achieve sterility of the entire contents of the sealed structure.
Referring to FIGS. 1 to 3 of the drawings, the invention is shown in application to a self-packaged, sterilized, hypodermic syringe comprising an elongated tubular body 10 having a barrel 11 with a continuous bore 12 which is open at the rear or actuating end, and which is substantially closed at the forward or injection end. Substantial closure is achieved at an integral forwardly projecting neck 13, connected to the barrel 11 by a tapering or frusto-conical wall 14. The neck 13 has an elongated reduced bore 15 to substantially reduced diameter, sized to accommodate and centrally support a hypodermic needle 16. Initially, and while my device remains self-packaged, the forward end of the neck passage 15 is fully closed, as by the integral formation of an enlarged clsoure head or knob 17. This closure 17 is severable from the rest of the body 10 and neck 13 at a frangible section 18, denoted by a circumferential groove around the reduced forward portion 19 of the neck 13.
In accordance with a feature of the invention, the needle 16 is formed as part of a retracted subassembly which includes a support or piloting structure 20, deriving, from the larger bore 12, central guided support for the rear end of needle 16. In the form shown, the piloting structure comprises a dished frusto-conical element 21 riding bore 12 and including a central, forwardly projecting hub or boss 22 for the firmly bonded and well-rooted attachment of the rear end of needle 16. Preferably, the conical tapers at 14-21 match one another, and a counterbore 23 in the root end of the reduced bore 15 is sized ultimately to receive boss 22 with a snug fit.
A plunger assembly 25 includes a piston 26 having liquid-sealing, guided engagement with the continuous bore 12, and an elongated stem which, in the selfpackaged position shown in FIG. 1, projects rearwardly of body 10 atleast substantially to the extent that piston 26 is spaced from the closed end of the body. Piston 26 is shown with a short, central, forwardly projecting boss 27 for abutment with the base of dished element 21. Piston 26 may be formed integrally with the rearwardly extending stem structure but it is preferably a separate element, having the desired contourconforming local resilience to achieve liquid-sealing engagement with bore 12. As a separate element, piston 26 is thus seen as essentially a button which may have snap-fitted or detent engagement with a suitable formation at the forward end of the stem; details of such a connected-relationship form no part of the claimed invention and are therefore not shown.
In the preferred form shown, the stem pilots on bore 12 throughout its overlap therewith, and it is structured to conserve the plastic material of which it is made. The stem comprises plural angularly spaced elongated radial blades 28-29-30, integrally contiguous on the plunger axis and deriving outer-edge support from bore 12. A front disc 31 and a rear disc 32 are integrally formed with blades 282930, as are appropriately spaced reinforcing sector members, as at 33-34. Preferably, the rear disc 32 is radially enlarged to exceed the bore 12, for ease of thumb manipulation.
In accordance with another feature of the invention, the rearwardly projecting end of the stem is sealed to the body when in self-packaged condition. This may be achieved by dipping the rear end of body 10 and the rearwardly projecting end of the stem into a bath of liquid plastic which does not adhere to the stem material, and by allowing a plastic coat to harden to form a continuous protecting skin or sheath that is hermetically sealed to the rear end of body 10; such a sheath may be readily removed when desired, by rip-strip techniques known in the art. However, I prefer to employ a cupped or envelope enclosure for the rearward projecting stem and that the continuous hermetically sealed connection thereof to body 10 shall include a frangible element to make the envelope removable, when desired.
In the form of FIG. 1, the stem enclosure is afforded by a cup 35 circumferentially secured, as by known heat-sealing techniques, to the rear or open end of the body 10. As shown, body 10 terminates in a radially outward flange 36, for ultimate ease of manual actuation of the syringe. Flange 36 also affords a convenient means of positioning the open end of the envelope or cup 35, as by overlap with a circular positioning ring or ridge 37 formed integrally with flange 36. A short outward flange 39 on cup 35 abuts body flange 36 and facilitates circumferential application of axial squeezing pressure during the heat-sealing process. The frangible section of cup 35 is indicated at a circumferential groove 38 near the location of body attachment, whereby the thickness of cup material at this location is materially reduced, as discussed above for the frangible section 18 at the other end of the device.
In accordance with the invention, the plastic material for the body 10 and for the envelope 35 is selected, as from the polypropylenes, and the reduced thickness at 18 and 38 is selected for locally enhanced frangibility at 18 and 38, the sealed syringe and envelope being exposed to a sterilizing dose of gamma radiation. Stated in other words, the stress necessary to effect rupture at the relatively thin portions (l838) is reduced as a result of gamma radiation sufficient to provide sterilization. The complete self-packaged device will thereafter remain hermetically sealed, in sterile condition, regardless of outside contaminating environments.
When use is desired, the frangible sections 18 and 38 are simply severed. At 18, a manually applied side thrust of knob 17, with the thumb applied at 18, is operative to develop rupture stress to sever the neck at 18 and thus to open the reduced passage 15. At 38, a manual squeeze applied to any diameter at the central region of envelope 35 will develop rupture stress to at least partially, if not completely, sever the envelope from the body, at 38. Local squeezing at angularly displaced locations is thereafter effective to complete the removal of the envelope 35.
Having severed the removable closures 17-35, the syringe is then grasped, at 36 by two fingers of one hand (diametrically spanning the body 10), and at 32 by applying thumb pressure. Such pressure advances the plunger and the needle subassembly to the full forward position shown in FIG. 2, at which point the skirt 21 of the needle-piloting subassembly has entered into locked one-way-engaging relation with plural angularly spaced ridges or ribs 40 formed in the continuous bore 12 of the body. The ridges 40 are shown as gentle ramps rising from the bore 12, in the radially inward direction and in the forward direction; ridges 40 terminate at an abrupt wall to establish a locking hold on the skirt 21 as it clears the ends of the locking ramps. At this full forward position (FIG. 2) the boss 22 is snugly fitted into the counterbore 23, thus establishing a firmly rooted and locked support for the needle 16, which is now fully forward and in readiness for use. Thereafter, operation of the syringe is conventional, by submerging the exposed needle in any serum or other liquid to be injected, while withdrawing the plunger in order to fill the body 10. Such withdrawn or fully loaded condition involves the relation of parts illustrated in FIG. 3. Once the desired injection has been made, the entire assembly may be discarded.
In the embodiment of FIGS. 4 to 6 many of the same parts will be recognized from FIGS. 1 to 3, and therefore the same reference numerals have been employed, but with primed notation. The embodiments of FIGS. 4 to 6 merely illustrate alternative provision of frangible closures for the respective ends of the selfpackaged syringe.
Referring to FIG. 4, closure of the reduced passage 15 for the retracted needle 16' is effected at a diaphragm 50 formed integrally with the body 10, and of such substantially reduced thickness as to exhibit the brittle characteristics discussed above in connection with the grooves 18-38.
FIG. 4 further illustrates alternative provision of the removable enclosure for the rearwardly extending end of the stem of the plunger. For this purpose, the closing envelope 35 may be cut from straight tubular material, and the body flange 36 and diameter of thumb piece 32 sized to the same circumferential proportions, whereby the tube 35 may be overlapped with both of members 32' and 36'; alternatively, as shown, the closing envelope 35' may be of cup-shape, sized at its open end for overlap with flange 36, the thumb piece 32 being the bottom of the cup shape. Circumferential sealing is accomplished at the axial overlap of these members, and the package is thus effectively closed and hermetically sealed. Circumferential grooves, at 51 near the body flange 36' and at 52 near the thumb piece 32', establish frangible sections in the manner discussed above in connection with the groove 38 that the desired local embrittlement is again the result of design of reduced section thickness at 51-52, for the particular plastic material and for the gamma-radiation dosage required to establish sterility of the contents.
In use, a squeeze of the central region of the envelope 35' is adequate to sever the frangible sections 51-52. Such parting may be facilitated by additionally providing one or more elongated generally longitudinal grooves as suggested at 53 (between grooves 51-52) in the envelope 35' so that upon circumferential severance at 51-52, the circumferential continuity of envelope 35 may also be broken, and the broken material removed, freeing the plunger for use. The plunger may then be forwardly projected to break the diaphgram 50 and establish the needle 16 in its locked firmly positioned forward position. Thereafter, operation is as described for FIGS. 1 to 3. g
It will be seen that l have described an improved hypodermic syringe construction meeting all the above stated objectives and having a number of important advantages over present constructions, particularly when viewed in the context of the problems of sealing, storing and shipping the device. My construction has eliminated both the need for use of a separate package, and the need for employment of any particular sterilizing precautions during the assembly of parts. The parts are not brittle during the mechanical assembly operations and, therefore, no particular limitations for careful handling by automated machinery are necessary. Embrittlement only occurs as a final step at the time when the fully sealed package is being also sterilized by the radiation dose. Finally, since the need for a separate container has been eliminated, the only size limitation created by my construction is that required for convenient manual manipulation of the syringe body itself. It is thus possible to accumulate a greater density of sealed syringes within the given unit volume, thereby optimizing the loading density within a given irradiation facility.
As intimated in the remarks above, the invention lends itself to inexpensive mass-production, affording a sterile instrument at minimum cost. In this connection, all parts except the needle itself may be of injectionmolded plastic, formed, for example, in multiple-cavity molds in accordance with present technology.
While the invention has been described in connection with the preferred method and forms shown, it will be understood that modifications may be made without departing from the scope of the invention, as defined in the claims.
I claim:
1. A self-packaged hypodermic syringe, comprising an elongated tubular body having means providing a continuous bore that is open at a rear end and substan tially closed at the other end, said closed end including an axially outwardly extending neck having means providing a relatively reduced elongated bore, first removable means closing the open end of the reduced bore means, piston means having a position spaced a predetermined distance from the closed end of said body and having guided support in the continuous bore means, said piston means including a stem extending rearwardly beyond the open end of the continuous bore means to at least the extent of said predetermined distance and including a flange of radial extent exceeding that of the continuous bore means, an elongated needle having its forward end positioned within the reduced bore means, piloting means positioned by the continuous bore means and forwardly of the piston means for centrally supporting the rearward end of said needle, second removable means includinga frangible portion peripherally continuously connected to said flange and body at the rear end of the continuous bore means and effectively encapsulating the rearwardly projecting end of said stem, whereby upon removing said first and second removable means, said stem may be actuated to axially drive said piston and needle to a forward position in which said needle projects beyond the neck of said body, in readiness for use.
2. A self-packaged hypodermic syringe, comprising an elongated tubular body having continuous bore means that is open at a rear end and substantially closed at the other end; said closed end having means providing a relatively reduced central elongated bore closed near an end thereof, an elongated needle adapted to be centrally and slidably supported by and within said bore means, a piston movably guided within said continuous bore means and positioned rearwardly of the needle and having a stem projecting rearwardly beyond the rear end of said continuous bore means, said stem including a radially outwardly extending peripheral flange at its rearwardly projecting end, and a hermetically sealed enveloping enclosure for the rear end of said stem and peripherally continuously connecting said flange to said body; said body and said envelope being of a plastic material for which, at a sufficiently thin section and for a predetermined gammaradiation exposure, the stress necessary to effect rupture at the thin section will be reduced, such exposure being adequate to achieve desired sterilization within said body; said body being formed with a first such localized thin section near the closed end of the reduced bore means, said envelope having a circumferentially extending localized groove establishing a second such thin section, and the remainder of the body being formed with a material thickness which exceeds that at either of said thin sections; whereby upon subjection of said syringe to such predetermined gamma-radiation exposure, the syringe and its contents will be sterilized and the stress necessary to effect rupture at the thin sections will have been reduced.
3. The syringe of claim 1, in which said firstmentioned removable means comprises a frangible diaphragm closing the reduced bore means.
4. The syringe of claim 1, in which said neck includes means providing a counterbore intermediate the continuous bore means and the reduced bore means, and in which said piloting means for said needle includes an axially elongated hub supporting said needle and engageable in said counterbore means when in fullforward position.
5. The syringe of claim 4, in which further central supporting means for said needle is in slidable contact with said continuous bore means and in which said body and said further central supporting means include interlocking means positioned for engagement at a fullforward position of said central supporting means adjacent said neck.
6. The syringe of claim 5, in which said interlocking means includes an elongated ramp detent formed radially inwardly in the continuous bore means near the forward end thereof, said ramp terminating in a locking shoulder.
7. The syringe of claim 6, in which said ramp detent is one of a plurality of like detents formed at angularly spaced locations in the continuous bore means.
8. The syringe of claim 2, in which said circumferentially extending groove is at substantially one radialplane location.

Claims (8)

1. A self-packaged hypodermic syringe, comprising an elongated tubular body having means providing a continuous bore that is open at a rear end and substantially closed at the other end, said closed end including an axially outwardly extending neck having means providing a relatively reduced elongated bore, first removable means closing the open end of the reduced bore means, piston means having a position spaced a predetermined distance from the closed end of said body and having guided support in the continuous bore means, said piston means including a stem extending rearwardly beyond the open end of the continuous bore means to at least the extent of said predetermined distance and including a flange of radial extent exceeding that of the continuous bore means, an elongated needle having its forward end positioned within the reduced bore means, piloting means positioned by the continuous bore means and forwardly of the piston means for centrally supporting the rearward end of said needle, second removable means including a frangible portion peripherally continuously connected to said flange and body at the rear end of the continuous bore means and effectively encapsulating the rearwardly projecting end of said stem, whereby upon removing said first and second removable means, said stem may be actuated to axially drive said piston and needle to a forward position in which said needle projects beyond the neck of said body, in readiness for use.
2. A self-packaged hypodermic syringe, comprising an elongated tubular body having continuous bore means that is open at a rear end and substantially closed at the other end; said closed end having means providing a relatively reduced central elongated bore closed near an end thereof, an elongated needle adapted to be centrally and slidably supported by and within said bore means, a piston movably guided within said continuous bore means and positioned rearwardly of the needle and having a stem projecting rearwardly beyond the rear end of said continuous bore means, said stem including a radially outwardly extending peripheral flange at its rearwardly projecting end, and a hermetically sealed enveloping enclosure for the rear end of said stem and peripherally continuously connecting said flange to said body; said body and said envelope being of a plastic material for which, at a sufficiently thin section and for a predetermined gaMma-radiation exposure, the stress necessary to effect rupture at the thin section will be reduced, such exposure being adequate to achieve desired sterilization within said body; said body being formed with a first such localized thin section near the closed end of the reduced bore means, said envelope having a circumferentially extending localized groove establishing a second such thin section, and the remainder of the body being formed with a material thickness which exceeds that at either of said thin sections; whereby upon subjection of said syringe to such predetermined gamma-radiation exposure, the syringe and its contents will be sterilized and the stress necessary to effect rupture at the thin sections will have been reduced.
3. The syringe of claim 1, in which said first-mentioned removable means comprises a frangible diaphragm closing the reduced bore means.
4. The syringe of claim 1, in which said neck includes means providing a counterbore intermediate the continuous bore means and the reduced bore means, and in which said piloting means for said needle includes an axially elongated hub supporting said needle and engageable in said counterbore means when in full-forward position.
5. The syringe of claim 4, in which further central supporting means for said needle is in slidable contact with said continuous bore means and in which said body and said further central supporting means include interlocking means positioned for engagement at a full-forward position of said central supporting means adjacent said neck.
6. The syringe of claim 5, in which said interlocking means includes an elongated ramp detent formed radially inwardly in the continuous bore means near the forward end thereof, said ramp terminating in a locking shoulder.
7. The syringe of claim 6, in which said ramp detent is one of a plurality of like detents formed at angularly spaced locations in the continuous bore means.
8. The syringe of claim 2, in which said circumferentially extending groove is at substantially one radial-plane location.
US00157744A 1969-02-06 1971-06-28 Self-packaged hypodermic syringe Expired - Lifetime US3828775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00157744A US3828775A (en) 1969-02-06 1971-06-28 Self-packaged hypodermic syringe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US79709569A 1969-02-06 1969-02-06
US00157744A US3828775A (en) 1969-02-06 1971-06-28 Self-packaged hypodermic syringe

Publications (1)

Publication Number Publication Date
US3828775A true US3828775A (en) 1974-08-13

Family

ID=26854448

Family Applications (1)

Application Number Title Priority Date Filing Date
US00157744A Expired - Lifetime US3828775A (en) 1969-02-06 1971-06-28 Self-packaged hypodermic syringe

Country Status (1)

Country Link
US (1) US3828775A (en)

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4026287A (en) * 1975-12-10 1977-05-31 Irene Haller Syringe with retractable cannula
US4148316A (en) * 1977-08-29 1979-04-10 Stewart-Naumann Laboratories, Inc. Self-sealed hypodermic syringe
US4334536A (en) * 1980-11-05 1982-06-15 Pfleger Frederick W Hypodermic syringe needle assembly
FR2592309A1 (en) * 1985-12-31 1987-07-03 Medizin Labortechnik Veb K Apparatus for injection and dosage for applications in medicine and in the laboratory
US4872552A (en) * 1988-11-16 1989-10-10 Mid-South Products Engineering, Inc. Safety packaging for hypodermic syringes with needles and the like
EP0340297A4 (en) * 1987-10-29 1989-10-12 Baxter Int Drug delivery cartridge with protective cover.
US4908023A (en) * 1988-08-15 1990-03-13 Frank Yuen Syringe assembly
US4982842A (en) * 1990-06-04 1991-01-08 Concord/Portex Safety needle container
US5014718A (en) * 1988-01-22 1991-05-14 Safety Diagnostics, Inc. Blood collection and testing method
US5070886A (en) * 1988-01-22 1991-12-10 Safety Diagnostice, Inc. Blood collection and testing means
US5086780A (en) * 1990-05-21 1992-02-11 Abbott Laboratories Blood collection device
EP0495445A1 (en) * 1991-01-16 1992-07-22 Takeda Chemical Industries, Ltd. Dual-chamber type syringe
US5139489A (en) * 1991-01-07 1992-08-18 Smiths Industries Medical Systems, Inc. Needle protection device
US5188597A (en) * 1992-04-13 1993-02-23 Becton, Dickinson And Company Safety needle syringe
US5205408A (en) * 1992-02-12 1993-04-27 Cobb Neal E Syringe case
US5232454A (en) * 1990-08-01 1993-08-03 Smiths Industries Medical Systems, Inc. Safety needle container
US5232455A (en) * 1991-01-07 1993-08-03 Smiths Industries Medical Systems, Inc. Syringe with protective housing
US5273543A (en) * 1992-12-14 1993-12-28 Becton, Dickinson And Company Safety needle syringe
WO1994013338A1 (en) * 1992-12-14 1994-06-23 Mallinckrodt Medical, Inc. Prefilled syringe with break-away tip seal
US5395339A (en) * 1992-01-31 1995-03-07 Sherwood Medical Company Medical device with sterile fluid pathway
WO1995031232A1 (en) * 1994-05-11 1995-11-23 Plas-Pak Industries, Inc. Dual barrel syringe and method of use
US5830193A (en) * 1993-12-28 1998-11-03 Higashikawa; Tetsuro Syringe
US6033386A (en) * 1988-12-14 2000-03-07 Inviro Medical Devices, Ltd. Safety syringe needle device with interchangeable and retractable needle platform
US6129711A (en) * 1994-10-28 2000-10-10 Schering Aktiengesellschaft Fluid-containing plastic disposable syringe that is to be sterilized and a process for filling and sealing same
US6183464B1 (en) 1998-06-01 2001-02-06 Inviro Medical Devices Ltd. Safety syringe with retractable needle and universal luer coupling
USRE37252E1 (en) 1992-05-18 2001-07-03 Sims Portex Inc. Safety needle cartridge system
US6328713B1 (en) 1993-04-16 2001-12-11 Sims Portex Inc. Needle sheath device
US6344031B1 (en) 1989-03-22 2002-02-05 Laurel A. Novacek Safety syringe needle device with interchangeable and retractable needle platform
US6485460B2 (en) 2001-01-12 2002-11-26 Bracco Diagnostics, Inc. Tamper evident syringe barrel
US6558348B2 (en) * 2000-04-07 2003-05-06 Equidyne Systems, Inc. Low cost disposable needleless injector system for variable and fixed dose applications
US6592556B1 (en) 2000-07-19 2003-07-15 Tyco Healthcare Group Lp Medical needle safety apparatus and methods
US6648855B2 (en) 1999-08-23 2003-11-18 Becton, Dickinson And Company Safety needle assembly
US20030220614A1 (en) * 1998-08-28 2003-11-27 Becton, Dickinson And Company Safety shield assembly
US6699217B2 (en) 1999-08-23 2004-03-02 Becton, Dickinson And Company Safety needle assembly
US20040078005A1 (en) * 2002-10-22 2004-04-22 Christophe Aubert Pre-filled safety injection device with integrated waste collector
US6780169B2 (en) 1999-08-23 2004-08-24 Becton, Dickinson And Company Safety shield assembly
US6796968B2 (en) 1999-11-04 2004-09-28 Tyco Healthcare Group Lp Reaccessible medical needle safety devices and methods
US6949086B2 (en) 1999-11-04 2005-09-27 Tyco Healthcare Group Lp Seldinger safety shield for medical needles
US7001363B2 (en) 2002-04-05 2006-02-21 F. Mark Ferguson Safety shield for medical needles
US7029461B2 (en) 1999-11-04 2006-04-18 Tyco Healthcare Group Lp Safety shield for medical needles
US7144389B2 (en) 2001-03-14 2006-12-05 Tyco Healthcare Group, Lp Safety shield for medical needles
US7163526B2 (en) 2002-11-06 2007-01-16 Becton, Dickinson And Company Flashback blood collection needle with needle shield
US7220249B2 (en) 2001-06-06 2007-05-22 Becton, Dickinson And Company Hinged needle shield assembly having needle cannula lock
US7300423B2 (en) 2003-02-14 2007-11-27 Tyco Healthcare Group Lp Safety device with trigger mechanism
US7320682B2 (en) 1999-11-18 2008-01-22 Tyco Healthcare Group Lp Safety device
US7361159B2 (en) 2001-03-02 2008-04-22 Covidien Ag Passive safety shield
US7537581B2 (en) 2001-07-09 2009-05-26 Becton, Dickinson And Company Needle shield assembly having hinged needle shield and flexible cannula lock
US7553296B2 (en) 2003-02-14 2009-06-30 Tyco Healthcare Group Lp Safety device with trigger mechanism
US7615033B2 (en) 2004-08-16 2009-11-10 Becton, Dickinson And Company Flashback blood collection needle
US20100010434A1 (en) * 2006-11-07 2010-01-14 Yoshio Oyama Mechanism capable of providing neat cleaved opening surface and ampule with movable gasket
US20100298739A1 (en) * 2007-04-26 2010-11-25 Tyco Healthcare Group Lp Multifunctional Medical Access Device
US7854723B2 (en) 2001-05-22 2010-12-21 Becton, Dickinson And Company Needle shield assembly having hinged needle shield
US8038654B2 (en) 2007-02-26 2011-10-18 Becton, Dickinson And Company Syringe having a hinged needle shield
US20110319831A1 (en) * 2008-12-12 2011-12-29 Sanofi-Aventis Deutschland Gmbh Protection assembly
US8172809B2 (en) 1999-11-04 2012-05-08 Tyco Healthcare Group Lp Safety shield apparatus and mounting structure for use with medical needle devices
US8496627B2 (en) 2006-03-21 2013-07-30 Covidien Lp Passive latch ring safety shield for injection devices
WO2014014729A1 (en) * 2012-07-16 2014-01-23 Becton, Dickinson And Company Packageless syringe assembly with sterilizable fluid path
US9649436B2 (en) 2011-09-21 2017-05-16 Bayer Healthcare Llc Assembly method for a fluid pump device for a continuous multi-fluid delivery system
US10507319B2 (en) 2015-01-09 2019-12-17 Bayer Healthcare Llc Multiple fluid delivery system with multi-use disposable set and features thereof
US20210178118A1 (en) * 2014-12-19 2021-06-17 Hospital For Special Surgery Multi-catheter infusion system and method thereof

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR330586A (en) * 1903-03-25 1903-08-21 Edouard Bilharz Syringe ampoule, for hypodermic injections and other uses
US2371086A (en) * 1940-11-14 1945-03-06 Watson Hypodermic injector
FR897996A (en) * 1943-09-10 1945-04-06 Sampling instrument, especially for medical applications
US2408323A (en) * 1943-06-10 1946-09-24 Margaret L Lockhart Hypodermic syringe
FR1081785A (en) * 1953-07-31 1954-12-22 Direct injection hypodermic ampoule
FR66437E (en) * 1954-05-28 1957-02-27 Injection device
US2880725A (en) * 1954-06-11 1959-04-07 Becton Dickinson Co Syringe assembly
US2887108A (en) * 1953-11-18 1959-05-19 Becton Dickinson Co Syringe assembly
US2902995A (en) * 1954-10-11 1959-09-08 Abbott Lab Hypodermic syringe and needle hub structure
US2935067A (en) * 1954-09-03 1960-05-03 Bouet Bernard Hypodermic set
US2997043A (en) * 1954-08-17 1961-08-22 Becton Dickinson Co Protective cannula sheath
US3098483A (en) * 1961-01-03 1963-07-23 Leo Pharm Prod Ltd Two-compartment hypodermic syringe for separate storing of more components
US3110309A (en) * 1960-08-15 1963-11-12 Brunswick Corp Plastic cartridge needle assembly
US3315802A (en) * 1963-06-21 1967-04-25 Novo Terapeutisk Labor As Package for sterile storage of surgical devices and accessories
US3584626A (en) * 1967-11-22 1971-06-15 Lars Georg Johansson Hypodermic syringe

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR330586A (en) * 1903-03-25 1903-08-21 Edouard Bilharz Syringe ampoule, for hypodermic injections and other uses
US2371086A (en) * 1940-11-14 1945-03-06 Watson Hypodermic injector
US2408323A (en) * 1943-06-10 1946-09-24 Margaret L Lockhart Hypodermic syringe
FR897996A (en) * 1943-09-10 1945-04-06 Sampling instrument, especially for medical applications
FR1081785A (en) * 1953-07-31 1954-12-22 Direct injection hypodermic ampoule
US2887108A (en) * 1953-11-18 1959-05-19 Becton Dickinson Co Syringe assembly
FR66437E (en) * 1954-05-28 1957-02-27 Injection device
US2880725A (en) * 1954-06-11 1959-04-07 Becton Dickinson Co Syringe assembly
US2997043A (en) * 1954-08-17 1961-08-22 Becton Dickinson Co Protective cannula sheath
US2935067A (en) * 1954-09-03 1960-05-03 Bouet Bernard Hypodermic set
US2902995A (en) * 1954-10-11 1959-09-08 Abbott Lab Hypodermic syringe and needle hub structure
US3110309A (en) * 1960-08-15 1963-11-12 Brunswick Corp Plastic cartridge needle assembly
US3098483A (en) * 1961-01-03 1963-07-23 Leo Pharm Prod Ltd Two-compartment hypodermic syringe for separate storing of more components
US3315802A (en) * 1963-06-21 1967-04-25 Novo Terapeutisk Labor As Package for sterile storage of surgical devices and accessories
US3584626A (en) * 1967-11-22 1971-06-15 Lars Georg Johansson Hypodermic syringe

Cited By (103)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4026287A (en) * 1975-12-10 1977-05-31 Irene Haller Syringe with retractable cannula
US4148316A (en) * 1977-08-29 1979-04-10 Stewart-Naumann Laboratories, Inc. Self-sealed hypodermic syringe
US4334536A (en) * 1980-11-05 1982-06-15 Pfleger Frederick W Hypodermic syringe needle assembly
FR2592309A1 (en) * 1985-12-31 1987-07-03 Medizin Labortechnik Veb K Apparatus for injection and dosage for applications in medicine and in the laboratory
EP0340297A4 (en) * 1987-10-29 1989-10-12 Baxter Int Drug delivery cartridge with protective cover.
EP0340297A1 (en) * 1987-10-29 1989-11-08 BAXTER INTERNATIONAL INC. (a Delaware corporation) Drug delivery cartridge with protective cover
US5070886A (en) * 1988-01-22 1991-12-10 Safety Diagnostice, Inc. Blood collection and testing means
US5014718A (en) * 1988-01-22 1991-05-14 Safety Diagnostics, Inc. Blood collection and testing method
US4908023A (en) * 1988-08-15 1990-03-13 Frank Yuen Syringe assembly
US4872552A (en) * 1988-11-16 1989-10-10 Mid-South Products Engineering, Inc. Safety packaging for hypodermic syringes with needles and the like
US6117113A (en) * 1988-12-14 2000-09-12 Inviro Medical Devices Ltd. Safety syringe needle device with interchangeable and retractable needle platform
US6033386A (en) * 1988-12-14 2000-03-07 Inviro Medical Devices, Ltd. Safety syringe needle device with interchangeable and retractable needle platform
US20050192541A1 (en) * 1988-12-14 2005-09-01 Inviro Medical Devices Limited Safety syringe needle device with interchangeable and retractable needle platform
US6878131B2 (en) 1988-12-14 2005-04-12 Inviro Medical Devices, Ltd. Safety syringe needle device with interchangeable and retractable needle platform
US6344031B1 (en) 1989-03-22 2002-02-05 Laurel A. Novacek Safety syringe needle device with interchangeable and retractable needle platform
US5086780A (en) * 1990-05-21 1992-02-11 Abbott Laboratories Blood collection device
US4982842A (en) * 1990-06-04 1991-01-08 Concord/Portex Safety needle container
US5232454A (en) * 1990-08-01 1993-08-03 Smiths Industries Medical Systems, Inc. Safety needle container
US5154285A (en) * 1990-08-01 1992-10-13 Smiths Industries Medical Systems, Inc. Needle assembly holder with rotatable safety sheath member
US5232455A (en) * 1991-01-07 1993-08-03 Smiths Industries Medical Systems, Inc. Syringe with protective housing
US5139489A (en) * 1991-01-07 1992-08-18 Smiths Industries Medical Systems, Inc. Needle protection device
US5171220A (en) * 1991-01-16 1992-12-15 Takeda Chemical Industries, Ltd. Dual-chamber type syringe
EP0495445A1 (en) * 1991-01-16 1992-07-22 Takeda Chemical Industries, Ltd. Dual-chamber type syringe
US5395339A (en) * 1992-01-31 1995-03-07 Sherwood Medical Company Medical device with sterile fluid pathway
US5205408A (en) * 1992-02-12 1993-04-27 Cobb Neal E Syringe case
US5188597A (en) * 1992-04-13 1993-02-23 Becton, Dickinson And Company Safety needle syringe
USRE37252E1 (en) 1992-05-18 2001-07-03 Sims Portex Inc. Safety needle cartridge system
WO1994013338A1 (en) * 1992-12-14 1994-06-23 Mallinckrodt Medical, Inc. Prefilled syringe with break-away tip seal
US5273543A (en) * 1992-12-14 1993-12-28 Becton, Dickinson And Company Safety needle syringe
US6328713B1 (en) 1993-04-16 2001-12-11 Sims Portex Inc. Needle sheath device
US5830193A (en) * 1993-12-28 1998-11-03 Higashikawa; Tetsuro Syringe
US5725499A (en) * 1994-05-11 1998-03-10 Plas-Pak Industries, Inc. Dual barreled syringe and methods of assembly and use
WO1995031232A1 (en) * 1994-05-11 1995-11-23 Plas-Pak Industries, Inc. Dual barrel syringe and method of use
US6129711A (en) * 1994-10-28 2000-10-10 Schering Aktiengesellschaft Fluid-containing plastic disposable syringe that is to be sterilized and a process for filling and sealing same
US6183464B1 (en) 1998-06-01 2001-02-06 Inviro Medical Devices Ltd. Safety syringe with retractable needle and universal luer coupling
US7223258B2 (en) 1998-08-28 2007-05-29 Becton Dickinson And Company Safety shield assembly
US20050245879A9 (en) * 1998-08-28 2005-11-03 Becton, Dickinson And Company Safety shield assembly
US20030220614A1 (en) * 1998-08-28 2003-11-27 Becton, Dickinson And Company Safety shield assembly
US6780169B2 (en) 1999-08-23 2004-08-24 Becton, Dickinson And Company Safety shield assembly
US6699217B2 (en) 1999-08-23 2004-03-02 Becton, Dickinson And Company Safety needle assembly
US6648855B2 (en) 1999-08-23 2003-11-18 Becton, Dickinson And Company Safety needle assembly
US6949086B2 (en) 1999-11-04 2005-09-27 Tyco Healthcare Group Lp Seldinger safety shield for medical needles
US7029461B2 (en) 1999-11-04 2006-04-18 Tyco Healthcare Group Lp Safety shield for medical needles
US6796968B2 (en) 1999-11-04 2004-09-28 Tyco Healthcare Group Lp Reaccessible medical needle safety devices and methods
US7198618B2 (en) 1999-11-04 2007-04-03 Tyco Healthcare Group Lp Safety shield for medical needles
US8226617B2 (en) 1999-11-04 2012-07-24 Tyco Healthcare Group Lp Safety shield apparatus and mounting structure for use with medical needle devices
US8172809B2 (en) 1999-11-04 2012-05-08 Tyco Healthcare Group Lp Safety shield apparatus and mounting structure for use with medical needle devices
US7862547B2 (en) 1999-11-04 2011-01-04 Tyco Healthcare Group Lp Safety shield for medical needles
US7320682B2 (en) 1999-11-18 2008-01-22 Tyco Healthcare Group Lp Safety device
US6913592B2 (en) 2000-04-07 2005-07-05 Hns International, Inc. Low cost disposable needleless injector system for variable and fixed dose applications
US6558348B2 (en) * 2000-04-07 2003-05-06 Equidyne Systems, Inc. Low cost disposable needleless injector system for variable and fixed dose applications
US6592556B1 (en) 2000-07-19 2003-07-15 Tyco Healthcare Group Lp Medical needle safety apparatus and methods
US7438703B2 (en) 2000-12-08 2008-10-21 Tyco Healthcare Group Lp Safety shield for medical needles
US6485460B2 (en) 2001-01-12 2002-11-26 Bracco Diagnostics, Inc. Tamper evident syringe barrel
US20050283116A1 (en) * 2001-01-12 2005-12-22 Bracco Diagnostics Inc. Tamper evident syringe barrel
US20050113752A1 (en) * 2001-01-12 2005-05-26 Bracco Diagnostics Inc. Tamper evident syringe barrel
US6846303B2 (en) * 2001-01-12 2005-01-25 Bracco Diagnostics Inc. Tamper evident syringe barrel
US6942643B2 (en) 2001-01-12 2005-09-13 Bracco Diagnostics Inc. Tamper evident syringe barrel
US20040159564A1 (en) * 2001-01-12 2004-08-19 Eakins Michael N. Tamper evident syringe barrel
US6726652B2 (en) 2001-01-12 2004-04-27 Bracco Diagnostics, Inc. Tamper evident syringe barrel
US7361159B2 (en) 2001-03-02 2008-04-22 Covidien Ag Passive safety shield
US7144389B2 (en) 2001-03-14 2006-12-05 Tyco Healthcare Group, Lp Safety shield for medical needles
US7854723B2 (en) 2001-05-22 2010-12-21 Becton, Dickinson And Company Needle shield assembly having hinged needle shield
US7220249B2 (en) 2001-06-06 2007-05-22 Becton, Dickinson And Company Hinged needle shield assembly having needle cannula lock
US7537581B2 (en) 2001-07-09 2009-05-26 Becton, Dickinson And Company Needle shield assembly having hinged needle shield and flexible cannula lock
US7001363B2 (en) 2002-04-05 2006-02-21 F. Mark Ferguson Safety shield for medical needles
US20070167914A1 (en) * 2002-06-11 2007-07-19 Bd Medical Products, Pte. Ltd Flashback blood collection needle with needle shield
US8287498B2 (en) 2002-06-11 2012-10-16 Bd Medical Products, Pte. Ltd. Flashback blood collection needle with needle shield
US8708964B2 (en) 2002-06-11 2014-04-29 Bd Medical Products, Pte. Ltd. Flashback blood collection needle with needle shield
US20110125102A1 (en) * 2002-06-11 2011-05-26 Becton, Dickinson And Company Flashback Blood Collection Needle with Needle Shield
US7128726B2 (en) 2002-06-12 2006-10-31 Becton Dickinson And Company Safety needle assembly
US8277408B2 (en) 2002-06-14 2012-10-02 Becton, Dickinson And Company Safety needle assembly
US20040059302A1 (en) * 2002-06-14 2004-03-25 Becton, Dickinson And Company Safety needle assembly
US6953447B2 (en) * 2002-10-22 2005-10-11 Societe De Conseils De Recherches Et D'applications Scientifiques (S.C.R.A.S) Pre-filled safety injection device with integrated waste collector
US20040078005A1 (en) * 2002-10-22 2004-04-22 Christophe Aubert Pre-filled safety injection device with integrated waste collector
US7163526B2 (en) 2002-11-06 2007-01-16 Becton, Dickinson And Company Flashback blood collection needle with needle shield
US7553296B2 (en) 2003-02-14 2009-06-30 Tyco Healthcare Group Lp Safety device with trigger mechanism
US7300423B2 (en) 2003-02-14 2007-11-27 Tyco Healthcare Group Lp Safety device with trigger mechanism
US20100145226A1 (en) * 2004-08-16 2010-06-10 Becton, Dickinson And Company Flashback Blood Collection Needle
US7615033B2 (en) 2004-08-16 2009-11-10 Becton, Dickinson And Company Flashback blood collection needle
US8162896B2 (en) 2004-08-16 2012-04-24 Becton, Dickinson And Company Flashback blood collection needle
US8496627B2 (en) 2006-03-21 2013-07-30 Covidien Lp Passive latch ring safety shield for injection devices
US20100010434A1 (en) * 2006-11-07 2010-01-14 Yoshio Oyama Mechanism capable of providing neat cleaved opening surface and ampule with movable gasket
US8038654B2 (en) 2007-02-26 2011-10-18 Becton, Dickinson And Company Syringe having a hinged needle shield
US20100298739A1 (en) * 2007-04-26 2010-11-25 Tyco Healthcare Group Lp Multifunctional Medical Access Device
US20110319831A1 (en) * 2008-12-12 2011-12-29 Sanofi-Aventis Deutschland Gmbh Protection assembly
US9649436B2 (en) 2011-09-21 2017-05-16 Bayer Healthcare Llc Assembly method for a fluid pump device for a continuous multi-fluid delivery system
US9700672B2 (en) 2011-09-21 2017-07-11 Bayer Healthcare Llc Continuous multi-fluid pump device, drive and actuating system and method
AU2017201417B2 (en) * 2012-07-16 2018-02-15 Becton, Dickinson And Company Packageless syringe assembly with sterilizable fluid path
US10064990B2 (en) 2012-07-16 2018-09-04 Becton, Dickinson And Company Packageless syringe assembly with sterilizable fluid path
CN104507514A (en) * 2012-07-16 2015-04-08 贝克顿·迪金森公司 Packageless syringe assembly with sterilizable fluid path
EP3216469A1 (en) * 2012-07-16 2017-09-13 Becton, Dickinson and Company Packageless syringe assembly with sterilizable fluid path
CN104507514B (en) * 2012-07-16 2018-01-12 贝克顿·迪金森公司 With can fluids for sterilization path without encapsulation injector assembly
WO2014014729A1 (en) * 2012-07-16 2014-01-23 Becton, Dickinson And Company Packageless syringe assembly with sterilizable fluid path
CN108379686A (en) * 2012-07-16 2018-08-10 贝克顿·迪金森公司 With can fluids for sterilization access without encapsulation injector assembly
AU2013290600B2 (en) * 2012-07-16 2017-01-05 Becton, Dickinson And Company Packageless syringe assembly with sterilizable fluid path
AU2018202818B2 (en) * 2012-07-16 2019-01-03 Becton, Dickinson And Company Packageless syringe assembly with sterilizable fluid path
US11883625B2 (en) 2012-07-16 2024-01-30 Becton, Dickinson And Company Packageless syringe assembly with sterilizable fluid path
CN108379686B (en) * 2012-07-16 2020-10-16 贝克顿·迪金森公司 Non-packaging syringe assembly with sterilizable fluid path
US11529455B2 (en) 2012-07-16 2022-12-20 Becton, Dickinson And Company Packageless syringe assembly with sterilizable fluid path
US20210178118A1 (en) * 2014-12-19 2021-06-17 Hospital For Special Surgery Multi-catheter infusion system and method thereof
US11491318B2 (en) 2015-01-09 2022-11-08 Bayer Healthcare Llc Multiple fluid delivery system with multi-use disposable set and features thereof
US10507319B2 (en) 2015-01-09 2019-12-17 Bayer Healthcare Llc Multiple fluid delivery system with multi-use disposable set and features thereof

Similar Documents

Publication Publication Date Title
US3828775A (en) Self-packaged hypodermic syringe
US3473646A (en) Syringe assembly
US3021942A (en) Needle package
US3294231A (en) Dental needle shield
US4390016A (en) Prefillable hypodermic syringe and method of assembling the syringe
US4568336A (en) Pre-filled hypodermic syringes
US3902491A (en) Syringe usable as container for storage and preservation of injection fluid
US3073307A (en) Needle hub and sheath structure
US4929232A (en) Syringe having tamper evidence features
US3667657A (en) Disposable container
US4474734A (en) Syringe shield and closure sterilization method
US2677373A (en) Plastic injection device
US3110309A (en) Plastic cartridge needle assembly
US4475903A (en) Disposable hypodermic syringe
US3823840A (en) Prepunctured closure
US3739779A (en) Hypodermic syringe and needle construction
US3677245A (en) Self-contained disposable syringe
US3342319A (en) Rigid tubular syringe package
US5207320A (en) Compartmented mixing device with bead
US2677374A (en) Syringe closure
US4886497A (en) Disposable protective container for hypodermic syringes
US3256441A (en) Container system for radioactive material
US2873886A (en) Dispenser
EP0923491B1 (en) Assembly of container and break-off closure and method of producing it
US3677247A (en) Needle cap for syringe package