US3826244A - Thumbtack microelectrode and method of making same - Google Patents

Thumbtack microelectrode and method of making same Download PDF

Info

Publication number
US3826244A
US3826244A US00381234A US38123473A US3826244A US 3826244 A US3826244 A US 3826244A US 00381234 A US00381234 A US 00381234A US 38123473 A US38123473 A US 38123473A US 3826244 A US3826244 A US 3826244A
Authority
US
United States
Prior art keywords
electrical conductor
conductor means
disc
cortex
microelectrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00381234A
Inventor
M Salcman
M Bak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SECRETARY DEPARTMENT HEALTH EDUCATION WELFARE US
Us Health Education & Welfare
Original Assignee
Us Health Education & Welfare
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Us Health Education & Welfare filed Critical Us Health Education & Welfare
Priority to US00381234A priority Critical patent/US3826244A/en
Application granted granted Critical
Publication of US3826244A publication Critical patent/US3826244A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/291Bioelectric electrodes therefor specially adapted for particular uses for electroencephalography [EEG]
    • A61B5/293Invasive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/28Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
    • A61B5/283Invasive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/10Macromolecular materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49204Contact or terminal manufacturing

Definitions

  • ABSTRACT A thumbtack microelectrode for making extracellular chronic recordings from single nerve cells in the cerebral cortex in unrestrained animals over prolonged periods of time comprises a rigid electrode shaft, which is microwelded to one side of a tack head-like disc, and a flexible electrical conductor which is microwelded to the opposite side of the tack head-like disc. After a cleaning operation including ultrasonic desiccation the entire microwelded assembly is electrically insulated. The insulation covering the recording tip of the electrode shaft which is tapered, prior to the cleaning and insulating operations, by electrolytic etching, is then removed so as to expose a small area for use as the recording surface.
  • the electrodes must be implanted once during surgery, remain fixed in position, and then must not be subjected to further external manipulation;
  • prior art microelectrodes for recording from single cells in the brains of unrestrained animals are not capable of successfullyrecording electrical discharges from single cells in the cerebral cortex over prolonged periods of time. Further, such devices are of comparatively large diameter (e.g., 80 micrometers) and do not provide means for limiting the entry of the electrode into the cortex.
  • Another object of the present invention is to provide for improved brain wave recording of single brain cells.
  • Another object is to provide an improved-technique of brain wave measurement.
  • Another object of the present invention is to provide a microelectrode capable of extracellular chronic recording from single nerve cells in the superficial layers of the cerebral cortex in unrestrained animals over prolonged periods of time.
  • Another'object is to provide a microelectrode which makes chronic recordings of electrical discharge from single cells with minimal tissue reaction.
  • a further object is to provide a chronic recording microelectrode having maximal fidelity.
  • a'principal feature of the present invention is a microelectrode capable of detecting electrical discharges from a single cell in the cerebral cortex of the brain over prolonged periods of time due to the flexible connection and stabilizing influence of themicroelectrode (tack) head on the pial surface of the. brain.
  • tack microelectrode
  • the tack head of the microelectrode provides an anchoring surface for a mechanical inserter or micromanipulatorand, therefore,
  • the tack head limits the entry, of the microelectrode into the cortex and provides a good surface for attachment of pia by the application of isobutyl cyanoacrylate.
  • Another feature of the invention is that minimum tissue damage is achieved through the use of a small diameter tip (1-3 micrometers) and electrode shaft which, depending upon the animal to be studied, may
  • the electrode shaft is bent at a right angle to the'intended unders'urface of thetack head and cut to the appropriate length.
  • a flexible lead which electrically attaches the tack head to a connector fixedly attached to the skull is similarly welded to the dorsal or upper surface of the tack head.
  • the electrode shaft is then electrolytically etched until the desired tip configuration is achieved. After cleaning, the electrode shaft is coated with an insulator (e.g., parylene).
  • an insulator e.g., parylene
  • the final step in the fabrication involves the removal of a small amount of parylene from the very tip of the electrode shaft so as to expose a small area, of iridium for use as the recording surface.
  • FIG. 2 is a schematic diagram of the electrical components of the thumbtack microelectrode of FIG. 1.
  • FIG. 1 there is shown a preferred embodiment of the thumbtack microelectrode, here provided in the form of a disc-like tack head 10, a flexible lead wire 11, and an electrode shaft 12.
  • the head is, preferably, a platinum disc 0.005 inch thick and 1 mm in diameter.
  • the flexible lead 11 is microwelded to the approximate center of the intended dorsal or upper surface of tack head 10 as indicated at 13.
  • the other end of the flexible lead 11 is attached to a connector (not shown) which is fixedly attached to the surface of the skull.
  • the connector is attached by a cable to an amplifier system, thereby permitting daily recordings of single nerve cells to be made.
  • the flexible lead 11 is, preferably, a Teflon-coated platinum-iridium (90/10) wire.
  • the electrode shaft 12 is microwelded to the approximate center of the opposite or lower surface of the tack head 10 as indicated at 14 and subsequently bent perpendicularly to that surface.
  • the very tip 15 of the end of the electrode shaft 12 furthest from the tack head 10 is electrolytically etched to a fine point.
  • the entire shaft 12 except for the tip 15 is'coated with an insulator such as parylene or Teflon.
  • FIG. 2 there is shown a schematic diagram of the electrical components of the preferred embodiment of the thumbtack microelectrode shown in FIG. 1.
  • the electrical discharge of the single nerve cell is designated generally by 16 and corresponds to the biological source voltage.
  • the biological source voltage 16 In series with the biological source voltage 16 are the resistance and capacitance l7 and 18, respectively, of the electrode recording tip which are in parallel with one another.
  • Numeral l9 designates the grounded shunt capacitance of the tack head which is in parallel with the equivalent electrical components (l6, l7 and 18) which are, also, grounded by the body of the animal.
  • the resistance and capacitance 17 and 18, respectively, of the electrode recording tip correspond to the impedance of the interface between the intestitial fluid and the recording surface of the electrode shaft. Since the shunt capacitance of the thumbtack microelectrode which corresponds to the total capacitance associated with all of the metallic components and the dielectric outer insulation is considerable, the amplifier circuit must have the capability of cancelling out the distortion introduced in this manner.
  • the fabrication of the preferred embodiment of the thumbtack electrode shown in FIG. 1 includes the following steps.
  • the head 10 of the microelectrode is a platinum disk 0.005 inch thick and 1 mm in diameter which may be obtained in any convenient manner, e.g., punched from a sheet of platinum with a steel die against a wood block.
  • the flexible lead 11 is a 4 inch length of platinumiridium (90/10) Teflon-coated wire, 0.001 inch in diameter. It is microwelded to the approximate center of the intended dorsal or upper surface of the tack head 10 by any suitable precision welding instrument, such as a Weltek Model 410E, under direct visual control through a dissecting microscope. The microwelding operation is performed right through the Teflon insulatIOIl.
  • the electrode shaft 12 is a length of bare iridium (e.g. 100 percent) wire which is 0.001 inch in diameter. It is microwelded to the approximate center of the opposite or lower surface of the tack head 10, also, under. direct microscopic control. After microwelding, the shaft is cut to the appropriate length (for cat visual cortex-about 2 mm) and bent at substantially a right angle to the lower surface of the tack head by a pair of fine watchmakers forceps.
  • bare iridium e.g. 100 percent
  • the flexible lead is loaded into a blank micropipette previously drawn on a vertical micro'pipette puller with the fine end broken off.
  • the iridium electrode shaft is electrolytically etched in a bath of supersaturated sodium cyanide-30 percent sodium hydroxide until the desired tip configuration is achieved.
  • the diameter of tip 15 is approximately 1-3 micrometers and increases slowly to 10 micrometers at a distance of 100 micrometers from the tip.
  • the microelectrode After etching, the microelectrode is rinsed in hydrochloric acid and then distilled water. After being placed in an acetone bath, the microelectrode is subjected to approximately 15 seconds of ultrasonic desiccation in distilled water and then approximately 15 seconds of ultrasonic desiccation. in methanol in a device similar to that manufactured by Ultrasonics Inc. Following the above cleaning steps the microelectrode is oven dried at C.
  • the microelectrode Once the microelectrode has been sufficiently dried, it is placed in a low vacuum (about 1 torr), room temperature chamber and coated with a 3 micrometer layer of parylene. The coating process is carried, out by vaporizing 2 gm of the parylene dimer at 260C and subsequent polymerization in the chamber mentioned above. The microelectrode emerges from the chamber with a uniform coating of 3 micrometers of parylene along the entire length of the etched electrode shaft and over both surfaces of the tack head. Parylene is used because it is a superior insulator with negligble water uptake and excellent conformability. Also, its biological toxicity is almost nil. It should be noted that Teflon or (glass) could be used in place of the parylene.
  • the final step in the fabrication process involves the removal of a small amount of parylene from the very tip of the electrode shaft so as to expose a small area of iridium for use as the recording surface.
  • This step may be carried out by several methods.
  • the first method involves burning away the parylene by bringing the 0.003 inch heating element of a specially designed microforge (See: Dolde and Burke, EEG Clin. Neurophysiol. 1972) in close proximity to the tip of the electrode shaft.
  • the parylene may be melted with the beam of a ruby laser.
  • the final method involves abrading the parylene off with oxygen or argonions through the use of a micromilling device.
  • the first and second methods may be repeated until a desired tip impedance is achieved, about 1 megohm in the case of the preferred embodiment of FIG. 1.
  • the microelectrode is attached to a connector which is then cemented to the surface of the skull.
  • the microelectrode is then attached to the nose of a vacuum electrode inserter and is driven into the cortex by positive pressure acting on the piston of the electrode inserter.
  • the piston rides on sapphire jewel bearings and a vacuum is delivered to the head of the thumbtack through the centerbore of the piston.
  • the microelectrode is cemented to the pial surface of the cortex by isobutyl cyanoacrylate.
  • a chamber is built up around the bony incision in the skull and after all of the air is evacuated, the chamber is filled with a'saline solution, thereby maintaining a constant pressure in the skull cavity and preventing leakage of fluid therefrom.
  • the connector which is located remote from the incision and, therefore, not enclosed bythe chamber is attached by a cable to the amplifier system and daily recordings are made of the same single nerve cell for many hours.
  • the shunt capacitance of the tack head is relatively large and, therefore, the amplitude circuit must have the capability of cancelling out the distortion introduced in this manner. Displacement of the brain relative to the skull during movement of the animal are absorbed by the flexibility of the microelectrode lead, without movement of the microelectrode tip which stays in contact with the selected brain cell.
  • the instant device is not necessarily limited to use in the cortex of an animal. Also, other suitable materials, dimensions, or processes besides those recited herein may be adapted without departing from the inventive concept of the instant invention.
  • a thumbtack microelectrode for use in the chronic recording of electrical discharges from single nerve cells in the cortex of the brain of an animal comprising:
  • afirst electrical conductor means adapted to be imbedded in a single nerve cell of the cortex of the brain of an animal for detecting electrical discharges from the single nerve cell, said first electrical conductor means having a blunt end and a tapered end;
  • second electrical conductor means for anchoring and limiting the entry of said first electrical conductor means within the cortex, said second electrical conductor means having an upper and lower surface, the lower surface being substantially perpendicularly attached to the blunt end of said first electrical conductor means and adapted to be cemented to the outer surface of the cortex;
  • a third electrical conductor means fixedly attached to the upper surface of said second electrical conductor means for transmitting the detected electrical discharges from the cortex to the exterior of the skull of the animal;
  • insulation means totally encompassing the outer surface of said second and third electrical conductor means and all of said'first electrical conductor means except the tapered end thereof for insulating the covered areas when the microelectrode is inserted in the cortex.
  • said first electrical conductor means is a rigid elongated iridium shaft.
  • said third electrical conductor means is a flexible platinum-iridium wire.
  • said insulation means includes:
  • a thumbtack microelectrode for use in the chronic recording of electrical discharges from single nerve cells in the cortex of the brain of an animal comprising:
  • said third electrical conductor a rigid, elongated, electrically conducting electrode shaft having a blunt end and a tapered end, the tapered end being the only portion of said electrode shaft not electrically insulated;
  • a rigid electrically insulated, electrical conducting disc having an upper and lower surface, the lower surface being substantially perpendicularly attached to the blunt end of said electrode shaft;
  • a method of making a thumbtack microelectrode comprising the steps of:

Abstract

A thumbtack microelectrode for making extracellular chronic recordings from single nerve cells in the cerebral cortex in unrestrained animals over prolonged periods of time comprises a rigid electrode shaft, which is microwelded to one side of a tack head-like disc, and a flexible electrical conductor which is microwelded to the opposite side of the tack head-like disc. After a cleaning operation including ultrasonic desiccation the entire microwelded assembly is electrically insulated. The insulation covering the recording tip of the electrode shaft which is tapered, prior to the cleaning and insulating operations, by electrolytic etching, is then removed so as to expose a small area for use as the recording surface.

Description

United States Patent llsl Salcman et al.
i THUMBTACK I MICROELECTRODE AND METHOD OF MAKING SAME [75] Inventors: Michael Salcman, New York, N.Y.;
, Martin J. Bak, Germantown, Md.
[73] Assignee: The United States of America as represented by the Secretary of the Department of Health, Education and Welfare, Washington, DC.
[22] Filed: July 20, 1973 [2]] App]. N0.: 381,234
[52] US. Cl. 128/21 E, 29/630 R, l28/DlG. 4 [51] Int. Cl A61b 5/04 [58] Field of Search 128/2 E, 2063, 2.06 E, [28/206 R, 2.1 E, 2.1 R, 404,418, DIG. 4, 2
[56] References Cited UNITED STATES PATENTS 5/1966 4/1969 Kahn et al l28/2.l E
OTHER PUBLlCATlONS Levick, Medical & Biological Engineering, Vol. l0, l972,Pp. 510-514. t.
Woedhousc l28/2.| E
, [451 July 30, 1974 Wise et al., IEEE Transactions on Bio-Medical Engineering, Vol. BME 17, No. 3, pp. 238-247.
Primary-ExaminerWilliam E. Kamm 57] ABSTRACT A thumbtack microelectrode for making extracellular chronic recordings from single nerve cells in the cerebral cortex in unrestrained animals over prolonged periods of time comprises a rigid electrode shaft, which is microwelded to one side of a tack head-like disc, and a flexible electrical conductor which is microwelded to the opposite side of the tack head-like disc. After a cleaning operation including ultrasonic desiccation the entire microwelded assembly is electrically insulated. The insulation covering the recording tip of the electrode shaft which is tapered, prior to the cleaning and insulating operations, by electrolytic etching, is then removed so as to expose a small area for use as the recording surface.
14 Claims, 2 Drawing Figures TO CONNECTOR PATENIEDJULSOISM 3,826,244
I: TO CONNECTOR FIG. I
#- TO AMPLIFIER I9 R r THUMBTACK MICROELECTRODE AND METHOD OF MAKING SAME FIELD OF THE INVENTION BACKGROUND OF THE INVENTION In defining chronic recording from single cells of the brain, it is essential to accurately locate the electrode. One technique has required the attachment of a special chamber to the animals head through which new electrodes are inserted on each successive recording day while the animals head is rigidly bolted to prevent any movement. However, such techniques are highly undesirable for a number of reasons including the fact that they are difficult, are extremely uncomfortable to the animal, and are 'less accurate than desirable.
In all truly chronic recording techniques the following design conditions are essential: i
a. the electrodes must be implanted once during surgery, remain fixed in position, and then must not be subjected to further external manipulation;
b. during recording sessions, the head of the animal must be unrestrained except for the connecting cable where telemetry is not possible; I i
c. The animal must be awake and unmedicated; and
d. through the use of spike discriminators, statistical measures, continual visual monitoring and other stringent criteria, the identity of a single nerve cell must be established and the cell successfully monitored for several hours to many days. v
Although prior art devices which meet these design requirements do exist they suffer from avariety of deficiencies. Most pertinently, such prior art devices have been successfully employed only in deep structures, such as the basal nuclei, hypothalamus, brain stem, etc., because they comprise a comparatively long length of wire, the electrode, which is cemented directly to the skull. Since the rotational acceleration of the head results in displacements of the brain relative to the skull, an electrode rigidly connected to the skull is certain to move within the substance of the superficial cortex.
Therefore, prior art microelectrodes for recording from single cells in the brains of unrestrained animals are not capable of successfullyrecording electrical discharges from single cells in the cerebral cortex over prolonged periods of time. Further, such devices are of comparatively large diameter (e.g., 80 micrometers) and do not provide means for limiting the entry of the electrode into the cortex.
SUMMARY OF THE INVENTION The shortcomings of the prior art microelectrodes for recording from single cells in the cerebral cortex of the brain are satisfactorily overcome by the present invention. It is, accordingly, an object of the present invention to thus overcome the defects of the prior art, such as indicated above.
Another object of the present invention is to provide for improved brain wave recording of single brain cells.
, Another object is to provide an improved-technique of brain wave measurement.
Another object of the present invention is to provide a microelectrode capable of extracellular chronic recording from single nerve cells in the superficial layers of the cerebral cortex in unrestrained animals over prolonged periods of time. I p
Another'object is to provide a microelectrode which makes chronic recordings of electrical discharge from single cells with minimal tissue reaction.
A further object is to provide a chronic recording microelectrode having maximal fidelity.
In furtherance of these and other objects, a'principal feature of the present invention is a microelectrode capable of detecting electrical discharges from a single cell in the cerebral cortex of the brain over prolonged periods of time due to the flexible connection and stabilizing influence of themicroelectrode (tack) head on the pial surface of the. brain.-The tack head of the microelectrode provides an anchoring surface for a mechanical inserter or micromanipulatorand, therefore,
dispenses with the need for manual insertion. Also, the tack head limits the entry, of the microelectrode into the cortex and provides a good surface for attachment of pia by the application of isobutyl cyanoacrylate.
Another feature of the invention is that minimum tissue damage is achieved through the use of a small diameter tip (1-3 micrometers) and electrode shaft which, depending upon the animal to be studied, may
be as short as one-half mm. Although small, the electrode is strong enough to pierce the intact pial membrane, thus leaving superficial circulation undisturbed thick and 1 mm in diameter. After welding, the electrode shaft is bent at a right angle to the'intended unders'urface of thetack head and cut to the appropriate length. A flexible lead which electrically attaches the tack head to a connector fixedly attached to the skull is similarly welded to the dorsal or upper surface of the tack head.
The electrode shaft is then electrolytically etched until the desired tip configuration is achieved. After cleaning, the electrode shaft is coated with an insulator (e.g., parylene). The final step in the fabrication involves the removal of a small amount of parylene from the very tip of the electrode shaft so as to expose a small area, of iridium for use as the recording surface.
BRIEF DESCRIPTION OF THE DRAWING completed thumbtack microelectrode.
FIG. 2 is a schematic diagram of the electrical components of the thumbtack microelectrode of FIG. 1.
DETAILED DESCRIPTION Referring to FIG. 1, there is shown a preferred embodiment of the thumbtack microelectrode, here provided in the form ofa disc-like tack head 10, a flexible lead wire 11, and an electrode shaft 12. The head is, preferably, a platinum disc 0.005 inch thick and 1 mm in diameter.
One end of the flexible lead 11 is microwelded to the approximate center of the intended dorsal or upper surface of tack head 10 as indicated at 13. The other end of the flexible lead 11 is attached to a connector (not shown) which is fixedly attached to the surface of the skull. The connector, in turn, is attached by a cable to an amplifier system, thereby permitting daily recordings of single nerve cells to be made. The flexible lead 11 is, preferably, a Teflon-coated platinum-iridium (90/10) wire.
The electrode shaft 12 is microwelded to the approximate center of the opposite or lower surface of the tack head 10 as indicated at 14 and subsequently bent perpendicularly to that surface. The very tip 15 of the end of the electrode shaft 12 furthest from the tack head 10 is electrolytically etched to a fine point. The entire shaft 12 except for the tip 15 is'coated with an insulator such as parylene or Teflon.
Referring now to FIG. 2, there is shown a schematic diagram of the electrical components of the preferred embodiment of the thumbtack microelectrode shown in FIG. 1. The electrical discharge of the single nerve cell is designated generally by 16 and corresponds to the biological source voltage. In series with the biological source voltage 16 are the resistance and capacitance l7 and 18, respectively, of the electrode recording tip which are in parallel with one another. Numeral l9 designates the grounded shunt capacitance of the tack head which is in parallel with the equivalent electrical components (l6, l7 and 18) which are, also, grounded by the body of the animal.
The resistance and capacitance 17 and 18, respectively, of the electrode recording tip correspond to the impedance of the interface between the intestitial fluid and the recording surface of the electrode shaft. Since the shunt capacitance of the thumbtack microelectrode which corresponds to the total capacitance associated with all of the metallic components and the dielectric outer insulation is considerable, the amplifier circuit must have the capability of cancelling out the distortion introduced in this manner.
The fabrication of the preferred embodiment of the thumbtack electrode shown in FIG. 1 includes the following steps. The head 10 of the microelectrode is a platinum disk 0.005 inch thick and 1 mm in diameter which may be obtained in any convenient manner, e.g., punched from a sheet of platinum with a steel die against a wood block.
The flexible lead 11 is a 4 inch length of platinumiridium (90/10) Teflon-coated wire, 0.001 inch in diameter. It is microwelded to the approximate center of the intended dorsal or upper surface of the tack head 10 by any suitable precision welding instrument, such as a Weltek Model 410E, under direct visual control through a dissecting microscope. The microwelding operation is performed right through the Teflon insulatIOIl.
The electrode shaft 12 is a length of bare iridium (e.g. 100 percent) wire which is 0.001 inch in diameter. It is microwelded to the approximate center of the opposite or lower surface of the tack head 10, also, under. direct microscopic control. After microwelding, the shaft is cut to the appropriate length (for cat visual cortex-about 2 mm) and bent at substantially a right angle to the lower surface of the tack head by a pair of fine watchmakers forceps.
To facilitate the handling of the microelectrode, the flexible lead is loaded into a blank micropipette previously drawn on a vertical micro'pipette puller with the fine end broken off. Again under direct microscopic control, the iridium electrode shaft is electrolytically etched in a bath of supersaturated sodium cyanide-30 percent sodium hydroxide until the desired tip configuration is achieved. In the case of the preferred embodiment of FIG. 1 the diameter of tip 15 is approximately 1-3 micrometers and increases slowly to 10 micrometers at a distance of 100 micrometers from the tip.
After etching, the microelectrode is rinsed in hydrochloric acid and then distilled water. After being placed in an acetone bath, the microelectrode is subjected to approximately 15 seconds of ultrasonic desiccation in distilled water and then approximately 15 seconds of ultrasonic desiccation. in methanol in a device similar to that manufactured by Ultrasonics Inc. Following the above cleaning steps the microelectrode is oven dried at C.
Once the microelectrode has been sufficiently dried, it is placed in a low vacuum (about 1 torr), room temperature chamber and coated with a 3 micrometer layer of parylene. The coating process is carried, out by vaporizing 2 gm of the parylene dimer at 260C and subsequent polymerization in the chamber mentioned above. The microelectrode emerges from the chamber with a uniform coating of 3 micrometers of parylene along the entire length of the etched electrode shaft and over both surfaces of the tack head. Parylene is used because it is a superior insulator with negligble water uptake and excellent conformability. Also, its biological toxicity is almost nil. It should be noted that Teflon or (glass) could be used in place of the parylene.
The final step in the fabrication process involves the removal of a small amount of parylene from the very tip of the electrode shaft so as to expose a small area of iridium for use as the recording surface. This step may be carried out by several methods. The first method involves burning away the parylene by bringing the 0.003 inch heating element of a specially designed microforge (See: Dolde and Burke, EEG Clin. Neurophysiol. 1972) in close proximity to the tip of the electrode shaft. Secondly, the parylene may be melted with the beam of a ruby laser. The final method involves abrading the parylene off with oxygen or argonions through the use of a micromilling device. The first and second methods may be repeated until a desired tip impedance is achieved, about 1 megohm in the case of the preferred embodiment of FIG. 1.
In operation, the microelectrode is attached to a connector which is then cemented to the surface of the skull. The microelectrode is then attached to the nose of a vacuum electrode inserter and is driven into the cortex by positive pressure acting on the piston of the electrode inserter. The piston rides on sapphire jewel bearings and a vacuum is delivered to the head of the thumbtack through the centerbore of the piston. After insertion, the microelectrode is cemented to the pial surface of the cortex by isobutyl cyanoacrylate.
A chamber is built up around the bony incision in the skull and after all of the air is evacuated, the chamber is filled with a'saline solution, thereby maintaining a constant pressure in the skull cavity and preventing leakage of fluid therefrom.
The connector which is located remote from the incision and, therefore, not enclosed bythe chamber is attached by a cable to the amplifier system and daily recordings are made of the same single nerve cell for many hours. As mentioned above, the shunt capacitance of the tack head is relatively large and, therefore, the amplitude circuit must have the capability of cancelling out the distortion introduced in this manner. Displacement of the brain relative to the skull during movement of the animal are absorbed by the flexibility of the microelectrode lead, without movement of the microelectrode tip which stays in contact with the selected brain cell.
The foregoing description of the specific embodiment will so fully reveal the general nature of the invention that others can, by applying current knowledge, readily modify such specific embodiment and/or adapt it for various applicationswithout departing from the generic concept, and, therefore, such adaptations and modifications should and are intended to be comprehended within the meaning and range of equivalents of the disclosed embodiment.
It should be noted that the instant device is not necessarily limited to use in the cortex of an animal. Also, other suitable materials, dimensions, or processes besides those recited herein may be adapted without departing from the inventive concept of the instant invention.
It is to be understood that the phraseology or terminology employed herein is for the purposes of description and not of limitation.
What is claimed is: I
1. A thumbtack microelectrode for use in the chronic recording of electrical discharges from single nerve cells in the cortex of the brain of an animal comprising:
afirst electrical conductor means adapted to be imbedded in a single nerve cell of the cortex of the brain of an animal for detecting electrical discharges from the single nerve cell, said first electrical conductor means having a blunt end and a tapered end;
second electrical conductor means for anchoring and limiting the entry of said first electrical conductor means within the cortex, said second electrical conductor means having an upper and lower surface, the lower surface being substantially perpendicularly attached to the blunt end of said first electrical conductor means and adapted to be cemented to the outer surface of the cortex;
a third electrical conductor means fixedly attached to the upper surface of said second electrical conductor means for transmitting the detected electrical discharges from the cortex to the exterior of the skull of the animal; and
insulation means totally encompassing the outer surface of said second and third electrical conductor means and all of said'first electrical conductor means except the tapered end thereof for insulating the covered areas when the microelectrode is inserted in the cortex.
2. The deviceof claim 1 wherein said first electrical conductor means is a rigid elongated iridium shaft.
3. The device of claim 1 wherein said second electrical conductor means is a rigid platinum disc.
4. The device of claim 1 wherein said third electrical conductor means is a flexible platinum-iridium wire.
5. The device of claim 1 wherein said insulation means includes:
a Teflon covering for means; and
a parylene covering forsaid first and second electrical conductor means.
6. The device of claim 1 wherein the non'insulated tapered end of said first electrical conductor means is from 10 to 20 micrometers in length and from 1 to 3 micrometers in diameter- 7. A thumbtack microelectrode for use in the chronic recording of electrical discharges from single nerve cells in the cortex of the brain of an animal comprising:
said third electrical conductor a rigid, elongated, electrically conducting electrode shaft having a blunt end and a tapered end, the tapered end being the only portion of said electrode shaft not electrically insulated;
a rigid electrically insulated, electrical conducting disc having an upper and lower surface, the lower surface being substantially perpendicularly attached to the blunt end of said electrode shaft; and
a flexible, electrically insulated, elongated wire fixedly attached to the upper surface of said disc for transmitting the detected electricaldischarge from the cortex to the exterior of the skull of the animal. 7
8. A method of making a thumbtack microelectrode comprising the steps of:
providing a disc of an upper and lower surface;
microwelding to the upper surface of said disc an 7 elongated, flexible, insulated electrical conductor;
microwelding to the lower surface of said disc one end of an elongated, rigid, bare electrical conductor; v
bending said bare electrical conductor at substantially a right angle to the lower surface of said disc;
electrolytically etching the free end of said bare electrical conductor until the desired tip configuration is achieved;
cleaning the microwelded assembly;
vacuum depositing a layer of insulating material of low biological toxicity over said disc and said bare electrical conductor; and
removing a small amount of the insulating material from the electrolytically etched tip of said bare electrical conductor.
l l. The method of claim 8 wherein the vacuum deposition step includes:
vaporizing 2 gm of parylene dimer at 260C;
pyrolysizing the parylene at 700C; and
subsequent polymerization of the parylene.
12. The method of claim 8 wherein the insulation removal is achieved by burning away the insulation.
13. The method of claim 8 wherein the insulation removal is achieved by melting the insulation with the beam of a ruby laser.
14. The method of claim 8 wherein the insulation removal is achieved by abrading off the insulation.

Claims (14)

1. A thumbtack microelectrode for use in the chronic recording of electrical discharges from single nerve cells in the cortex of the brain of an animal comprising: a first electrical conductor means adapted to be imbedded in a single nerve cell of the cortex of the brain of an animal for detecting electrical discharges from the single nerve cell, said first electrical conductor means having a blunt end and a tapered end; a second electrical conductor means for anchoring and limiting the entry of said first electrical conductor means within the cortex, said second electrical conductor means having an upper and lower surface, the lower surface being substantially perpendicularly attached to the blunt end of said first electrical conductor means and adapted to be cemented to the outer surface of the cortex; a third electrical conductor means fixedly attached to the upper surface of said second electrical conductor means for transmitting the detected electrical discharges from the cortex to the exterior of the skull of the animal; and insulation means totally encompassing the outer surface of said second and third electrical conductor means and all of said first electrical conductor means except the tapered end thereof for insulating the covered areas when the microelectrode is inserted in the cortex.
2. The device of claim 1 wherein said first electrical conductor means is a rigid elongated iridium shaft.
3. The device of claim 1 wherein said second electrical conductor means is a rigid platinum disc.
4. The device of claim 1 wherein said third electrical conductor means is a flexible platinum-iridium wire.
5. The device of claim 1 wherein said insulation means includes: a Teflon covering for said third electrical conductor means; and a parylene covering for said first and second electrical conductor means.
6. The device of claim 1 wherein the non-insulated tapered end of said first electrical conductor means is from 10 to 20 micrometers in length and from 1 to 3 micrometers in diameter.
7. A thumbtack microelectrode for use in the chronic recording of electrical discharges from single nerve cells in the cortex of the brain of an animal comprising: a rigid, elongated, electrically conducting electrode shaft having a blunt end and a tapered end, the tapered end being the only portion of said electrode shaft not electrically insulated; a rigid electrically insulated, electrical conducting disc having an upper and lower surface, the lower surface being substantially perpendicularly attached to the blunt end of said electrode shaft; and a flexible, electrically insulated, elongated wire fixedly attached to the upper surface of said disc for transmitting the detected electrical discharge from the cortex to the exterior of the skull of the animal.
8. A method of making a thumbtack microelectrode comprising the steps of: providing a disc of an upper and lower surface; microwelding to the upper surface of said disc an elongated, flexible, insulated electrical conductor; microwelding to the lower surface of said disc one end of an elongated, rigid, bare electrical conductor; bending said bare electrical conductor at substantially a right angle to the lower surface of said disc; electrolytically etching the free end of said bare electrical conductor until the desired tip configuration is achieved; cleaning the microwelded assembly; vacuum depositing a layer of insulating material of low biological toxicity over said disc and said bare electrical conductor; and removing a small amount of the insulating material from the electrolytically etched tip of said bare electrical conductor.
9. The method of claim 8 wherein the bare electrical conductor is electrolytically etched in a bath of supersaturated sodium cyanide- 30 percent sodium hydroxide.
10. The method of claim 8 wherein the cleaning step includes: rinsing the microwelded assembly in hydrochloric acid, then in distilled water; placing the microwelded assembly in an acetone bath; ultrasonicly desiccating the microwelded assembly for 15 seconds in distilled water, then for another 15 seconds in methanol; and oven drying the microwelded assembly at 60*C.
11. The method of claim 8 wherein the vacuum deposition step includes: vaporizing 2 gm of parylene dimer at 260*C; pyrolysizing the parylene at 700*C; and subsequent polymerization of the parylene.
12. The method of claim 8 wherein the insulation removal is achieved by burning away the insulation.
13. The method of claim 8 wherein the insulation removal is achieved by melting the insulation with the beam of a ruby laser.
14. The method of claim 8 wherein the insulation removal is achieved by abrading off the insulation.
US00381234A 1973-07-20 1973-07-20 Thumbtack microelectrode and method of making same Expired - Lifetime US3826244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00381234A US3826244A (en) 1973-07-20 1973-07-20 Thumbtack microelectrode and method of making same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00381234A US3826244A (en) 1973-07-20 1973-07-20 Thumbtack microelectrode and method of making same

Publications (1)

Publication Number Publication Date
US3826244A true US3826244A (en) 1974-07-30

Family

ID=23504214

Family Applications (1)

Application Number Title Priority Date Filing Date
US00381234A Expired - Lifetime US3826244A (en) 1973-07-20 1973-07-20 Thumbtack microelectrode and method of making same

Country Status (1)

Country Link
US (1) US3826244A (en)

Cited By (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4154228A (en) * 1976-08-06 1979-05-15 California Institute Of Technology Apparatus and method of inserting a microelectrode in body tissue or the like using vibration means
US4155353A (en) * 1976-11-18 1979-05-22 Davis William E Electrode and method for laryngeal electromyography
US4201219A (en) * 1977-03-03 1980-05-06 Bozal Gonzalez Jose L Cardiac pace-maker
US4685466A (en) * 1985-01-29 1987-08-11 Rau Guenter Measuring sensor for the non-invasive detection of electro-physiological quantities
US4753244A (en) * 1987-06-23 1988-06-28 Landymore Roderick W Encapsulated microelectronic heart monitor
US4936306A (en) * 1985-02-15 1990-06-26 Doty James R Device and method for monitoring evoked potentials and electroencephalograms
US5109844A (en) * 1990-10-11 1992-05-05 Duke University Retinal microstimulation
US5524338A (en) * 1991-10-22 1996-06-11 Pi Medical Corporation Method of making implantable microelectrode
US5580431A (en) * 1995-07-20 1996-12-03 Associated Universities, Inc. Composite wire microelectrode and method of making same
US5622898A (en) * 1992-12-10 1997-04-22 International Business Machines Corporation Process of making an integrated circuit chip composite including parylene coated wire
US6165192A (en) * 1999-01-05 2000-12-26 Second Sight, Llc Method and apparatus for intraocular retinal tack inserter
US6249965B1 (en) * 1997-10-15 2001-06-26 Huntington Medical Research Institutes Methods for making small-diameter iridium electrodes
US20040133118A1 (en) * 2002-08-21 2004-07-08 New York University Brain-machine interface systems and methods
US20050256541A1 (en) * 2004-04-30 2005-11-17 Medtronic, Inc. Catheter with temporary stimulation electrode
US7006859B1 (en) * 2002-07-20 2006-02-28 Flint Hills Scientific, L.L.C. Unitized electrode with three-dimensional multi-site, multi-modal capabilities for detection and control of brain state changes
US7136696B2 (en) 2002-04-05 2006-11-14 The Cleveland Clinic Foundation Neuron signal analysis system and method
US7177701B1 (en) * 2000-12-29 2007-02-13 Advanced Bionics Corporation System for permanent electrode placement utilizing microelectrode recording methods
WO2008004010A2 (en) * 2006-07-07 2008-01-10 Lectus Therapeutics Limited Apparatus and methods
CN100367907C (en) * 2005-07-07 2008-02-13 中国科学院生物物理研究所 Microelectrode making method and apparatus
WO2008039320A1 (en) * 2006-09-25 2008-04-03 The University Of North Carolina At Chapel Hill Microelectrodes, microelectrode formation, and methods of utilizing microelctrodes for characterizing properties of localized environments and substrates
US20080242961A1 (en) * 2004-07-13 2008-10-02 Dexcom, Inc. Transcutaneous analyte sensor
US20090036763A1 (en) * 2004-07-13 2009-02-05 Dexcom, Inc. Analyte sensor
US7494465B2 (en) 2004-07-13 2009-02-24 Dexcom, Inc. Transcutaneous analyte sensor
US7519408B2 (en) 2003-11-19 2009-04-14 Dexcom, Inc. Integrated receiver for continuous analyte sensor
US7591801B2 (en) 2004-02-26 2009-09-22 Dexcom, Inc. Integrated delivery device for continuous glucose sensor
US7640048B2 (en) 2004-07-13 2009-12-29 Dexcom, Inc. Analyte sensor
US7654956B2 (en) 2004-07-13 2010-02-02 Dexcom, Inc. Transcutaneous analyte sensor
US7711402B2 (en) 1997-03-04 2010-05-04 Dexcom, Inc. Device and method for determining analyte levels
US7761130B2 (en) 2003-07-25 2010-07-20 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US7771352B2 (en) 1997-03-04 2010-08-10 Dexcom, Inc. Low oxygen in vivo analyte sensor
US7783333B2 (en) 2004-07-13 2010-08-24 Dexcom, Inc. Transcutaneous medical device with variable stiffness
US7831287B2 (en) 2006-10-04 2010-11-09 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US20100312078A1 (en) * 1998-04-30 2010-12-09 Abbott Diabetes Care Inc. Analyte Monitoring Device and Methods of Use
US20100324403A1 (en) * 2007-09-13 2010-12-23 Dexcom, Inc. Transcutaneous analyte sensor
US7920907B2 (en) 2006-06-07 2011-04-05 Abbott Diabetes Care Inc. Analyte monitoring system and method
US7920906B2 (en) 2005-03-10 2011-04-05 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US8000901B2 (en) 2003-08-01 2011-08-16 Dexcom, Inc. Transcutaneous analyte sensor
US8052601B2 (en) 2003-08-01 2011-11-08 Dexcom, Inc. System and methods for processing analyte sensor data
US8133178B2 (en) 2006-02-22 2012-03-13 Dexcom, Inc. Analyte sensor
US8160669B2 (en) 2003-08-01 2012-04-17 Dexcom, Inc. Transcutaneous analyte sensor
US8160671B2 (en) 2003-12-05 2012-04-17 Dexcom, Inc. Calibration techniques for a continuous analyte sensor
USRE43399E1 (en) 2003-07-25 2012-05-22 Dexcom, Inc. Electrode systems for electrochemical sensors
US8229535B2 (en) 2008-02-21 2012-07-24 Dexcom, Inc. Systems and methods for blood glucose monitoring and alert delivery
US8275437B2 (en) 2003-08-01 2012-09-25 Dexcom, Inc. Transcutaneous analyte sensor
US8280475B2 (en) 2004-07-13 2012-10-02 Dexcom, Inc. Transcutaneous analyte sensor
US8290559B2 (en) 2007-12-17 2012-10-16 Dexcom, Inc. Systems and methods for processing sensor data
US8287454B2 (en) 1998-04-30 2012-10-16 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8287453B2 (en) 2003-12-05 2012-10-16 Dexcom, Inc. Analyte sensor
US8346337B2 (en) 1998-04-30 2013-01-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8396528B2 (en) 2008-03-25 2013-03-12 Dexcom, Inc. Analyte sensor
US8417312B2 (en) 2007-10-25 2013-04-09 Dexcom, Inc. Systems and methods for processing sensor data
US8423114B2 (en) 2006-10-04 2013-04-16 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US8465425B2 (en) 1998-04-30 2013-06-18 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8509871B2 (en) 2001-07-27 2013-08-13 Dexcom, Inc. Sensor head for use with implantable devices
US20130261490A1 (en) * 2010-12-05 2013-10-03 Wilson Truccolo Methods for Prediction and Early Detection of Neurological Events
US8560039B2 (en) 2008-09-19 2013-10-15 Dexcom, Inc. Particle-containing membrane and particulate electrode for analyte sensors
US8562558B2 (en) 2007-06-08 2013-10-22 Dexcom, Inc. Integrated medicament delivery device for use with continuous analyte sensor
US8565848B2 (en) 2004-07-13 2013-10-22 Dexcom, Inc. Transcutaneous analyte sensor
US8612159B2 (en) 1998-04-30 2013-12-17 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8622905B2 (en) 2003-08-01 2014-01-07 Dexcom, Inc. System and methods for processing analyte sensor data
US8652043B2 (en) 2001-01-02 2014-02-18 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8688188B2 (en) 1998-04-30 2014-04-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
NL2009945C2 (en) * 2012-12-10 2014-06-11 Univ Leiden Process and device for minimally invasive deep tissue probing.
WO2014092566A1 (en) * 2012-12-10 2014-06-19 Universiteit Leiden Process and device for minimally invasive deep tissue probing
US8777853B2 (en) 2003-08-22 2014-07-15 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US8792955B2 (en) 2004-05-03 2014-07-29 Dexcom, Inc. Transcutaneous analyte sensor
US8808228B2 (en) 2004-02-26 2014-08-19 Dexcom, Inc. Integrated medicament delivery device for use with continuous analyte sensor
US8974386B2 (en) 1998-04-30 2015-03-10 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9066695B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9135402B2 (en) 2007-12-17 2015-09-15 Dexcom, Inc. Systems and methods for processing sensor data
US9155496B2 (en) 1997-03-04 2015-10-13 Dexcom, Inc. Low oxygen in vivo analyte sensor
US9247900B2 (en) 2004-07-13 2016-02-02 Dexcom, Inc. Analyte sensor
CN105559778A (en) * 2016-02-02 2016-05-11 上海交通大学 Brain electrode for collecting brain electrical signals for long time and preparation method thereof
US9451908B2 (en) 2006-10-04 2016-09-27 Dexcom, Inc. Analyte sensor
US9757061B2 (en) 2006-01-17 2017-09-12 Dexcom, Inc. Low oxygen in vivo analyte sensor
US10653835B2 (en) 2007-10-09 2020-05-19 Dexcom, Inc. Integrated insulin delivery system with continuous glucose sensor
US10980461B2 (en) 2008-11-07 2021-04-20 Dexcom, Inc. Advanced analyte sensor calibration and error detection
US11000215B1 (en) 2003-12-05 2021-05-11 Dexcom, Inc. Analyte sensor
US11191950B2 (en) * 2017-03-22 2021-12-07 International Business Machines Corporation High resolution brain-electronics interface
US11331022B2 (en) 2017-10-24 2022-05-17 Dexcom, Inc. Pre-connected analyte sensors
US11350862B2 (en) 2017-10-24 2022-06-07 Dexcom, Inc. Pre-connected analyte sensors
US11382539B2 (en) 2006-10-04 2022-07-12 Dexcom, Inc. Analyte sensor
US11432772B2 (en) 2006-08-02 2022-09-06 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US11559260B2 (en) 2003-08-22 2023-01-24 Dexcom, Inc. Systems and methods for processing analyte sensor data
US11589823B2 (en) 2003-08-22 2023-02-28 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US11633133B2 (en) 2003-12-05 2023-04-25 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US11918354B2 (en) 2019-12-31 2024-03-05 Dexcom, Inc. Particle-containing membrane and particulate electrode for analyte sensors

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3249103A (en) * 1963-01-21 1966-05-03 Charles F Woodhouse Method and apparatus for measuring bioelectronic parameters
US3436329A (en) * 1964-12-11 1969-04-01 Beckman Instruments Inc Microelectrode and method of making same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3249103A (en) * 1963-01-21 1966-05-03 Charles F Woodhouse Method and apparatus for measuring bioelectronic parameters
US3436329A (en) * 1964-12-11 1969-04-01 Beckman Instruments Inc Microelectrode and method of making same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Levick, Medical & Biological Engineering, Vol. 10, 1972, pp. 510 514. *
Wise et al., IEEE Transactions on Bio Medical Engineering, Vol. BME 17, No. 3, pp. 238 247. *

Cited By (337)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4154228A (en) * 1976-08-06 1979-05-15 California Institute Of Technology Apparatus and method of inserting a microelectrode in body tissue or the like using vibration means
US4155353A (en) * 1976-11-18 1979-05-22 Davis William E Electrode and method for laryngeal electromyography
US4201219A (en) * 1977-03-03 1980-05-06 Bozal Gonzalez Jose L Cardiac pace-maker
US4685466A (en) * 1985-01-29 1987-08-11 Rau Guenter Measuring sensor for the non-invasive detection of electro-physiological quantities
US4936306A (en) * 1985-02-15 1990-06-26 Doty James R Device and method for monitoring evoked potentials and electroencephalograms
US4753244A (en) * 1987-06-23 1988-06-28 Landymore Roderick W Encapsulated microelectronic heart monitor
US5109844A (en) * 1990-10-11 1992-05-05 Duke University Retinal microstimulation
US5524338A (en) * 1991-10-22 1996-06-11 Pi Medical Corporation Method of making implantable microelectrode
US5824568A (en) * 1992-12-10 1998-10-20 International Business Machines Corporation Process of making an integrated circuit chip composite
US5622898A (en) * 1992-12-10 1997-04-22 International Business Machines Corporation Process of making an integrated circuit chip composite including parylene coated wire
US5580431A (en) * 1995-07-20 1996-12-03 Associated Universities, Inc. Composite wire microelectrode and method of making same
US9155496B2 (en) 1997-03-04 2015-10-13 Dexcom, Inc. Low oxygen in vivo analyte sensor
US7901354B2 (en) 1997-03-04 2011-03-08 Dexcom, Inc. Low oxygen in vivo analyte sensor
US7771352B2 (en) 1997-03-04 2010-08-10 Dexcom, Inc. Low oxygen in vivo analyte sensor
US7711402B2 (en) 1997-03-04 2010-05-04 Dexcom, Inc. Device and method for determining analyte levels
US6249965B1 (en) * 1997-10-15 2001-06-26 Huntington Medical Research Institutes Methods for making small-diameter iridium electrodes
US7860544B2 (en) 1998-04-30 2010-12-28 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9326714B2 (en) 1998-04-30 2016-05-03 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8612159B2 (en) 1998-04-30 2013-12-17 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8287454B2 (en) 1998-04-30 2012-10-16 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8306598B2 (en) 1998-04-30 2012-11-06 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8597189B2 (en) 1998-04-30 2013-12-03 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8660627B2 (en) 1998-04-30 2014-02-25 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8666469B2 (en) 1998-04-30 2014-03-04 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9011331B2 (en) 1998-04-30 2015-04-21 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8670815B2 (en) 1998-04-30 2014-03-11 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8672844B2 (en) 1998-04-30 2014-03-18 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US10478108B2 (en) 1998-04-30 2019-11-19 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8688188B2 (en) 1998-04-30 2014-04-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8738109B2 (en) 1998-04-30 2014-05-27 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8734346B2 (en) 1998-04-30 2014-05-27 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8649841B2 (en) 1998-04-30 2014-02-11 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8734348B2 (en) 1998-04-30 2014-05-27 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8641619B2 (en) 1998-04-30 2014-02-04 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8617071B2 (en) 1998-04-30 2013-12-31 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8744545B2 (en) 1998-04-30 2014-06-03 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8622906B2 (en) 1998-04-30 2014-01-07 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8273022B2 (en) 1998-04-30 2012-09-25 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8480580B2 (en) 1998-04-30 2013-07-09 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8774887B2 (en) 1998-04-30 2014-07-08 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US20100312078A1 (en) * 1998-04-30 2010-12-09 Abbott Diabetes Care Inc. Analyte Monitoring Device and Methods of Use
US8473021B2 (en) 1998-04-30 2013-06-25 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8346337B2 (en) 1998-04-30 2013-01-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8974386B2 (en) 1998-04-30 2015-03-10 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US7869853B1 (en) 1998-04-30 2011-01-11 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US7885699B2 (en) 1998-04-30 2011-02-08 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8465425B2 (en) 1998-04-30 2013-06-18 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8840553B2 (en) 1998-04-30 2014-09-23 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8275439B2 (en) 1998-04-30 2012-09-25 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8265726B2 (en) 1998-04-30 2012-09-11 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8880137B2 (en) 1998-04-30 2014-11-04 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8260392B2 (en) 1998-04-30 2012-09-04 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8409131B2 (en) 1998-04-30 2013-04-02 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8391945B2 (en) 1998-04-30 2013-03-05 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8255031B2 (en) 1998-04-30 2012-08-28 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9072477B2 (en) 1998-04-30 2015-07-07 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9066695B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8380273B2 (en) 1998-04-30 2013-02-19 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8372005B2 (en) 1998-04-30 2013-02-12 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9066694B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8366614B2 (en) 1998-04-30 2013-02-05 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8357091B2 (en) 1998-04-30 2013-01-22 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8162829B2 (en) 1998-04-30 2012-04-24 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8175673B2 (en) 1998-04-30 2012-05-08 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8177716B2 (en) 1998-04-30 2012-05-15 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8353829B2 (en) 1998-04-30 2013-01-15 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8224413B2 (en) 1998-04-30 2012-07-17 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9066697B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8226555B2 (en) 1998-04-30 2012-07-24 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8226557B2 (en) 1998-04-30 2012-07-24 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8226558B2 (en) 1998-04-30 2012-07-24 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9042953B2 (en) 1998-04-30 2015-05-26 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8231532B2 (en) 1998-04-30 2012-07-31 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9014773B2 (en) 1998-04-30 2015-04-21 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8235896B2 (en) 1998-04-30 2012-08-07 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8346336B2 (en) 1998-04-30 2013-01-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6165192A (en) * 1999-01-05 2000-12-26 Second Sight, Llc Method and apparatus for intraocular retinal tack inserter
EP1148829A4 (en) * 1999-01-05 2006-08-02 Second Sight Medical Prod Inc Method and apparatus for intraocular retinal tack inserter
EP1148829A1 (en) * 1999-01-05 2001-10-31 Second Sight, LLC Method and apparatus for intraocular retinal tack inserter
US9387319B2 (en) 2000-12-29 2016-07-12 Boston Scientific Neuromodulation Corporation System for permanent electrode placement utilizing microelectrode recording methods
US7177701B1 (en) * 2000-12-29 2007-02-13 Advanced Bionics Corporation System for permanent electrode placement utilizing microelectrode recording methods
US9498159B2 (en) 2001-01-02 2016-11-22 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9610034B2 (en) 2001-01-02 2017-04-04 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8668645B2 (en) 2001-01-02 2014-03-11 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8652043B2 (en) 2001-01-02 2014-02-18 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9011332B2 (en) 2001-01-02 2015-04-21 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9804114B2 (en) 2001-07-27 2017-10-31 Dexcom, Inc. Sensor head for use with implantable devices
US9328371B2 (en) 2001-07-27 2016-05-03 Dexcom, Inc. Sensor head for use with implantable devices
US8509871B2 (en) 2001-07-27 2013-08-13 Dexcom, Inc. Sensor head for use with implantable devices
US7136696B2 (en) 2002-04-05 2006-11-14 The Cleveland Clinic Foundation Neuron signal analysis system and method
US7006859B1 (en) * 2002-07-20 2006-02-28 Flint Hills Scientific, L.L.C. Unitized electrode with three-dimensional multi-site, multi-modal capabilities for detection and control of brain state changes
US7551951B1 (en) 2002-07-20 2009-06-23 Flint Hills Scientific, L.L.C. Unitized electrode with three-dimensional multi-site, multi-modal capabilities for detection and control of brain state changes
US20040133118A1 (en) * 2002-08-21 2004-07-08 New York University Brain-machine interface systems and methods
US7257439B2 (en) * 2002-08-21 2007-08-14 New York University Brain-machine interface systems and methods
US20080015459A1 (en) * 2002-08-21 2008-01-17 New York University Brain- machine interface systems and methods
US8447392B2 (en) * 2002-08-21 2013-05-21 New York University Brain-machine interface systems and methods
USRE43399E1 (en) 2003-07-25 2012-05-22 Dexcom, Inc. Electrode systems for electrochemical sensors
US7761130B2 (en) 2003-07-25 2010-07-20 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US7896809B2 (en) 2003-07-25 2011-03-01 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US8676287B2 (en) 2003-08-01 2014-03-18 Dexcom, Inc. System and methods for processing analyte sensor data
US8000901B2 (en) 2003-08-01 2011-08-16 Dexcom, Inc. Transcutaneous analyte sensor
US8622905B2 (en) 2003-08-01 2014-01-07 Dexcom, Inc. System and methods for processing analyte sensor data
US8915849B2 (en) 2003-08-01 2014-12-23 Dexcom, Inc. Transcutaneous analyte sensor
US8700117B2 (en) 2003-08-01 2014-04-15 Dexcom, Inc. System and methods for processing analyte sensor data
US8442610B2 (en) 2003-08-01 2013-05-14 Dexcom, Inc. System and methods for processing analyte sensor data
US8394021B2 (en) 2003-08-01 2013-03-12 Dexcom, Inc. System and methods for processing analyte sensor data
US8160669B2 (en) 2003-08-01 2012-04-17 Dexcom, Inc. Transcutaneous analyte sensor
US8788006B2 (en) 2003-08-01 2014-07-22 Dexcom, Inc. System and methods for processing analyte sensor data
US8788007B2 (en) 2003-08-01 2014-07-22 Dexcom, Inc. Transcutaneous analyte sensor
US8052601B2 (en) 2003-08-01 2011-11-08 Dexcom, Inc. System and methods for processing analyte sensor data
US8275437B2 (en) 2003-08-01 2012-09-25 Dexcom, Inc. Transcutaneous analyte sensor
US8777853B2 (en) 2003-08-22 2014-07-15 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US9510782B2 (en) 2003-08-22 2016-12-06 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US11589823B2 (en) 2003-08-22 2023-02-28 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US9585607B2 (en) 2003-08-22 2017-03-07 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US11559260B2 (en) 2003-08-22 2023-01-24 Dexcom, Inc. Systems and methods for processing analyte sensor data
US9420968B2 (en) 2003-08-22 2016-08-23 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US9247901B2 (en) 2003-08-22 2016-02-02 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US11564602B2 (en) 2003-11-19 2023-01-31 Dexcom, Inc. Integrated receiver for continuous analyte sensor
US7927274B2 (en) 2003-11-19 2011-04-19 Dexcom, Inc. Integrated receiver for continuous analyte sensor
US8282550B2 (en) 2003-11-19 2012-10-09 Dexcom, Inc. Integrated receiver for continuous analyte sensor
US7519408B2 (en) 2003-11-19 2009-04-14 Dexcom, Inc. Integrated receiver for continuous analyte sensor
US10299712B2 (en) 2003-12-05 2019-05-28 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US8287453B2 (en) 2003-12-05 2012-10-16 Dexcom, Inc. Analyte sensor
US11020031B1 (en) 2003-12-05 2021-06-01 Dexcom, Inc. Analyte sensor
US11000215B1 (en) 2003-12-05 2021-05-11 Dexcom, Inc. Analyte sensor
US10188333B2 (en) 2003-12-05 2019-01-29 Dexcom, Inc. Calibration techniques for a continuous analyte sensor
US8160671B2 (en) 2003-12-05 2012-04-17 Dexcom, Inc. Calibration techniques for a continuous analyte sensor
US9579053B2 (en) 2003-12-05 2017-02-28 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US8249684B2 (en) 2003-12-05 2012-08-21 Dexcom, Inc. Calibration techniques for a continuous analyte sensor
US8483793B2 (en) 2003-12-05 2013-07-09 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US8929968B2 (en) 2003-12-05 2015-01-06 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US11633133B2 (en) 2003-12-05 2023-04-25 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
USRE44695E1 (en) 2003-12-05 2014-01-07 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US8428678B2 (en) 2003-12-05 2013-04-23 Dexcom, Inc. Calibration techniques for a continuous analyte sensor
US8911369B2 (en) 2003-12-05 2014-12-16 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US10278580B2 (en) 2004-02-26 2019-05-07 Dexcom, Inc. Integrated medicament delivery device for use with continuous analyte sensor
US7591801B2 (en) 2004-02-26 2009-09-22 Dexcom, Inc. Integrated delivery device for continuous glucose sensor
US8721585B2 (en) 2004-02-26 2014-05-13 Dex Com, Inc. Integrated delivery device for continuous glucose sensor
US11246990B2 (en) 2004-02-26 2022-02-15 Dexcom, Inc. Integrated delivery device for continuous glucose sensor
US10966609B2 (en) 2004-02-26 2021-04-06 Dexcom, Inc. Integrated medicament delivery device for use with continuous analyte sensor
US10835672B2 (en) 2004-02-26 2020-11-17 Dexcom, Inc. Integrated insulin delivery system with continuous glucose sensor
US8808228B2 (en) 2004-02-26 2014-08-19 Dexcom, Inc. Integrated medicament delivery device for use with continuous analyte sensor
US8926585B2 (en) 2004-02-26 2015-01-06 Dexcom, Inc. Integrated delivery device for continuous glucose sensor
US9937293B2 (en) 2004-02-26 2018-04-10 Dexcom, Inc. Integrated delivery device for continuous glucose sensor
US7976492B2 (en) 2004-02-26 2011-07-12 Dexcom, Inc. Integrated delivery device for continuous glucose sensor
US20050256541A1 (en) * 2004-04-30 2005-11-17 Medtronic, Inc. Catheter with temporary stimulation electrode
US9833143B2 (en) 2004-05-03 2017-12-05 Dexcom, Inc. Transcutaneous analyte sensor
US8792955B2 (en) 2004-05-03 2014-07-29 Dexcom, Inc. Transcutaneous analyte sensor
US10327638B2 (en) 2004-05-03 2019-06-25 Dexcom, Inc. Transcutaneous analyte sensor
US10918315B2 (en) 2004-07-13 2021-02-16 Dexcom, Inc. Analyte sensor
US10918313B2 (en) 2004-07-13 2021-02-16 Dexcom, Inc. Analyte sensor
US11883164B2 (en) 2004-07-13 2024-01-30 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US8548551B2 (en) 2004-07-13 2013-10-01 Dexcom, Inc. Transcutaneous analyte sensor
US8515516B2 (en) 2004-07-13 2013-08-20 Dexcom, Inc. Transcutaneous analyte sensor
US8515519B2 (en) 2004-07-13 2013-08-20 Dexcom, Inc. Transcutaneous analyte sensor
US8750955B2 (en) 2004-07-13 2014-06-10 Dexcom, Inc. Analyte sensor
US11064917B2 (en) 2004-07-13 2021-07-20 Dexcom, Inc. Analyte sensor
US11045120B2 (en) 2004-07-13 2021-06-29 Dexcom, Inc. Analyte sensor
US8483791B2 (en) 2004-07-13 2013-07-09 Dexcom, Inc. Transcutaneous analyte sensor
US8475373B2 (en) 2004-07-13 2013-07-02 Dexcom, Inc. Transcutaneous analyte sensor
US8463350B2 (en) 2004-07-13 2013-06-11 Dexcom, Inc. Transcutaneous analyte sensor
US8457708B2 (en) 2004-07-13 2013-06-04 Dexcom, Inc. Transcutaneous analyte sensor
US8792953B2 (en) 2004-07-13 2014-07-29 Dexcom, Inc. Transcutaneous analyte sensor
US8792954B2 (en) 2004-07-13 2014-07-29 Dexcom, Inc. Transcutaneous analyte sensor
US8721545B2 (en) 2004-07-13 2014-05-13 Dexcom, Inc. Transcutaneous analyte sensor
US8801611B2 (en) 2004-07-13 2014-08-12 Dexcom, Inc. Transcutaneous analyte sensor
US11026605B1 (en) 2004-07-13 2021-06-08 Dexcom, Inc. Analyte sensor
US8812072B2 (en) 2004-07-13 2014-08-19 Dexcom, Inc. Transcutaneous medical device with variable stiffness
US8825127B2 (en) 2004-07-13 2014-09-02 Dexcom, Inc. Transcutaneous analyte sensor
US8452368B2 (en) 2004-07-13 2013-05-28 Dexcom, Inc. Transcutaneous analyte sensor
US8858434B2 (en) 2004-07-13 2014-10-14 Dexcom, Inc. Transcutaneous analyte sensor
US20080242961A1 (en) * 2004-07-13 2008-10-02 Dexcom, Inc. Transcutaneous analyte sensor
US8886272B2 (en) 2004-07-13 2014-11-11 Dexcom, Inc. Analyte sensor
US20090036763A1 (en) * 2004-07-13 2009-02-05 Dexcom, Inc. Analyte sensor
US10993642B2 (en) 2004-07-13 2021-05-04 Dexcom, Inc. Analyte sensor
US10993641B2 (en) 2004-07-13 2021-05-04 Dexcom, Inc. Analyte sensor
US10980452B2 (en) 2004-07-13 2021-04-20 Dexcom, Inc. Analyte sensor
US8313434B2 (en) 2004-07-13 2012-11-20 Dexcom, Inc. Analyte sensor inserter system
US8690775B2 (en) 2004-07-13 2014-04-08 Dexcom, Inc. Transcutaneous analyte sensor
US8290560B2 (en) 2004-07-13 2012-10-16 Dexcom, Inc. Transcutaneous analyte sensor
US8989833B2 (en) 2004-07-13 2015-03-24 Dexcom, Inc. Transcutaneous analyte sensor
US10022078B2 (en) 2004-07-13 2018-07-17 Dexcom, Inc. Analyte sensor
US8280475B2 (en) 2004-07-13 2012-10-02 Dexcom, Inc. Transcutaneous analyte sensor
US8231531B2 (en) 2004-07-13 2012-07-31 Dexcom, Inc. Analyte sensor
US10932700B2 (en) 2004-07-13 2021-03-02 Dexcom, Inc. Analyte sensor
US8229534B2 (en) 2004-07-13 2012-07-24 Dexcom, Inc. Transcutaneous analyte sensor
US9044199B2 (en) * 2004-07-13 2015-06-02 Dexcom, Inc. Transcutaneous analyte sensor
US9055901B2 (en) 2004-07-13 2015-06-16 Dexcom, Inc. Transcutaneous analyte sensor
US9060742B2 (en) 2004-07-13 2015-06-23 Dexcom, Inc. Transcutaneous analyte sensor
US8731630B2 (en) 2004-07-13 2014-05-20 Dexcom, Inc. Transcutaneous analyte sensor
US8615282B2 (en) 2004-07-13 2013-12-24 Dexcom, Inc. Analyte sensor
US10918314B2 (en) 2004-07-13 2021-02-16 Dexcom, Inc. Analyte sensor
US7946984B2 (en) 2004-07-13 2011-05-24 Dexcom, Inc. Transcutaneous analyte sensor
US9078626B2 (en) 2004-07-13 2015-07-14 Dexcom, Inc. Transcutaneous analyte sensor
US10827956B2 (en) 2004-07-13 2020-11-10 Dexcom, Inc. Analyte sensor
US10813576B2 (en) 2004-07-13 2020-10-27 Dexcom, Inc. Analyte sensor
US10799159B2 (en) 2004-07-13 2020-10-13 Dexcom, Inc. Analyte sensor
US10799158B2 (en) 2004-07-13 2020-10-13 Dexcom, Inc. Analyte sensor
US10722152B2 (en) 2004-07-13 2020-07-28 Dexcom, Inc. Analyte sensor
US10709362B2 (en) 2004-07-13 2020-07-14 Dexcom, Inc. Analyte sensor
US7949381B2 (en) 2004-07-13 2011-05-24 Dexcom, Inc. Transcutaneous analyte sensor
US10709363B2 (en) 2004-07-13 2020-07-14 Dexcom, Inc. Analyte sensor
US9247900B2 (en) 2004-07-13 2016-02-02 Dexcom, Inc. Analyte sensor
US10524703B2 (en) 2004-07-13 2020-01-07 Dexcom, Inc. Transcutaneous analyte sensor
US7494465B2 (en) 2004-07-13 2009-02-24 Dexcom, Inc. Transcutaneous analyte sensor
US10314525B2 (en) 2004-07-13 2019-06-11 Dexcom, Inc. Analyte sensor
US7905833B2 (en) 2004-07-13 2011-03-15 Dexcom, Inc. Transcutaneous analyte sensor
US8565848B2 (en) 2004-07-13 2013-10-22 Dexcom, Inc. Transcutaneous analyte sensor
US7640048B2 (en) 2004-07-13 2009-12-29 Dexcom, Inc. Analyte sensor
US8571625B2 (en) 2004-07-13 2013-10-29 Dexcom, Inc. Transcutaneous analyte sensor
US8663109B2 (en) 2004-07-13 2014-03-04 Dexcom, Inc. Transcutaneous analyte sensor
US7899511B2 (en) 2004-07-13 2011-03-01 Dexcom, Inc. Low oxygen in vivo analyte sensor
US9414777B2 (en) 2004-07-13 2016-08-16 Dexcom, Inc. Transcutaneous analyte sensor
US7885697B2 (en) 2004-07-13 2011-02-08 Dexcom, Inc. Transcutaneous analyte sensor
US9986942B2 (en) 2004-07-13 2018-06-05 Dexcom, Inc. Analyte sensor
US8565849B2 (en) 2004-07-13 2013-10-22 Dexcom, Inc. Transcutaneous analyte sensor
US7857760B2 (en) 2004-07-13 2010-12-28 Dexcom, Inc. Analyte sensor
US9833176B2 (en) 2004-07-13 2017-12-05 Dexcom, Inc. Transcutaneous analyte sensor
US9814414B2 (en) 2004-07-13 2017-11-14 Dexcom, Inc. Transcutaneous analyte sensor
US7654956B2 (en) 2004-07-13 2010-02-02 Dexcom, Inc. Transcutaneous analyte sensor
US20100228109A1 (en) * 2004-07-13 2010-09-09 Dexcom, Inc. Transcutaneous analyte sensor
US9603557B2 (en) 2004-07-13 2017-03-28 Dexcom, Inc. Transcutaneous analyte sensor
US7783333B2 (en) 2004-07-13 2010-08-24 Dexcom, Inc. Transcutaneous medical device with variable stiffness
US9610031B2 (en) 2004-07-13 2017-04-04 Dexcom, Inc. Transcutaneous analyte sensor
US9668677B2 (en) 2004-07-13 2017-06-06 Dexcom, Inc. Analyte sensor
US9801572B2 (en) 2004-07-13 2017-10-31 Dexcom, Inc. Transcutaneous analyte sensor
US9775543B2 (en) 2004-07-13 2017-10-03 Dexcom, Inc. Transcutaneous analyte sensor
US11051726B2 (en) 2005-03-10 2021-07-06 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10918318B2 (en) 2005-03-10 2021-02-16 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US9314196B2 (en) 2005-03-10 2016-04-19 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10918316B2 (en) 2005-03-10 2021-02-16 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10743801B2 (en) 2005-03-10 2020-08-18 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US8560037B2 (en) 2005-03-10 2013-10-15 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10898114B2 (en) 2005-03-10 2021-01-26 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10856787B2 (en) 2005-03-10 2020-12-08 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US8579816B2 (en) 2005-03-10 2013-11-12 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US11000213B2 (en) 2005-03-10 2021-05-11 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US8611978B2 (en) 2005-03-10 2013-12-17 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10716498B2 (en) 2005-03-10 2020-07-21 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US9918668B2 (en) 2005-03-10 2018-03-20 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US9078608B2 (en) 2005-03-10 2015-07-14 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10918317B2 (en) 2005-03-10 2021-02-16 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10925524B2 (en) 2005-03-10 2021-02-23 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US7920906B2 (en) 2005-03-10 2011-04-05 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10610135B2 (en) 2005-03-10 2020-04-07 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10610137B2 (en) 2005-03-10 2020-04-07 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US9220449B2 (en) 2005-03-10 2015-12-29 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10709364B2 (en) 2005-03-10 2020-07-14 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10624539B2 (en) 2005-03-10 2020-04-21 Dexcom, Inc. Transcutaneous analyte sensor
US10617336B2 (en) 2005-03-10 2020-04-14 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10610102B2 (en) 2005-03-10 2020-04-07 Dexcom, Inc. Transcutaneous analyte sensor
US10610136B2 (en) 2005-03-10 2020-04-07 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10610103B2 (en) 2005-06-21 2020-04-07 Dexcom, Inc. Transcutaneous analyte sensor
US10709332B2 (en) 2005-06-21 2020-07-14 Dexcom, Inc. Transcutaneous analyte sensor
US10813577B2 (en) 2005-06-21 2020-10-27 Dexcom, Inc. Analyte sensor
CN100367907C (en) * 2005-07-07 2008-02-13 中国科学院生物物理研究所 Microelectrode making method and apparatus
US11363975B2 (en) 2005-11-01 2022-06-21 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9326716B2 (en) 2005-11-01 2016-05-03 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8920319B2 (en) 2005-11-01 2014-12-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9078607B2 (en) 2005-11-01 2015-07-14 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US10952652B2 (en) 2005-11-01 2021-03-23 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US11272867B2 (en) 2005-11-01 2022-03-15 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US11399748B2 (en) 2005-11-01 2022-08-02 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US11911151B1 (en) 2005-11-01 2024-02-27 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US10201301B2 (en) 2005-11-01 2019-02-12 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US11103165B2 (en) 2005-11-01 2021-08-31 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8915850B2 (en) 2005-11-01 2014-12-23 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US10231654B2 (en) 2005-11-01 2019-03-19 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US10265000B2 (en) 2006-01-17 2019-04-23 Dexcom, Inc. Low oxygen in vivo analyte sensor
US11191458B2 (en) 2006-01-17 2021-12-07 Dexcom, Inc. Low oxygen in vivo analyte sensor
US9757061B2 (en) 2006-01-17 2017-09-12 Dexcom, Inc. Low oxygen in vivo analyte sensor
US11596332B2 (en) 2006-01-17 2023-03-07 Dexcom, Inc. Low oxygen in vivo analyte sensor
US8133178B2 (en) 2006-02-22 2012-03-13 Dexcom, Inc. Analyte sensor
US9724028B2 (en) 2006-02-22 2017-08-08 Dexcom, Inc. Analyte sensor
US7920907B2 (en) 2006-06-07 2011-04-05 Abbott Diabetes Care Inc. Analyte monitoring system and method
WO2008004010A3 (en) * 2006-07-07 2009-09-24 Lectus Therapeutics Limited Multielectrode array and method of manufacturing the same
WO2008004010A2 (en) * 2006-07-07 2008-01-10 Lectus Therapeutics Limited Apparatus and methods
US11432772B2 (en) 2006-08-02 2022-09-06 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
WO2008039320A1 (en) * 2006-09-25 2008-04-03 The University Of North Carolina At Chapel Hill Microelectrodes, microelectrode formation, and methods of utilizing microelctrodes for characterizing properties of localized environments and substrates
US7831287B2 (en) 2006-10-04 2010-11-09 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US10349873B2 (en) 2006-10-04 2019-07-16 Dexcom, Inc. Analyte sensor
US8423114B2 (en) 2006-10-04 2013-04-16 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US10136844B2 (en) 2006-10-04 2018-11-27 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US9451908B2 (en) 2006-10-04 2016-09-27 Dexcom, Inc. Analyte sensor
US11382539B2 (en) 2006-10-04 2022-07-12 Dexcom, Inc. Analyte sensor
US9504413B2 (en) 2006-10-04 2016-11-29 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US8562558B2 (en) 2007-06-08 2013-10-22 Dexcom, Inc. Integrated medicament delivery device for use with continuous analyte sensor
US10403012B2 (en) 2007-06-08 2019-09-03 Dexcom, Inc. Integrated medicament delivery device for use with continuous analyte sensor
US9741139B2 (en) 2007-06-08 2017-08-22 Dexcom, Inc. Integrated medicament delivery device for use with continuous analyte sensor
US11373347B2 (en) 2007-06-08 2022-06-28 Dexcom, Inc. Integrated medicament delivery device for use with continuous analyte sensor
US20100324403A1 (en) * 2007-09-13 2010-12-23 Dexcom, Inc. Transcutaneous analyte sensor
US9668682B2 (en) 2007-09-13 2017-06-06 Dexcom, Inc. Transcutaneous analyte sensor
US9451910B2 (en) 2007-09-13 2016-09-27 Dexcom, Inc. Transcutaneous analyte sensor
US11672422B2 (en) 2007-09-13 2023-06-13 Dexcom, Inc. Transcutaneous analyte sensor
US11160926B1 (en) 2007-10-09 2021-11-02 Dexcom, Inc. Pre-connected analyte sensors
US11744943B2 (en) 2007-10-09 2023-09-05 Dexcom, Inc. Integrated insulin delivery system with continuous glucose sensor
US10653835B2 (en) 2007-10-09 2020-05-19 Dexcom, Inc. Integrated insulin delivery system with continuous glucose sensor
US11272869B2 (en) 2007-10-25 2022-03-15 Dexcom, Inc. Systems and methods for processing sensor data
US9717449B2 (en) 2007-10-25 2017-08-01 Dexcom, Inc. Systems and methods for processing sensor data
US10182751B2 (en) 2007-10-25 2019-01-22 Dexcom, Inc. Systems and methods for processing sensor data
US8417312B2 (en) 2007-10-25 2013-04-09 Dexcom, Inc. Systems and methods for processing sensor data
US9339238B2 (en) 2007-12-17 2016-05-17 Dexcom, Inc. Systems and methods for processing sensor data
US9135402B2 (en) 2007-12-17 2015-09-15 Dexcom, Inc. Systems and methods for processing sensor data
US9901307B2 (en) 2007-12-17 2018-02-27 Dexcom, Inc. Systems and methods for processing sensor data
US9839395B2 (en) 2007-12-17 2017-12-12 Dexcom, Inc. Systems and methods for processing sensor data
US8290559B2 (en) 2007-12-17 2012-10-16 Dexcom, Inc. Systems and methods for processing sensor data
US10506982B2 (en) 2007-12-17 2019-12-17 Dexcom, Inc. Systems and methods for processing sensor data
US11342058B2 (en) 2007-12-17 2022-05-24 Dexcom, Inc. Systems and methods for processing sensor data
US9149234B2 (en) 2007-12-17 2015-10-06 Dexcom, Inc. Systems and methods for processing sensor data
US9149233B2 (en) 2007-12-17 2015-10-06 Dexcom, Inc. Systems and methods for processing sensor data
US10827980B2 (en) 2007-12-17 2020-11-10 Dexcom, Inc. Systems and methods for processing sensor data
US9143569B2 (en) 2008-02-21 2015-09-22 Dexcom, Inc. Systems and methods for processing, transmitting and displaying sensor data
US9020572B2 (en) 2008-02-21 2015-04-28 Dexcom, Inc. Systems and methods for processing, transmitting and displaying sensor data
US11102306B2 (en) 2008-02-21 2021-08-24 Dexcom, Inc. Systems and methods for processing, transmitting and displaying sensor data
US8229535B2 (en) 2008-02-21 2012-07-24 Dexcom, Inc. Systems and methods for blood glucose monitoring and alert delivery
US8591455B2 (en) 2008-02-21 2013-11-26 Dexcom, Inc. Systems and methods for customizing delivery of sensor data
US8396528B2 (en) 2008-03-25 2013-03-12 Dexcom, Inc. Analyte sensor
US10602968B2 (en) 2008-03-25 2020-03-31 Dexcom, Inc. Analyte sensor
US11896374B2 (en) 2008-03-25 2024-02-13 Dexcom, Inc. Analyte sensor
US10561352B2 (en) 2008-09-19 2020-02-18 Dexcom, Inc. Particle-containing membrane and particulate electrode for analyte sensors
US10028683B2 (en) 2008-09-19 2018-07-24 Dexcom, Inc. Particle-containing membrane and particulate electrode for analyte sensors
US10028684B2 (en) 2008-09-19 2018-07-24 Dexcom, Inc. Particle-containing membrane and particulate electrode for analyte sensors
US9339222B2 (en) 2008-09-19 2016-05-17 Dexcom, Inc. Particle-containing membrane and particulate electrode for analyte sensors
US8560039B2 (en) 2008-09-19 2013-10-15 Dexcom, Inc. Particle-containing membrane and particulate electrode for analyte sensors
US10980461B2 (en) 2008-11-07 2021-04-20 Dexcom, Inc. Advanced analyte sensor calibration and error detection
US10448877B2 (en) * 2010-12-05 2019-10-22 Brown University Methods for prediction and early detection of neurological events
US20130261490A1 (en) * 2010-12-05 2013-10-03 Wilson Truccolo Methods for Prediction and Early Detection of Neurological Events
NL2009945C2 (en) * 2012-12-10 2014-06-11 Univ Leiden Process and device for minimally invasive deep tissue probing.
WO2014092566A1 (en) * 2012-12-10 2014-06-19 Universiteit Leiden Process and device for minimally invasive deep tissue probing
CN105559778A (en) * 2016-02-02 2016-05-11 上海交通大学 Brain electrode for collecting brain electrical signals for long time and preparation method thereof
US11191950B2 (en) * 2017-03-22 2021-12-07 International Business Machines Corporation High resolution brain-electronics interface
US11350862B2 (en) 2017-10-24 2022-06-07 Dexcom, Inc. Pre-connected analyte sensors
US11331022B2 (en) 2017-10-24 2022-05-17 Dexcom, Inc. Pre-connected analyte sensors
US11706876B2 (en) 2017-10-24 2023-07-18 Dexcom, Inc. Pre-connected analyte sensors
US11382540B2 (en) 2017-10-24 2022-07-12 Dexcom, Inc. Pre-connected analyte sensors
US11918354B2 (en) 2019-12-31 2024-03-05 Dexcom, Inc. Particle-containing membrane and particulate electrode for analyte sensors

Similar Documents

Publication Publication Date Title
US3826244A (en) Thumbtack microelectrode and method of making same
EP1164928B1 (en) Method of fabricating a medical electrode
US8489203B2 (en) Biostable neuroelectrode
US6024702A (en) Implantable electrode manufactured with flexible printed circuit
Griss et al. Micromachined electrodes for biopotential measurements
Loeb et al. Parylene as a chronically stable, reproducible microelectrode insulator
Loeb et al. Toward the ultimate metal microelectrode
US4685466A (en) Measuring sensor for the non-invasive detection of electro-physiological quantities
Wise et al. Wireless implantable microsystems: high-density electronic interfaces to the nervous system
US4892105A (en) Electrical stimulus probe
US4570637A (en) Electrode
US4125116A (en) Human tissue stimulation electrode structure
Shamma-Donoghue et al. Thin-film multielectrode arrays for a cochlear prosthesis
US6138044A (en) Method and device for sensing bioelectrical signals
US5148806A (en) Electrode for use with a living body
Salcman et al. Design, fabrication, and in vivo behavior of chronic recording intracortical microelectrodes
Chorover et al. A sweet new multiple electrode for chronic single unit recording in moving animals
Wang et al. Characteristics of electrode impedance and stimulation efficacy of a chronic cortical implant using novel annulus electrodes in rat motor cortex
CN108186006B (en) Semi-flexible metal dry-type biomedical electrode and manufacturing method thereof
SE425344B (en) Disposable medical electrode
AU2018247588B2 (en) Apparatus and method for capturing neural recordings
US5299572A (en) Biological electrode array
US3420223A (en) Electrode for biological recording
US4219027A (en) Subcutaneous electrode structure
US4923469A (en) Prothesis and electrode for the electrical stimulation of the inner ear, and method for producing said electrode