Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3785380 A
Publication typeGrant
Publication date15 Jan 1974
Filing date22 Feb 1972
Priority date22 Feb 1972
Publication numberUS 3785380 A, US 3785380A, US-A-3785380, US3785380 A, US3785380A
InventorsR Brumfield
Original AssigneeR Brumfield
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Filtering blood sucker
US 3785380 A
Abstract
A blood sucker is connected to the suction side of a peristaltic tube pump, evacuating blood lost by a patient at a surgical site. The air evacuated through the blood sucker when in use can be filtered through a first disposable micropore filter in the sucker, prior to contacting the blood evacuated from the surgical site. The patient blood, clean air and surgical debris are also filtered through a sucker second disposable filter, whose pore apertures are sized to remove the tissue debris from the blood flowing into the sucker. Early removal of tissue debris from patient blood in the blood sucker can slow the initiation of the blood clotting mechanism. The filtered air can decrease the microscopic air contaminants in the filtered blood, which can then be returned to the patient's circulatory system. An integral plurality of flexible, parallel array blood conductive tubing provide wall stabilized, low turbulence blood flow from the sucker to a cardiotomy reservoir or the like, prior to returning the blood to the patient's circulation.
Images(2)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent Brumfield 1 .Han. 15, 1974 FlLTERlNG BLOOD SUCKER [76] Inventor: Robert C. Brumfield, 73 Emerald STRACT Laguna Beach Cahf' 92657 A blood sucker is connected to the suction side of a [22] Fil d; F b, 22, 1972 peristaltic tube pump, evacuating blood lost by a pa- App]. No.: 228,033

Primary Examiner-Charles F. Rosenbaum Attorney-J. L. Jones tient at a surgical site. The air evacuated through the blood sucker when in use can be filtered through a first disposable micropore filter in the sucker, prior to contacting the blood evacuated from the surgical site. The patient blood, clean air and surgical debris are also filtered through a sucker second disposable filter, whose pore apertures are sized to remove the tissue debris from the blood flowing into the sucker. Early removal of tissue debris from patient blood in the blood sucker can slow the initiation of the blood clotting mechanism. The filtered air can decrease the microscopic air contaminants in the filtered blood, which can then be returned to the patients circulatory system. An integral plurality of flexible, parallel array blood conductive tubing provide wall stabilized, low turbulence blood flow from the sucker to a cardiotomy reservoir or the like, prior to returning the blood to the patients circulation.

8 Claims, 10 Drawing Figures PATENIED JAN 1 5 i974 SHEET 2 0f 2 FILTERING BLOOD SUCKER CROSS-REFERENCES TO RELATED APPLICATION This application is related to the following applications filed earlier by the same sole inventor:

US Patent application, Ser. No. 175,182 for BLOOD OXYGENATOR AND THERMOREGU- LATOR APPARATUS by Robert C. Brumfield, filed Aug. 26, 1971;

US. Patent application, Ser. No. 196,458, for

BLOOD OXYGENATOR FLOW GUIDE, by Robert C. Brumfield, filed Nov. 11, 1971;

US. Patent application, Ser. No. 202,779, for TWO- PHASE FLUID FLOW GUIDE FOR BLOOD OX- YGENATOR, By Robert C. Brumfield, filed Nov. 29, 1971; and

Docket No. 158 for LOW PRESSURE HEAT EX- CHANGER FOR OXYGENATED BLOOD, by Robert C. Brunfield, filed Jan. 10, 1972. Brumfield,

Docket No. 160 for CARDIOTOMY RESERVOIR,

by Robert C. Brumfield, filed Jan. 31, 1972.

BACKGROUND OF THE INVENTION The filtering blood sucker is classified in Class 23 Subclass 258.5. The blood sucker is useful in combination with a peristaltic tube pump, evacuating blood lost by a patient at a surgical site.

There can be substantial loss of patient blood during a surgical procedure. A blood sucker is connected to the suction side of a peristaltic tube pump and evacuates patient blood lost, for early processing of the blood and its return to the patients circulatory system. Since the recovered blood can contain surgical tissue debris, the blood can initiate the clotting mechanism. By removing the tissue debris from the recovered blood as quickly as possible by the filtering blood sucker, it is possible to decrease the risk of clot formation in the patient, with a subsequent more favorable patient progno- SIS.

SUMMARY OF THE INVENTION The filtering blood sucker is connected to the suction side ofa peristaltic tube pump and evacuates blood lost in a body cavity by a patient during a surgical operation. The blood sucker evacuates air through its sucker vent as the blood sucker lies operatively connected to the peristaltic pump, prior to its actual use on a patient. The surgeon grips the blood sucker and applies a finger, closing the air vent aperture and causing the sucker to evacuate blood, air, surgical tissue debris and fluids from the surgical site. The air evacuated through the sucker while operatively connected, but not in surgical use, can be filtered through a disposable microporous filter secured in the sucker, cleaning the air. Thus the blood contamination from the air is greatly reduced. The blood sucker positively contains a second disposable open pore foam filter whose pore apertures are sized to remove tissue debris from the blood flowing into the sucker. The pore apertures are sized to remove the tissue debris, without removing the formed elements of the blood and altering the homogeneity of the blood. In the sucker the pair of filters, the micropore filter for air and the second disposable foam filter for the patients blood, are physically separated. The air enters through the blood sucker air vent and the three-phase mixture of blood, air, and tissue debris enters through the surgical evacuating tube also on the suction side of the blood sucker. Alternatively, the blood sucker can have only a disposable open pore foam filter sleeve means for the removal of surgical tissue debris from the evacuated three-phase mixture of blood, air and tissue debris, omitting the microporous air filter.

Other objects and advantages of this invention can be found in the specification and drawings appended to this application.

BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic illustration of the blood sucker of this invention connected in combination with the suction side of the peristaltic tube pump.

FIG. 2 is an elevational perspective partial sectional view of one blood sucker modification incorporating an open pore foam filter sleeve.

FIG. 3 is an elevational perspective view of a filter frame of this invention useful in the blood sucker illustrated in FIG. 2.

FIG. 4 is an elevational perspective view of a filter sleeve useful in the blood sucker illustrated in FIG. 2.

FIG. 5 illustrates a further detail of the attachment of the filter sleeve to the filter frame as shown in FIG. 2.

FIG. 6 is a perspective elevational view illustrating a single use integral component of a blood sucker incorporating a microporous air filter and an open pore foam blood filter of this invention.

FIG. 7 illustrates in perspective elevational view an assembled blood sucker of this invention incorporating the disposable blood sucker insert of FIG. 6 of this invention.

FIG. 8 is a detailed view of the simple blood sucker case closure for attaching and sealing a disposable blood sucker insert of FIG. 6 into the blood sucker product illustrated in FIG. 7.

FIGS. 9A and 9B illustrate the construction of the integral plurality of blood sucker tubes, providing separation and removal of air from the blood sucker.

THE PREFERRED EMBODIMENT OF THE INVENTION Referring to the schematic view of FIG. 1 in detail, the blood sucker 10 is shown connected by blood conductive tubing 11 to the roller pump 12, which has a peristaltic pump suction side 13 and a pump pressure side 14, as the pump rotates in a direction 15. The suction side 16 of the blood sucker l0 accepts a threephase flow of blood, air and surgical tissue debris intake flowing through the pump in the direction 17 and venting from the pump at 18 into a cardiotomy reservoir, or the like. In operative procedure, the vent 19 on the blood sucker 10 is closed by an operators finger to produce evacuation through the sucker It) in the direc' tion 16.

Referring to FIG. 2 in detail, a blood sucker 20 of this invention has a surgical evacuating tube 21 disposed on the suction side of the sucker 20 and secured to a tubular plastic case 22. The screw cap closure 23 closes the blood sucker 20. The air vent 241 penetrates the case 22 and is equivalent to the air vent 19 of blood sucker 10. The pump evacuation tube 25 is equivalent to the blood conductive tubing 11. Disposed internally in the tubular plastic case 22 is the open pore foam filter sleeve 26 having a closed filter terminus 27. The tubular case 22 has a closed case terminus 28 to which the surgical evacuating tube 21 is attached. A filter frame 29 supports the porous foam filter sleeve 26, the filter frame 29 having a frame terminus closure 30. The porous foam filter sleeve 26 covers the filter frame 29 and is secured to the filter frame closure 30 by the wire clamp ring 32. The filter frame exit conduit 31 provides a filter evacuation aperture 33 in the frame closed end 30. The exit conduit 31 is secured in the exterior evacuating means tube 25.

Further details of the filter frame 29 are illustrated in FIG. 3, wherein the filter frame members 29 are shown to be connected by a crossed set of frame members 34, and all are integral with the filter frame closure 30. The filter frame exit conduit 31 is integrally secured to the closed end 30, providing a filter evacuating aperture 33. A securing groove 36 is provided around the end 30.

The porous foam filter sleeve 26 is shown in detail in FIG. 4, having a closed filter terminus 27 and an open filter sleeve terminus 35. Further, in FIG. is shown the details of the conventional wire clamp ring 32 which is secured to the porous foam filter terminus 35, securing the sleeve 26 in the groove 36 of the closed terminus 30.

Referring to FIG. 6 in detail, the single use blood sucker tubular insert unit 60 is shown to have triangular shape support sides 61 and 62 and a triangular central partition 63. A plurality of supportive ribs 64 are secured across the members 61, 62 and 63, providing a pair of oppositely disposed frame plate support areas 100 and 101. An evacuating aperture 65 forms one end of the unit 60 and a support bracket 66 forms the other insert end. On the top surface of the blood sucker unit 60 is disposed a microporous filter sheet 67 sealed on the frame plate support area 100 formed on the pair of edges of the triangular sides 61 and 62. A porous polyurethane foam filter sheet 68 is sealed on the frame plate support area 101 formed on the pair of bottom edges of the triangular shape support sides 61 and 62. The filter sheet 68 is permeable to whole blood, and filters out surgical debris and the like. The bracket 66 supports a bond 69 of the microporous filter sheet 67 and the foam sheet filter 68, providing an impervious seal through which blood does not flow.

Referring to FIG. 7 in detail, the tubular plastic case 70 encloses the blood sucker insert unit 60, and has an evacuating closure 71 secured to the case 70. An air vent 72 is covered by the surgeons finger to place the complete blood sucker unit 73 in operation. Prior to the use of the blood sucker unit 73, room air is sucked through the air vent 72 by a peristaltic pump unit 12 or the like. The air sucked into the blood sucker 73 through the vent 72 is filtered through the microporous filter sheet 67, thus filtering out bacterial, pollen and other types of airborne contaminants from the remainder of the blood sucker unit 73. When the surgeon closes the air vent 72 with a finger, and places the evacuation tube in the patients body cavity, the three-phase mixture of blood, air and surgical tissue debris are evacuated through the tube 74 into the blood reservoir 75 and thence into the filtered blood reservoir 76 where the filtered blood 77 and air 78 are removed through the blood sucker case closure 71. In practice the inlet blood and tissue reservoir 75 traps the surgical tissue debris, passing whole blood through the foam sheet filter 68 into the filtered blood reservoir 76. The

blood sucker insert unit 60 is dimensioned to fit snugly in the case 70, the bonded joint 69 contacts and imperviously seals the case at the case terminus 79, providing a separate air reservoir 80 disposed above the microporous filter sheet 67.

FIG. 8 illustrates in detail the seal and the mechanical securing means provided by the sealing bead 8] disposed on the blood sucker case closure 71. By simply inserting the blood sucker insert unit 60 into the case 70 and pushing in the closure 71, one can make an hermetic and mechanical joint, sealing in the insert 60. A further modification of the blood sucker unit 73 is provided by the fine pore sponge cartridge 82 secured in the air aperture 83, through which the air 78 exits through exit conduit 84. The polyurethane sponge cartridge 82 is treated with a thin film of the silicone composition which induces blood-air foam collapse. Thus, any blood-air foam touching 82 is induced to collapse and air passes through the polyurethane sponge. The silicone treated sponge cartridge 82 will not readily pass whole blood, so the blood is entrained in the pair of apertures 85 and 86 and exits through conduits 87 and 88.

FIG. 9 illustrates an integral plurality of flexible, conductive blood tubing which are useful in inducing laminar blood-air slug flow in a roller peristaltic pump of the illustrated type 12. The unit tube 90 is secured to the exit conduit 84 and vents most of the air from the sucker 73. The pair of unit tubes 91 and 92 carry exiting blood 77 in the blood-air slug flow from the sucker 73. The tubes 91 and 92 are specifically diametrically sized to provide laminar slug flow as taught in applicants earlier teaching of US. Ser. Nos. l75,l82 and 196,458. The unit tubes 90, 91 and 92 are integrally connected by the flat continuous rubber strips 93 and 94. Thus the three tubes can be disposed parallel and flat, as shown by the fragmentary view of FIG. 9B, and placed in a peristaltic roller pump for operational blood processing.

It is basic to the filtering blood sucker of this invention that a porous filter structure is embodied which has pore structure sized to filter the formed elements of whole blood, ranging up to I00 micron average particle diameter. The porous polyurethane foam filter sheet 68 is sized to remove surgical tissue debris and the like of larger particle size, retaining these large particles on the reservoir 75 side of the foam filter sheet. In a further modification of this invention an open pore foam filter permeable to whole blood can be embodied in the case, to filter out the surgical tissue debris which enters the blood sucker.

It is desirable to provide a simple frame structure of a low cost, blood compatible plastic which can be suitably enclosed with a foam filter sleeve, filter sheet or other similar structure for the filtering of whole blood. The microporous filter paper typically has pore structure of less than 1 micron, such as 0.5 microns, or the like. The filter sheets, microporous or foam filter, can be sealed to the filter frame structures by heat sealing, cementing or the like. The porous polyurethane foam filter may be treated with a well known silicone defoaming composition to provide a very thin silicone film on the porous foam which will tend to collapse the air-blood foam on contacting the filter. Thus the blood sucker filtering unit can provide the first step in the defoaming of filtered blood and air phases increasing the rate of blood processing for rapid return to the patient's extra-corporeal circulation.

Obviously many modifications and variations in the improvement in the filtering blood sucker can be made in the light of the above illustrations, embodiment and teaching. it is therefore understood that within the scope of the appended claims the invention may be practiced otherwise than has been specifically described.

I claim:

l. in a blood sucker having a case forming a handpiece, said case having an inlet, an evacuating tube and an air vent, the improvement comprising:

an open pore plastic foam filter mat operatively disposed inside said blood sucker case providing pores sized to pass particles less than 100 micron average diameter, said filter mat compatible with blood, said filter mat filtering all blood, air and surgical debris passing into said blood sucker filter case, said filter mat retaining said surgical debris, said blood and air exiting through said filter mat through the sucker case exit conduit.

2. In a blood sucker having a case forming a handpiece, said case having an inlet, an evacuating tube, an air vent, and an exit conduit, the improvement combination comprising:

an open pore plastic foam filter means operatively disposed inside said blood sucker case, said filter means compatible with blood; and,

a support filter frame positioned inside said blood sucker case providing a support structure for said filter;

said filter means and support filter frame combination adaptively filtering the whole blood-air foam and surgical tissue debris entering said blood sucker case, retaining said tissue debris in said filter and passing said whole blood and air through the exit conduit of said blood sucker case.

3. The combination with claim 2 wherein the further improvement comprises:

a porous plastic foam sheet filter means having a porous foam filter sleeve having one closed terminus and one open terminus; and,

a support filter frame having a frame supportively positioned inside said filter sleeve, said frame having one terminus closure and an evacuation tube secured to said closure, providing a fluid conductive aperture therein;

said open terminus of said filter sleeve adaptively secured coaxially on said frame terminus closure and said evacuation tube adaptively conductively secured to said blood sucker case exit conduit of said sucker case closure.

4. In a blood sucker having a case forming a handpiece, said case having an inlet, an evacuating tube, and

an air vent, the improvement combination comprising:

a support filter frame having a pair of oppositely dis posed frame plate support areas, said frame closely fitting in said blood sucker case, said frame imperviously partitioning said pair of frame plate support areas from each other;

a microporous filter sheet completely disposed over one of said frame plate support areas having pores less than one micron average diameter;

an open pore plastic foam sheet completely disposed over the second of said pair of frame plate support areas, providing pores sized to pass particles less than micron average diameter;

said microporous filter sheet confronting the blood sucker case air vent and spaced therefrom, providing a separate air reservoir in said blood sucker case;

said plastic foam sheet confronting the blood sucker case evacuation tube, providing a separate reservoir for blood, air and surgical tissue debris in said blood sucker case; and,

a blood sucker case closure conductively sealing said blood sucker case exit terminus, providing an exit conduit for the blood and air filtered through said plastic foam sheet on evacuation of said blood sucker case, retaining said surgical tissue debris in said sucker case.

5. The combination of claim 4 wherein the further improvement combination comprises:

a blood sucker case closure having at least two exit conduits disposed thereon, each one of said conduits geometrically disposed providing dominantly separate air and blood evacuation through a separate conduit.

6. The combination of claim 4 wherein the further improvement combination comprises: 7

a blood sucker case closure having three exit conduits disposed thereon, one exit conduit sized and disposed to conduct predominantly air, and a pair of exit conduits sized and disposed to predominantly conduct laminar blood-air slug flow in exit conduits.

7. The combination with claim 4 wherein the further improvement comprises:

an open pore, sponge cartridge, having a blood impermeable sponge surface and a pore size less than 1 micron, disposed in said air exit conduit, providing a filtering air exit separating air from the bloodair foam.

8. The combination with claim 4 wherein the further improvment comprises:

an open pore polyurethane foam, having a blood compatible surface disposed thereon.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2449497 *22 Aug 194614 Sep 1948Will W McleodCombination aspirator tip
US3191600 *4 May 196229 Jun 1965Hazen F EverettBlood suction apparatus
US3324855 *12 Jan 196513 Jun 1967Heimlich Henry JSurgical sponge stick
US3430631 *12 Jan 19664 Mar 1969Abramson Daniel JSurgeon's drain
US3520300 *15 Mar 196714 Jul 1970Amp IncSurgical sponge and suction device
US3610242 *28 Feb 19695 Oct 1971Sheridan David SMedico-surgical suction systems
US3675653 *15 Aug 196911 Jul 1972Air ShieldsWound drainage equipment
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3863624 *3 Dec 19734 Feb 1975Gram HansVacuum curettage device
US3929133 *20 Nov 197430 Dec 1975Int Pregnancy Advisory ServiceApparatus for removing, washing and displaying fragmentary products of operative procedures
US3965896 *17 Jun 197429 Jun 1976Swank Roy LBlood autotransfusion method and apparatus
US4393879 *11 Apr 198019 Jul 1983Milex Products, Inc.Tissue-collecting apparatus
US4463616 *2 Sep 19837 Aug 1984Instrumentation Laboratory Inc.Sample handling apparatus
US4468217 *9 Jul 198228 Aug 1984Kuzmick Kenneth MSurgical suction tip with filter
US4801292 *23 Jun 198731 Jan 1989Bard LimitedMedical pump for debris collection
US4857063 *19 Jan 198815 Aug 1989Usa MedicalSurgical aspirator
US4886492 *18 Mar 198812 Dec 1989Brooke Gerard MSurgical suction tip with filter
US5197485 *15 Oct 199130 Mar 1993Pilling Co.Method and apparatus for sampling aortic plaque
US5378228 *16 Dec 19913 Jan 1995Schmalzried; Thomas P.Method and apparatus for joint fluid decompression and filtration with particulate debris collection
US5421824 *18 Jul 19946 Jun 1995Boston Scientific CorporationBladder evacuator
US5630939 *15 Sep 199520 May 1997Imtec CorporationFilter assembly device for use in surgical aspirated suction
US5766134 *18 Jul 199516 Jun 1998Atrion Medical Products, Inc.Autogenous bone specimen collector
US5824212 *13 Dec 199520 Oct 1998Kevin Business CorporationCyclone apparatus for removal of air from air containing blood
US6066111 *22 Sep 199723 May 2000Convergenza AgMethod of blood-gas separation device and separating device
US6068477 *6 Jul 199930 May 2000Mahlmann; Lee A.Foam-cushioned aspirator
US6083175 *17 Mar 19974 Jul 2000Bladhs Medical AbMethod and apparatus for collecting fragments of bone tissue
US631241422 Sep 19976 Nov 2001Alexander BrockhoffBlood-gas separation device
US6406454 *14 Mar 200018 Jun 2002Mohammed Ali HajianpourSurgical suction probe system with an easily cleaned internal filter
US646822526 May 200022 Oct 2002Astra Tech AbMethod and apparatus for collecting bone tissue fragments
US682786226 Sep 19977 Dec 2004Alexander BrockhoffMethod and device for removing gas from gas containing blood
US690845514 Jun 200221 Jun 2005Mohammed Ali HajianpourSurgical suction probe system with an easily cleaned internal filter
US71725797 May 20046 Feb 2007Civco Medical Instruments Co., Inc.System and method for irrigation and tissue evacuation and collection
US7556622 *18 May 20057 Jul 2009Suros Surgical Systems, Inc.Selectively openable tissue filter
US783763010 Feb 200623 Nov 2010Suros Surgical Systems, Inc.Fluid control element for biopsy apparatus
US788347628 Feb 20068 Feb 2011Suros Surgical Systems, Inc.Selectively detachable outer cannula hub
US810988612 Aug 20037 Feb 2012Suros Surgical Systems, Inc.Biopsy apparatus
US816781826 Jan 20091 May 2012Suros Surgical Systems, Inc.Biopsy apparatus with vacuum relief
US818720414 Feb 200829 May 2012Suros Surgical Systems, Inc.Surgical device and method for using same
US82022291 Oct 200719 Jun 2012Suros Surgical Systems, Inc.Surgical device
US85294681 Jul 200910 Sep 2013Suros Surgical Systems, Inc.Surgical system
US869079316 Mar 20098 Apr 2014C. R. Bard, Inc.Biopsy device having rotational cutting
US870262129 Apr 201122 Apr 2014C.R. Bard, Inc.Quick cycle biopsy system
US870262210 Aug 201122 Apr 2014C.R. Bard, Inc.Quick cycle biopsy system
US8708928 *15 Apr 200929 Apr 2014Bard Peripheral Vascular, Inc.Biopsy apparatus having integrated fluid management
US870892912 Mar 201329 Apr 2014Bard Peripheral Vascular, Inc.Biopsy apparatus having integrated fluid management
US870893013 Mar 201329 Apr 2014Bard Peripheral Vascular, Inc.Biopsy apparatus having integrated fluid management
US872156328 Aug 201213 May 2014C. R. Bard, Inc.Single-insertion, multiple sample biopsy device with integrated markers
US872800328 Aug 201220 May 2014C.R. Bard Inc.Single insertion, multiple sample biopsy device with integrated markers
US872800412 Apr 201220 May 2014C.R. Bard, Inc.Biopsy needle system having a pressure generating unit
US87646795 Aug 20131 Jul 2014Suros Surgical Systems, Inc.Biopsy apparatus
US877120022 Aug 20128 Jul 2014C.R. Bard, Inc.Single insertion, multiple sampling biopsy device with linear drive
US880819714 Mar 201319 Aug 2014Bard Peripheral Vascular, Inc.Biopsy driver assembly having a control circuit for conserving battery power
US880820024 Oct 201219 Aug 2014Suros Surgical Systems, Inc.Surgical device and method of using same
US88584637 Nov 201314 Oct 2014C. R. Bard, Inc.Biopsy device
US885846415 Aug 201314 Oct 2014Suros Surgical Systems, Inc.Surgical system
US88646808 Jul 200521 Oct 2014Bard Peripheral Vascular, Inc.Transport system for biopsy device
US892652727 Mar 20126 Jan 2015Bard Peripheral Vascular, Inc.Tissue sample flushing system for biopsy device
US893223322 May 200613 Jan 2015Devicor Medical Products, Inc.MRI biopsy device
US895120813 Aug 201210 Feb 2015C. R. Bard, Inc.Self-contained handheld biopsy needle
US895120918 Apr 201210 Feb 2015C. R. Bard, Inc.Biopsy device and insertable biopsy needle module
US896143010 Sep 201224 Feb 2015C.R. Bard, Inc.Single-insertion, multiple sampling biopsy device usable with various transport systems and integrated markers
US898622221 May 201424 Mar 2015Hologic, Inc.Biopsy apparatus
US899244026 Sep 201131 Mar 2015Bard Peripheral Vascular, Inc.Length detection system for biopsy device
US907250229 Dec 20117 Jul 2015C. R. Bard, Inc.Disposable biopsy unit
US916174321 Apr 201420 Oct 2015C. R. Bard, Inc.Quick cycle biopsy system
US917364112 Aug 20093 Nov 2015C. R. Bard, Inc.Biopsy apparatus having integrated thumbwheel mechanism for manual rotation of biopsy cannula
US928294928 Sep 201215 Mar 2016Bard Peripheral Vascular, Inc.Charging station for battery powered biopsy apparatus
US93454587 Oct 201424 May 2016Bard Peripheral Vascular, Inc.Transport system for biopsy device
US939299912 Dec 201419 Jul 2016Devicor Medical Products, Inc.MRI biopsy device
US94210023 Jun 201523 Aug 2016C. R. Bard, Inc.Disposable biopsy unit
US943963123 Dec 201413 Sep 2016C. R. Bard, Inc.Biopsy device and insertable biopsy needle module
US943963221 Jan 201513 Sep 2016C. R. Bard, Inc.Self-contained handheld biopsy needle
US94568098 Dec 20144 Oct 2016Bard Peripheral Vascular, Inc.Tissue sample flushing system for biopsy device
US950445315 Jun 201629 Nov 2016Devicor Medical Products, Inc.MRI biopsy device
US956604515 Oct 201414 Feb 2017Bard Peripheral Vascular, Inc.Tissue handling system with reduced operator exposure
US963877030 Dec 20052 May 2017Devicor Medical Products, Inc.MRI biopsy apparatus incorporating an imageable penetrating portion
US96555998 Oct 201523 May 2017C. R. Bard, Inc.Biopsy apparatus having integrated thumbwheel mechanism for manual rotation of biopsy cannula
US977558830 Sep 20143 Oct 2017C. R. Bard, Inc.Biopsy device
US979536524 Apr 201324 Oct 2017Devicor Medical Products, Inc.MRI biopsy apparatus incorporating a sleeve and multi-function obturator
US20040049128 *12 Aug 200311 Mar 2004Miller Michael E.Biopsy apparatus
US20050054995 *7 May 200410 Mar 2005Barzell Winston E.System and method for irrigation and tissue evacuation and collection
US20060129062 *10 Feb 200615 Jun 2006Nicoson Zachary RFluid control element for biopsy apparatus
US20060155209 *28 Feb 200613 Jul 2006Miller Michael ESelectively detachable outer cannula hub
US20060258956 *22 May 200616 Nov 2006Haberstich Wells DMRI Biopsy Device
US20060260994 *18 May 200523 Nov 2006Mark Joseph LSelectively openable tissue filter
US20070213666 *6 Feb 200713 Sep 2007Civco Medical Instruments Co., Inc.System and method for irrigation and tissue evacuation and collection
US20080287826 *8 Jul 200520 Nov 2008Bard Peripheral Vasular, Inc.Transport System for Biopsy Device
US20090087249 *19 Oct 20072 Apr 2009Jake FlagleAdapter assembly
US20090088663 *25 Jan 20082 Apr 2009Miller Michael ESurgical system
US20090088664 *14 Feb 20082 Apr 2009Miller Michael ESurgical device and method for using same
US20090088666 *1 Oct 20072 Apr 2009Miller Michael ESurgical device
US20090137927 *26 Jan 200928 May 2009Miller Michael EBiopsy apparatus with vacuum relief
US20110004119 *1 Jul 20096 Jan 2011Michael HoffaSurgical system
US20110105946 *31 Oct 20095 May 2011Sorensen Peter LBiopsy system with infrared communications
US20110208085 *29 Apr 201125 Aug 2011C.R. Bard, Inc.Quick cycle biopsy system
US20120065541 *15 Apr 200915 Mar 2012Videbaek KarstenBiopsy apparatus having integrated fluid management
DE10162931A1 *20 Dec 200117 Jul 2003Fraunhofer Ges ForschungDevice for separating inhomogeneous tissue, especially bone and soft tissue, comprises a container, an actuator, and devices for mechanically separating one tissue type from the other tissue type
DE10162931B4 *20 Dec 20013 Nov 2005Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.Vorrichtung und Verfahren zum Separieren von inhomogenem biologischen Gewebe
DE19545404A1 *6 Dec 199512 Jun 1997Kevin Business CorpAusscheiden von Luft aus lufthaltigem Blut
DE19650406A1 *5 Dec 199618 Jun 1998Kevin Business CorpBlutabsaugvorrichtung
DE19650407A1 *5 Dec 199610 Jun 1998Kevin Business CorpBlut-Gas-Trennverfahren und -Trennvorrichtung
DE19719555A1 *9 May 199712 Nov 1998Kevin Business CorpVerfahren und Vorrichtung zum Ausscheiden von Gas aus gashaltigem Blut
EP0846469A27 Nov 199710 Jun 1998Kevin Business CorporationBlood suction device
EP0852150A27 Nov 19978 Jul 1998Kevin Business CorporationBlood/gas separator and method
EP0852150B1 *7 Nov 199719 Mar 2003Convergenza AgBlood/gas separator
EP0876822A26 Mar 199811 Nov 1998Kevin Business CorporationProcess and apparatus for separating gas from blood
WO1993011721A1 *25 Nov 199224 Jun 1993Schmalzried Thomas PApparatus for joint fluid decompression and filtration
Classifications
U.S. Classification604/119, 422/44, 604/902, 604/190
International ClassificationA61M1/00, A61M1/36
Cooperative ClassificationY10S604/902, A61M1/0047, A61M1/0056, A61M1/0039, A61M1/3627
European ClassificationA61M1/00H14, A61M1/00H10