US3763726A - Forceps, pliers or the like and method of producing the same - Google Patents

Forceps, pliers or the like and method of producing the same Download PDF

Info

Publication number
US3763726A
US3763726A US00206023A US3763726DA US3763726A US 3763726 A US3763726 A US 3763726A US 00206023 A US00206023 A US 00206023A US 3763726D A US3763726D A US 3763726DA US 3763726 A US3763726 A US 3763726A
Authority
US
United States
Prior art keywords
slot
blank
projection
walls
arms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00206023A
Inventor
H Hildebrand
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aesculap Werke AG
Original Assignee
Aesculap Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aesculap Werke AG filed Critical Aesculap Werke AG
Application granted granted Critical
Publication of US3763726A publication Critical patent/US3763726A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/2812Surgical forceps with a single pivotal connection
    • A61B17/2816Pivots
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T403/00Joints and connections
    • Y10T403/32Articulated members
    • Y10T403/32606Pivoted
    • Y10T403/32951Transverse pin or stud
    • Y10T403/32967Attached to or integral with one member

Definitions

  • Klein ABSTRACT A forceps or similar tool having two arms pivotably connected to each other by a box lock comprising a male lock member on one arm and a female lock member on the other arm, forming a longitudinal slot, the male lock member extending through the slot and having a transverse bearing bore or coaxial bearing recesses in its opposite sides, and the walls of the slot being pressed against the opposite surfaces of the male member with such a force that the material of the slot walls starts to flow and a part thereof passes into the bore or the recesses and forms therein studs together serving as a pivot pin which therefore does not extend through the walls of the slots but only projects from these walls and integrally therewith into the bearing bore or recesses.
  • the present invention relates to improvements in forceps, tongs, pliers or similar tools, especially for medical purposes, in which the tool comprises two arms which are pivotably connected to each other by a socalled box lock.
  • Such a box lock of the known tools of this kind consists of a male lock part of a reduced thickness on one tool arm intermediate its handle part and the part fonning a jaw or the like and a female lock part in a corresponding position on the other tool arms in the form of a slotted part.
  • the slot of the slotted arm is widened and the other arm is passed through the slot so that the reduced part of this arm is located within the slot, whereupon the widened walls of the slot are pressed toward each other and against the opposite surfaces of the reduced part.
  • coaxial bores are provided in the two lock parts and a rivet or screw serving as a pivot pin is passed through these bores and secured to one or both walls of the slot.
  • a tool which is provided with a box lock of this construction has considerable disadvantages, especially when it is designed as a surgical or dental instrument.
  • Such instruments include, for example, hemostatic forceps, polypus forceps, clamp forceps, kidney-stone forceps, stomach clamps, auricle clamps, intestinal forceps, sponge, tampon and towel-holding forceps, clipapplying forceps, bronchus clamps, ananstomosis clamps, coarctation clamps, mosquito forceps, dissecting and ligature forceps and the like, and also tooth pliers, technical pliers, needle holders, bone rongeurs, and bone-cutting forceps.
  • a further object of the invention consists in designing such a forceps or similar too] in a manner so as to permit it to be produced much more easily and quickly than one of the known tools in which the two arms are likewise connected by a box lock.
  • the invention provides that, instead of employing a pivot pin in the form of a rivet or screw which extends through co-- axial bores in the two lock parts and pivotably connects the two arms of the tool to each other, at least one of the two main wall surfaces of the slot in one arm is provided with a studlike projection which is integral with this surface and engages pivotably into a bearing bore or bearing recess in the male lock part of the other arm which is located within the slot.
  • This construction has the advantage that the walls of the slot are not weakened by a bore but that, on the contrary, at least the wall of the slot with which the studlike projection is integral may be reinforced by this projection. Furthermore, there is no longer any danger that a crevice or contact corrosion may occur between the walls of the slot and the pivot or connecting element since the latter now forms an integral part of a wall of the slot.
  • this projection may be of an annular shape which engages into a corresponding annular recess in the male lock part of the other arm. While this male lock part of one arm which is passed through the slot of the other arm will be weakened only very slightly by this annular recess, this construction results in a very secure connection and a very accurate pivoting between the two arms of the tool since both the radially inner and outer wall surfaces of the annular projection form bearing surfaces which are rotatable around the corresponding walls of the annular recess.
  • the present invention further concerns a method of producing a forceps or similar tool which is designed in the manner as previously described.
  • This method consists in producing a slotted blank for one tool arm and an unslotted blank for the other arm which is provided with a male lock part which is to be located within the slot in the first arm and has a transverse bearing bore or a bearing recess in at least one side thereof, in sufficiently widening the slot of the slotted blank and in passing the unslotted blank so far through the widened slot that the male lock part of this unslotted blank will be located within the slot of the other blank and the axis of the bearing bore or recess will be in alignment with the points of the slotted walls through which the pivot axis of the two arms should extend, in then pressing the walls of the slot toward each other with such a force that they engage with the opposite surfaces of the male lock part of the arm which is passed through the slot and the material of at least one wall of the slot starts to flow and forms a projection which extends into the bearing bore or recess of
  • the two blanks may be pivotably connected to each other by a single operation, that is, by a pressing operation.
  • a single operation that is, by a pressing operation.
  • the invention has the further advantage that, when the walls of the widened slot are being pressed against the outer surfaces of the male lock part so that the material of the walls of the slot start to flow, this projection will be transposed from the outer side to the inner side of the slot wall and engage into the bearing bore or recess in the male lock part. Therefore, without being reduced in thickness by the compression, the slot wall carrying the projection will be reinforced by the latter.
  • FIG. 1 shows a plan view of a forceps or similar tool according to the invention
  • FIG. 2 shows an enlarged cross section which is taken along the line II II of FIG. 1;
  • FIG. 3 shows a side view of an original blank for each of the arms of a forceps as shown in FIG. 1 and seen in a direction at a right angle to FIG. 1;
  • FIGS. 4 and 5 show enlarged side views of a part of one of the arm blanks as shown in FIG. 3 in the condition after the slot has been milled into this blank and after the slot has been widened, respectively;
  • FIG. 6 shows an enlarged side view similar to FIGS. 4 and 5 of the unslotted or male part of the other arm blank which is to be inserted into the slot of the arm blank as shown in FIG. 5; while FIG. 7 shows a cross section similar to FIG. 2 ofa box lock according to a modification of the invention.
  • FIGS. 1 and 2 illustrate a surgical forceps or similar tool which comprises two arms 1 and 2 which are pivotably connected to each other by means of a box lock 4 so as to be pivotable relative to each other about an axis 3.
  • Each of these arms 1 and 2 consists of a jaw 5 and a handle 6 which are integrally connected by one or the other of the two members of the box lock 4.
  • One of these members is a female member which is formed by a slot 7 which is provided in the arm 1 intermediate its jaw 5 and handle 6 and extends through this arm at a right angle to the pivot axis 3.
  • the male member of the box lock 4 consists of a flat part 8 of the other arm 2 which extends through the slot 7 of the first arm 1 and likewise connects the jaw 5 with the handle 6 of this arm 2.
  • This lock member 8 is provided with a transverse bore 9 which is coaxial to the pivot axis 3 and serves as a bearing aperture the two outer edges of which are preferably beveled so as to diverge outwardly.
  • the two main wall surfaces of slot 7 facing each other are provided with coaxial studlike projections 11 which engage into the opposite ends of bore 9 in the lock member 8 and together act like a pivot pin in this bore 9 so as to permit the two arms 1 and 2 to pivot relative to each other about the axis 3.
  • FIG. 7 illustrates a modification of the box lock of a forceps or similar tool as shown in FIG. 1.
  • Those parts in FIG. 7 which functionally correspond to the parts as shown in FIGS. 1 and 2 are also designated by corresponding reference numerals which, however, for distinction are increased by over those as applied in FIGS. 1 and 2.
  • each side of this lock member 108 is merely provided with an annular recess 109 into which an annular projection 111 engages.
  • These projections 111 again extend coaxially to each other and to the annular recess 109 and project toward each other from the main walls of the slot in the slotted arm 1 of a forceps as shown in FIG. 1 and surround like bearing races the small studs remaining at the inside of the annular recesses 109 on the opposite sides of the lock member 108.
  • This embodiment of the invention has therefore the advantages over the embodiment as illustrated in FIGS. 1 and 2 that the male lock member 108 of one forceps arm is not weakened by a continuous bore 9 and that the walls of the slot in the other forceps arm are not only reinforced by the annular projections 111, but these projections are also guided on their radially inner and outer sides by the walls of the annular recesses.
  • equal original blanks 21 are first produced by drop forging for the two forceps arms 1 and 2.
  • Each of these original blanks 21 is provided between its jaw part 25 and the handle part 26 with two equal warlike projections 31 which extend coaxially to each other from the opposite sides of the blank.
  • these projections 31 it is only necessary to provide corresponding recesses in the upper and lower dies between which each blank 21 if forged.
  • These projections 31 serve as centering points for mounting each original blank 21 in the exact position in which it is to be machined.
  • the respective blank 21 is at first clamped in a very accurate position between a pair of jaws 32, as shown in FIG. 6, which are provided with coaxial bores 34 the edges 33 of which facing each other are beveled in accordance with the projections 31 on each original blank 21 which in this clamping position engage into the bores 34 and abut against their beveled end surfaces 33.
  • the slot 27 as shown in FIG. 4 is milled into this blank. Thereafter, this slot is widened to a shape substantially as shown in FIG. 5 so as to permit, for example, the machined jaw 5 of the blank for the other forceps arm 2 to be passed through this widened slot 27 until the male lock member 8 or 28 of this forceps arm 2 is disposed within this slot.
  • this blank while still being gripped by the clamping jaws 32 is also gripped at its jaw and handle parts, whereupon the clamping jaws 32 are opened so that the released section of this blank 21 is free for being machined so as to form the male lock member 28, as shown in full lines in FIG. 6.
  • the coaxial bores 34 in the clamping jaws 32 serve as guides for the smooth shanks of two drills 35 and 36. While drill 35 has a drill part of a smaller diameter than its shank and a chamfering shoulder on the upper end of this drill part, the other drill 36 is merely a chamfering drill.
  • the flat lock member 28 is first provided with a bore 29, the upper end of which is then chamfered by the chamfering shoulder of drill 35. Thereafter, this drill 35 is retracted and by means of the other drill 36 the lower edge of bore 29 is chamfered.
  • this arm is passed through the widened slot 27 in the manner and to the extent as previously mentioned.
  • the two arm blanks are then inserted into a press in such a position that bore 29 in the male lock member 28 will be in axial alignment with the common axis of the projections 31 on the female lock member, is. the slotted part of the blank for the forceps arm 1.
  • the press is then closed to such an extent that the walls 27 of the widened slot as shown in FIG.
  • the drills 35 and 36 according to FIG. 6 are replaced in the clamping jaws 32 by crownlike drills or mills which are adapted to cut these annular recesses to a predetermined depth into the opposite sides of the lock member 108.
  • crownlike drills or mills which are adapted to cut these annular recesses to a predetermined depth into the opposite sides of the lock member 108.
  • the invention is not only applicable to medical or dental instruments which must be sterilized by steam or in boiling water after each use, but it is also applicable to any other tools such as tongs, pliers, scissors or the like the two arms of which are to be connected by a box lock.
  • a tool comprising a pair of arms, and a box lock having a male lock member and a female lock member each integral with one of said arms and intermediate its opposite ends for pivotably connecting said arms to each other, said female member comprising a part of the first of said arms having a pair of seamless walls extending in the longitudinal direction of said arm and spaced from each other so as to define a slot, and a projection on at least one of said walls and integral therewith, said male member comprising a part of the second arm having a round cutout and disposed within said slot, said projection extending into and being coaxial with said cutout and together with said cutout forming a pivot bearing between said two arms.
  • a tool as defined in claim l in which said cutout forms a bore extending transversely through said male member, said projection extending at least to a certain depth into said bore and being rotatable relative to and guided by the wall of said bore.
  • each of said walls of said slot has a projection integral thereon, said projection being coaxial to each other and to said bore and extending into the opposite ends of said bore toward each other.
  • a tool as defined in claim l in which said cutout forms a recess in at least one wall surface of said male member, said projection extending into said recess and being rotatable relative to and guided by the wall of said recess.
  • each of two opposite wall surfaces of said male member has one of said recesses therein, said recesses being coaxial to each other and each having a bottom surface separated by a solid part of said male member from the bottom surface of the other recess, each of said walls of said slot having one of said projections integral thereon, said projections being coaxial to each other and to said recesses and each extending into one of said recesses.
  • each of said recess has an annular shape with radially inner and outer wall surfaces coaxially to each other, each of said projections having an annular shape corresponding to the shape of said annular recesses and extending into one of said recesses.
  • a method of producing a tool having a pair of arms and a box lock having a male lock member and a female lock member each integral with one of said arms and forming a part intermediate its opposite ends for connecting said arms so as to be pivotable about a common axis relative to each other the steps comprising the first step of producing a pair of blanks for said arms, and further steps of machining said intermediate part of a first of said blanks so as to form a slot therein extending in the longitudinal direction of said blank and defined by walls connected without seams to each other and forming said female member, widening said slot, machining said intermediate part of the second blank so as to form said male member, forming a round cutout in said male member extending at least to a certain depth into said male member from one side thereof and having an axis coinciding with said common axis, passing said second blank so far through said widened slot in said first blank that said male member is disposed within said slot and then pressing the walls of said widened slot toward each other and against the opposite
  • said intermediate part of said first blank which subsequently provided with said slot is also provided with a small projection on and integral with at least one outer side thereof, said projection projecting outwardly from one longitudinal wall of said slot when said slot has been formed in said first blank and has been widened, said projection being fully compressed into the material of said longitudinal wall when both of said walls of said widened slot are pressed against said surfaces of said male member and said stud is thereby formed which engages into said cutout, said stud having a volume substantially corresponding to the volume of said projection before being compressed.

Abstract

A forceps or similar tool having two arms pivotably connected to each other by a box lock comprising a male lock member on one arm and a female lock member on the other arm, forming a longitudinal slot, the male lock member extending through the slot and having a transverse bearing bore or coaxial bearing recesses in its opposite sides, and the walls of the slot being pressed against the opposite surfaces of the male member with such a force that the material of the slot walls starts to flow and a part thereof passes into the bore or the recesses and forms therein studs together serving as a pivot pin which therefore does not extend through the walls of the slots but only projects from these walls and integrally therewith into the bearing bore or recesses.

Description

United States Patent [191 Hildebrand F ORCEPS, PLIERS OR THE LIKE AND METHOD OF PRODUCING THE SAME [75] Inventor: Hans Giinter Hildebrand, Am
Schilt, Germany [73] Assignee: Aesculap Werke Alktiengesellschaft vormals Jetter & Scheerer, Tuttlingen, Germany [22] Filed: Dec. 8, 1971 [21] Appl. No.: 206,023
[30] Foreign Application Priority Data Dec. 15, 1970 Germany P 20 61 539.8
[56] References Cited UNITED STATES PATENTS l/l883 Davis 81/416 12/1942 Grubel 6/1960 Anderson et al. .f. 81/416 X [451 Oct. 9, 1973 FOREIGN PATENTS OR APPLICATIONS 335,243 2/l959 Switzerland ..8l/4l6 604,813 5/1960 Italy ..8l/4l6 Primary Examiner--Harold D. Whitehead Assistant ExaminerRoscoe V. Parker Att0meyArthur O. Klein ABSTRACT A forceps or similar tool having two arms pivotably connected to each other by a box lock comprising a male lock member on one arm and a female lock member on the other arm, forming a longitudinal slot, the male lock member extending through the slot and having a transverse bearing bore or coaxial bearing recesses in its opposite sides, and the walls of the slot being pressed against the opposite surfaces of the male member with such a force that the material of the slot walls starts to flow and a part thereof passes into the bore or the recesses and forms therein studs together serving as a pivot pin which therefore does not extend through the walls of the slots but only projects from these walls and integrally therewith into the bearing bore or recesses.
13 Claims, 7 Drawing Figures PATENTEUBET 91915 v 3.763.726
sum l llf 2 FORCEPS, PLIERS OR THE LIKE AND METHOD OF PRODUCING THE SAME The present invention relates to improvements in forceps, tongs, pliers or similar tools, especially for medical purposes, in which the tool comprises two arms which are pivotably connected to each other by a socalled box lock.
Such a box lock of the known tools of this kind consists of a male lock part of a reduced thickness on one tool arm intermediate its handle part and the part fonning a jaw or the like and a female lock part in a corresponding position on the other tool arms in the form of a slotted part. For assembling the tool, the slot of the slotted arm is widened and the other arm is passed through the slot so that the reduced part of this arm is located within the slot, whereupon the widened walls of the slot are pressed toward each other and against the opposite surfaces of the reduced part. For pivotably connecting the two arms to each other, coaxial bores are provided in the two lock parts and a rivet or screw serving as a pivot pin is passed through these bores and secured to one or both walls of the slot.
A tool which is provided with a box lock of this construction has considerable disadvantages, especially when it is designed as a surgical or dental instrument. Such instruments include, for example, hemostatic forceps, polypus forceps, clamp forceps, kidney-stone forceps, stomach clamps, auricle clamps, intestinal forceps, sponge, tampon and towel-holding forceps, clipapplying forceps, bronchus clamps, ananstomosis clamps, coarctation clamps, mosquito forceps, dissecting and ligature forceps and the like, and also tooth pliers, technical pliers, needle holders, bone rongeurs, and bone-cutting forceps.
Generally speaking such instruments or at least parts thereof must during their production be subjected to a hardening process and must also subsequently be capable of withstanding considerable stresses which result from sterilizing them after each use by steam or boiling water. Such heat treatments may cause the formation of cracks in the material of such instruments, especially directly adjacent to the coaxial bores for the pivot pin in the walls of the slot of the slotted arm. The occurrence of such cracks render the instrument no longer fit for practical use. If the pivot pin which connects the two arms to each other consists of a rivet, the riveting operation may also cause tensions to occur in the material which may later lead to cracks.
The production of forceps and similar tools which are provided with box locks of the type as described above is also relatively complicated since the pivot pin in the form of a rivet or screw which connects the two arms to each other must be inserted into the coaxial bores in the walls of the slot of one arm and must then be tightly riveted or screwed, whereupon one or both ends of the pin must be ground off.
It is an object of the present invention to produce a forceps or similar tool which is provided with a box lock which does not have the disadvantages of the box locks as were previously known and which particularly reduces or completely avoids the danger that cracks might be formed in the walls of the slot.
A further object of the invention consists in designing such a forceps or similar too] in a manner so as to permit it to be produced much more easily and quickly than one of the known tools in which the two arms are likewise connected by a box lock.
For attaining these and additional objects, the invention provides that, instead of employing a pivot pin in the form of a rivet or screw which extends through co-- axial bores in the two lock parts and pivotably connects the two arms of the tool to each other, at least one of the two main wall surfaces of the slot in one arm is provided with a studlike projection which is integral with this surface and engages pivotably into a bearing bore or bearing recess in the male lock part of the other arm which is located within the slot.
This construction has the advantage that the walls of the slot are not weakened by a bore but that, on the contrary, at least the wall of the slot with which the studlike projection is integral may be reinforced by this projection. Furthermore, there is no longer any danger that a crevice or contact corrosion may occur between the walls of the slot and the pivot or connecting element since the latter now forms an integral part of a wall of the slot.
While for avoiding the formation of cracks in the walls of the slot of one of the known tools as above described it was necessary to make the bores in these walls and thus also the pivot pin of the smallest possible diameter, these considerations are now no longer necessary since in the tool according to the invention these bores in the slotted arm and such a pivot pin are omitted. The studlike projection on at least one wall of the slot may therefore be made of any desired diameter.
The invention further provides that in place of such a studlike projection on at least one wall of the slot, this projection may be of an annular shape which engages into a corresponding annular recess in the male lock part of the other arm. While this male lock part of one arm which is passed through the slot of the other arm will be weakened only very slightly by this annular recess, this construction results in a very secure connection and a very accurate pivoting between the two arms of the tool since both the radially inner and outer wall surfaces of the annular projection form bearing surfaces which are rotatable around the corresponding walls of the annular recess.
The present invention further concerns a method of producing a forceps or similar tool which is designed in the manner as previously described. This method consists in producing a slotted blank for one tool arm and an unslotted blank for the other arm which is provided with a male lock part which is to be located within the slot in the first arm and has a transverse bearing bore or a bearing recess in at least one side thereof, in sufficiently widening the slot of the slotted blank and in passing the unslotted blank so far through the widened slot that the male lock part of this unslotted blank will be located within the slot of the other blank and the axis of the bearing bore or recess will be in alignment with the points of the slotted walls through which the pivot axis of the two arms should extend, in then pressing the walls of the slot toward each other with such a force that they engage with the opposite surfaces of the male lock part of the arm which is passed through the slot and the material of at least one wall of the slot starts to flow and forms a projection which extends into the bearing bore or recess of the male lock part of the arm extending through the slot. This has the advantage that, after one arm blank has been inserted through the slot in the other arm blank, the two blanks may be pivotably connected to each other by a single operation, that is, by a pressing operation. If at least one main wall which defines the slot of the slotted blank arm is provided on its outer side, that is, the side opposite to that defining the slot, with a projection which is used for the purpose of properly positioning this blank arm relative to the male lock part of the other blank arm when the two arms are to be connected to each other, the invention has the further advantage that, when the walls of the widened slot are being pressed against the outer surfaces of the male lock part so that the material of the walls of the slot start to flow, this projection will be transposed from the outer side to the inner side of the slot wall and engage into the bearing bore or recess in the male lock part. Therefore, without being reduced in thickness by the compression, the slot wall carrying the projection will be reinforced by the latter.
These and additional features and advantages of the present invention will become further apparent from the following detailed description thereof which is to be read with reference to the accompanying drawings, in which FIG. 1 shows a plan view of a forceps or similar tool according to the invention;
FIG. 2 shows an enlarged cross section which is taken along the line II II of FIG. 1;
FIG. 3 shows a side view of an original blank for each of the arms of a forceps as shown in FIG. 1 and seen in a direction at a right angle to FIG. 1;
FIGS. 4 and 5 show enlarged side views of a part of one of the arm blanks as shown in FIG. 3 in the condition after the slot has been milled into this blank and after the slot has been widened, respectively;
FIG. 6 shows an enlarged side view similar to FIGS. 4 and 5 of the unslotted or male part of the other arm blank which is to be inserted into the slot of the arm blank as shown in FIG. 5; while FIG. 7 shows a cross section similar to FIG. 2 ofa box lock according to a modification of the invention.
In the drawings, FIGS. 1 and 2 illustrate a surgical forceps or similar tool which comprises two arms 1 and 2 which are pivotably connected to each other by means of a box lock 4 so as to be pivotable relative to each other about an axis 3. Each of these arms 1 and 2 consists of a jaw 5 and a handle 6 which are integrally connected by one or the other of the two members of the box lock 4. One of these members is a female member which is formed by a slot 7 which is provided in the arm 1 intermediate its jaw 5 and handle 6 and extends through this arm at a right angle to the pivot axis 3. The male member of the box lock 4 consists of a flat part 8 of the other arm 2 which extends through the slot 7 of the first arm 1 and likewise connects the jaw 5 with the handle 6 of this arm 2. This lock member 8 is provided with a transverse bore 9 which is coaxial to the pivot axis 3 and serves as a bearing aperture the two outer edges of which are preferably beveled so as to diverge outwardly. For maintaining the two arms 1 and 2 of the forceps at all times in the proper positions relative to each other, the two main wall surfaces of slot 7 facing each other are provided with coaxial studlike projections 11 which engage into the opposite ends of bore 9 in the lock member 8 and together act like a pivot pin in this bore 9 so as to permit the two arms 1 and 2 to pivot relative to each other about the axis 3.
FIG. 7 illustrates a modification of the box lock of a forceps or similar tool as shown in FIG. 1. Those parts in FIG. 7 which functionally correspond to the parts as shown in FIGS. 1 and 2 are also designated by corresponding reference numerals which, however, for distinction are increased by over those as applied in FIGS. 1 and 2.
The embodiment of the invention as shown in FIG. 7 differs from that as previously described merely by the fact that instead of providing the male lock member 108 with a bearing aperture in the form of a continuous bore like the bore 9 as shown in FIG. 2, each side of this lock member 108 is merely provided with an annular recess 109 into which an annular projection 111 engages. These projections 111 again extend coaxially to each other and to the annular recess 109 and project toward each other from the main walls of the slot in the slotted arm 1 of a forceps as shown in FIG. 1 and surround like bearing races the small studs remaining at the inside of the annular recesses 109 on the opposite sides of the lock member 108. This embodiment of the invention has therefore the advantages over the embodiment as illustrated in FIGS. 1 and 2 that the male lock member 108 of one forceps arm is not weakened by a continuous bore 9 and that the walls of the slot in the other forceps arm are not only reinforced by the annular projections 111, but these projections are also guided on their radially inner and outer sides by the walls of the annular recesses.
For producing a forceps or similar tool as illustrated in FIGS. 1 and 2, equal original blanks 21 are first produced by drop forging for the two forceps arms 1 and 2. Each of these original blanks 21 is provided between its jaw part 25 and the handle part 26 with two equal warlike projections 31 which extend coaxially to each other from the opposite sides of the blank. For producing these projections 31, it is only necessary to provide corresponding recesses in the upper and lower dies between which each blank 21 if forged. These projections 31 serve as centering points for mounting each original blank 21 in the exact position in which it is to be machined. In this machining operation in which the jaw 25 and handle 26 of each blank 21 are milled, ground and machined in any other manner as much as required, the respective blank 21 is at first clamped in a very accurate position between a pair of jaws 32, as shown in FIG. 6, which are provided with coaxial bores 34 the edges 33 of which facing each other are beveled in accordance with the projections 31 on each original blank 21 which in this clamping position engage into the bores 34 and abut against their beveled end surfaces 33.
When the jaw 25 and handle 26 of the original blank 21 have been machined which should subsequently form the slotted forceps arm 1, the slot 27 as shown in FIG. 4 is milled into this blank. Thereafter, this slot is widened to a shape substantially as shown in FIG. 5 so as to permit, for example, the machined jaw 5 of the blank for the other forceps arm 2 to be passed through this widened slot 27 until the male lock member 8 or 28 of this forceps arm 2 is disposed within this slot.
When the jaw 25 and handle 26 of the original blank 21 for this other forceps arm 2 have also been machined, this blank while still being gripped by the clamping jaws 32 is also gripped at its jaw and handle parts, whereupon the clamping jaws 32 are opened so that the released section of this blank 21 is free for being machined so as to form the male lock member 28, as shown in full lines in FIG. 6. The coaxial bores 34 in the clamping jaws 32 serve as guides for the smooth shanks of two drills 35 and 36. While drill 35 has a drill part of a smaller diameter than its shank and a chamfering shoulder on the upper end of this drill part, the other drill 36 is merely a chamfering drill. By means of drill 35, the flat lock member 28 is first provided with a bore 29, the upper end of which is then chamfered by the chamfering shoulder of drill 35. Thereafter, this drill 35 is retracted and by means of the other drill 36 the lower edge of bore 29 is chamfered.
When the male lock member 28 of the forceps arm 2 has thus also been machined, this arm is passed through the widened slot 27 in the manner and to the extent as previously mentioned. The two arm blanks are then inserted into a press in such a position that bore 29 in the male lock member 28 will be in axial alignment with the common axis of the projections 31 on the female lock member, is. the slotted part of the blank for the forceps arm 1. The press is then closed to such an extent that the walls 27 of the widened slot as shown in FIG. 5 will be pressed so tightly against the flat surfaces of the male lock member 8 or 28 that the material of these walls including the projections 31 will start to flow and the amount of material which previously formed these projections will be transposed toward the inner sides of the slot walls and enter the opposite ends of bore 9 or 29 of lock member 8 or 28 and thus form the opposite studlike projections 11 in this bore, as shown in FIG. 2, which are integral with the slot walls 27 and have the function of a pivot pin which, however, does not also extend through the walls of the slot of the forceps arm 1 as was required in the box locks of forceps and similar tools as were made prior to this invention.
For producing the coaxial annular recesses 109 in the opposite sides of the male lock member 108 as shown in FIG. 7, the drills 35 and 36 according to FIG. 6 are replaced in the clamping jaws 32 by crownlike drills or mills which are adapted to cut these annular recesses to a predetermined depth into the opposite sides of the lock member 108. When subsequently the male lock member 108 is inserted into the widened slot 27 of the female lock member as shown in FIG. 5 and the walls of the slot are pressed against the flat walls of the male lock member 108 so that the material of the slot walls will start to flow, the material of the original projections 31 on the outer sides of the female lock member will form annular studs 111 which project from the inner sides of the slot walls into the annular recesses 109 of the male lock member 108. The radially inner and outer wall surfaces of these studs will then be rotatably guided by the corresponding inner and outer wall surfaces of the annular coaxial recesses 109 in the male lock member 108. Thus, the two arms 1 and 2 of a forceps or similar tool which is provided with a box lock according to FIG. 7 will be pivotably guided on each other twice as securely and accurately as those of a forceps or a similar tool which is provided with a box lock according to FIG. 2.
As previously indicated, the invention is not only applicable to medical or dental instruments which must be sterilized by steam or in boiling water after each use, but it is also applicable to any other tools such as tongs, pliers, scissors or the like the two arms of which are to be connected by a box lock.
Although my invention has been illustrated and described with reference to the preferred embodiments thereof, I wish to have it understood that it is in no way limited to the details of such embodiments but is capable of numerous modifications within the scope of the appended claims.
Having thus fully disclosed my invention, what I claim is:
1. A tool comprising a pair of arms, and a box lock having a male lock member and a female lock member each integral with one of said arms and intermediate its opposite ends for pivotably connecting said arms to each other, said female member comprising a part of the first of said arms having a pair of seamless walls extending in the longitudinal direction of said arm and spaced from each other so as to define a slot, and a projection on at least one of said walls and integral therewith, said male member comprising a part of the second arm having a round cutout and disposed within said slot, said projection extending into and being coaxial with said cutout and together with said cutout forming a pivot bearing between said two arms.
2. A tool as defined in claim l, in which said cutout forms a bore extending transversely through said male member, said projection extending at least to a certain depth into said bore and being rotatable relative to and guided by the wall of said bore.
3. A tool as defined in claim 2, in which each of said walls of said slot has a projection integral thereon, said projection being coaxial to each other and to said bore and extending into the opposite ends of said bore toward each other.
4. A tool as defined in claim l, in which said cutout forms a recess in at least one wall surface of said male member, said projection extending into said recess and being rotatable relative to and guided by the wall of said recess.
5. A tool as defined in claim 4, in which each of two opposite wall surfaces of said male member has one of said recesses therein, said recesses being coaxial to each other and each having a bottom surface separated by a solid part of said male member from the bottom surface of the other recess, each of said walls of said slot having one of said projections integral thereon, said projections being coaxial to each other and to said recesses and each extending into one of said recesses.
6. A tool as defined in claim 4, in which said recess has an annular shape with radially inner and outer wall surfaces coaxial to each other and said projection has a corresponding annular shape extending into said annular recess.
7. A tool as defined in claim 5, in which each of said recess has an annular shape with radially inner and outer wall surfaces coaxially to each other, each of said projections having an annular shape corresponding to the shape of said annular recesses and extending into one of said recesses.
8. A tool as defined in claim 1, in which the outer edge of said round cutout is beveled so as to diverge outwardly.
9. In a method of producing a tool having a pair of arms and a box lock having a male lock member and a female lock member each integral with one of said arms and forming a part intermediate its opposite ends for connecting said arms so as to be pivotable about a common axis relative to each other, the steps comprising the first step of producing a pair of blanks for said arms, and further steps of machining said intermediate part of a first of said blanks so as to form a slot therein extending in the longitudinal direction of said blank and defined by walls connected without seams to each other and forming said female member, widening said slot, machining said intermediate part of the second blank so as to form said male member, forming a round cutout in said male member extending at least to a certain depth into said male member from one side thereof and having an axis coinciding with said common axis, passing said second blank so far through said widened slot in said first blank that said male member is disposed within said slot and then pressing the walls of said widened slot toward each other and against the opposite surfaces of said male member with such a force that the material of at least one of said walls of said slot starts to flow and a part of said material passes into said cutout in the form of a stud having an outer peripheral surface rotatably engaging with at least a part of the axial length of said cutout and together with said cutout forming a pivot bearing between said arms.
10. A method as defined in claim 9, in which in said first step of producing said blanks said intermediate part of each of said blanks is provided with a small projection on and integral with at least one outer side thereof, and further comprising the steps preceding the machining of said intermediate parts of clamping said part of each blank between opposite clamping surfaces of a pair of clamping jaws, said clamping surface of at least one of said jaws having a recess for receiving said projection and for thus accurately positioning said blank relative to said jaws, and then machining the parts of said blank at both sides of said intermediate part.
11. A method as defined in claim 10, in which said intermediate part of each of said blanks in provided with said projection on each of its opposite sides, said projections on each blank having a common axis extending substantially at a right angle to the longitudinal axis of said blank, each of said clamping surfaces having one of said recesses adapted to receive one of said projections when said intermediate part is clamped between said jaws.
12. A method as defined in claim 11, in which after said intermediate part of said second blank has been clamped in said position in which said projections engage into said recesses in said clamping surfaces and after said parts of said second blank at both sides of said intermediate part have been machined, said last parts are clamped, whereupon said clamping surfaces are withdrawn from said intermediate part and said projections, and said projections and said parts of said intermediate part adjacent to said projections are then milled off so as to form said male member, whereupon by means of at least one tool said cutout is drilled into at least one side of said male member in a position coaxial to said position in which said projections were located before being milled off.
13. A method as defined in claim 9, in which in said first step of producing said blanks, said intermediate part of said first blank which subsequently provided with said slot is also provided with a small projection on and integral with at least one outer side thereof, said projection projecting outwardly from one longitudinal wall of said slot when said slot has been formed in said first blank and has been widened, said projection being fully compressed into the material of said longitudinal wall when both of said walls of said widened slot are pressed against said surfaces of said male member and said stud is thereby formed which engages into said cutout, said stud having a volume substantially corresponding to the volume of said projection before being compressed.

Claims (13)

1. A tool comprising a pair of arms, and a box lock having a male lock member and a female lock member each integral with one of said arms and intermediate its opposite ends for pivotably connecting said arms to each other, said female member comprising a part of the first of said arms having a pair of seamless walls extending in the longitudinal direction of said arm and spaced from each other so as to define a slot, and a projection on at least one of said walls and integral therewith, said male member comprising a part of the second arm having a round cutout and disposed within said slot, said projection extending into and being coaxial with said cutout and together with said cutout forming a pivot bearing between said two arms.
2. A tool as defined in claim 1, in which saiD cutout forms a bore extending transversely through said male member, said projection extending at least to a certain depth into said bore and being rotatable relative to and guided by the wall of said bore.
3. A tool as defined in claim 2, in which each of said walls of said slot has a projection integral thereon, said projection being coaxial to each other and to said bore and extending into the opposite ends of said bore toward each other.
4. A tool as defined in claim 1, in which said cutout forms a recess in at least one wall surface of said male member, said projection extending into said recess and being rotatable relative to and guided by the wall of said recess.
5. A tool as defined in claim 4, in which each of two opposite wall surfaces of said male member has one of said recesses therein, said recesses being coaxial to each other and each having a bottom surface separated by a solid part of said male member from the bottom surface of the other recess, each of said walls of said slot having one of said projections integral thereon, said projections being coaxial to each other and to said recesses and each extending into one of said recesses.
6. A tool as defined in claim 4, in which said recess has an annular shape with radially inner and outer wall surfaces coaxial to each other and said projection has a corresponding annular shape extending into said annular recess.
7. A tool as defined in claim 5, in which each of said recess has an annular shape with radially inner and outer wall surfaces coaxially to each other, each of said projections having an annular shape corresponding to the shape of said annular recesses and extending into one of said recesses.
8. A tool as defined in claim 1, in which the outer edge of said round cutout is beveled so as to diverge outwardly.
9. In a method of producing a tool having a pair of arms and a box lock having a male lock member and a female lock member each integral with one of said arms and forming a part intermediate its opposite ends for connecting said arms so as to be pivotable about a common axis relative to each other, the steps comprising the first step of producing a pair of blanks for said arms, and further steps of machining said intermediate part of a first of said blanks so as to form a slot therein extending in the longitudinal direction of said blank and defined by walls connected without seams to each other and forming said female member, widening said slot, machining said intermediate part of the second blank so as to form said male member, forming a round cutout in said male member extending at least to a certain depth into said male member from one side thereof and having an axis coinciding with said common axis, passing said second blank so far through said widened slot in said first blank that said male member is disposed within said slot and then pressing the walls of said widened slot toward each other and against the opposite surfaces of said male member with such a force that the material of at least one of said walls of said slot starts to flow and a part of said material passes into said cutout in the form of a stud having an outer peripheral surface rotatably engaging with at least a part of the axial length of said cutout and together with said cutout forming a pivot bearing between said arms.
10. A method as defined in claim 9, in which in said first step of producing said blanks said intermediate part of each of said blanks is provided with a small projection on and integral with at least one outer side thereof, and further comprising the steps preceding the machining of said intermediate parts of clamping said part of each blank between opposite clamping surfaces of a pair of clamping jaws, said clamping surface of at least one of said jaws having a recess for receiving said projection and for thus accurately positioning said blank relative to said jaws, and then machining the parts of said blank at both sides of said intermediate part.
11. A method as defined in claIm 10, in which said intermediate part of each of said blanks in provided with said projection on each of its opposite sides, said projections on each blank having a common axis extending substantially at a right angle to the longitudinal axis of said blank, each of said clamping surfaces having one of said recesses adapted to receive one of said projections when said intermediate part is clamped between said jaws.
12. A method as defined in claim 11, in which after said intermediate part of said second blank has been clamped in said position in which said projections engage into said recesses in said clamping surfaces and after said parts of said second blank at both sides of said intermediate part have been machined, said last parts are clamped, whereupon said clamping surfaces are withdrawn from said intermediate part and said projections, and said projections and said parts of said intermediate part adjacent to said projections are then milled off so as to form said male member, whereupon by means of at least one tool said cutout is drilled into at least one side of said male member in a position coaxial to said position in which said projections were located before being milled off.
13. A method as defined in claim 9, in which in said first step of producing said blanks, said intermediate part of said first blank which subsequently provided with said slot is also provided with a small projection on and integral with at least one outer side thereof, said projection projecting outwardly from one longitudinal wall of said slot when said slot has been formed in said first blank and has been widened, said projection being fully compressed into the material of said longitudinal wall when both of said walls of said widened slot are pressed against said surfaces of said male member and said stud is thereby formed which engages into said cutout, said stud having a volume substantially corresponding to the volume of said projection before being compressed.
US00206023A 1970-12-15 1971-12-08 Forceps, pliers or the like and method of producing the same Expired - Lifetime US3763726A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2061539A DE2061539C3 (en) 1970-12-15 1970-12-15 Forceps for medical purposes and methods for their manufacture

Publications (1)

Publication Number Publication Date
US3763726A true US3763726A (en) 1973-10-09

Family

ID=5790943

Family Applications (1)

Application Number Title Priority Date Filing Date
US00206023A Expired - Lifetime US3763726A (en) 1970-12-15 1971-12-08 Forceps, pliers or the like and method of producing the same

Country Status (4)

Country Link
US (1) US3763726A (en)
BE (1) BE776718A (en)
DE (1) DE2061539C3 (en)
PL (1) PL83366B1 (en)

Cited By (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3911766A (en) * 1974-05-15 1975-10-14 Pilling Co Box lock surgical instrument and method of its manufacture
US5220856A (en) * 1991-05-07 1993-06-22 Snap-On Tools Corporation Pivotal hand tool and pivot joint therefor
FR2809045A1 (en) * 2000-05-18 2001-11-23 Sam Outil Pivot for sheet metal clamp has tubular collar with periphery shaped to fit seating in metal sheet
WO2003013375A1 (en) 2001-08-04 2003-02-20 Aesculap Ag & Co. Kg Medical instrument having two parts with a joining device for joining them
US20030181944A1 (en) * 2002-03-25 2003-09-25 Tri-State Hospital Supply Corporation Surgical instrument with snag free box hinge
US20040033838A1 (en) * 1997-10-03 2004-02-19 Phillips Screw Company Punch and manufacturing method for recessed head fastener
EP1611859A2 (en) * 1997-11-12 2006-01-04 Sherwood Services AG Bipolar electrosurgical instrument for sealing vessels
US20070112376A1 (en) * 2005-11-14 2007-05-17 Tri-State Hospital Supply Corporation Medical tubing clamping apparatus
US20070276431A1 (en) * 2006-05-26 2007-11-29 Swartz Jennifer T Surgical box hinge and method of making same
US7582087B2 (en) 1998-10-23 2009-09-01 Covidien Ag Vessel sealing instrument
US20100042142A1 (en) * 2008-08-15 2010-02-18 Cunningham James S Method of Transferring Pressure in an Articulating Surgical Instrument
US20100094287A1 (en) * 2008-10-09 2010-04-15 Tyco Heathcare Group Lp Apparatus, System, and Method for Performing an Endoscopic Electrosurgical Procedure
US7708735B2 (en) 2003-05-01 2010-05-04 Covidien Ag Incorporating rapid cooling in tissue fusion heating processes
US7722607B2 (en) 2005-09-30 2010-05-25 Covidien Ag In-line vessel sealer and divider
US7771425B2 (en) 2003-06-13 2010-08-10 Covidien Ag Vessel sealer and divider having a variable jaw clamping mechanism
US7776036B2 (en) 2003-03-13 2010-08-17 Covidien Ag Bipolar concentric electrode assembly for soft tissue fusion
US7776037B2 (en) 2006-07-07 2010-08-17 Covidien Ag System and method for controlling electrode gap during tissue sealing
US7789878B2 (en) 2005-09-30 2010-09-07 Covidien Ag In-line vessel sealer and divider
US7799026B2 (en) 2002-11-14 2010-09-21 Covidien Ag Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US7799028B2 (en) 2004-09-21 2010-09-21 Covidien Ag Articulating bipolar electrosurgical instrument
US7811283B2 (en) 2003-11-19 2010-10-12 Covidien Ag Open vessel sealing instrument with hourglass cutting mechanism and over-ratchet safety
US7828798B2 (en) 1997-11-14 2010-11-09 Covidien Ag Laparoscopic bipolar electrosurgical instrument
US7846161B2 (en) 2005-09-30 2010-12-07 Covidien Ag Insulating boot for electrosurgical forceps
US7857812B2 (en) 2003-06-13 2010-12-28 Covidien Ag Vessel sealer and divider having elongated knife stroke and safety for cutting mechanism
US7877852B2 (en) 2007-09-20 2011-02-01 Tyco Healthcare Group Lp Method of manufacturing an end effector assembly for sealing tissue
US7879035B2 (en) 2005-09-30 2011-02-01 Covidien Ag Insulating boot for electrosurgical forceps
US7877853B2 (en) 2007-09-20 2011-02-01 Tyco Healthcare Group Lp Method of manufacturing end effector assembly for sealing tissue
US7887536B2 (en) 1998-10-23 2011-02-15 Covidien Ag Vessel sealing instrument
US7909823B2 (en) 2005-01-14 2011-03-22 Covidien Ag Open vessel sealing instrument
US7922953B2 (en) 2005-09-30 2011-04-12 Covidien Ag Method for manufacturing an end effector assembly
US7922718B2 (en) 2003-11-19 2011-04-12 Covidien Ag Open vessel sealing instrument with cutting mechanism
US7931649B2 (en) 2002-10-04 2011-04-26 Tyco Healthcare Group Lp Vessel sealing instrument with electrical cutting mechanism
US7935052B2 (en) 2004-09-09 2011-05-03 Covidien Ag Forceps with spring loaded end effector assembly
US7951150B2 (en) 2005-01-14 2011-05-31 Covidien Ag Vessel sealer and divider with rotating sealer and cutter
US7955332B2 (en) 2004-10-08 2011-06-07 Covidien Ag Mechanism for dividing tissue in a hemostat-style instrument
US7963965B2 (en) 1997-11-12 2011-06-21 Covidien Ag Bipolar electrosurgical instrument for sealing vessels
US8016827B2 (en) 2008-10-09 2011-09-13 Tyco Healthcare Group Lp Apparatus, system, and method for performing an electrosurgical procedure
USD649249S1 (en) 2007-02-15 2011-11-22 Tyco Healthcare Group Lp End effectors of an elongated dissecting and dividing instrument
US8070746B2 (en) 2006-10-03 2011-12-06 Tyco Healthcare Group Lp Radiofrequency fusion of cardiac tissue
US8142473B2 (en) 2008-10-03 2012-03-27 Tyco Healthcare Group Lp Method of transferring rotational motion in an articulating surgical instrument
US8162940B2 (en) 2002-10-04 2012-04-24 Covidien Ag Vessel sealing instrument with electrical cutting mechanism
US8192433B2 (en) 2002-10-04 2012-06-05 Covidien Ag Vessel sealing instrument with electrical cutting mechanism
US8197479B2 (en) 2008-12-10 2012-06-12 Tyco Healthcare Group Lp Vessel sealer and divider
US8211105B2 (en) 1997-11-12 2012-07-03 Covidien Ag Electrosurgical instrument which reduces collateral damage to adjacent tissue
US8221416B2 (en) 2007-09-28 2012-07-17 Tyco Healthcare Group Lp Insulating boot for electrosurgical forceps with thermoplastic clevis
US8235992B2 (en) 2007-09-28 2012-08-07 Tyco Healthcare Group Lp Insulating boot with mechanical reinforcement for electrosurgical forceps
US8235993B2 (en) 2007-09-28 2012-08-07 Tyco Healthcare Group Lp Insulating boot for electrosurgical forceps with exohinged structure
US8236025B2 (en) 2007-09-28 2012-08-07 Tyco Healthcare Group Lp Silicone insulated electrosurgical forceps
US8241282B2 (en) 2006-01-24 2012-08-14 Tyco Healthcare Group Lp Vessel sealing cutting assemblies
US8241283B2 (en) 2007-09-28 2012-08-14 Tyco Healthcare Group Lp Dual durometer insulating boot for electrosurgical forceps
US8241284B2 (en) 2001-04-06 2012-08-14 Covidien Ag Vessel sealer and divider with non-conductive stop members
US8251996B2 (en) 2007-09-28 2012-08-28 Tyco Healthcare Group Lp Insulating sheath for electrosurgical forceps
US8257352B2 (en) 2003-11-17 2012-09-04 Covidien Ag Bipolar forceps having monopolar extension
US8257387B2 (en) 2008-08-15 2012-09-04 Tyco Healthcare Group Lp Method of transferring pressure in an articulating surgical instrument
US8267936B2 (en) 2007-09-28 2012-09-18 Tyco Healthcare Group Lp Insulating mechanically-interfaced adhesive for electrosurgical forceps
US8267935B2 (en) 2007-04-04 2012-09-18 Tyco Healthcare Group Lp Electrosurgical instrument reducing current densities at an insulator conductor junction
US8298228B2 (en) 1997-11-12 2012-10-30 Coviden Ag Electrosurgical instrument which reduces collateral damage to adjacent tissue
US8298232B2 (en) 2006-01-24 2012-10-30 Tyco Healthcare Group Lp Endoscopic vessel sealer and divider for large tissue structures
US8303582B2 (en) 2008-09-15 2012-11-06 Tyco Healthcare Group Lp Electrosurgical instrument having a coated electrode utilizing an atomic layer deposition technique
US8303586B2 (en) 2003-11-19 2012-11-06 Covidien Ag Spring loaded reciprocating tissue cutting mechanism in a forceps-style electrosurgical instrument
US8317787B2 (en) 2008-08-28 2012-11-27 Covidien Lp Tissue fusion jaw angle improvement
US8348948B2 (en) 2004-03-02 2013-01-08 Covidien Ag Vessel sealing system using capacitive RF dielectric heating
US8361071B2 (en) 1999-10-22 2013-01-29 Covidien Ag Vessel sealing forceps with disposable electrodes
US8382754B2 (en) 2005-03-31 2013-02-26 Covidien Ag Electrosurgical forceps with slow closure sealing plates and method of sealing tissue
USD680220S1 (en) 2012-01-12 2013-04-16 Coviden IP Slider handle for laparoscopic device
US8454602B2 (en) 2009-05-07 2013-06-04 Covidien Lp Apparatus, system, and method for performing an electrosurgical procedure
US8469956B2 (en) 2008-07-21 2013-06-25 Covidien Lp Variable resistor jaw
US8469957B2 (en) 2008-10-07 2013-06-25 Covidien Lp Apparatus, system, and method for performing an electrosurgical procedure
US8486107B2 (en) 2008-10-20 2013-07-16 Covidien Lp Method of sealing tissue using radiofrequency energy
US8496656B2 (en) 2003-05-15 2013-07-30 Covidien Ag Tissue sealer with non-conductive variable stop members and method of sealing tissue
US8523898B2 (en) 2009-07-08 2013-09-03 Covidien Lp Endoscopic electrosurgical jaws with offset knife
US8535312B2 (en) 2008-09-25 2013-09-17 Covidien Lp Apparatus, system and method for performing an electrosurgical procedure
US8591506B2 (en) 1998-10-23 2013-11-26 Covidien Ag Vessel sealing system
US8597297B2 (en) 2006-08-29 2013-12-03 Covidien Ag Vessel sealing instrument with multiple electrode configurations
US8623276B2 (en) 2008-02-15 2014-01-07 Covidien Lp Method and system for sterilizing an electrosurgical instrument
US8641713B2 (en) 2005-09-30 2014-02-04 Covidien Ag Flexible endoscopic catheter with ligasure
US8647341B2 (en) 2003-06-13 2014-02-11 Covidien Ag Vessel sealer and divider for use with small trocars and cannulas
US8734443B2 (en) 2006-01-24 2014-05-27 Covidien Lp Vessel sealer and divider for large tissue structures
US8764748B2 (en) 2008-02-06 2014-07-01 Covidien Lp End effector assembly for electrosurgical device and method for making the same
US8784417B2 (en) 2008-08-28 2014-07-22 Covidien Lp Tissue fusion jaw angle improvement
US8795274B2 (en) 2008-08-28 2014-08-05 Covidien Lp Tissue fusion jaw angle improvement
US8852228B2 (en) 2009-01-13 2014-10-07 Covidien Lp Apparatus, system, and method for performing an electrosurgical procedure
US8882766B2 (en) 2006-01-24 2014-11-11 Covidien Ag Method and system for controlling delivery of energy to divide tissue
US8898888B2 (en) 2009-09-28 2014-12-02 Covidien Lp System for manufacturing electrosurgical seal plates
US8968314B2 (en) 2008-09-25 2015-03-03 Covidien Lp Apparatus, system and method for performing an electrosurgical procedure
US9023043B2 (en) 2007-09-28 2015-05-05 Covidien Lp Insulating mechanically-interfaced boot and jaws for electrosurgical forceps
US9028493B2 (en) 2009-09-18 2015-05-12 Covidien Lp In vivo attachable and detachable end effector assembly and laparoscopic surgical instrument and methods therefor
US9095347B2 (en) 2003-11-20 2015-08-04 Covidien Ag Electrically conductive/insulative over shoe for tissue fusion
US9107672B2 (en) 1998-10-23 2015-08-18 Covidien Ag Vessel sealing forceps with disposable electrodes
US9113940B2 (en) 2011-01-14 2015-08-25 Covidien Lp Trigger lockout and kickback mechanism for surgical instruments
US9149323B2 (en) 2003-05-01 2015-10-06 Covidien Ag Method of fusing biomaterials with radiofrequency energy
US9375254B2 (en) 2008-09-25 2016-06-28 Covidien Lp Seal and separate algorithm
US9603652B2 (en) 2008-08-21 2017-03-28 Covidien Lp Electrosurgical instrument including a sensor
US9848938B2 (en) 2003-11-13 2017-12-26 Covidien Ag Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US10213250B2 (en) 2015-11-05 2019-02-26 Covidien Lp Deployment and safety mechanisms for surgical instruments
US10231777B2 (en) 2014-08-26 2019-03-19 Covidien Lp Methods of manufacturing jaw members of an end-effector assembly for a surgical instrument
US10646267B2 (en) 2013-08-07 2020-05-12 Covidien LLP Surgical forceps
US10987159B2 (en) 2015-08-26 2021-04-27 Covidien Lp Electrosurgical end effector assemblies and electrosurgical forceps configured to reduce thermal spread
US11166759B2 (en) 2017-05-16 2021-11-09 Covidien Lp Surgical forceps
US20220151648A1 (en) * 2019-03-14 2022-05-19 Aesculap Ag Surgical instrument having terminal region through which flow can occur
USD956973S1 (en) 2003-06-13 2022-07-05 Covidien Ag Movable handle for endoscopic vessel sealer and divider

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4113075C1 (en) * 1991-04-22 1992-07-02 Kohler, Bruno Surgical endoscope universal ring grip - has two cast arms with joint flaps formed by use of external casting cores

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US271043A (en) * 1883-01-23 dayis
US2305156A (en) * 1941-04-17 1942-12-15 Weck & Co Edward Box lock pivot and method of assembling same
CH335243A (en) * 1953-09-02 1958-12-31 E A Bergs Fabriks Aktiebolag Articulated connection
US2939214A (en) * 1953-09-02 1960-06-07 E A Bergs Fabriks Aktiebolag Tool and method of making same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US271043A (en) * 1883-01-23 dayis
US2305156A (en) * 1941-04-17 1942-12-15 Weck & Co Edward Box lock pivot and method of assembling same
CH335243A (en) * 1953-09-02 1958-12-31 E A Bergs Fabriks Aktiebolag Articulated connection
US2939214A (en) * 1953-09-02 1960-06-07 E A Bergs Fabriks Aktiebolag Tool and method of making same

Cited By (166)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3911766A (en) * 1974-05-15 1975-10-14 Pilling Co Box lock surgical instrument and method of its manufacture
US5220856A (en) * 1991-05-07 1993-06-22 Snap-On Tools Corporation Pivotal hand tool and pivot joint therefor
US20040033838A1 (en) * 1997-10-03 2004-02-19 Phillips Screw Company Punch and manufacturing method for recessed head fastener
US8211105B2 (en) 1997-11-12 2012-07-03 Covidien Ag Electrosurgical instrument which reduces collateral damage to adjacent tissue
EP1611859A3 (en) * 1997-11-12 2008-06-04 Covidien AG Bipolar electrosurgical instrument for sealing vessels
US7963965B2 (en) 1997-11-12 2011-06-21 Covidien Ag Bipolar electrosurgical instrument for sealing vessels
US8298228B2 (en) 1997-11-12 2012-10-30 Coviden Ag Electrosurgical instrument which reduces collateral damage to adjacent tissue
EP2050410A3 (en) * 1997-11-12 2009-05-27 Covidien AG Bipolar electrosurgical instrument for sealing vessels
EP1611859A2 (en) * 1997-11-12 2006-01-04 Sherwood Services AG Bipolar electrosurgical instrument for sealing vessels
US7828798B2 (en) 1997-11-14 2010-11-09 Covidien Ag Laparoscopic bipolar electrosurgical instrument
US9375271B2 (en) 1998-10-23 2016-06-28 Covidien Ag Vessel sealing system
US7947041B2 (en) 1998-10-23 2011-05-24 Covidien Ag Vessel sealing instrument
US7887536B2 (en) 1998-10-23 2011-02-15 Covidien Ag Vessel sealing instrument
US9463067B2 (en) 1998-10-23 2016-10-11 Covidien Ag Vessel sealing system
US8591506B2 (en) 1998-10-23 2013-11-26 Covidien Ag Vessel sealing system
US9375270B2 (en) 1998-10-23 2016-06-28 Covidien Ag Vessel sealing system
US7582087B2 (en) 1998-10-23 2009-09-01 Covidien Ag Vessel sealing instrument
US9107672B2 (en) 1998-10-23 2015-08-18 Covidien Ag Vessel sealing forceps with disposable electrodes
US7896878B2 (en) 1998-10-23 2011-03-01 Coviden Ag Vessel sealing instrument
US8361071B2 (en) 1999-10-22 2013-01-29 Covidien Ag Vessel sealing forceps with disposable electrodes
FR2809045A1 (en) * 2000-05-18 2001-11-23 Sam Outil Pivot for sheet metal clamp has tubular collar with periphery shaped to fit seating in metal sheet
US10687887B2 (en) 2001-04-06 2020-06-23 Covidien Ag Vessel sealer and divider
US10251696B2 (en) 2001-04-06 2019-04-09 Covidien Ag Vessel sealer and divider with stop members
US10265121B2 (en) 2001-04-06 2019-04-23 Covidien Ag Vessel sealer and divider
US8241284B2 (en) 2001-04-06 2012-08-14 Covidien Ag Vessel sealer and divider with non-conductive stop members
US7326229B2 (en) 2001-08-04 2008-02-05 Aesculap Ag & Co. Kg Medical instrument
US20040204739A1 (en) * 2001-08-04 2004-10-14 Aesculap Ag & Co. Kg Medical instrument
WO2003013375A1 (en) 2001-08-04 2003-02-20 Aesculap Ag & Co. Kg Medical instrument having two parts with a joining device for joining them
US7351248B2 (en) * 2002-03-25 2008-04-01 Tri-State Hospital Supply Corporation Surgical instrument with snag free box hinge
US7494500B2 (en) * 2002-03-25 2009-02-24 Tri-State Hospital Supply Corporation Surgical instrument with snag free box hinge
US20030181944A1 (en) * 2002-03-25 2003-09-25 Tri-State Hospital Supply Corporation Surgical instrument with snag free box hinge
US20040106947A1 (en) * 2002-03-25 2004-06-03 Tri-State Hospital Supply Corporation Surgical instrument with snag free box hinge
US20050145510A1 (en) * 2002-03-25 2005-07-07 Propp Donald J. Surgical instrument with snag free box hinge
US8333765B2 (en) 2002-10-04 2012-12-18 Covidien Ag Vessel sealing instrument with electrical cutting mechanism
US8192433B2 (en) 2002-10-04 2012-06-05 Covidien Ag Vessel sealing instrument with electrical cutting mechanism
US8162940B2 (en) 2002-10-04 2012-04-24 Covidien Ag Vessel sealing instrument with electrical cutting mechanism
US9585716B2 (en) 2002-10-04 2017-03-07 Covidien Ag Vessel sealing instrument with electrical cutting mechanism
US8740901B2 (en) 2002-10-04 2014-06-03 Covidien Ag Vessel sealing instrument with electrical cutting mechanism
US10987160B2 (en) 2002-10-04 2021-04-27 Covidien Ag Vessel sealing instrument with cutting mechanism
US8551091B2 (en) 2002-10-04 2013-10-08 Covidien Ag Vessel sealing instrument with electrical cutting mechanism
US7931649B2 (en) 2002-10-04 2011-04-26 Tyco Healthcare Group Lp Vessel sealing instrument with electrical cutting mechanism
US10537384B2 (en) 2002-10-04 2020-01-21 Covidien Lp Vessel sealing instrument with electrical cutting mechanism
US8945125B2 (en) 2002-11-14 2015-02-03 Covidien Ag Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US7799026B2 (en) 2002-11-14 2010-09-21 Covidien Ag Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US7776036B2 (en) 2003-03-13 2010-08-17 Covidien Ag Bipolar concentric electrode assembly for soft tissue fusion
US9149323B2 (en) 2003-05-01 2015-10-06 Covidien Ag Method of fusing biomaterials with radiofrequency energy
US8679114B2 (en) 2003-05-01 2014-03-25 Covidien Ag Incorporating rapid cooling in tissue fusion heating processes
US7708735B2 (en) 2003-05-01 2010-05-04 Covidien Ag Incorporating rapid cooling in tissue fusion heating processes
USRE47375E1 (en) 2003-05-15 2019-05-07 Coviden Ag Tissue sealer with non-conductive variable stop members and method of sealing tissue
US8496656B2 (en) 2003-05-15 2013-07-30 Covidien Ag Tissue sealer with non-conductive variable stop members and method of sealing tissue
US10918435B2 (en) 2003-06-13 2021-02-16 Covidien Ag Vessel sealer and divider
US7857812B2 (en) 2003-06-13 2010-12-28 Covidien Ag Vessel sealer and divider having elongated knife stroke and safety for cutting mechanism
USD956973S1 (en) 2003-06-13 2022-07-05 Covidien Ag Movable handle for endoscopic vessel sealer and divider
US9492225B2 (en) 2003-06-13 2016-11-15 Covidien Ag Vessel sealer and divider for use with small trocars and cannulas
US10842553B2 (en) 2003-06-13 2020-11-24 Covidien Ag Vessel sealer and divider
US7771425B2 (en) 2003-06-13 2010-08-10 Covidien Ag Vessel sealer and divider having a variable jaw clamping mechanism
US10278772B2 (en) 2003-06-13 2019-05-07 Covidien Ag Vessel sealer and divider
US8647341B2 (en) 2003-06-13 2014-02-11 Covidien Ag Vessel sealer and divider for use with small trocars and cannulas
US9848938B2 (en) 2003-11-13 2017-12-26 Covidien Ag Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US10441350B2 (en) 2003-11-17 2019-10-15 Covidien Ag Bipolar forceps having monopolar extension
US8597296B2 (en) 2003-11-17 2013-12-03 Covidien Ag Bipolar forceps having monopolar extension
US8257352B2 (en) 2003-11-17 2012-09-04 Covidien Ag Bipolar forceps having monopolar extension
US8623017B2 (en) 2003-11-19 2014-01-07 Covidien Ag Open vessel sealing instrument with hourglass cutting mechanism and overratchet safety
US8394096B2 (en) 2003-11-19 2013-03-12 Covidien Ag Open vessel sealing instrument with cutting mechanism
US7922718B2 (en) 2003-11-19 2011-04-12 Covidien Ag Open vessel sealing instrument with cutting mechanism
US7811283B2 (en) 2003-11-19 2010-10-12 Covidien Ag Open vessel sealing instrument with hourglass cutting mechanism and over-ratchet safety
US8303586B2 (en) 2003-11-19 2012-11-06 Covidien Ag Spring loaded reciprocating tissue cutting mechanism in a forceps-style electrosurgical instrument
US9980770B2 (en) 2003-11-20 2018-05-29 Covidien Ag Electrically conductive/insulative over-shoe for tissue fusion
US9095347B2 (en) 2003-11-20 2015-08-04 Covidien Ag Electrically conductive/insulative over shoe for tissue fusion
US8348948B2 (en) 2004-03-02 2013-01-08 Covidien Ag Vessel sealing system using capacitive RF dielectric heating
US7935052B2 (en) 2004-09-09 2011-05-03 Covidien Ag Forceps with spring loaded end effector assembly
US8366709B2 (en) 2004-09-21 2013-02-05 Covidien Ag Articulating bipolar electrosurgical instrument
US7799028B2 (en) 2004-09-21 2010-09-21 Covidien Ag Articulating bipolar electrosurgical instrument
US7955332B2 (en) 2004-10-08 2011-06-07 Covidien Ag Mechanism for dividing tissue in a hemostat-style instrument
US8123743B2 (en) 2004-10-08 2012-02-28 Covidien Ag Mechanism for dividing tissue in a hemostat-style instrument
US7951150B2 (en) 2005-01-14 2011-05-31 Covidien Ag Vessel sealer and divider with rotating sealer and cutter
US7909823B2 (en) 2005-01-14 2011-03-22 Covidien Ag Open vessel sealing instrument
US8147489B2 (en) 2005-01-14 2012-04-03 Covidien Ag Open vessel sealing instrument
US8382754B2 (en) 2005-03-31 2013-02-26 Covidien Ag Electrosurgical forceps with slow closure sealing plates and method of sealing tissue
US8394095B2 (en) 2005-09-30 2013-03-12 Covidien Ag Insulating boot for electrosurgical forceps
US7922953B2 (en) 2005-09-30 2011-04-12 Covidien Ag Method for manufacturing an end effector assembly
US8668689B2 (en) 2005-09-30 2014-03-11 Covidien Ag In-line vessel sealer and divider
US7722607B2 (en) 2005-09-30 2010-05-25 Covidien Ag In-line vessel sealer and divider
US7789878B2 (en) 2005-09-30 2010-09-07 Covidien Ag In-line vessel sealer and divider
US7846161B2 (en) 2005-09-30 2010-12-07 Covidien Ag Insulating boot for electrosurgical forceps
US7879035B2 (en) 2005-09-30 2011-02-01 Covidien Ag Insulating boot for electrosurgical forceps
US8641713B2 (en) 2005-09-30 2014-02-04 Covidien Ag Flexible endoscopic catheter with ligasure
US8361072B2 (en) 2005-09-30 2013-01-29 Covidien Ag Insulating boot for electrosurgical forceps
US9579145B2 (en) 2005-09-30 2017-02-28 Covidien Ag Flexible endoscopic catheter with ligasure
US9549775B2 (en) 2005-09-30 2017-01-24 Covidien Ag In-line vessel sealer and divider
US8197633B2 (en) 2005-09-30 2012-06-12 Covidien Ag Method for manufacturing an end effector assembly
USRE44834E1 (en) 2005-09-30 2014-04-08 Covidien Ag Insulating boot for electrosurgical forceps
US20070112376A1 (en) * 2005-11-14 2007-05-17 Tri-State Hospital Supply Corporation Medical tubing clamping apparatus
US9918782B2 (en) 2006-01-24 2018-03-20 Covidien Lp Endoscopic vessel sealer and divider for large tissue structures
US8241282B2 (en) 2006-01-24 2012-08-14 Tyco Healthcare Group Lp Vessel sealing cutting assemblies
US9113903B2 (en) 2006-01-24 2015-08-25 Covidien Lp Endoscopic vessel sealer and divider for large tissue structures
US8734443B2 (en) 2006-01-24 2014-05-27 Covidien Lp Vessel sealer and divider for large tissue structures
US8882766B2 (en) 2006-01-24 2014-11-11 Covidien Ag Method and system for controlling delivery of energy to divide tissue
US9539053B2 (en) 2006-01-24 2017-01-10 Covidien Lp Vessel sealer and divider for large tissue structures
US8298232B2 (en) 2006-01-24 2012-10-30 Tyco Healthcare Group Lp Endoscopic vessel sealer and divider for large tissue structures
US20070276431A1 (en) * 2006-05-26 2007-11-29 Swartz Jennifer T Surgical box hinge and method of making same
US7776037B2 (en) 2006-07-07 2010-08-17 Covidien Ag System and method for controlling electrode gap during tissue sealing
US8597297B2 (en) 2006-08-29 2013-12-03 Covidien Ag Vessel sealing instrument with multiple electrode configurations
US8070746B2 (en) 2006-10-03 2011-12-06 Tyco Healthcare Group Lp Radiofrequency fusion of cardiac tissue
US8425504B2 (en) 2006-10-03 2013-04-23 Covidien Lp Radiofrequency fusion of cardiac tissue
USD649249S1 (en) 2007-02-15 2011-11-22 Tyco Healthcare Group Lp End effectors of an elongated dissecting and dividing instrument
US8267935B2 (en) 2007-04-04 2012-09-18 Tyco Healthcare Group Lp Electrosurgical instrument reducing current densities at an insulator conductor junction
US7877852B2 (en) 2007-09-20 2011-02-01 Tyco Healthcare Group Lp Method of manufacturing an end effector assembly for sealing tissue
US7877853B2 (en) 2007-09-20 2011-02-01 Tyco Healthcare Group Lp Method of manufacturing end effector assembly for sealing tissue
US8235992B2 (en) 2007-09-28 2012-08-07 Tyco Healthcare Group Lp Insulating boot with mechanical reinforcement for electrosurgical forceps
US9554841B2 (en) 2007-09-28 2017-01-31 Covidien Lp Dual durometer insulating boot for electrosurgical forceps
US8267936B2 (en) 2007-09-28 2012-09-18 Tyco Healthcare Group Lp Insulating mechanically-interfaced adhesive for electrosurgical forceps
US8236025B2 (en) 2007-09-28 2012-08-07 Tyco Healthcare Group Lp Silicone insulated electrosurgical forceps
US8251996B2 (en) 2007-09-28 2012-08-28 Tyco Healthcare Group Lp Insulating sheath for electrosurgical forceps
US8696667B2 (en) 2007-09-28 2014-04-15 Covidien Lp Dual durometer insulating boot for electrosurgical forceps
US8235993B2 (en) 2007-09-28 2012-08-07 Tyco Healthcare Group Lp Insulating boot for electrosurgical forceps with exohinged structure
US8221416B2 (en) 2007-09-28 2012-07-17 Tyco Healthcare Group Lp Insulating boot for electrosurgical forceps with thermoplastic clevis
US9023043B2 (en) 2007-09-28 2015-05-05 Covidien Lp Insulating mechanically-interfaced boot and jaws for electrosurgical forceps
US8241283B2 (en) 2007-09-28 2012-08-14 Tyco Healthcare Group Lp Dual durometer insulating boot for electrosurgical forceps
US8764748B2 (en) 2008-02-06 2014-07-01 Covidien Lp End effector assembly for electrosurgical device and method for making the same
US8623276B2 (en) 2008-02-15 2014-01-07 Covidien Lp Method and system for sterilizing an electrosurgical instrument
US8469956B2 (en) 2008-07-21 2013-06-25 Covidien Lp Variable resistor jaw
US9247988B2 (en) 2008-07-21 2016-02-02 Covidien Lp Variable resistor jaw
US9113905B2 (en) 2008-07-21 2015-08-25 Covidien Lp Variable resistor jaw
US20100042142A1 (en) * 2008-08-15 2010-02-18 Cunningham James S Method of Transferring Pressure in an Articulating Surgical Instrument
US8257387B2 (en) 2008-08-15 2012-09-04 Tyco Healthcare Group Lp Method of transferring pressure in an articulating surgical instrument
US8162973B2 (en) 2008-08-15 2012-04-24 Tyco Healthcare Group Lp Method of transferring pressure in an articulating surgical instrument
US9603652B2 (en) 2008-08-21 2017-03-28 Covidien Lp Electrosurgical instrument including a sensor
US8795274B2 (en) 2008-08-28 2014-08-05 Covidien Lp Tissue fusion jaw angle improvement
US8317787B2 (en) 2008-08-28 2012-11-27 Covidien Lp Tissue fusion jaw angle improvement
US8784417B2 (en) 2008-08-28 2014-07-22 Covidien Lp Tissue fusion jaw angle improvement
US8303582B2 (en) 2008-09-15 2012-11-06 Tyco Healthcare Group Lp Electrosurgical instrument having a coated electrode utilizing an atomic layer deposition technique
US8535312B2 (en) 2008-09-25 2013-09-17 Covidien Lp Apparatus, system and method for performing an electrosurgical procedure
US8968314B2 (en) 2008-09-25 2015-03-03 Covidien Lp Apparatus, system and method for performing an electrosurgical procedure
US9375254B2 (en) 2008-09-25 2016-06-28 Covidien Lp Seal and separate algorithm
US8142473B2 (en) 2008-10-03 2012-03-27 Tyco Healthcare Group Lp Method of transferring rotational motion in an articulating surgical instrument
US8568444B2 (en) 2008-10-03 2013-10-29 Covidien Lp Method of transferring rotational motion in an articulating surgical instrument
US8469957B2 (en) 2008-10-07 2013-06-25 Covidien Lp Apparatus, system, and method for performing an electrosurgical procedure
US8636761B2 (en) 2008-10-09 2014-01-28 Covidien Lp Apparatus, system, and method for performing an endoscopic electrosurgical procedure
US9113898B2 (en) 2008-10-09 2015-08-25 Covidien Lp Apparatus, system, and method for performing an electrosurgical procedure
US8016827B2 (en) 2008-10-09 2011-09-13 Tyco Healthcare Group Lp Apparatus, system, and method for performing an electrosurgical procedure
US20100094287A1 (en) * 2008-10-09 2010-04-15 Tyco Heathcare Group Lp Apparatus, System, and Method for Performing an Endoscopic Electrosurgical Procedure
US8486107B2 (en) 2008-10-20 2013-07-16 Covidien Lp Method of sealing tissue using radiofrequency energy
US8197479B2 (en) 2008-12-10 2012-06-12 Tyco Healthcare Group Lp Vessel sealer and divider
US8852228B2 (en) 2009-01-13 2014-10-07 Covidien Lp Apparatus, system, and method for performing an electrosurgical procedure
US9655674B2 (en) 2009-01-13 2017-05-23 Covidien Lp Apparatus, system and method for performing an electrosurgical procedure
US9345535B2 (en) 2009-05-07 2016-05-24 Covidien Lp Apparatus, system and method for performing an electrosurgical procedure
US8858554B2 (en) 2009-05-07 2014-10-14 Covidien Lp Apparatus, system, and method for performing an electrosurgical procedure
US10085794B2 (en) 2009-05-07 2018-10-02 Covidien Lp Apparatus, system and method for performing an electrosurgical procedure
US8454602B2 (en) 2009-05-07 2013-06-04 Covidien Lp Apparatus, system, and method for performing an electrosurgical procedure
US9364247B2 (en) 2009-07-08 2016-06-14 Covidien Lp Endoscopic electrosurgical jaws with offset knife
US8523898B2 (en) 2009-07-08 2013-09-03 Covidien Lp Endoscopic electrosurgical jaws with offset knife
US9931131B2 (en) 2009-09-18 2018-04-03 Covidien Lp In vivo attachable and detachable end effector assembly and laparoscopic surgical instrument and methods therefor
US9028493B2 (en) 2009-09-18 2015-05-12 Covidien Lp In vivo attachable and detachable end effector assembly and laparoscopic surgical instrument and methods therefor
US8898888B2 (en) 2009-09-28 2014-12-02 Covidien Lp System for manufacturing electrosurgical seal plates
US10383649B2 (en) 2011-01-14 2019-08-20 Covidien Lp Trigger lockout and kickback mechanism for surgical instruments
US11660108B2 (en) 2011-01-14 2023-05-30 Covidien Lp Trigger lockout and kickback mechanism for surgical instruments
US9113940B2 (en) 2011-01-14 2015-08-25 Covidien Lp Trigger lockout and kickback mechanism for surgical instruments
USD680220S1 (en) 2012-01-12 2013-04-16 Coviden IP Slider handle for laparoscopic device
US10646267B2 (en) 2013-08-07 2020-05-12 Covidien LLP Surgical forceps
US10231777B2 (en) 2014-08-26 2019-03-19 Covidien Lp Methods of manufacturing jaw members of an end-effector assembly for a surgical instrument
US10987159B2 (en) 2015-08-26 2021-04-27 Covidien Lp Electrosurgical end effector assemblies and electrosurgical forceps configured to reduce thermal spread
US10213250B2 (en) 2015-11-05 2019-02-26 Covidien Lp Deployment and safety mechanisms for surgical instruments
US11166759B2 (en) 2017-05-16 2021-11-09 Covidien Lp Surgical forceps
US20220151648A1 (en) * 2019-03-14 2022-05-19 Aesculap Ag Surgical instrument having terminal region through which flow can occur
US11793533B2 (en) * 2019-03-14 2023-10-24 Aesculap Ag Surgical instrument having terminal region through which flow can occur

Also Published As

Publication number Publication date
DE2061539B2 (en) 1973-03-08
DE2061539C3 (en) 1973-09-20
DE2061539A1 (en) 1972-08-10
PL83366B1 (en) 1975-12-31
BE776718A (en) 1972-06-15

Similar Documents

Publication Publication Date Title
US3763726A (en) Forceps, pliers or the like and method of producing the same
US3911766A (en) Box lock surgical instrument and method of its manufacture
US3952749A (en) Box lock surgical instrument
KR950000058B1 (en) Suturing needle with suture and method of producing the same
US4135506A (en) Method of and device for pinning a fractured vertebra
US4028810A (en) Root canal file
US7788779B2 (en) Pressing device
JPH09506043A (en) System for joining machine tools
US3646939A (en) Towel clamp
US5588832A (en) Method of fabricating metal instruments from raw material and orthodontic pliers made thereby
US4389870A (en) Forming engagement grooves in a tool shank
US4414868A (en) Box joint for a plier-type tool with removable securing plate
US1464807A (en) Dental instrument
JPS62292303A (en) Cutting tool
US6386076B1 (en) Pliers with separately installed jaws
US7422597B1 (en) Implant for osteosynthesis device and tool for setting such implant
JP5770394B1 (en) Osteosynthesis device for fracture of proximal femur
US4136597A (en) Drill screw and die for producing same
US2480958A (en) Forked connector and rod assembly
US4204419A (en) Brake-rod jaw with twisted forks
US1236138A (en) Hand-tool.
CN106137370A (en) A kind of Kirschner wire apparatus for bending
US4944204A (en) Pliers with adjustable jaw means
US4856387A (en) Hermaphrodite wrench
US2685130A (en) Adjustable multiple lever tool