US3759574A - Method of producing hydrocarbons from an oil shale formation - Google Patents

Method of producing hydrocarbons from an oil shale formation Download PDF

Info

Publication number
US3759574A
US3759574A US00075009A US3759574DA US3759574A US 3759574 A US3759574 A US 3759574A US 00075009 A US00075009 A US 00075009A US 3759574D A US3759574D A US 3759574DA US 3759574 A US3759574 A US 3759574A
Authority
US
United States
Prior art keywords
fluid
water
oil shale
formation
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00075009A
Inventor
T Beard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell USA Inc
Original Assignee
Shell Oil Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Oil Co filed Critical Shell Oil Co
Application granted granted Critical
Publication of US3759574A publication Critical patent/US3759574A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/241Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection combined with solution mining of non-hydrocarbon minerals, e.g. solvent pyrolysis of oil shale
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/2405Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection in association with fracturing or crevice forming processes
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/28Dissolving minerals other than hydrocarbons, e.g. by an alkaline or acid leaching agent
    • E21B43/281Dissolving minerals other than hydrocarbons, e.g. by an alkaline or acid leaching agent using heat

Definitions

  • ABSTRACT A method of producing hydrocarbons and optionally water-soluble minerals from a subterranean oil shale formation containing zone(s) of water-soluble minerals, by penetrating said formation with at least one borehole and leaching or dissolving the water-soluble minerals from the formation with a solvent fluid so as to form a cavern(s) and/or interconnected cavities, followed by fracturization and/or rubblization of the oil shale surrounding the caverns or cavities, and thereafter injecting into fracturized and/or rubblized zones, a pyrolyzing fluid to effect in-situ hydrocarbon recovery therefrom.
  • FIG. 1 A first figure.
  • This invention relates to the recovery of hydrocarbons and optionally water-soluble minerals from underground oil shale formations containing water-soluble mineral deposits. More particularly, it relates to hydrocarbon recovery by in-situ thermal fluid extraction of oil shale within a fracturized and/or rubblized portion of a subterranean oil shale formation in and around a cavern and/or interconnected cavities formed by leaching or dissolving, e.g., solution mining of the watersoluble minerals therefrom.
  • Still another object of this invention is to effect insitu pyrolysis to produce hydrocarbons from oil shale subjected to leaching, rubblization and/or fracturization as indicated in the previous two paragraphs, and subsequently recovering the hydrocarbons by suitable means.
  • Still another object of the present invention is to recover water-soluble minerals from a rich water-soluble mineral containing oil shale formation(s) that may be removed during the leaching and/or solution mining, rubblization and/or fracturization, and/or pyrolysis processes.
  • Still another object of the present invention is to sequentially and/or simultaneously recover water-soluble minerals and hydrocarbons from rich Water-soluble mineral containing oil shale formations that may be removed during the leaching and/or solution mining, rubblization and/or fracturization and/or pyrolysis pro Fallss.
  • the present invention is directed to recovery of hydrocarbons and optionally water-soluble minerals from water-soluble mineral containing oil shale formations by the following steps: (1) subjecting a rich watersoluble mineral zone(s) of an oil shale formation to a leaching, dissolving or solution mining process so as to dissolve and preferably remove the water-soluble minerals, thereby creating porosity to allow for thermal expansion of the oil shale and establish communication through the treated zone(s), (2) effecting in said leached zone(s) rubblization and/or fracturization so as to form zone(s) of rubblized and/or fractured oil shale with large surface area for more efiicient heat treatment by in-situ thermal fluid extraction (pyrolysis), and (3) injecting into the rubblized and/or fracturized oil shale zone(s) a pyrolyzing fluid to effect hydrocarbon recovery.
  • the water-soluble mineral(s) and hydrocarbons may be recovered sequentially or simultaneously and if the latter, the two products can be separated by suitable means such as settling or solvent extraction above ground.
  • the oil shale formation may contain more than one zone of rich water-soluble minerals which zones may be separated by impermeable oil shale layers of several feet to several hundred feet and each of these water-soluble mineral layers or zones can be leached or dissolved or solution mined in accordance with the process of the present invention.
  • the water-soluble mineral zones may contain the same or different minerals such as carbonates, bicarbonates, halites or mixtures thereof.
  • water-soluble minerals present in the oil shale is meant to include water-soluble silicates, halides, carbonates, and/or bicarbonates salts, such as alkali metal chloride, carbonate, bicarbonate and silicate, e.g., halite, trona, nahcolite and the like.
  • the first or initial step should be so designed to create a cavern or interconnecting cavities in the watersoluble mineral bed(s) or zone(s) by dissolving, leaching or solution mining techniques through at least one borehole penetrating said formation.
  • Leaching can be efiected by cold or hot aqueous solutions either at atmospheric or elevated pressures.
  • hot solutions such as hot water or acidified hot water and/or steam
  • more rapid dissolution is efl'ected of certain water-soluble minerals such as nahcolite, trona, halite to produce void spaces in the oil shale formation thereby providing and enhancing well communication, space for thermal expansion of the shale, and greater surface for contact with subsequent pyrolyzing fluid.
  • Water can be cold or hot or steam or any other aqueous fluids can be used such as steam and/or water containing acids, e.g., HCl, or I-ICl I-IF, surfactants, sequestering agents, etc. If the initial cavities are not in communication, fracturing may be necessary.
  • acids e.g., HCl, or I-ICl I-IF, surfactants, sequestering agents, etc. If the initial cavities are not in communication, fracturing may be necessary.
  • leaching solutions can contain chemical agents to enhance dissolution of the minerals.
  • decomposition of certain water-soluble minerals, e.g., bicarbonates, into solublizing materials may take place of such minerals as dawsonite and silicates which might be present in the formation, thereby increasing the porosity of the formation.
  • water-soluble minerals e.g., bicarbonates
  • solublizing materials may take place of such minerals as dawsonite and silicates which might be present in the formation, thereby increasing the porosity of the formation.
  • the pH of the dissolution fluid is increased and thereby aids in the dissolution of silicates, etc.
  • Leaching or solution mining of the water-soluble minerals such as halite or nahcolite can be accomplished by a suitable solution mining technique such as described in US. Pat. Nos. 2,618,475; 3,387,888; 3,393,013; 3,402,966; 3,236,564; 3,510,167 or Canadian Pat. Nos. 832,828 or 832,276 or as described in copending application Ser. No. 2,765 filed Jan. 17, 1970.
  • Spalling and rubbling can be accomplished by the method described in US. Pat. No. 3,478,825 or by other means such as by hydraulic, explosive, nuclear and/or electrical means.
  • rubblization is accomplished by hot fluid circulation through the cavern causing the walls to spall and fracture.
  • In-situ thermal recovery of oil can be effected by a pyrolyzing fluid such as steam and/or hot water or solvent extraction means.
  • the circulation of a pyrolyzing fluid not only effects oil recovery but also effects thermal rubbling and/or fracturization. Also, if the pyrolyzing fluid such as steam is used to extract and recover oil, more minerals may be dissolved perpetuating the process.
  • pyrolyzing fluid a liquid or gas which by means of thermal, chemical and/or solvent action, interacts with the kerogen components of an oil shale to produce and entrain hydrocarbon such as steam
  • a fluid can be hot fluids such as hot water of steam, or mixtures of hot water and strea, hot hydrocarbons and/or mixtures of such fluids with chemicals such as acids, e.g., HCl and/or organic solvents, benzene, toluene, cumene, phenol, etc.
  • the kerogen pyrolyzing fluid can be heated by surface or borehole-located heating devices.
  • the kerogen-pyrolyzing fluid can advantageously comprise or contain a solvent for the soluble mineral, such as steam condensate or a hot aqueous solution of organic and/or inorganic acid, having a temperature such as at least one hundred degrees Fahrenheit, such as from about 450 F to above about l,500 F and preferably from about 550 F to l,000 F.
  • a solvent for the soluble mineral such as steam condensate or a hot aqueous solution of organic and/or inorganic acid
  • a temperature such as at least one hundred degrees Fahrenheit, such as from about 450 F to above about l,500 F and preferably from about 550 F to l,000 F.
  • the kerogen-pyrolyzing fluid contains or forms aqueous components
  • its circulation through the treated oil shale formation can enlarge the cavern, by solution mining the soluble minerals, while shale oil is being produced.
  • simultaneously or sequentially pyrolyzing and oil extracting fluids
  • FIG. 1 is a vertical sectional view, partly diagrammatic, of an embodiment of the invention showing a formation penetration by more than one well.
  • FIG. 2 is a sectional view of an embodiment of the invention, the formation being penetrated by a single well.
  • FIG. 3 is a graphical illustration showing the solubility of sodium chloride (NaCl) and sodium bicarbonate (NaHCO in water as a function of temperature.
  • FIG. 4 is a schematic illustration of a method for providing communication between a pair of well boreholes in accordance with the techniques of this invention.
  • FIG. 5 is a schematic illustration partially in vertical section illustrating the mechanism of single-well salt leaching.
  • FIG. 6 is a graphical representation of maximum rate of nahcolite leaching as a function of leaching fluid temperature.
  • FIG. 7 is a graphical representation of minimum time required to leach a nahcolite cavity of lOO-foot radius as a function of leaching fluid temperature.
  • FIG. 8 is a graphical representation showing estimated maximum time to leach a nahcolite cavity of l00-foot radius as a function of leaching fluid injection rate and temperature.
  • FIGS. 9-12 show graphical representations of various process parameters as a function of time in an example application of the process of this invention where the rubbling rate is 0.02 feet per day.
  • FIGS. 13-16 show graphical representations of various process parameters as a function of time in an example application of the process of this invention where the rubbling rate is 0.1 feet per day.
  • FIGS. 17-20 show graphical representations of various process parameters as a function of time for an example application of the process of this invention where the rubbling rate is 0.5 feet per day.
  • FIG. 1 of the drawing a plurality of well boreholes are shown penetrating into a subterranean oil shale formation 9 which contain rich zones of watersoluble minerals 10, 10a and 10b.
  • An injection well borehole 1 1 is shown extending into oil shale formation 9 and rich soluble mineral zone(s) 10 or multizones such as 10a and 10b that are located within the oil shale formation 9 and are also encountered by well borehole 12.
  • Well boreholes 11 and 12 are illustrated as having casings l3 and 14, respectively, cemented in place in their respective boreholes by suitable sealants 15 through 16, respectively.
  • the location of zones rich in substantially water-soluble minerals is determined in a conventional manner.
  • Fluid communication between well boreholes l1 and 12 (FIG. 1) and the zones rich in water-soluble minerals therebetween may be established by solution mining a cavern or cavities 23, through the soluble mineral zones. Communication can be enhanced by means of conventional hydraulic, electric, and/or explosive fracturing techniques, all well known in the art. Where, for example, subterranean stresses in and around soluble mineral zones 10, a and 10b are conducive to the formation of horizontal fractures, the fluid communication between well boreholes 11 and 12 and the soluble mineral can be established by a conventional hydraulic fracturing technique. Referring to FIG.
  • aqueous leaching or solution mining liquid is injected through tubing 17 down well borehole 11, out through perforations 18 opposite any or all of the soluble beds through the bed 10, 10a and/or 10b up borehole 12 through tubing via perforation l9 creating a leached cavern 23.
  • the aqueous liquid may comprise water and/or steam or aqueous solutions of acid or acid-forming materials and is circulated at pressures either above or below the over-burden pressure.
  • the circulating aqueous liquid dissolves the water-soluble minerals and mineral byproducts thereof are recovered from the fluid flowing out of well borehole 12, for example, by conventional evaporation and/or precipitation procedures.
  • Fluid communication can also be established in one borehole between at least two spaced portions of the well borehole and the water-soluble minerals (as for example, in FIG. 2 communication is through the tubing string the ends of which are open to the water-soluble minerals and some distance apart.)
  • a single well may be utilized by a dual zone completion arrangement as shown in FIG. 2 such that fluids can be injected at one point of the well and produced from another point of the same well.
  • the wellbore is 26, the easing is 27, the sealant is 28, within the casing are the injection tubing string 29 and production tubing string 30, the borehole 26 penetrates oil shale formation 9 with mineral zone(s) 10 or or multizones 10a and 10b.
  • Fracturing pressures are generated within the oil shale formation 9 while lower pressures are maintained within the cavern 23 which is formed within oil shale formation-9 by the removal of the water-soluble minerals. These pressures are preferably generated by merely circulating hot fluid through cavern 23. As the walls of the cavern(s) 23 (23a FIG. 2) are heated kerogen is pyrolyzed within the cavern walls and the pressures of the pyrolysis products increase until portions of the walls are spalled into the cavern 23 creating a rubblized zone 24 (24a FIG. 2) and surrounding fracture area 25 (25a FIG. 2).
  • a kerogen-pyrolyzing fluid such as steam is circulated from well borehole 11 (FIG. 1) through the rubblized zone 24 and fractured zone 25 of oil shale formation 9 and out of well borehole 12. Hydrocarbon materials are then recovered from the heated fluid circulatingout of well borehole 12 by means well known in the art. Removal of hydrocarbons fromthe oil shale provides additional void space enlarging the original rubblized zone, perpetrating the process. Similar techniques can be applied to single wells as shown in FIG. 2.
  • heating means such as heating means, pumping means, separators and heat exchangers may be used for pressurizing, heating, injecting, producing and separating components of the heated fluid circulating through the oil shale formation 9.
  • the production of the fluid may be aided by downhole pumping means, not shown, or restricted to the extent necessary to maintain the selected pressure within the oil shale formation 9.
  • the fluid circulated through rubblized zone 24 and fractured zone 25 (FIG. 1) to recover oil shale from oil shale formation 9 may comprise any heated gas, liquid or steam. Oil shale reactive properties may also be imparted to the circulating fluid as discussed hereinabove.
  • the present process is applied as described above.
  • the caverns comprise a network of relatively small cavities that are interconnected by fractures.
  • Minimum volumes of water required to establish a channel 1 foot wide, three feet high and 70 feet long (between two wells about 50 feet apart, for example) which contains 13.4 tons of nahcolite may be determined from the solubility of sodium carbonate and bicarbonate in water.
  • the solubility of pure Nal-ICO in water at formation temperature F is about 30 lbs/bbl.
  • a minimum of 700 bbls of water is required to establish communication between wells.
  • a cylindrical cavity of the same height but 50 feet in radius contains 1,620 tons of nahcolite, and requires at least 10" bbls of water at formation temperature.
  • Water requirements may be reduced by a factor of five if the water is heated to 400 F (AT 310 F). Heating the water also has the added advantage that it results in a higher dissolution rate. Thus heating the water results in a shorter operating life, and requires the handling of relative small volumes of water. On the other hand, it requires the use of heaters with their attendant requirements of water quality and fuel supply. Also, the water disposal lines may become plugged with precipitate as the temperature of the line drops at the surface.
  • acids such as 15 percent HCl
  • HCl acid
  • nahcolite high rate of reaction between the acid (HCl) and nahcolite.
  • injection of an acid solution into the wellbore will speed up the rate at which the cavity is made.
  • Communication may be established between the two wells by means of mechanical nozzles having controllable orientation through which the solvent is introduced. As illustrated schematically in FIG. 4, where the uncertainty in orientation of the nozzles is 1: 10, the nozzles may be directed from both wells A and B, with the orientation of the nozzles ranging from to 15 from their centerlines. This procedure insures eventual communication between the wells and reduces the time to obtain communication.
  • the degree of saturation of the effluent liquid is closely related to the mean residence time of the fluid in the subsurface, the circulation pattern of the fluid, and the rate at which the nahcolite goes in solution.
  • the solution efficiency may be increased by increasing the residence time, that is, by increasing the operating time. Where sufficient water capacity is available and the operating time is to be kept low, it would appear that low solution efficiencies may be tolerated, especially if it is not intended to heat the water.
  • the mining effect may be greatly enhanced if fragments resulting from jetting are removed as so]- ids.
  • FIG. 5 shows the mechanism of single well salt leaching.
  • Fresh water enters at the top of the formation and flows along the top of the cavity. Once it reaches the salt layer it dissolves the salt, becoming denser. The denser fluid then flows to the bottom of the cavity along the edge of the salt.
  • the slowing of the frontal advance is caused by diffusion in the vertical direction from the salt solution to the incoming fresh water. As the concentration of salt in the water reaching the leading edge of the cavity increases, the rate of frontal advance slows proportionally.
  • FIG. 6 shows the rate of leaching as a function of the temperature of the fluid at the leading edge.
  • FIG. 7 shows the minimum time required to leach a IOO-foot radius as a function of temperature. It appears that a flow rate of 2,000 bpd should be practical for a 6-foot layer.
  • FIG. 7 shows this minimum leaching time as a function of leaching time and flow rate. In making the calculations for FIG. 7, the constraint that the rate of advance could not exceed the maximum values given in FIG. 6 was used.
  • FIG. 8 shows the effect of temperature on water injection rates leaching a cavity with a radius of feet.
  • the temperature at the leading edge of the advancing front will not be the same as the injected temperature due to heat losses to the shale.
  • the temperature drop will be roughly proportional to the temperature difference between the injected fluid and the initial shale temperature and will increase as the front advances.
  • a B, and C Three tests (A B, and C,) were run under essentially the same conditions.
  • the shale container was opened and the block examined, and it was only evidented that the steam induced considerable cracking and rubbling. No oil was recovered during or after the experiment.
  • the second test, 8, was essentially a repeat of A using a richer shale (27 gal/ton) and a different heating medium, hot water instead of steam.
  • the water temperature was held constant for a lor 2-day period and then raised in 50 F increments.
  • the water temperature was raised and held constant at 300 F for 16 hours. Several large cracks inch to A inch wide) were developed even at these mild temperatures.
  • the test was restarted and a major fall occurred (water temperature 350 F). Smaller falls of 5 to 10 pounds occurred at 25 hours.
  • the test was terminated after 312 hours; the maximum temperature, 520 F, maintained for the last 51 hours. No oil was detected in the effluent water stream, but the outlet lines were 9 found to be coated with a tarry residue readily soluble in benzene.
  • Test C was run under conditions similar to B, and the specific conditions are shown in Table 1.
  • Heating the shale four days at 520 F resulted in greatly increased fracturing over that resulting from heating'to 450 F. After heating at 450 F, many cracks had formed, but none completely cleaved the slab. After heating to 520 F, a number of these cracks had been considerably widened and had propogated through the entire extent of the slab. The strain, measured for the slab, had increased to 0.057 and average slab thickness increased from 4 to 4- inches. No oil was produced with the effluent water.
  • the basic data used for thecalculations were: a. steam injection at 625 F, 95 percent quality, b. 10 tons of steam condensed coming down injection .pipe,
  • FIGS. 13-16 are for a rubbling rate of 0.1 ft/day
  • FIGS. 17-20 are for a rubbling rate of 0.5 ft/day.
  • a method of producing hydrocarbons from a subterranean oil shale formation containing zones of water-soluble minerals comprising the steps of:
  • a method of producing oil from a subterranean oil shale formation containing a zone of water-soluble minerals comprising the steps of:
  • a method for producing oil from a subterranean oil shale formation having at least one zone which contains water soluble minerals comprising the steps of:
  • a method for producing oil from a subterranean oil shale formation having at least one zone which contains water soluble minerals comprising the steps of:
  • the method of claim including the step of establishing fluid communication between said borehole locations through said zone water-soluble mineral by hydraulically fracturing at least a portion of said oil shale formation containing said zone.
  • a method of claim 5 including the step of establishing fluid communication between said borehole locations through said zone water-soluble mineral by explosively fracturing at least a portion of said oil shale formation containing said zone.
  • step of circulating aqueous fluid includes the step of imparting acidic properties to said aqueous fluid and circulating said fluid liquid at pressures above the overburden pressure.
  • step of circulating aqueous liquid includes the step of imparting acidic properties to said aqueous fluid and ciculating said aqueous fluid at pressures below the overburden pressure.
  • step of generating fluid pressures sufficient to create fractures is carried out by the step of circulating fluid through said cavern at a temperature sufficient to pyrolyze the kerogen within the oil shale adjacent to the walls fonning said cavern and to spall-off portions of said walls into said cavern.
  • the method of claim 13 including the step of establishing fluid communication between at least a pair of well boreholes within said mineral containing zone, said communication being accomplished by jetting aqueous liquid from each of said well boreholes to a point intermediate said boreholes.
  • a method of producing oil from a subterranean oil shale formation containing rich water-soluble mineral zones comprising the steps of:
  • soluble mineral is nahcolite.

Abstract

A method of producing hydrocarbons and optionally water-soluble minerals from a subterranean oil shale formation containing zone(s) of water-soluble minerals, by penetrating said formation with at least one borehole and leaching or dissolving the watersoluble minerals from the formation with a solvent fluid so as to form a cavern(s) and/or interconnected cavities, followed by fracturization and/or rubblization of the oil shale surrounding the caverns or cavities, and thereafter injecting into fracturized and/or rubblized zones, a pyrolyzing fluid to effect in-situ hydrocarbon recovery therefrom.

Description

United States Patent Beard 4 1 Sept. 18,1973
[75] lnventor: Thomas N. Beard, Denver, C010.
[73] Assignee: Shell Oil Company, New York, N.Y.
[22] Filed: Sept. 24, 1970 [21] Appl. No.: 75,009
Related U.S. Application Data [63] Contindatft m-in-part of Ser. Fl (1677096 1, Oct. 28,
1968, abandoned.
[52] U.S. Cl. 299/4, 166/271 [51] Int. Cl E211) 43/28 [58] Field of Search 166/271, 272, 259, 166/261; 299/4, 5
[56] References Cited 3 UNITED STATES PATENTS 3,481,398 12/1969 Prats 166/251 3,502,372 3/1970 Prats. 3,393,013 7/1968 Hammer 3,018,095
1 1962 Redlinger 299/5 X 2,561,639 7/1951 Squires 299/4 3,050,290 8/1962 Caldwell 299/5 X 2,969,226 l/196l Huntington 166/272 X 3,352,355 11/1967 Putman 166/272 X 3,455,383 7/1969 Prats 166/254 3,322,194 5/1967 Strubhar 166/271 X Primary Examiner-Robert L. Wolfe Attorney-George G. Pritzker and Harold L. Denkler [57] ABSTRACT A method of producing hydrocarbons and optionally water-soluble minerals from a subterranean oil shale formation containing zone(s) of water-soluble minerals, by penetrating said formation with at least one borehole and leaching or dissolving the water-soluble minerals from the formation with a solvent fluid so as to form a cavern(s) and/or interconnected cavities, followed by fracturization and/or rubblization of the oil shale surrounding the caverns or cavities, and thereafter injecting into fracturized and/or rubblized zones, a pyrolyzing fluid to effect in-situ hydrocarbon recovery therefrom.
22 Claims, 20 Drawing Figures PAIENIEUSEPIBW 3.759.574
sum 01 or 11 FIG. 2 INVENTOR:
T. N. BEARD Pmmn-iusww 3759.574
saw 02 0F 11 I20 SOLUBILITY LBS/ BBL H20 00 TEMPERATURE, F
FIG. 3
FIG. 4
mvsmoa:
T. N. BEARD PATENTEDSEPI 8M8 3.759.574 m as nr 11 300 TEMPERATURE AT LEACHING FRONT INVENTOR: 6 T. N. BEARD BYzl/I K W Q/ 7 HIS AG NT SHALE RESH WATER NAHCOLITE% SALT WATER SHALE FIG.5
FIG.
PATENTED 3.759.574
SHEET 05 0i 11 IOT- 50 ra ll 8 '5 c s a g HYDROCARBON GAS g s e j 30 6 g g E 3 I Q o w 0 I 4 o 20 o m w 8 2 v on.
O O l v l o 400 800 lzog/flsoo I TIME(DAYS) 30- FOOT RADIUS v OIL AND HYDROCARBON GAS PRODUCTION RATES FOR nuaeuus RATE OF 0.02 FT/DAY.
FIG. 9
3: PRODUCED WATER 3- 5 I: I0 5 INJECTED STEAM 95% QUALITY v x I I I o 400 800 I200 7 I600 TIME (DAYS) FOOT RADIUS INJECTED STEAM AND PRODUCED WATER FOR RUBBLING RATE OF 0.02 FT/DAY FIG. IO
mag l HI AG N1" Pmamznserw m 3759.574
sum as or 11 PRODUCED NcIHCO X lO LB/DAY) r O 400 800 I200 I600 T|ME(DAYS) 30'FOOT RADIUS PRODUCED NOHCO3 FOR RUBBLING RATE OF 0.02 FT/DAY FIG. ll
INVENTOR:
T. N. BEARD PATENTEU SEP] 8 I973 WATER (TON DAY) OIL-STEAM RATIO (BBL IZXIO BTU ENTERING FORMATION) sum as or 11 PRODUCED WATER NJECTED STEAM 95% QUALITY I 1 l 0 50 I00 I50 200 250 )3OO TIME (DAYS) 30-FO0T RADIUS INJECTED STEAM AND PRODUCED WATER FOR RUBBLING RATE OF 0.! FT/DAY FIG. l4
I l I50 200 TIME (DAYS) OIL-STEAM RATIO FOR RUBBLING RATE OF O.l FT/ DAY INVENTOR:
N. BEARD W 64 ms A ENT 1 FIG. l6
PAIENTEI] SEP] 8 I875 sum as or 11 m v w m I Qmi oi ooz z 082.0%
30 FOOT RADIUS TIME DAYS) PRODUCED N0HCO FOR RUBBLING RATE OF O.| FT/DAY FIG. l5
' PATENTEDSEPWQB SHEET 0F 11 2oo- 3 s: E 3 I50- 5 3 HYDROCARBON g 55 GAS FIG. I7 52 50' a E ,1 Q g 5 3 on.
w g 50 I a: Q Q 3 8 O O I l l l I I 8 a 0 IO 20 4o 50 160 E 5 TIME(DAYS) 30-FOOT RADIUS OIL AND HYDROCARBON GAS PRODUCTION RATES FOR RLBBLING RATE OF 0.5 FT/DAY 200 PRODUCED WATER I50 3: S E INJECTED STEAM FIG. is 8 00 95% QUALITY 05 U I 'E 0 I I I A 0 IO 20 3o 40 so RQ 5 TIME (DAYS) ao-FooT RADIUS g INJECTED STEAM AND PRODUCED WATER FOR RUBBLING RATE CF05 FT/DAY 0.6- 5 2 5 Q4 '2 LI.) 2 a g E 02 A Q INVENTOR: P 0 I I I I I I T. N. BEARD; g m 0 IO 20 30 40 /60 BY TIME (DAYS) so-FooT RADIUS OILSTEAM RATIO FOR RUBBLING RATE OF 0.5 FT/ DAY FIG. 20
IWI A L HIS AGENT PAIENIEU 3m 8 I873 SHEET 110F11 30" FOOT RADIUS TIME (DAYS) PRODUCED NQHCO FOR RUBBLING RATE OF 0.5 FT/ DAY FIG.
N BEARD METHOD OF PRODUCING HYDROCARBONS FROM AN OIL SHALE FORMATION CROSS-REFERENCE TO RELATED APPLICATIONS This application is a continuation-in-part of copending application Ser. No. 770,964, filed Oct. 28, 1968 and now abandoned. Copending application Ser. No. 75,061 and Ser. No. 75,067 filed Sept. 24, 1970 also are continuations -in-part of the application and claim subject matter similar to that claimed herein.
BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to the recovery of hydrocarbons and optionally water-soluble minerals from underground oil shale formations containing water-soluble mineral deposits. More particularly, it relates to hydrocarbon recovery by in-situ thermal fluid extraction of oil shale within a fracturized and/or rubblized portion of a subterranean oil shale formation in and around a cavern and/or interconnected cavities formed by leaching or dissolving, e.g., solution mining of the watersoluble minerals therefrom.
2. Description of the Prior Art Large deposits of oil in the form of oil shale are found in various sections of the United States, particularly in Colorado and surrounding states and Canada. Various method of recovery of oil from these shale deposits have been proposed and the principal difliculty with these methods is their high cost which renders the recovered oil too expensive to compete with petroleum crudes recovered by more conventional methods. Mining the oil shale and removing the oil therefrom by above-ground retorting in furnaces presents a disposal and pollution problem and also such processes are also generally commercially uneconomical. In-situ retorting to convert the oil shale to recover the oil contained therein is made difficult because of the non-permeable nature of the oil shale. The art discloses various means of improving oil recovery of oil from oil shale such as described in US. Pat. Nos. 3,400,762 or 3,437,378, or 3,478,825 and particularly various means of increasing permeability of oil shale formations as described in US. Pat. Nos. 3,273,649 or 3,481,398 or 3,502,372, or copending application Ser. No. 839,350, filed July 7, 1969. Although these references are directed to an advancement of the art, the basic technique for recovering oil from oil shale still requires rubblization techniques such as by means of explosive devices, e.g., nuclear energy which is expensive, difficult to control and presents a radioactive contamination problem, all of which are very undesirable.
OBJECTS OF THE INVENTION It is an object of this invention to provide an improved method for recovering hydrocarbons from a water-soluble mineral containing oil shale formation by leaching or dissolving the watersoluble minerals such as by solution mining so as to form a cavern and/or interconnected cavities within the oil shale formation.
It is a further object of the invention to effect rubblization and/or fracturization of the water-soluble mineral leached oil shale formation surrounding the cavern and/or cavities so as to form a permeable zone thereby enhancing in-situ thermal fluid extraction (pyrolysis) of hydrocarbons therefrom.
Still another object of this invention is to effect insitu pyrolysis to produce hydrocarbons from oil shale subjected to leaching, rubblization and/or fracturization as indicated in the previous two paragraphs, and subsequently recovering the hydrocarbons by suitable means.
Still another object of the present invention is to recover water-soluble minerals from a rich water-soluble mineral containing oil shale formation(s) that may be removed during the leaching and/or solution mining, rubblization and/or fracturization, and/or pyrolysis processes.
Still another object of the present invention is to sequentially and/or simultaneously recover water-soluble minerals and hydrocarbons from rich Water-soluble mineral containing oil shale formations that may be removed during the leaching and/or solution mining, rubblization and/or fracturization and/or pyrolysis pro cesses.
Other objects of the invention will be apparent from the following description.
SUMMARY OF THE INVENTION The present invention is directed to recovery of hydrocarbons and optionally water-soluble minerals from water-soluble mineral containing oil shale formations by the following steps: (1) subjecting a rich watersoluble mineral zone(s) of an oil shale formation to a leaching, dissolving or solution mining process so as to dissolve and preferably remove the water-soluble minerals, thereby creating porosity to allow for thermal expansion of the oil shale and establish communication through the treated zone(s), (2) effecting in said leached zone(s) rubblization and/or fracturization so as to form zone(s) of rubblized and/or fractured oil shale with large surface area for more efiicient heat treatment by in-situ thermal fluid extraction (pyrolysis), and (3) injecting into the rubblized and/or fracturized oil shale zone(s) a pyrolyzing fluid to effect hydrocarbon recovery.
The water-soluble mineral(s) and hydrocarbons may be recovered sequentially or simultaneously and if the latter, the two products can be separated by suitable means such as settling or solvent extraction above ground. The oil shale formation may contain more than one zone of rich water-soluble minerals which zones may be separated by impermeable oil shale layers of several feet to several hundred feet and each of these water-soluble mineral layers or zones can be leached or dissolved or solution mined in accordance with the process of the present invention. Also, the water-soluble mineral zones may contain the same or different minerals such as carbonates, bicarbonates, halites or mixtures thereof.
By water-soluble minerals present in the oil shale is meant to include water-soluble silicates, halides, carbonates, and/or bicarbonates salts, such as alkali metal chloride, carbonate, bicarbonate and silicate, e.g., halite, trona, nahcolite and the like.
The first or initial step should be so designed to create a cavern or interconnecting cavities in the watersoluble mineral bed(s) or zone(s) by dissolving, leaching or solution mining techniques through at least one borehole penetrating said formation. Leaching can be efiected by cold or hot aqueous solutions either at atmospheric or elevated pressures. When hot solutions are used such as hot water or acidified hot water and/or steam, more rapid dissolution is efl'ected of certain water-soluble minerals such as nahcolite, trona, halite to produce void spaces in the oil shale formation thereby providing and enhancing well communication, space for thermal expansion of the shale, and greater surface for contact with subsequent pyrolyzing fluid. Water can be cold or hot or steam or any other aqueous fluids can be used such as steam and/or water containing acids, e.g., HCl, or I-ICl I-IF, surfactants, sequestering agents, etc. If the initial cavities are not in communication, fracturing may be necessary.
If necessary, fracturing the formation either before or after leaching by conventional means such as hydrofracturing, explosive means, nuclear means, etc., may be desirable. The leaching solutions can contain chemical agents to enhance dissolution of the minerals. Under certain leaching conditions decomposition of certain water-soluble minerals, e.g., bicarbonates, into solublizing materials may take place of such minerals as dawsonite and silicates which might be present in the formation, thereby increasing the porosity of the formation. For example, when nahcolite is dissolved with water, the pH of the dissolution fluid is increased and thereby aids in the dissolution of silicates, etc.
Leaching or solution mining of the water-soluble minerals such as halite or nahcolite can be accomplished by a suitable solution mining technique such as described in US. Pat. Nos. 2,618,475; 3,387,888; 3,393,013; 3,402,966; 3,236,564; 3,510,167 or Canadian Pat. Nos. 832,828 or 832,276 or as described in copending application Ser. No. 2,765 filed Jan. 17, 1970. Spalling and rubbling can be accomplished by the method described in US. Pat. No. 3,478,825 or by other means such as by hydraulic, explosive, nuclear and/or electrical means. Preferably rubblization is accomplished by hot fluid circulation through the cavern causing the walls to spall and fracture. In-situ thermal recovery of oil can be effected by a pyrolyzing fluid such as steam and/or hot water or solvent extraction means.
The circulation of a pyrolyzing fluid not only effects oil recovery but also effects thermal rubbling and/or fracturization. Also, if the pyrolyzing fluid such as steam is used to extract and recover oil, more minerals may be dissolved perpetuating the process.
By the term pyrolyzing fluid is meant a liquid or gas which by means of thermal, chemical and/or solvent action, interacts with the kerogen components of an oil shale to produce and entrain hydrocarbon such as steam, Such a fluid can be hot fluids such as hot water of steam, or mixtures of hot water and strea, hot hydrocarbons and/or mixtures of such fluids with chemicals such as acids, e.g., HCl and/or organic solvents, benzene, toluene, cumene, phenol, etc. The kerogen pyrolyzing fluid can be heated by surface or borehole-located heating devices. The kerogen-pyrolyzing fluid can advantageously comprise or contain a solvent for the soluble mineral, such as steam condensate or a hot aqueous solution of organic and/or inorganic acid, having a temperature such as at least one hundred degrees Fahrenheit, such as from about 450 F to above about l,500 F and preferably from about 550 F to l,000 F. Where the kerogen-pyrolyzing fluid contains or forms aqueous components, its circulation through the treated oil shale formation can enlarge the cavern, by solution mining the soluble minerals, while shale oil is being produced. Also, simultaneously or sequentially pyrolyzing and oil extracting fluids can be used such as steam followed by a solvent such as phenol or benzene.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a vertical sectional view, partly diagrammatic, of an embodiment of the invention showing a formation penetration by more than one well.
FIG. 2 is a sectional view of an embodiment of the invention, the formation being penetrated by a single well.
FIG. 3 is a graphical illustration showing the solubility of sodium chloride (NaCl) and sodium bicarbonate (NaHCO in water as a function of temperature.
FIG. 4 is a schematic illustration of a method for providing communication between a pair of well boreholes in accordance with the techniques of this invention.
FIG. 5 is a schematic illustration partially in vertical section illustrating the mechanism of single-well salt leaching.
FIG. 6 is a graphical representation of maximum rate of nahcolite leaching as a function of leaching fluid temperature.
FIG. 7 is a graphical representation of minimum time required to leach a nahcolite cavity of lOO-foot radius as a function of leaching fluid temperature.
FIG. 8 is a graphical representation showing estimated maximum time to leach a nahcolite cavity of l00-foot radius as a function of leaching fluid injection rate and temperature.
FIGS. 9-12 show graphical representations of various process parameters as a function of time in an example application of the process of this invention where the rubbling rate is 0.02 feet per day.
FIGS. 13-16 show graphical representations of various process parameters as a function of time in an example application of the process of this invention where the rubbling rate is 0.1 feet per day.
FIGS. 17-20 show graphical representations of various process parameters as a function of time for an example application of the process of this invention where the rubbling rate is 0.5 feet per day.
DESCRIPTION OF THE PREFERRED EMBODIMENT Referring to FIG. 1 of the drawing, a plurality of well boreholes are shown penetrating into a subterranean oil shale formation 9 which contain rich zones of watersoluble minerals 10, 10a and 10b. An injection well borehole 1 1 is shown extending into oil shale formation 9 and rich soluble mineral zone(s) 10 or multizones such as 10a and 10b that are located within the oil shale formation 9 and are also encountered by well borehole 12. Well boreholes 11 and 12 are illustrated as having casings l3 and 14, respectively, cemented in place in their respective boreholes by suitable sealants 15 through 16, respectively. Although only a single injection well borehole 11 and a single production well borehole 12 have been illustrated, obviously various combinations of one or more injection and production wells may be provided by one skilled in the art.
In carrying out the method of this invention, the location of zones rich in substantially water-soluble minerals is determined in a conventional manner.
Fluid communication between well boreholes l1 and 12 (FIG. 1) and the zones rich in water-soluble minerals therebetween may be established by solution mining a cavern or cavities 23, through the soluble mineral zones. Communication can be enhanced by means of conventional hydraulic, electric, and/or explosive fracturing techniques, all well known in the art. Where, for example, subterranean stresses in and around soluble mineral zones 10, a and 10b are conducive to the formation of horizontal fractures, the fluid communication between well boreholes 11 and 12 and the soluble mineral can be established by a conventional hydraulic fracturing technique. Referring to FIG. 1, after fluid communication has been established between a pair of wells, aqueous leaching or solution mining liquid is injected through tubing 17 down well borehole 11, out through perforations 18 opposite any or all of the soluble beds through the bed 10, 10a and/or 10b up borehole 12 through tubing via perforation l9 creating a leached cavern 23. The aqueous liquid may comprise water and/or steam or aqueous solutions of acid or acid-forming materials and is circulated at pressures either above or below the over-burden pressure. The circulating aqueous liquid dissolves the water-soluble minerals and mineral byproducts thereof are recovered from the fluid flowing out of well borehole 12, for example, by conventional evaporation and/or precipitation procedures.
Fluid communication can also be established in one borehole between at least two spaced portions of the well borehole and the water-soluble minerals (as for example, in FIG. 2 communication is through the tubing string the ends of which are open to the water-soluble minerals and some distance apart.) Thus a single well may be utilized by a dual zone completion arrangement as shown in FIG. 2 such that fluids can be injected at one point of the well and produced from another point of the same well. In FIG. 2, the wellbore is 26, the easing is 27, the sealant is 28, within the casing are the injection tubing string 29 and production tubing string 30, the borehole 26 penetrates oil shale formation 9 with mineral zone(s) 10 or or multizones 10a and 10b.
Fracturing pressures are generated within the oil shale formation 9 while lower pressures are maintained within the cavern 23 which is formed within oil shale formation-9 by the removal of the water-soluble minerals. These pressures are preferably generated by merely circulating hot fluid through cavern 23. As the walls of the cavern(s) 23 (23a FIG. 2) are heated kerogen is pyrolyzed within the cavern walls and the pressures of the pyrolysis products increase until portions of the walls are spalled into the cavern 23 creating a rubblized zone 24 (24a FIG. 2) and surrounding fracture area 25 (25a FIG. 2).
Alternatively, fracturization and/or rubblization can be accomplished by conventional means such as hydraulic, explosive means and the like. To provide additional void space, if necessary, further leaching can be conducted.
Finally, a kerogen-pyrolyzing fluid such as steam is circulated from well borehole 11 (FIG. 1) through the rubblized zone 24 and fractured zone 25 of oil shale formation 9 and out of well borehole 12. Hydrocarbon materials are then recovered from the heated fluid circulatingout of well borehole 12 by means well known in the art. Removal of hydrocarbons fromthe oil shale provides additional void space enlarging the original rubblized zone, perpetrating the process. Similar techniques can be applied to single wells as shown in FIG. 2.
Conventional equipment and techniques, such as heating means, pumping means, separators and heat exchangers may be used for pressurizing, heating, injecting, producing and separating components of the heated fluid circulating through the oil shale formation 9. The production of the fluid may be aided by downhole pumping means, not shown, or restricted to the extent necessary to maintain the selected pressure within the oil shale formation 9.
The fluid circulated through rubblized zone 24 and fractured zone 25 (FIG. 1) to recover oil shale from oil shale formation 9 may comprise any heated gas, liquid or steam. Oil shale reactive properties may also be imparted to the circulating fluid as discussed hereinabove.
Where the oil formation contains a zone rich in substantially water-soluble minerals in which zone the soluble minerals occur in the form of adjacent but discrete nodules or lenses 31, or the like, the present process is applied as described above. In this situation, the caverns comprise a network of relatively small cavities that are interconnected by fractures.
EXAMPLES Leaching Phase A. In a continuous oil shale formation containing a nahcolite bed, a pair of wells are completed into a nahocolite layer at 2,100 feet with a downhole well separation of feet. Solution mining of the nahcolite (NaHCQ by injection of hot water therein provides both communication between the wells and the void space necessary to effect fragmentation and subsequent in-situ thermal treatment of the formation to recover oil.
In such a situation a bulk density (p) was found to be a 2.2 gin/cc and the permeability (K) was found to be 0.065 millidarcy for the nahcolite layerat about 2,055 feet. Experimentally, samples of this nahcolite were found to be completely dissolved in hot water, leaving 6 percent by weight insolubles.
Minimum volumes of water required to establish a channel 1 foot wide, three feet high and 70 feet long (between two wells about 50 feet apart, for example) which contains 13.4 tons of nahcolite may be determined from the solubility of sodium carbonate and bicarbonate in water.
As can be seen in FIG. 3 the solubility of pure Nal-ICO in water at formation temperature F) is about 30 lbs/bbl. Thus, a minimum of 700 bbls of water is required to establish communication between wells. On the other hand, a cylindrical cavity of the same height but 50 feet in radius contains 1,620 tons of nahcolite, and requires at least 10" bbls of water at formation temperature.
Water requirements may be reduced by a factor of five if the water is heated to 400 F (AT 310 F). Heating the water also has the added advantage that it results in a higher dissolution rate. Thus heating the water results in a shorter operating life, and requires the handling of relative small volumes of water. On the other hand, it requires the use of heaters with their attendant requirements of water quality and fuel supply. Also, the water disposal lines may become plugged with precipitate as the temperature of the line drops at the surface.
If the water is injected at formation temperature, a slight reduction in temperature takes place. The heat of solution of sodium bicarbonate is 4 kcal/mole, which results in as much as a 10 F drop in the solution temperature. Because the solution is not saturated, the observed temperature drops are in fact much smaller and thus may be discounted.
The addition of acids, such as 15 percent HCl to mining solutions is beneficial since it generally may be expected to result in a reduction in operating time, because of the high rate of reaction between the acid (HCl) and nahcolite. For example, injection of an acid solution into the wellbore will speed up the rate at which the cavity is made.
Communication may be established between the two wells by means of mechanical nozzles having controllable orientation through which the solvent is introduced. As illustrated schematically in FIG. 4, where the uncertainty in orientation of the nozzles is 1: 10, the nozzles may be directed from both wells A and B, with the orientation of the nozzles ranging from to 15 from their centerlines. This procedure insures eventual communication between the wells and reduces the time to obtain communication.
The degree of saturation of the effluent liquid is closely related to the mean residence time of the fluid in the subsurface, the circulation pattern of the fluid, and the rate at which the nahcolite goes in solution. The solution efficiency may be increased by increasing the residence time, that is, by increasing the operating time. Where sufficient water capacity is available and the operating time is to be kept low, it would appear that low solution efficiencies may be tolerated, especially if it is not intended to heat the water. On the other hand, the mining effect may be greatly enhanced if fragments resulting from jetting are removed as so]- ids.
After solution mining to form the cavern, the formation is fractured in the vicinity of the cavern and oil is recovered therefrom by means of in-situ oil recovery means as is well known in the art.
B. Results for a single well leaching to a l00-foot radius was determined experimentally for a nahcolite layer oil shale. The leaching rate results show that leaching rates are a function of temperature.
FIG. 5 shows the mechanism of single well salt leaching. Fresh water enters at the top of the formation and flows along the top of the cavity. Once it reaches the salt layer it dissolves the salt, becoming denser. The denser fluid then flows to the bottom of the cavity along the edge of the salt. There are two important parameters which control the rate of frontal advance of the cavity, natural convection and diffusion in the vertical direction. The slowing of the frontal advance is caused by diffusion in the vertical direction from the salt solution to the incoming fresh water. As the concentration of salt in the water reaching the leading edge of the cavity increases, the rate of frontal advance slows proportionally.
An experiment was scaled for 2,000 bpd at room temperature in a 6-foot layer of NaCl. This corresponds to scaling nahcolite leaching in the same size layer at 8,300 bpd and 300 F. It was found that the rate of frontal advance was constant out to the scaled test radius of 100 feet. The concentration of salt in the produced solution increased from 12 percent of saturation to 85 percent of saturation during the course of the experiment.
Using the results of the experiment, estimates were made of the maximum leaching rate of the subject nahcolite layer as a function of the temperature of the fluid at the leading edge of the cavity. Since a perfectly circular pattern was not obtained in the experiment, the minimum leaching rate was used in the estimates. It was also assumed that there were 20 percent insolubles in the nahcolite and that their only effect was in reducing the available surface area for leaching. FIG. 6 shows the rate of leaching as a function of the temperature of the fluid at the leading edge. FIG. 7 shows the minimum time required to leach a IOO-foot radius as a function of temperature. It appears that a flow rate of 2,000 bpd should be practical for a 6-foot layer.
The test showed that the production well was producing saturated solution when the frontal advance rate decreased and the maximum time required to leach a l00-foot radius can be calculated from a material balance and the solubility of nahcolite in water. FIG. 7 shows this minimum leaching time as a function of leaching time and flow rate. In making the calculations for FIG. 7, the constraint that the rate of advance could not exceed the maximum values given in FIG. 6 was used.
FIG. 8 shows the effect of temperature on water injection rates leaching a cavity with a radius of feet.
It should be noted that the temperature at the leading edge of the advancing front will not be the same as the injected temperature due to heat losses to the shale. The temperature drop will be roughly proportional to the temperature difference between the injected fluid and the initial shale temperature and will increase as the front advances.
Rubblization Phase Following the leaching phase rubbling using hot water and steam on the oil shale was performed. This consisted of cementing a large rectangular block of oil shale into a stainless steel container such that the lower 3 k inches of the block was unconfined and was contacted with hot water or steam. A spring-loaded plate positioned below the block allowed for the detection of any falls occurring during the experiment. Thermocouples placed in the steam chamber and into the shale block monitored the temperature at these points. Pressures surrounding the shale were maintained at 900 to 1,000 psi with nitrogen gas.
Three tests (A B, and C,) were run under essentially the same conditions. The first, A utilized a lean shale block (8 gal/ton); the lower face of the block was contacted with 500 F steam for a 6-day period. At the conclusion of the test, the shale container was opened and the block examined, and it was only evidented that the steam induced considerable cracking and rubbling. No oil was recovered during or after the experiment.
The second test, 8,, was essentially a repeat of A using a richer shale (27 gal/ton) and a different heating medium, hot water instead of steam. The water temperature was held constant for a lor 2-day period and then raised in 50 F increments. The water temperature was raised and held constant at 300 F for 16 hours. Several large cracks inch to A inch wide) were developed even at these mild temperatures. After a days delay, the test was restarted and a major fall occurred (water temperature 350 F). Smaller falls of 5 to 10 pounds occurred at 25 hours. The test was terminated after 312 hours; the maximum temperature, 520 F, maintained for the last 51 hours. No oil was detected in the effluent water stream, but the outlet lines were 9 found to be coated with a tarry residue readily soluble in benzene.
The results of I3 indicated that rubbling took place even at mild temperatures (350 F).
Test C, was run under conditions similar to B, and the specific conditions are shown in Table 1.
Table 1 C TEST CONDITIONS Water Temp. Time at Temp. Shale Temp. Pressure (F) (hours) (F) (psi) temperature was then reduced in 50 increments. Total test time 312 hours (13 days) crystalline material.
Heating the shale four days at 520 F resulted in greatly increased fracturing over that resulting from heating'to 450 F. After heating at 450 F, many cracks had formed, but none completely cleaved the slab. After heating to 520 F, a number of these cracks had been considerably widened and had propogated through the entire extent of the slab. The strain, measured for the slab, had increased to 0.057 and average slab thickness increased from 4 to 4- inches. No oil was produced with the effluent water.
Peculiar to test C, was the correlation between the positions of bedding plane distortions and the occurrence of vertical cracks upon heating. The previous sample B, was very evenly bedded and did not show this behavior.
In summary, the amount of fragmenting and fracturing of oil shale increased with increasing richness of the oil shale sample. There was a significant increase in fracturing at T 520 F over that produced below 450 F in unconfined shale samples. Good correlation exists between the positions of vertical (perpendicular to the bedding) cracks and the positions of distortions in the bedding plane.
Recovery Phase Calculations were made to estimate the performance of ashale oil recovery project in accordance with the method of this invention wherein steam is used as the pyrolyzing fluid to effect hydrocarbon recovery as well as recovery of other products as shown in FIGS. 9-20.
The basic data used for thecalculations were: a. steam injection at 625 F, 95 percent quality, b. 10 tons of steam condensed coming down injection .pipe,
- are for a rubbling rate of 0.02 ft/day, FIGS. 13-16 are for a rubbling rate of 0.1 ft/day, and FIGS. 17-20 are for a rubbling rate of 0.5 ft/day.
It is understood that various changes in the detailed described to explain the invention can be made by persons skilled in the art within the scope of the invention as expressed in the appended claims. I claim as my invention:
1. A method of producing hydrocarbons from a subterranean oil shale formation containing zones of water-soluble minerals comprising the steps of:
a. extending at least one well borehole into the watersoluble mineral containing zone of the oil shale formation;
b. removing water-soluble minerals by leaching, dissolving or solution mining with a non-acidic fluid, thereby creating porosity in said zone of the formation;
c. effecting rubblization' and fracturization of oil shale adjacent leached zone (b);
d. injecting'into said rubblized, fracturized oil shale a pyrolyzing fluid; and
e. recovering hydrocarbons from said rubblized fracturized oil shale.
2. The method of claim 1 wherein the leaching solution (b) is hot water, and the pyrolyzing fluid is steam.
3. A method of producing oil from a subterranean oil shale formation containing a zone of water-soluble minerals comprising the steps of:
creating a cavity in the oil shale formation by circulating aqueous a non-acidic solution-mining fluid into the water-soluble mineral zone through a first well, and out of the water-soluble mineral zone through a second well;
recovering the water-soluble mineral from aqueous fluid circulating out of the second well;
fracturing and rubbling the oil shale formation surrounding the cavity;
flowing a kerogen-pyrolyzing fluid into the fractured and rubblized formation; and
recovering oil from the pyrolyzed treated fracturized and rubblized formation. 4. A method for producing oil from a subterranean oil shale formation having at least one zone which contains water soluble minerals comprising the steps of:
extending at least one well borehole into said formation and into said zone;
establishing fluid communication between said well borehole and said zone at at least two spaced locations within said well;
circulating aqueous liquid from one of said spaced locations to another in contact with said zone to dissolve water-soluble minerals and leave a fluid filled cavern within the oil shale formation while maintaining fluid pressures within said cavern below overburden pressure within other regions in said oil shale formation;
generating fluid pressures within said oil shale formation sufiicient to create fractures and displace solid oil shale material toward and into said cavern;
flowing a kerogen-pyrolyzing fluid from one of said locations to another through the fractures and cavern within the oil shale formation;
outflowing kerogen-pyrolyzing fluid from said well;
and
recovering shale oil from outflowing portions of said kerogen-pyrolyzing fluid.
5. A method for producing oil from a subterranean oil shale formation having at least one zone which contains water soluble minerals, comprising the steps of:
extending at least one well borehole into said formation and into said zone;
establishing fluid communication between at least one well borehole and said zone at at least two spaced locations within said well; circulating aqueous liquid from one of said spaced locations to another in contact with said zone to dissolve water-soluble minerals and leave a fluidfilled cavern within the oil shale formation while generating fluid pressure within said oil shale formation sufficient to create fractures and displace solid oil shale material toward and into said cavern;
flowing a kerogen-pyrolyzing fluid from one of said locations, to another through the fractures and cavern within the oil shale formation;
outflowing kerogen-pyrolyzing fluid from said well;
and
recovering shale oil from outflowing portions of said kerogen-pyrolyzing fluid.
6. The method of claim including the step of establishing fluid communication between said borehole locations through said zone water-soluble mineral by hydraulically fracturing at least a portion of said oil shale formation containing said zone.
7. A method of claim 5 including the step of establishing fluid communication between said borehole locations through said zone water-soluble mineral by explosively fracturing at least a portion of said oil shale formation containing said zone.
8. The method of claim 5 including the step of establishing fluid communication between said borehole locations through said zone water-soluble mineral by electrically fracturing at least the portion of said oil shale formation communicating with said well boreholes.
9. The method of claim 5 wherein the step of circulating aqueous fluid includes the step of imparting acidic properties to said aqueous fluid and circulating said fluid liquid at pressures above the overburden pressure.
10. The method of claim 5 wherein the step of circulating aqueous liquid includes the step of imparting acidic properties to said aqueous fluid and ciculating said aqueous fluid at pressures below the overburden pressure.
11. The method of claim 5 wherein the step of generating fluid pressures sufficient to create fractures is carried out by the step of circulating fluid through said cavern at a temperature sufficient to pyrolyze the kerogen within the oil shale adjacent to the walls fonning said cavern and to spall-off portions of said walls into said cavern.
12. The method of claim 5 wherein the step of generating fluid pressures sufficient to create fractures is carried out by the step of pumping fluid explosives into said cavern; and
detonating said explosives so as to produce an initial pulse of high pressure within the cavern followed by a pressure that becomes lower than that within the adjacent oil shale formation thereby displacing said solid material towards said cavern.
13. The method of claim 1 including the step of establishing fluid communication between at least a pair of well boreholes within said mineral containing zone, said communication being accomplished by jetting aqueous liquid from each of said well boreholes to a point intermediate said boreholes.
14. A method of producing oil from a subterranean oil shale formation containing rich water-soluble mineral zones comprising the steps of:
a. subjecting the formation to leaching of the watersoluble minerals by injecting into the formation a non-acidic leaching solution to leach out the minerals and thereby effecting a zone of communicating cavities in the formation;
b. injecting a kerogen-pyrolyzing fluid into cavities zone (a) of the formation so as to effect spalling and rubblization of the oil shale;
c. continuing injection of the kerogen-pyrolyzing fluid to effect oil extraction; and
d. recovering the oil.
15. The method of claim 14 wherein the solvent is an aqueous liquid and the kerogen-pyrolyzing fluid is steam.
16. The method of claim 14 wherein the watersoluble mineral is water-soluble carbonate, the watersoluble leaching solution is hot water and the kerogenpyrolyzing fluid is steam.
17. The method of claim 15 wherein the watersoluble mineral is nahcolite.
18. The method of claim 5 wherein the water-soluble minerals are recovered from the formation prior to injection of the kerogen-pyrolyzing fluid.
19. The method of claim 3 wherein the dissolved water-soluble mineral by-products are recovered prior to flowing kerogen-pyrolyzing fluid into the formation.
20. The method of claim 5 wherein the aqueous liquid is hot water and the kerogen-pyrolyzing fluid is steam.
21. The method of claim 20 wherein the watersoluble mineral is water-soluble carbonate.
soluble mineral is nahcolite.

Claims (21)

  1. 2. The method of claim 1 wherein the leaching solution (b) is hot water, and the pyrolyzing fluid is steam.
  2. 3. A method of producing oil from a subterranean oil shale formation containing a zone of water-soluble minerals comprising the steps of: creating a cavity in the oil shale formation by circulating aqueous a non-acidic solution-mining fluid into the water-soluble mineral zone through a first well, and out of the water-soluble mineral zone through a second well; recovering the water-soluble mineral from aqueous fluid circulating out of the second well; fracturing and rubbling the oil shale formation surrounding the cavity; flowing a kerogen-pyrolyzing fluid into the fractured and rubblized formation; and recovering oil from the pyrolyzed treated fracturized and rubblized formation.
  3. 4. A method for producing oil from a subterranean oil shale formation having at least one zone which contains water soluble minerals comprising the steps of: extending at least one well borehole into said formation and into said zone; establishing fluid communication between said well borehole and said zone at at least two spaced locations within said well; circulating aqueous liquid from one of said spaced locations to another in contact with said zone to dissolve water-soluble minerals and leave a fluid-filled cavern within the oil shale formation while maintaining fluid pressures within said cavern below overburden pressure within other regions in said oil shale formation; generating fluid pressures within said oil shale formation sufficient to create fractures and displace solid oil shale material toward and into said cavern; flowing a kerogen-pyrolyzing fluid from one of said locations to another through the fractures and cavern within the oil shale formation; outflowing kerogen-pyrolyzing fluid from said well; and recovering shale oil from outflowing portions of said kerogen-pyrolyzing fluid.
  4. 5. A method for producing oil from a subterranean oil shale formation having at least one zone which contains water soluble minerals, comprising the steps of: extending at least one well borehole into said formation and into said zone; establishing fluid communication between at least one well borehole and said zone at at least two spaced locations within said well; circulating aqueous liquid from one of said spaced locations to another in contact with said zone to dissolve water-soluble minerals and leave a fluid-filled cavern within the oil shale formation while generating fluid pressure within said oil shale formation sufficient to create fractures and displace solid oil shale material toward and into said cavern; flowing a kerogen-pyrolyzing fluid from one of said locations, to another through the fractures and cavern within the oil shale formation; outflowing kerogen-pyrolyzing fluid from said well; and recovering shale oil from outflowing portions of said kerogen-pyrolyzing fluid.
  5. 6. The method of claim 5 including the step of establishing fluid communication between said borehole locations through said zone water-soluble mineral by hydraulically fracturing at least a portion of said oil shale formation containing said zone.
  6. 7. A method of claim 5 including the step of establishing fluid communication between said borehole locations through said zone water-soluble mineral by explosively fracturing at least a portion of said oil shale formation containing said zone.
  7. 8. The method of claim 5 including the step of establishing fluid communication between said borehole locations through said zone water-soluble mineral by electrically fracturing at least the portion of said oil shale formation communicating with said well boreholes.
  8. 9. The method of claim 5 wherein the step of circulating aqueous fluid includes the step of imparting acidic properties to said aqueous fluid and circulating said fluid liquid at pressures above the overburden pressure.
  9. 10. The method of claim 5 wherein the step of circulating aqueous liquid includes the step of imparting acidic properties to said aqueous fluid and ciculating said aqueous fluid at pressures below the overburden pressure.
  10. 11. The method of claim 5 wherein the step of generating fluid pressures sufficient to create fractures is carried out by the step of circulating fluid through said cavern at a temperature sufficient to pyrolyze the kerogen within the oil shale adjacent to the walls forming said cavern and to spall-off portions of said walls into said cavern.
  11. 12. The method of claim 5 wherein the step of generating fluid pressures sufficient to create fractures is carried out by the step of pumping fluid explosives into said cavern; and detonating said explosives so as to produce an initial pulse of high pressure within the cavern followed by a pressure that becomes lower than that within the adjacent oil shale formation thereby displacing said solid material towards said cavern.
  12. 13. The method of claim 1 including the step of establishing fluid communication between at least a pair of well boreholes within said mineral containing zone, said communication being accomplished by jetting aqueous liquid from each of said well boreholes to a point intermediate said boreholes.
  13. 14. A method of producing oil from a subterranean oil shale formation containing rich water-soluble mineral zones comprising the steps of: a. subjecting the formation to leaching of the water-soluble minerals by injecting into the formation a non-acidic leaching solution to leach out the minerals and thereby effecting a zone of communicating cavities in the formation; b. injecting a kerogen-pyrolyzing fluid into cavities zone (a) of the formation so as to effect spalling and rubblization of the oil shale; c. continuing injection of the kerogen-pyrolyzing fluid to effect oil extraction; and d. recovering the oil.
  14. 15. The method of claim 14 wherein the solvent is an aqueous liquid and the kerogen-pyrolyzing fluid is steam.
  15. 16. The method of claim 14 wherein the water-soluble mineral is water-soluble carbonate, the water-soluble leaching solution is hot water and the kerogen-pyrolyzing fluid is steAm.
  16. 17. The method of claim 15 wherein the water-soluble mineral is nahcolite.
  17. 18. The method of claim 5 wherein the water-soluble minerals are recovered from the formation prior to injection of the kerogen-pyrolyzing fluid.
  18. 19. The method of claim 3 wherein the dissolved water-soluble mineral by-products are recovered prior to flowing kerogen-pyrolyzing fluid into the formation.
  19. 20. The method of claim 5 wherein the aqueous liquid is hot water and the kerogen-pyrolyzing fluid is steam.
  20. 21. The method of claim 20 wherein the water-soluble mineral is water-soluble carbonate.
  21. 22. The method of claim 20 wherein the water-soluble mineral is nahcolite.
US00075009A 1970-09-24 1970-09-24 Method of producing hydrocarbons from an oil shale formation Expired - Lifetime US3759574A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US7500970A 1970-09-24 1970-09-24

Publications (1)

Publication Number Publication Date
US3759574A true US3759574A (en) 1973-09-18

Family

ID=22122967

Family Applications (1)

Application Number Title Priority Date Filing Date
US00075009A Expired - Lifetime US3759574A (en) 1970-09-24 1970-09-24 Method of producing hydrocarbons from an oil shale formation

Country Status (1)

Country Link
US (1) US3759574A (en)

Cited By (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3880238A (en) * 1974-07-18 1975-04-29 Shell Oil Co Solvent/non-solvent pyrolysis of subterranean oil shale
US3888307A (en) * 1974-08-29 1975-06-10 Shell Oil Co Heating through fractures to expand a shale oil pyrolyzing cavern
US3957306A (en) * 1975-06-12 1976-05-18 Shell Oil Company Explosive-aided oil shale cavity formation
US3967853A (en) * 1975-06-05 1976-07-06 Shell Oil Company Producing shale oil from a cavity-surrounded central well
US4059308A (en) * 1976-11-15 1977-11-22 Trw Inc. Pressure swing recovery system for oil shale deposits
US4065183A (en) * 1976-11-15 1977-12-27 Trw Inc. Recovery system for oil shale deposits
US4083604A (en) * 1976-11-15 1978-04-11 Trw Inc. Thermomechanical fracture for recovery system in oil shale deposits
US4234230A (en) * 1979-07-11 1980-11-18 The Superior Oil Company In situ processing of mined oil shale
US4375302A (en) * 1980-03-03 1983-03-01 Nicholas Kalmar Process for the in situ recovery of both petroleum and inorganic mineral content of an oil shale deposit
US4545891A (en) * 1981-03-31 1985-10-08 Trw Inc. Extraction and upgrading of fossil fuels using fused caustic and acid solutions
US4557910A (en) * 1982-03-29 1985-12-10 Intermountain Research & Development Corporation Production of soda ash from nahcolite
US4815790A (en) * 1988-05-13 1989-03-28 Natec, Ltd. Nahcolite solution mining process
US5059307A (en) * 1981-03-31 1991-10-22 Trw Inc. Process for upgrading coal
US5085764A (en) * 1981-03-31 1992-02-04 Trw Inc. Process for upgrading coal
US5588713A (en) * 1995-12-20 1996-12-31 Stevenson; Tom D. Process for making sodium bicarbonate from Nahcolite-rich solutions
US20020029885A1 (en) * 2000-04-24 2002-03-14 De Rouffignac Eric Pierre In situ thermal processing of a coal formation using a movable heating element
US20020034380A1 (en) * 2000-04-24 2002-03-21 Maher Kevin Albert In situ thermal processing of a coal formation with a selected moisture content
US20030131994A1 (en) * 2001-04-24 2003-07-17 Vinegar Harold J. In situ thermal processing and solution mining of an oil shale formation
US20040140096A1 (en) * 2002-10-24 2004-07-22 Sandberg Chester Ledlie Insulated conductor temperature limited heaters
US6820696B2 (en) * 2002-04-25 2004-11-23 Conocophillips Company Petroleum production utilizing a salt cavern
US20040231109A1 (en) * 1999-01-08 2004-11-25 Nielsen Kurt R. Sodium bicarbonate production from nahcolite
US20060039842A1 (en) * 2004-08-17 2006-02-23 Sesqui Mining, Llc Methods for constructing underground borehole configurations and related solution mining methods
US20070023186A1 (en) * 2003-11-03 2007-02-01 Kaminsky Robert D Hydrocarbon recovery from impermeable oil shales
WO2007050479A1 (en) * 2005-10-24 2007-05-03 Shell Internationale Research Maatschappij B.V. Solution mining systems and methods for treating hydrocarbon containing formations
US20070137857A1 (en) * 2005-04-22 2007-06-21 Vinegar Harold J Low temperature monitoring system for subsurface barriers
US20090200854A1 (en) * 2007-10-19 2009-08-13 Vinegar Harold J Solution mining and in situ treatment of nahcolite beds
US7644765B2 (en) 2006-10-20 2010-01-12 Shell Oil Company Heating tar sands formations while controlling pressure
US7644993B2 (en) 2006-04-21 2010-01-12 Exxonmobil Upstream Research Company In situ co-development of oil shale with mineral recovery
US7673786B2 (en) 2006-04-21 2010-03-09 Shell Oil Company Welding shield for coupling heaters
US20100101794A1 (en) * 2008-10-13 2010-04-29 Robert Charles Ryan Heating subsurface formations with fluids
WO2010096855A1 (en) * 2009-02-25 2010-09-02 Peter James Cassidy Oil shale processing
US7798220B2 (en) 2007-04-20 2010-09-21 Shell Oil Company In situ heat treatment of a tar sands formation after drive process treatment
US7942203B2 (en) 2003-04-24 2011-05-17 Shell Oil Company Thermal processes for subsurface formations
US20110127825A1 (en) * 2008-08-01 2011-06-02 Solvay Chemicals, Inc. Traveling undercut solution mining systems and methods
US8082995B2 (en) 2007-12-10 2011-12-27 Exxonmobil Upstream Research Company Optimization of untreated oil shale geometry to control subsidence
US8087460B2 (en) 2007-03-22 2012-01-03 Exxonmobil Upstream Research Company Granular electrical connections for in situ formation heating
US8104537B2 (en) 2006-10-13 2012-01-31 Exxonmobil Upstream Research Company Method of developing subsurface freeze zone
US8122955B2 (en) 2007-05-15 2012-02-28 Exxonmobil Upstream Research Company Downhole burners for in situ conversion of organic-rich rock formations
US8146664B2 (en) 2007-05-25 2012-04-03 Exxonmobil Upstream Research Company Utilization of low BTU gas generated during in situ heating of organic-rich rock
US8151884B2 (en) 2006-10-13 2012-04-10 Exxonmobil Upstream Research Company Combined development of oil shale by in situ heating with a deeper hydrocarbon resource
US8151907B2 (en) 2008-04-18 2012-04-10 Shell Oil Company Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8151877B2 (en) 2007-05-15 2012-04-10 Exxonmobil Upstream Research Company Downhole burner wells for in situ conversion of organic-rich rock formations
US8230929B2 (en) 2008-05-23 2012-07-31 Exxonmobil Upstream Research Company Methods of producing hydrocarbons for substantially constant composition gas generation
US20120305255A1 (en) * 2011-05-31 2012-12-06 Victor Borisovich Zavolzhskiy Method of Treating the Near-Wellbore Zone of the Reservoir
US8327932B2 (en) 2009-04-10 2012-12-11 Shell Oil Company Recovering energy from a subsurface formation
US8355623B2 (en) 2004-04-23 2013-01-15 Shell Oil Company Temperature limited heaters with high power factors
CN103114831A (en) * 2013-02-25 2013-05-22 太原理工大学 In-situ exploitation method for oil and gas resources of oil shale
US8540020B2 (en) 2009-05-05 2013-09-24 Exxonmobil Upstream Research Company Converting organic matter from a subterranean formation into producible hydrocarbons by controlling production operations based on availability of one or more production resources
US8596355B2 (en) 2003-06-24 2013-12-03 Exxonmobil Upstream Research Company Optimized well spacing for in situ shale oil development
US8616280B2 (en) 2010-08-30 2013-12-31 Exxonmobil Upstream Research Company Wellbore mechanical integrity for in situ pyrolysis
US8616279B2 (en) 2009-02-23 2013-12-31 Exxonmobil Upstream Research Company Water treatment following shale oil production by in situ heating
US8622127B2 (en) 2010-08-30 2014-01-07 Exxonmobil Upstream Research Company Olefin reduction for in situ pyrolysis oil generation
US8622133B2 (en) 2007-03-22 2014-01-07 Exxonmobil Upstream Research Company Resistive heater for in situ formation heating
US8627887B2 (en) 2001-10-24 2014-01-14 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US8631866B2 (en) 2010-04-09 2014-01-21 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8701768B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations
US8770284B2 (en) 2012-05-04 2014-07-08 Exxonmobil Upstream Research Company Systems and methods of detecting an intersection between a wellbore and a subterranean structure that includes a marker material
US8820406B2 (en) 2010-04-09 2014-09-02 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US8863839B2 (en) 2009-12-17 2014-10-21 Exxonmobil Upstream Research Company Enhanced convection for in situ pyrolysis of organic-rich rock formations
US8875789B2 (en) 2007-05-25 2014-11-04 Exxonmobil Upstream Research Company Process for producing hydrocarbon fluids combining in situ heating, a power plant and a gas plant
US9016370B2 (en) 2011-04-08 2015-04-28 Shell Oil Company Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US9033042B2 (en) 2010-04-09 2015-05-19 Shell Oil Company Forming bitumen barriers in subsurface hydrocarbon formations
US9080441B2 (en) 2011-11-04 2015-07-14 Exxonmobil Upstream Research Company Multiple electrical connections to optimize heating for in situ pyrolysis
US9309755B2 (en) 2011-10-07 2016-04-12 Shell Oil Company Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations
US9394772B2 (en) 2013-11-07 2016-07-19 Exxonmobil Upstream Research Company Systems and methods for in situ resistive heating of organic matter in a subterranean formation
US20160251947A1 (en) * 2015-02-27 2016-09-01 Schlumberger Technology Corporation Methods of Modifying Formation Properties
US9512699B2 (en) 2013-10-22 2016-12-06 Exxonmobil Upstream Research Company Systems and methods for regulating an in situ pyrolysis process
US9644466B2 (en) 2014-11-21 2017-05-09 Exxonmobil Upstream Research Company Method of recovering hydrocarbons within a subsurface formation using electric current
US10012064B2 (en) 2015-04-09 2018-07-03 Highlands Natural Resources, Plc Gas diverter for well and reservoir stimulation
US10047594B2 (en) 2012-01-23 2018-08-14 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation
CN108825193A (en) * 2017-05-05 2018-11-16 中国石油化工股份有限公司 Oil shale in-situ recovery method
US10344204B2 (en) 2015-04-09 2019-07-09 Diversion Technologies, LLC Gas diverter for well and reservoir stimulation
US10400563B2 (en) * 2014-11-25 2019-09-03 Salamander Solutions, LLC Pyrolysis to pressurise oil formations
US10422210B1 (en) 2018-05-04 2019-09-24 Sesqui Mining, Llc. Trona solution mining methods and compositions
US10889751B2 (en) 2015-08-28 2021-01-12 Liberty Oilfield Services, LLC Reservoir stimulation by energetic chemistry
US10982520B2 (en) 2016-04-27 2021-04-20 Highland Natural Resources, PLC Gas diverter for well and reservoir stimulation

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2561639A (en) * 1949-06-29 1951-07-24 Squires Frederick Process for preparing coal veins for gasification by removal of underlying clay
US2969226A (en) * 1959-01-19 1961-01-24 Pyrochem Corp Pendant parting petro pyrolysis process
US3018095A (en) * 1958-07-23 1962-01-23 Fmc Corp Method of hydraulic fracturing in underground formations
US3050290A (en) * 1959-10-30 1962-08-21 Fmc Corp Method of recovering sodium values by solution mining of trona
US3322194A (en) * 1965-03-25 1967-05-30 Mobil Oil Corp In-place retorting of oil shale
US3352355A (en) * 1965-06-23 1967-11-14 Dow Chemical Co Method of recovery of hydrocarbons from solid hydrocarbonaceous formations
US3393013A (en) * 1966-01-17 1968-07-16 Dresser Ind Process of mining ore from beneath an overburden of earth formation
US3455383A (en) * 1968-04-24 1969-07-15 Shell Oil Co Method of producing fluidized material from a subterranean formation
US3481398A (en) * 1967-02-28 1969-12-02 Shell Oil Co Permeabilizing by acidizing oil shale tuffaceous streaks in and oil recovery therefrom
US3502372A (en) * 1968-10-23 1970-03-24 Shell Oil Co Process of recovering oil and dawsonite from oil shale

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2561639A (en) * 1949-06-29 1951-07-24 Squires Frederick Process for preparing coal veins for gasification by removal of underlying clay
US3018095A (en) * 1958-07-23 1962-01-23 Fmc Corp Method of hydraulic fracturing in underground formations
US2969226A (en) * 1959-01-19 1961-01-24 Pyrochem Corp Pendant parting petro pyrolysis process
US3050290A (en) * 1959-10-30 1962-08-21 Fmc Corp Method of recovering sodium values by solution mining of trona
US3322194A (en) * 1965-03-25 1967-05-30 Mobil Oil Corp In-place retorting of oil shale
US3352355A (en) * 1965-06-23 1967-11-14 Dow Chemical Co Method of recovery of hydrocarbons from solid hydrocarbonaceous formations
US3393013A (en) * 1966-01-17 1968-07-16 Dresser Ind Process of mining ore from beneath an overburden of earth formation
US3481398A (en) * 1967-02-28 1969-12-02 Shell Oil Co Permeabilizing by acidizing oil shale tuffaceous streaks in and oil recovery therefrom
US3455383A (en) * 1968-04-24 1969-07-15 Shell Oil Co Method of producing fluidized material from a subterranean formation
US3502372A (en) * 1968-10-23 1970-03-24 Shell Oil Co Process of recovering oil and dawsonite from oil shale

Cited By (229)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3880238A (en) * 1974-07-18 1975-04-29 Shell Oil Co Solvent/non-solvent pyrolysis of subterranean oil shale
US3888307A (en) * 1974-08-29 1975-06-10 Shell Oil Co Heating through fractures to expand a shale oil pyrolyzing cavern
US3967853A (en) * 1975-06-05 1976-07-06 Shell Oil Company Producing shale oil from a cavity-surrounded central well
US3957306A (en) * 1975-06-12 1976-05-18 Shell Oil Company Explosive-aided oil shale cavity formation
US4059308A (en) * 1976-11-15 1977-11-22 Trw Inc. Pressure swing recovery system for oil shale deposits
US4065183A (en) * 1976-11-15 1977-12-27 Trw Inc. Recovery system for oil shale deposits
US4083604A (en) * 1976-11-15 1978-04-11 Trw Inc. Thermomechanical fracture for recovery system in oil shale deposits
US4163580A (en) * 1976-11-15 1979-08-07 Trw Inc. Pressure swing recovery system for mineral deposits
US4234230A (en) * 1979-07-11 1980-11-18 The Superior Oil Company In situ processing of mined oil shale
US4375302A (en) * 1980-03-03 1983-03-01 Nicholas Kalmar Process for the in situ recovery of both petroleum and inorganic mineral content of an oil shale deposit
US4545891A (en) * 1981-03-31 1985-10-08 Trw Inc. Extraction and upgrading of fossil fuels using fused caustic and acid solutions
US5059307A (en) * 1981-03-31 1991-10-22 Trw Inc. Process for upgrading coal
US5085764A (en) * 1981-03-31 1992-02-04 Trw Inc. Process for upgrading coal
US4557910A (en) * 1982-03-29 1985-12-10 Intermountain Research & Development Corporation Production of soda ash from nahcolite
US4815790A (en) * 1988-05-13 1989-03-28 Natec, Ltd. Nahcolite solution mining process
US5588713A (en) * 1995-12-20 1996-12-31 Stevenson; Tom D. Process for making sodium bicarbonate from Nahcolite-rich solutions
US20040231109A1 (en) * 1999-01-08 2004-11-25 Nielsen Kurt R. Sodium bicarbonate production from nahcolite
US20030164234A1 (en) * 2000-04-24 2003-09-04 De Rouffignac Eric Pierre In situ thermal processing of a hydrocarbon containing formation using a movable heating element
US20020034380A1 (en) * 2000-04-24 2002-03-21 Maher Kevin Albert In situ thermal processing of a coal formation with a selected moisture content
US20020033257A1 (en) * 2000-04-24 2002-03-21 Shahin Gordon Thomas In situ thermal processing of hydrocarbons within a relatively impermeable formation
US20020038710A1 (en) * 2000-04-24 2002-04-04 Maher Kevin Albert In situ thermal processing of a hydrocarbon containing formation having a selected total organic carbon content
US20020038711A1 (en) * 2000-04-24 2002-04-04 Rouffignac Eric Pierre De In situ thermal processing of a hydrocarbon containing formation using heat sources positioned within open wellbores
US20020038709A1 (en) * 2000-04-24 2002-04-04 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US20020043365A1 (en) * 2000-04-24 2002-04-18 Berchenko Ilya Emil In situ thermal processing of a coal formation with a selected ratio of heat sources to production wells
US20020043367A1 (en) * 2000-04-24 2002-04-18 Rouffignac Eric Pierre De In situ thermal processing of a hydrocarbon containing formation to increase a permeability of the formation
US20020046838A1 (en) * 2000-04-24 2002-04-25 Karanikas John Michael In situ thermal processing of a hydrocarbon containing formation with carbon dioxide sequestration
US20020053432A1 (en) * 2000-04-24 2002-05-09 Berchenko Ilya Emil In situ thermal processing of a hydrocarbon containing formation using repeating triangular patterns of heat sources
US20020053429A1 (en) * 2000-04-24 2002-05-09 Stegemeier George Leo In situ thermal processing of a hydrocarbon containing formation using pressure and/or temperature control
US20020057905A1 (en) * 2000-04-24 2002-05-16 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation to produce oxygen containing formation fluids
US20020056551A1 (en) * 2000-04-24 2002-05-16 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation in a reducing environment
US20020062051A1 (en) * 2000-04-24 2002-05-23 Wellington Scott L. In situ thermal processing of a hydrocarbon containing formation with a selected moisture content
US20020077515A1 (en) * 2000-04-24 2002-06-20 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation to produce hydrocarbons having a selected carbon number range
US20020084074A1 (en) * 2000-04-24 2002-07-04 De Rouffignac Eric Pierre In situ thermal processing of a hydrocarbon containing formation to increase a porosity of the formation
US20020104654A1 (en) * 2000-04-24 2002-08-08 Shell Oil Company In situ thermal processing of a coal formation to convert a selected total organic carbon content into hydrocarbon products
US7798221B2 (en) 2000-04-24 2010-09-21 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US8789586B2 (en) 2000-04-24 2014-07-29 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US20030213594A1 (en) * 2000-04-24 2003-11-20 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US20040108111A1 (en) * 2000-04-24 2004-06-10 Vinegar Harold J. In situ thermal processing of a coal formation to increase a permeability/porosity of the formation
US20020029885A1 (en) * 2000-04-24 2002-03-14 De Rouffignac Eric Pierre In situ thermal processing of a coal formation using a movable heating element
US8485252B2 (en) 2000-04-24 2013-07-16 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US20020033256A1 (en) * 2000-04-24 2002-03-21 Wellington Scott Lee In situ thermal processing of a hydrocarbon containing formation with a selected hydrogen to carbon ratio
US6997518B2 (en) * 2001-04-24 2006-02-14 Shell Oil Company In situ thermal processing and solution mining of an oil shale formation
US20030131994A1 (en) * 2001-04-24 2003-07-17 Vinegar Harold J. In situ thermal processing and solution mining of an oil shale formation
US7040397B2 (en) 2001-04-24 2006-05-09 Shell Oil Company Thermal processing of an oil shale formation to increase permeability of the formation
US7735935B2 (en) 2001-04-24 2010-06-15 Shell Oil Company In situ thermal processing of an oil shale formation containing carbonate minerals
US8608249B2 (en) 2001-04-24 2013-12-17 Shell Oil Company In situ thermal processing of an oil shale formation
US8627887B2 (en) 2001-10-24 2014-01-14 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US6820696B2 (en) * 2002-04-25 2004-11-23 Conocophillips Company Petroleum production utilizing a salt cavern
US20040177966A1 (en) * 2002-10-24 2004-09-16 Vinegar Harold J. Conductor-in-conduit temperature limited heaters
US8238730B2 (en) 2002-10-24 2012-08-07 Shell Oil Company High voltage temperature limited heaters
US20040140096A1 (en) * 2002-10-24 2004-07-22 Sandberg Chester Ledlie Insulated conductor temperature limited heaters
US8200072B2 (en) 2002-10-24 2012-06-12 Shell Oil Company Temperature limited heaters for heating subsurface formations or wellbores
US8224163B2 (en) 2002-10-24 2012-07-17 Shell Oil Company Variable frequency temperature limited heaters
US8224164B2 (en) 2002-10-24 2012-07-17 Shell Oil Company Insulated conductor temperature limited heaters
US7942203B2 (en) 2003-04-24 2011-05-17 Shell Oil Company Thermal processes for subsurface formations
US8579031B2 (en) 2003-04-24 2013-11-12 Shell Oil Company Thermal processes for subsurface formations
US8596355B2 (en) 2003-06-24 2013-12-03 Exxonmobil Upstream Research Company Optimized well spacing for in situ shale oil development
US7857056B2 (en) 2003-11-03 2010-12-28 Exxonmobil Upstream Research Company Hydrocarbon recovery from impermeable oil shales using sets of fluid-heated fractures
US20090038795A1 (en) * 2003-11-03 2009-02-12 Kaminsky Robert D Hydrocarbon Recovery From Impermeable Oil Shales Using Sets of Fluid-Heated Fractures
US7441603B2 (en) 2003-11-03 2008-10-28 Exxonmobil Upstream Research Company Hydrocarbon recovery from impermeable oil shales
US20070023186A1 (en) * 2003-11-03 2007-02-01 Kaminsky Robert D Hydrocarbon recovery from impermeable oil shales
US8355623B2 (en) 2004-04-23 2013-01-15 Shell Oil Company Temperature limited heaters with high power factors
US7611208B2 (en) * 2004-08-17 2009-11-03 Sesqui Mining, Llc Methods for constructing underground borehole configurations and related solution mining methods
US8057765B2 (en) 2004-08-17 2011-11-15 Sesqui Mining, Llc Methods for constructing underground borehole configurations and related solution mining methods
US20100066153A1 (en) * 2004-08-17 2010-03-18 Sesqui Mining, Llc Methods for constructing underground borehole configurations and related solution mining methods
US20060039842A1 (en) * 2004-08-17 2006-02-23 Sesqui Mining, Llc Methods for constructing underground borehole configurations and related solution mining methods
US8899691B2 (en) 2004-08-17 2014-12-02 Sesqui Mining, Llc Methods for constructing underground borehole configurations and related solution mining methods
US9260918B2 (en) 2004-08-17 2016-02-16 Sesqui Mining LLC. Methods for constructing underground borehole configurations and related solution mining methods
US7860377B2 (en) 2005-04-22 2010-12-28 Shell Oil Company Subsurface connection methods for subsurface heaters
US8230927B2 (en) 2005-04-22 2012-07-31 Shell Oil Company Methods and systems for producing fluid from an in situ conversion process
US7942197B2 (en) 2005-04-22 2011-05-17 Shell Oil Company Methods and systems for producing fluid from an in situ conversion process
US7986869B2 (en) 2005-04-22 2011-07-26 Shell Oil Company Varying properties along lengths of temperature limited heaters
US8224165B2 (en) 2005-04-22 2012-07-17 Shell Oil Company Temperature limited heater utilizing non-ferromagnetic conductor
US8027571B2 (en) 2005-04-22 2011-09-27 Shell Oil Company In situ conversion process systems utilizing wellbores in at least two regions of a formation
US8070840B2 (en) 2005-04-22 2011-12-06 Shell Oil Company Treatment of gas from an in situ conversion process
US7831134B2 (en) 2005-04-22 2010-11-09 Shell Oil Company Grouped exposed metal heaters
US20070137857A1 (en) * 2005-04-22 2007-06-21 Vinegar Harold J Low temperature monitoring system for subsurface barriers
US8233782B2 (en) 2005-04-22 2012-07-31 Shell Oil Company Grouped exposed metal heaters
KR101434232B1 (en) * 2005-10-24 2014-08-27 쉘 인터내셔날 리써취 마트샤피지 비.브이. Solution mining systems and methods for treating hydrocarbon containing formations
US8606091B2 (en) 2005-10-24 2013-12-10 Shell Oil Company Subsurface heaters with low sulfidation rates
US20070221377A1 (en) * 2005-10-24 2007-09-27 Vinegar Harold J Solution mining systems and methods for treating hydrocarbon containing formations
AU2006306414B2 (en) * 2005-10-24 2010-08-05 Shell Internationale Research Maatschappij B.V. Solution mining methods for treating hydrocarbon-containing formations
US20070131415A1 (en) * 2005-10-24 2007-06-14 Vinegar Harold J Solution mining and heating by oxidation for treating hydrocarbon containing formations
JP2009512802A (en) * 2005-10-24 2009-03-26 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Solution mining system and method for treating hydrocarbon-containing formations
US7549470B2 (en) * 2005-10-24 2009-06-23 Shell Oil Company Solution mining and heating by oxidation for treating hydrocarbon containing formations
EA013253B1 (en) * 2005-10-24 2010-04-30 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Methods for treating hydrocarbon containing formations
US7559368B2 (en) * 2005-10-24 2009-07-14 Shell Oil Company Solution mining systems and methods for treating hydrocarbon containing formations
US8151880B2 (en) 2005-10-24 2012-04-10 Shell Oil Company Methods of making transportation fuel
WO2007050479A1 (en) * 2005-10-24 2007-05-03 Shell Internationale Research Maatschappij B.V. Solution mining systems and methods for treating hydrocarbon containing formations
US7683296B2 (en) 2006-04-21 2010-03-23 Shell Oil Company Adjusting alloy compositions for selected properties in temperature limited heaters
US8641150B2 (en) 2006-04-21 2014-02-04 Exxonmobil Upstream Research Company In situ co-development of oil shale with mineral recovery
US8192682B2 (en) 2006-04-21 2012-06-05 Shell Oil Company High strength alloys
US7673786B2 (en) 2006-04-21 2010-03-09 Shell Oil Company Welding shield for coupling heaters
US7912358B2 (en) 2006-04-21 2011-03-22 Shell Oil Company Alternate energy source usage for in situ heat treatment processes
US7644993B2 (en) 2006-04-21 2010-01-12 Exxonmobil Upstream Research Company In situ co-development of oil shale with mineral recovery
US7785427B2 (en) 2006-04-21 2010-08-31 Shell Oil Company High strength alloys
US7866385B2 (en) 2006-04-21 2011-01-11 Shell Oil Company Power systems utilizing the heat of produced formation fluid
US8857506B2 (en) 2006-04-21 2014-10-14 Shell Oil Company Alternate energy source usage methods for in situ heat treatment processes
US7793722B2 (en) 2006-04-21 2010-09-14 Shell Oil Company Non-ferromagnetic overburden casing
US8083813B2 (en) 2006-04-21 2011-12-27 Shell Oil Company Methods of producing transportation fuel
US8151884B2 (en) 2006-10-13 2012-04-10 Exxonmobil Upstream Research Company Combined development of oil shale by in situ heating with a deeper hydrocarbon resource
US8104537B2 (en) 2006-10-13 2012-01-31 Exxonmobil Upstream Research Company Method of developing subsurface freeze zone
US7644765B2 (en) 2006-10-20 2010-01-12 Shell Oil Company Heating tar sands formations while controlling pressure
US7673681B2 (en) 2006-10-20 2010-03-09 Shell Oil Company Treating tar sands formations with karsted zones
US7677314B2 (en) 2006-10-20 2010-03-16 Shell Oil Company Method of condensing vaporized water in situ to treat tar sands formations
US7681647B2 (en) 2006-10-20 2010-03-23 Shell Oil Company Method of producing drive fluid in situ in tar sands formations
US7845411B2 (en) 2006-10-20 2010-12-07 Shell Oil Company In situ heat treatment process utilizing a closed loop heating system
US7717171B2 (en) 2006-10-20 2010-05-18 Shell Oil Company Moving hydrocarbons through portions of tar sands formations with a fluid
US7730946B2 (en) 2006-10-20 2010-06-08 Shell Oil Company Treating tar sands formations with dolomite
US8555971B2 (en) 2006-10-20 2013-10-15 Shell Oil Company Treating tar sands formations with dolomite
US7677310B2 (en) 2006-10-20 2010-03-16 Shell Oil Company Creating and maintaining a gas cap in tar sands formations
US7730945B2 (en) 2006-10-20 2010-06-08 Shell Oil Company Using geothermal energy to heat a portion of a formation for an in situ heat treatment process
US8191630B2 (en) 2006-10-20 2012-06-05 Shell Oil Company Creating fluid injectivity in tar sands formations
US7703513B2 (en) 2006-10-20 2010-04-27 Shell Oil Company Wax barrier for use with in situ processes for treating formations
US7730947B2 (en) 2006-10-20 2010-06-08 Shell Oil Company Creating fluid injectivity in tar sands formations
US7841401B2 (en) 2006-10-20 2010-11-30 Shell Oil Company Gas injection to inhibit migration during an in situ heat treatment process
US9347302B2 (en) 2007-03-22 2016-05-24 Exxonmobil Upstream Research Company Resistive heater for in situ formation heating
US8087460B2 (en) 2007-03-22 2012-01-03 Exxonmobil Upstream Research Company Granular electrical connections for in situ formation heating
US8622133B2 (en) 2007-03-22 2014-01-07 Exxonmobil Upstream Research Company Resistive heater for in situ formation heating
US8662175B2 (en) 2007-04-20 2014-03-04 Shell Oil Company Varying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
US7950453B2 (en) 2007-04-20 2011-05-31 Shell Oil Company Downhole burner systems and methods for heating subsurface formations
US7832484B2 (en) 2007-04-20 2010-11-16 Shell Oil Company Molten salt as a heat transfer fluid for heating a subsurface formation
US7798220B2 (en) 2007-04-20 2010-09-21 Shell Oil Company In situ heat treatment of a tar sands formation after drive process treatment
US8042610B2 (en) 2007-04-20 2011-10-25 Shell Oil Company Parallel heater system for subsurface formations
US8381815B2 (en) 2007-04-20 2013-02-26 Shell Oil Company Production from multiple zones of a tar sands formation
US7841425B2 (en) 2007-04-20 2010-11-30 Shell Oil Company Drilling subsurface wellbores with cutting structures
US7841408B2 (en) 2007-04-20 2010-11-30 Shell Oil Company In situ heat treatment from multiple layers of a tar sands formation
US7849922B2 (en) 2007-04-20 2010-12-14 Shell Oil Company In situ recovery from residually heated sections in a hydrocarbon containing formation
US8791396B2 (en) 2007-04-20 2014-07-29 Shell Oil Company Floating insulated conductors for heating subsurface formations
US7931086B2 (en) 2007-04-20 2011-04-26 Shell Oil Company Heating systems for heating subsurface formations
US8459359B2 (en) 2007-04-20 2013-06-11 Shell Oil Company Treating nahcolite containing formations and saline zones
US9181780B2 (en) 2007-04-20 2015-11-10 Shell Oil Company Controlling and assessing pressure conditions during treatment of tar sands formations
US8327681B2 (en) 2007-04-20 2012-12-11 Shell Oil Company Wellbore manufacturing processes for in situ heat treatment processes
US8122955B2 (en) 2007-05-15 2012-02-28 Exxonmobil Upstream Research Company Downhole burners for in situ conversion of organic-rich rock formations
US8151877B2 (en) 2007-05-15 2012-04-10 Exxonmobil Upstream Research Company Downhole burner wells for in situ conversion of organic-rich rock formations
US8146664B2 (en) 2007-05-25 2012-04-03 Exxonmobil Upstream Research Company Utilization of low BTU gas generated during in situ heating of organic-rich rock
US8875789B2 (en) 2007-05-25 2014-11-04 Exxonmobil Upstream Research Company Process for producing hydrocarbon fluids combining in situ heating, a power plant and a gas plant
US7866388B2 (en) 2007-10-19 2011-01-11 Shell Oil Company High temperature methods for forming oxidizer fuel
US8011451B2 (en) 2007-10-19 2011-09-06 Shell Oil Company Ranging methods for developing wellbores in subsurface formations
US8146661B2 (en) 2007-10-19 2012-04-03 Shell Oil Company Cryogenic treatment of gas
US8272455B2 (en) 2007-10-19 2012-09-25 Shell Oil Company Methods for forming wellbores in heated formations
US8276661B2 (en) 2007-10-19 2012-10-02 Shell Oil Company Heating subsurface formations by oxidizing fuel on a fuel carrier
US7866386B2 (en) 2007-10-19 2011-01-11 Shell Oil Company In situ oxidation of subsurface formations
US8162059B2 (en) 2007-10-19 2012-04-24 Shell Oil Company Induction heaters used to heat subsurface formations
US8536497B2 (en) 2007-10-19 2013-09-17 Shell Oil Company Methods for forming long subsurface heaters
US8113272B2 (en) 2007-10-19 2012-02-14 Shell Oil Company Three-phase heaters with common overburden sections for heating subsurface formations
US8196658B2 (en) 2007-10-19 2012-06-12 Shell Oil Company Irregular spacing of heat sources for treating hydrocarbon containing formations
US8146669B2 (en) 2007-10-19 2012-04-03 Shell Oil Company Multi-step heater deployment in a subsurface formation
US8240774B2 (en) * 2007-10-19 2012-08-14 Shell Oil Company Solution mining and in situ treatment of nahcolite beds
US20090200854A1 (en) * 2007-10-19 2009-08-13 Vinegar Harold J Solution mining and in situ treatment of nahcolite beds
US8082995B2 (en) 2007-12-10 2011-12-27 Exxonmobil Upstream Research Company Optimization of untreated oil shale geometry to control subsidence
US8636323B2 (en) 2008-04-18 2014-01-28 Shell Oil Company Mines and tunnels for use in treating subsurface hydrocarbon containing formations
US8151907B2 (en) 2008-04-18 2012-04-10 Shell Oil Company Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US9528322B2 (en) 2008-04-18 2016-12-27 Shell Oil Company Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8162405B2 (en) 2008-04-18 2012-04-24 Shell Oil Company Using tunnels for treating subsurface hydrocarbon containing formations
US8177305B2 (en) 2008-04-18 2012-05-15 Shell Oil Company Heater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations
US8562078B2 (en) 2008-04-18 2013-10-22 Shell Oil Company Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US8752904B2 (en) 2008-04-18 2014-06-17 Shell Oil Company Heated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
US8172335B2 (en) 2008-04-18 2012-05-08 Shell Oil Company Electrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations
US8230929B2 (en) 2008-05-23 2012-07-31 Exxonmobil Upstream Research Company Methods of producing hydrocarbons for substantially constant composition gas generation
US20110127825A1 (en) * 2008-08-01 2011-06-02 Solvay Chemicals, Inc. Traveling undercut solution mining systems and methods
US9234416B2 (en) 2008-08-01 2016-01-12 Solvay Chemicals, Inc. Traveling undercut solution mining systems and methods
CN102112699B (en) * 2008-08-01 2014-07-09 索尔维化学有限公司 Traveling undercut solution mining systems and methods
US9581006B2 (en) 2008-08-01 2017-02-28 Solvay Chemicals, Inc. Traveling undercut solution mining systems and methods
US8678513B2 (en) * 2008-08-01 2014-03-25 Solvay Chemicals, Inc. Traveling undercut solution mining systems and methods
US20100101794A1 (en) * 2008-10-13 2010-04-29 Robert Charles Ryan Heating subsurface formations with fluids
US9051829B2 (en) 2008-10-13 2015-06-09 Shell Oil Company Perforated electrical conductors for treating subsurface formations
US9022118B2 (en) 2008-10-13 2015-05-05 Shell Oil Company Double insulated heaters for treating subsurface formations
US20100147521A1 (en) * 2008-10-13 2010-06-17 Xueying Xie Perforated electrical conductors for treating subsurface formations
US9129728B2 (en) 2008-10-13 2015-09-08 Shell Oil Company Systems and methods of forming subsurface wellbores
US8256512B2 (en) 2008-10-13 2012-09-04 Shell Oil Company Movable heaters for treating subsurface hydrocarbon containing formations
US8353347B2 (en) 2008-10-13 2013-01-15 Shell Oil Company Deployment of insulated conductors for treating subsurface formations
US8220539B2 (en) 2008-10-13 2012-07-17 Shell Oil Company Controlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US8881806B2 (en) 2008-10-13 2014-11-11 Shell Oil Company Systems and methods for treating a subsurface formation with electrical conductors
US8261832B2 (en) * 2008-10-13 2012-09-11 Shell Oil Company Heating subsurface formations with fluids
US8267185B2 (en) 2008-10-13 2012-09-18 Shell Oil Company Circulated heated transfer fluid systems used to treat a subsurface formation
US8281861B2 (en) 2008-10-13 2012-10-09 Shell Oil Company Circulated heated transfer fluid heating of subsurface hydrocarbon formations
US8267170B2 (en) 2008-10-13 2012-09-18 Shell Oil Company Offset barrier wells in subsurface formations
US8616279B2 (en) 2009-02-23 2013-12-31 Exxonmobil Upstream Research Company Water treatment following shale oil production by in situ heating
AU2009340890B2 (en) * 2009-02-25 2015-11-26 Peter James Cassidy Oil shale processing
US8967261B2 (en) * 2009-02-25 2015-03-03 Peter James Cassidy Oil shale processing
WO2010096855A1 (en) * 2009-02-25 2010-09-02 Peter James Cassidy Oil shale processing
US20110186296A1 (en) * 2009-02-25 2011-08-04 Peter James Cassidy Oil shale processing
US8590620B2 (en) * 2009-02-25 2013-11-26 Peter James Cassidy Oil shale processing
US8327932B2 (en) 2009-04-10 2012-12-11 Shell Oil Company Recovering energy from a subsurface formation
US8434555B2 (en) 2009-04-10 2013-05-07 Shell Oil Company Irregular pattern treatment of a subsurface formation
US8448707B2 (en) 2009-04-10 2013-05-28 Shell Oil Company Non-conducting heater casings
US8851170B2 (en) 2009-04-10 2014-10-07 Shell Oil Company Heater assisted fluid treatment of a subsurface formation
US8540020B2 (en) 2009-05-05 2013-09-24 Exxonmobil Upstream Research Company Converting organic matter from a subterranean formation into producible hydrocarbons by controlling production operations based on availability of one or more production resources
US8863839B2 (en) 2009-12-17 2014-10-21 Exxonmobil Upstream Research Company Enhanced convection for in situ pyrolysis of organic-rich rock formations
US9022109B2 (en) 2010-04-09 2015-05-05 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US9399905B2 (en) 2010-04-09 2016-07-26 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8739874B2 (en) 2010-04-09 2014-06-03 Shell Oil Company Methods for heating with slots in hydrocarbon formations
US8820406B2 (en) 2010-04-09 2014-09-02 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US9033042B2 (en) 2010-04-09 2015-05-19 Shell Oil Company Forming bitumen barriers in subsurface hydrocarbon formations
US8833453B2 (en) 2010-04-09 2014-09-16 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with tapered copper thickness
US8701769B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations based on geology
US8701768B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations
US9127523B2 (en) 2010-04-09 2015-09-08 Shell Oil Company Barrier methods for use in subsurface hydrocarbon formations
US8631866B2 (en) 2010-04-09 2014-01-21 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US9127538B2 (en) 2010-04-09 2015-09-08 Shell Oil Company Methodologies for treatment of hydrocarbon formations using staged pyrolyzation
US8622127B2 (en) 2010-08-30 2014-01-07 Exxonmobil Upstream Research Company Olefin reduction for in situ pyrolysis oil generation
US8616280B2 (en) 2010-08-30 2013-12-31 Exxonmobil Upstream Research Company Wellbore mechanical integrity for in situ pyrolysis
US9016370B2 (en) 2011-04-08 2015-04-28 Shell Oil Company Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US9228424B2 (en) * 2011-05-31 2016-01-05 Riverbend, S.A. Method of treating the near-wellbore zone of the reservoir
US20120305255A1 (en) * 2011-05-31 2012-12-06 Victor Borisovich Zavolzhskiy Method of Treating the Near-Wellbore Zone of the Reservoir
US9309755B2 (en) 2011-10-07 2016-04-12 Shell Oil Company Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations
US9080441B2 (en) 2011-11-04 2015-07-14 Exxonmobil Upstream Research Company Multiple electrical connections to optimize heating for in situ pyrolysis
US10047594B2 (en) 2012-01-23 2018-08-14 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation
US8770284B2 (en) 2012-05-04 2014-07-08 Exxonmobil Upstream Research Company Systems and methods of detecting an intersection between a wellbore and a subterranean structure that includes a marker material
CN103114831B (en) * 2013-02-25 2015-06-24 太原理工大学 In-situ exploitation method for oil and gas resources of oil shale
CN103114831A (en) * 2013-02-25 2013-05-22 太原理工大学 In-situ exploitation method for oil and gas resources of oil shale
US9512699B2 (en) 2013-10-22 2016-12-06 Exxonmobil Upstream Research Company Systems and methods for regulating an in situ pyrolysis process
US9394772B2 (en) 2013-11-07 2016-07-19 Exxonmobil Upstream Research Company Systems and methods for in situ resistive heating of organic matter in a subterranean formation
US9739122B2 (en) 2014-11-21 2017-08-22 Exxonmobil Upstream Research Company Mitigating the effects of subsurface shunts during bulk heating of a subsurface formation
US9644466B2 (en) 2014-11-21 2017-05-09 Exxonmobil Upstream Research Company Method of recovering hydrocarbons within a subsurface formation using electric current
US10400563B2 (en) * 2014-11-25 2019-09-03 Salamander Solutions, LLC Pyrolysis to pressurise oil formations
US20160251947A1 (en) * 2015-02-27 2016-09-01 Schlumberger Technology Corporation Methods of Modifying Formation Properties
US10012064B2 (en) 2015-04-09 2018-07-03 Highlands Natural Resources, Plc Gas diverter for well and reservoir stimulation
US10344204B2 (en) 2015-04-09 2019-07-09 Diversion Technologies, LLC Gas diverter for well and reservoir stimulation
US10385257B2 (en) 2015-04-09 2019-08-20 Highands Natural Resources, PLC Gas diverter for well and reservoir stimulation
US10385258B2 (en) 2015-04-09 2019-08-20 Highlands Natural Resources, Plc Gas diverter for well and reservoir stimulation
US10889751B2 (en) 2015-08-28 2021-01-12 Liberty Oilfield Services, LLC Reservoir stimulation by energetic chemistry
US10982520B2 (en) 2016-04-27 2021-04-20 Highland Natural Resources, PLC Gas diverter for well and reservoir stimulation
CN108825193A (en) * 2017-05-05 2018-11-16 中国石油化工股份有限公司 Oil shale in-situ recovery method
US10422210B1 (en) 2018-05-04 2019-09-24 Sesqui Mining, Llc. Trona solution mining methods and compositions
US10995598B2 (en) 2018-05-04 2021-05-04 Sesqui Mining, Llc Trona solution mining methods and compositions
US11193362B2 (en) 2018-05-04 2021-12-07 Sesqui Mining, Llc Trona solution mining methods and compositions
US11746639B2 (en) 2018-05-04 2023-09-05 Sesqui Mining, Llc. Trona solution mining methods and compositions

Similar Documents

Publication Publication Date Title
US3759574A (en) Method of producing hydrocarbons from an oil shale formation
US3739851A (en) Method of producing oil from an oil shale formation
US3779601A (en) Method of producing hydrocarbons from an oil shale formation containing nahcolite
US3759328A (en) Laterally expanding oil shale permeabilization
US3741306A (en) Method of producing hydrocarbons from oil shale formations
US3700280A (en) Method of producing oil from an oil shale formation containing nahcolite and dawsonite
US3572838A (en) Recovery of aluminum compounds and oil from oil shale formations
US3513913A (en) Oil recovery from oil shales by transverse combustion
US3513914A (en) Method for producing shale oil from an oil shale formation
US3502372A (en) Process of recovering oil and dawsonite from oil shale
US2813583A (en) Process for recovery of petroleum from sands and shale
US3695354A (en) Halogenating extraction of oil from oil shale
US3515213A (en) Shale oil recovery process using heated oil-miscible fluids
US3342258A (en) Underground oil recovery from solid oil-bearing deposits
US3779602A (en) Process for solution mining nahcolite
US4065183A (en) Recovery system for oil shale deposits
US5305829A (en) Oil production from diatomite formations by fracture steamdrive
US4491179A (en) Method for oil recovery by in situ exfoliation drive
US3967853A (en) Producing shale oil from a cavity-surrounded central well
US3455383A (en) Method of producing fluidized material from a subterranean formation
US3753594A (en) Method of producing hydrocarbons from an oil shale formation containing halite
US3279538A (en) Oil recovery
US3501201A (en) Method of producing shale oil from a subterranean oil shale formation
US4185693A (en) Oil shale retorting from a high porosity cavern
US8057765B2 (en) Methods for constructing underground borehole configurations and related solution mining methods