US3755138A - Lube oils by solvent dewaxing and hydrodewaxing with a zsm-5 catalyst - Google Patents

Lube oils by solvent dewaxing and hydrodewaxing with a zsm-5 catalyst Download PDF

Info

Publication number
US3755138A
US3755138A US00206888A US3755138DA US3755138A US 3755138 A US3755138 A US 3755138A US 00206888 A US00206888 A US 00206888A US 3755138D A US3755138D A US 3755138DA US 3755138 A US3755138 A US 3755138A
Authority
US
United States
Prior art keywords
zsm
pour point
solvent dewaxing
hydrodewaxing
lube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00206888A
Inventor
Yuen Chen Nai
W Garwood
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Oil Corp
Original Assignee
Mobil Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mobil Oil Corp filed Critical Mobil Oil Corp
Application granted granted Critical
Publication of US3755138A publication Critical patent/US3755138A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/26Aluminium-containing silicates, i.e. silico-aluminates
    • C01B33/28Base exchange silicates, e.g. zeolites
    • C01B33/2807Zeolitic silicoaluminates with a tridimensional crystalline structure possessing molecular sieve properties; Isomorphous compounds wherein a part of the aluminium ore of the silicon present may be replaced by other elements such as gallium, germanium, phosphorus; Preparation of zeolitic molecular sieves from molecular sieves of another type or from preformed reacting mixtures
    • C01B33/2876Zeolitic silicoaluminates with a tridimensional crystalline structure possessing molecular sieve properties; Isomorphous compounds wherein a part of the aluminium ore of the silicon present may be replaced by other elements such as gallium, germanium, phosphorus; Preparation of zeolitic molecular sieves from molecular sieves of another type or from preformed reacting mixtures from a reacting mixture containing an amine or an organic cation, e.g. a quaternary onium cation-ammonium, phosphonium, stibonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/405Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/10Lubricating oil
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S208/00Mineral oils: processes and products
    • Y10S208/02Molecular sieve

Definitions

  • This invention relates to a process for dewaxing petroleum oils and fractions thereof by selectively removing normal paraffinic and other undesirable hydrocarbons from petroleum oils in which they are present in admixture with other hydrocarbons, in order to lower the pour point of such oils. More particularly, the invention relates to an improved process for selectively removing normal paraffmic and other undesirable hydrocarbons from petroleum oils by a two-step process involving solvent dewaxing followed by contact of such oils with specific types of crystalline aluminosilicate zeolites identified as those of the ZSM-S type.
  • lubricating oils commonly referred to as lubes
  • hydrocarbon fractions derived from petroleum crudes hydrocarbon fractions derived from petroleum crudes.
  • a heretofore practiced common procedure known in the art is to extract these hydrocarbon fractions with various solvents so as to give a raffinate of a desired high viscosity index, such material being resistant to changes in viscosity with changes in temperature and thus being useful under varying operating conditions.
  • the lube oil have a -low pour point so that it can be effectively used at low temperature conditions, since excessive thickening at low temperatures is often unacceptable.
  • It is also known in the art to carry out dewaxing operations by contacting hydrocarbon fractions with crystalline aluminosilicate zeolites having pore sizes of about 5 Angstrom units so as to selectively remove normal paraffins.
  • the present invention is concerned with an improved process for dewaxing normal paraffin-containing oils which is more economical than conventional solvent dewaxing procedures or catalytic dewaxing procedures involving 5 Angstrom unit zeolites and which, with cer tain feedstocks, produces a higher product yield with equivalent or higher pour point reduction.
  • the present process employs the use of a conventional solvent dewaxing step but only to slightly reduce the pour point of the treated stock and obtain a product having an intermediate pour point. Quite obviously, the product of intermediate pour point is unsuitable for use as a low temperature lubricant at this stage.
  • this intermediate product is then subjected to hydrodewaxing with a crystalline aluminosilicate of the ZSM-S type to yield a product having excellent low temperature properties.
  • the feedstocks adapted for treatment in accordance with the present invention may be generally defined as hydrocarbon oils boiling above about 650 F and particularly between about 650 and about l,lO0 F.
  • the first step of the novel process of this invention involves subjecting a feed stock of the type above-described to a mild solvent dewaxing.
  • mild solvent dewaxing is meant that the lube stock feed material is treated until it has a pour point of 10 to 50 F and preferably from 2030 F.
  • the solvent dewaxing step is carried out in a conventional manner according to well known techniques.
  • Suitable solvent mixtures include methyl ethyl ketonetoluene, methyl ethyl ketone-methyl isobutyl ketone etc.
  • the products from the solvent dewaxing step are high quality waxes which are recovered and an intermediate pour point stock which is then subjected to hydrodewaxing over a catalyst comprising a crystalline zeolite of the ZSM-S type.
  • the crystalline zeolitic materials employed in the instant invention cannot simply be characterized by the recitation of a pore size or a range of pore sizes. It would appear that the uniform pore openings of this new type of zeolite are not circular in nature, as is usually the case in the heretofore employed zeolites, but rather, are elliptical in nature. Thus, the pore openings of the instant zeolitic materials have both a major and a minor axis, and it is for this reason that the unusual and novel molecular sieving effects are achieved. This elliptical shape can be referred to as a keyhole. From their dynamic molecular sieving properties it would appear that the major and minor axes of the elliptical pore in this family of zeolites have effective sizes of about 7.0 i 0.7A and 5.0 i 0.5A, respectively.
  • ZSM-5 type compositions has the characteristic X-ray diffraction pattern set forth in Table l, hereinbelow.
  • ZSM5 compositions can also be identified, in terms of mole ratios of oxides, as follows:
  • the zeolite has a formula, in terms of mole ratios of oxides, as'followsz.
  • A1 0 5l00 SiO z H 0 and M is selected from the group consisting of a mixture of alkali metal cations, especially sodium, and tetraalkylammonium cations, the alkyl groups of which preferably contain 2-5 carbon atoms.
  • W is aluminum
  • Y is silicon
  • the silica/alumina mole ratio is at least 10 and ranges up to about 60.
  • the radiation was the K-alpha doublet of copper, and a scintillation counter spectrometer with a strip chart pen recorder was used.
  • Ul boar. oqqqo'qbobo aw in umamawa-w Zeolite ZSM-5 can be suitably prepared by preparing a solution containing tetrapropyl ammonium hydroxide, sodium oxide, an oxide of aluminum or gallium, an oxide of silica or germanium, and water and having a composition, in terms of mole ratios of oxides, falling within the following ranges:
  • R is propyl
  • W is aluminum or gallium
  • Y is silicon or germanium maintaining the mixture until crystals of the zeolite are formed. Thereafter, the crystals are separated from the liquid and recovered.
  • Typical reaction conditions consist of heating the foregoing reaction mixture to a temperature of from about 150 C to 175 C for a period of time of from about 6 hours to 60 days. A more preferred temperature range is from about 160 to 175 C with the amount of time at a temperature in such range being from about 12 hours to 8 days.
  • the digestion of the gel particles is carried out until crystals form.
  • the solid product is separated from the reaction medium, as by cooling the whole to room temperature, filtering, and water washing.
  • the foregoing product is dried, e.g., at 230 F, for from about 8 to 24 hours.
  • milder conditions may be employed if desired, e.g., room temperature under vacuum.
  • ZSM-S is preferably formed as an aluminosilicate.
  • the composition can be prepared utilizing materials which supply the appropriate oxide.
  • Such compositions include for an alumino-silicate, sodium aluminate, alumina, sodium silicate, silica hydrosol, silica gel, silicic acid, sodium hydroxide and tetrapropylammonium hydroxide.
  • each oxide component utilized in the reaction mixture for preparing a member of the ZSM-S family can be supplied by one or more initial reactants and they can be mixed together in any order.
  • sodium oxide can be supplied by an aqueous solution of sodium hydroxide,
  • tetrapro- I pylammonium cation can be supplied by the bromide salt.
  • the reaction mixture can be prepared either batchwise or continuously. Crystal size and crystallization time of the ZSM-S composition will vary with the nature of the reaction mixture employed. ZSM-S is disclosed and claimed in copending U.S. Pat. application Ser. No. 865,472, filed Oct. 10, 1969.
  • zeolite ZSM-8 Another operable zeolite falling within the above class is zeolite ZSM-8 which is described and claimed in U.S. Pat. Ser. No. 865,418, filed Oct. 10, 1969 now abandoned.
  • ZSM-8 can also be identified, in terms of mole ratios of oxides, as follows:
  • the zeolite has a formula, in terms of mole ratios of oxides, as follows:
  • Zeolite ZSM-8 can be suitably prepared by reacting a solution containing either tetraethylammonium hydroxide or tetraethylammonium bromide together with sodium oxide, aluminum oxide, and an oxide of silica and water.
  • ZSM-S can be prepared from said hydroxide, sodium oxide, aluminum oxide, silica and water by reacting said materials in such proportions that the forming solution has a composition in terms of mole ratios of oxides falling within the following range SiO,/Al,O from about 10 to about 200 Na oltetraethylammonium hydroxide from about Tetraethylammonium hydroxide/SiO from about FLO/tetraethylammonium hydroxide from about to about 200 Thereafter, the crystals are separated from the liquid and recovered.
  • Typical reaction conditions consist of heating the foregoing reaction mixture to a temperature of from about to 175 C for a period of time of from about 6 hours to 60 days.
  • a more preferred temperature range is from about to C with the amount of time at a temperature in such range being from about 12 hours to 8 days.
  • the digestion of the gel particles is carried out until crystals form.
  • the solid product is separated from the reaction medium, as by cooling the whole to room temperature, filtering, and water washing.
  • the foregoing product is dried, e.g., at 230 F for from about 8 to 24 hours.
  • milder conditions may be employed if desired, e.g., room temperature under vacuum.
  • ZSM'8 is prepared utilizing materials which supply the appropriate oxide.
  • Such compositions include sodium aluminate, alumina, sodium silicate, silica hydrosol, silica gel, silicic acid, sodium hydroxide and tetraethylammonium hydroxide.
  • each oxide component utilized in the reaction mixture can be supplied by one or more initial reactants and they can be mixed together in any order.
  • sodium oxide can be supplied by an aqueous solution of sodium hydroxide, or by an aqueous solution of sodium silicate, tetraethylammonium cation can be supplied by the bromide salt.
  • the reaction mixture can be prepared either batchwise or continuously.
  • the zeolites used in the instant invention can have the original cations associated therewith replaced by a wide variety of other cations according to techniques well known in the art.
  • Typical replacing cations would include acidic cations such as hydrogen, ammonium and metal cations including mixtures of the same.
  • acidic cations such as hydrogen, ammonium and metal cations including mixtures of the same.
  • metals such as rare earth metals, manganese, calcium, as well as metals of Group II of the Periodic Table, e.g. zinc, and Group VIII of the Periodic Table, e.g., nickel.
  • Typical ion exchange techniques would be to contact the particular zeolite with a salt of the desired replacing cation or cations.
  • a salt of the desired replacing cation or cations can be employed, particular preference is given to chlorides, nitrates and sulfates.
  • the zeolites are then preferably washed with water and dried at a temperature ranging from 150 F to about 600 F and thereafter calcined in air or other inert gas at temperatures ranging from about 500 F to 1,500 F for periods of time ranging from 1 to 48 hours or more. It has been further found in accordance with the invention that catalysts of improved selectivity and having other beneficial properties in some hydrocarbon conversion processes such as catalytic cracking are obtained by subjecting the zeolite to treatment with steam at elevated temperatures ranging from 800 to 1,500 F and preferably 1,000 F and 1,400 F. The treatment may be accomplished in atmospheres of 100 percent steam of an atmosphere consisting of steam and a gas which is substantially inert to the zeolites.
  • a similar treatment can be accomplished at lower temperatures and elevated pressures, e.g., 350-700 F at 10 to about 200 atmospheres.
  • the ZSM-S type zeolites must be used in intimate combination with a hydrogenating component such as tungsten, vanadium, molybdenum, rhenium, nickel, cobalt, chromium, manganese, zinc, or a noble metal such as platinum or palladium since a hydrogenation/dehydrogenation function is to be performed.
  • a hydrogenating component such as tungsten, vanadium, molybdenum, rhenium, nickel, cobalt, chromium, manganese, zinc, or a noble metal such as platinum or palladium since a hydrogenation/dehydrogenation function is to be performed.
  • a hydrogenating component such as tungsten, vanadium, molybdenum, rhenium, nickel, cobalt, chromium, manganese, zinc, or a noble metal such as platinum or palladium since a hydrogenation/dehydrogenation function is to be performed.
  • Such component can be exchanged into the composition, impregnated therein or physically
  • the compounds of useful platinum or other metals can be divided into compounds in which the metal is present in the cation of the compound and compounds in which it is present in the anion of the compound. Both types of compounds which contain the metal in the ionic state can be used.
  • a solution in which platinum metals are in the form ofa cation or cationic complex, e.g., Pt( NH;,),C1 is particularly useful.
  • the zeolites Prior to use, the zeolites should be dehydrated at least partially. This can be done by heating to a temperature in the range of 200 to 600 C in an inert atmosphere, such as air, nitrogen, etc. and at atmospheric or subatmospheric pressures for between 1 and 48 hours. Dehydration can also be performed at lower temperatures merely by using a vacuum, but a longer time is required to obtain a sufficient amount of dehydration.
  • an inert atmosphere such as air, nitrogen, etc.
  • Operating conditions include temperatures between 650 F and 1,000 F, a pressure between 100 and 3,000 psig but preferably between 200 and 1,500 psig.
  • the liquid hourly space velocity is generally between 0.1 and 100, preferably between 0.5 and 20 and the hydrogen to hydrocarbon mole ratio is generally between 1 and preferably between 4 and 40.
  • Example 1 Solvent MEK/Toluene 60/40 Dilution, Solvent/Oil 3/1 Wash, SolventlOil 1/1 methylethylketone
  • Example 2 the temperature employed was 20 F.
  • Example 1 2 Dewaxing Temperature, F. 0 20 Yield of Oil, Wt. l: 83 80.5 Gravity, API 29.5 29.1 Pour Point, F. +20 0 K.V. at lm'F, cs. 43.0 45.0 K.V. at 210F, cs. 6.ll 6.23 Viscosity Index 92 Yield of Wax, Wt. 17 19.5 Melting Point, F. +132 +127 Oil Content 1.9 3.85
  • EXAMPLE 3 This example illustrates further pour point reduction by conventional solvent dewaxing. This example is carried out at 35 F which represents the lower limit at which solvent dewaxing is practical.
  • the solvents were those used in Example 1 and the charge stock is the solvent dewaxed oil of Example 1 having a pour point of F.
  • Example 1 a charge stock was first subjected to solvent dewaxing in the same manner as Example 1.
  • the oil resulting from the treatment of Example l i.e., the +20 pour point fraction, was then subjected to hydrodewaxing with a Zn/HZSM-S catalyst (This catalyst was prepared according to the same procedure as that used in Example 9 of U.S.Pat. Ser. No.
  • Example 5 6 7 Yield of Oil, Wt. 86 84 74 Gravity, "APl 27.8 28.5 27.7 Pour Point, F 20 -40 K.V. at l00F, cs 47.95 53.38 I 46.93 K.V. at 210F, cs 6.42 6.72 6.08 Viscosity Index 89 83 76 Cracked Products, Wt.
  • a process for preparing low pour point lube oils which comprises subjecting a petroleum feed stock to solvent dewaxing so as to obtain a lube oil having an intermediate pour point of 10 to 50 F and thereafter subjecting said intermediate pour point product to catalytic hydrodewaxing by contacting the same in the presence of added hydrogen with a crystalline aluminosilicate of the ZSM-S type containing a hydrogenation component and obtaining a product having a pour point no higher than 0 F.
  • ammonium ions and mixtures thereof.

Abstract

A two-step or combination process for preparing low pour point lube oils is set forth. The process involves subjecting a lube stock to a mild solvent dewaxing step, so as to obtain high quality waxes and a lube stock having an intermediate pour point; recovering the waxes and subjecting said intermediate pour point lube stock to a hydrowaxing step over a crystalline aluminosilicate of the ZSM-5 type to obtain a product having a pour point of 0* F and lower.

Description

United States Patent 1 1 Chen et al.
[ LUBE OILS BY SOLVENT DEWAXING AND HYDRODEWAXING WITH A ZSM-S CATALYST [75] inventors: NaiYuen Chen, Hopewell Township,
Mercer County; William E. Garwood, Haddonfield, both of NJ.
[73] Assignee: Mobil Oil Corporation, New York,
221 Filed: Dec. 10, 1971 21 Appl. No.: 206,888
Related US. Application Data [63] Continuation of Ser. No. 56,652, July 20, 1970, abandoned, which is a continuation-in-part of Ser. No. 865,470, Oct. l0, 1969, Pat. No. 3,700,585.
[52] US. Cl 208/33, 208/28, 208/85,
208/] i l, 208/D1G. 2 [5i] Int. Cl C103 13/04 [58] Field of Search 208/DIG 2., 28, 33,
208/ill,85
[ Aug. 28, 1973 [56] References Cited UNITED STATES PATENTS 3,539,498 I l/l970 Morris et al, 208/l l 1 Primary Examiner-Herbert Levine Attorney-Andrew L. Gaboriauit and Oswald G.
Hayes [5 7] ABSTRACT 5 Claims, No Drawings LUBE OILS BY SOLVENT DEWAXING AND HYDRODEWAXING WITH A ZSM-S CATALYST CROSS REFERENCE TO RELATED CASES This application is a continuation of U.S. Pat. Ser. No. 56,652 filed July 20, 1970, now abandoned and which is a continuation-in-part of U.S. Pat. Ser. No. 865,470 filed Oct. 10, 1969 now U.S. Pat. No. 3,700,585, issued Oct. 24, 1972.
DESCRIPTION OF THE INVENTION This invention relates to a process for dewaxing petroleum oils and fractions thereof by selectively removing normal paraffinic and other undesirable hydrocarbons from petroleum oils in which they are present in admixture with other hydrocarbons, in order to lower the pour point of such oils. More particularly, the invention relates to an improved process for selectively removing normal paraffmic and other undesirable hydrocarbons from petroleum oils by a two-step process involving solvent dewaxing followed by contact of such oils with specific types of crystalline aluminosilicate zeolites identified as those of the ZSM-S type.
It is well known in the art to form various lubricating oils, commonly referred to as lubes, from hydrocarbon fractions derived from petroleum crudes. A heretofore practiced common procedure known in the art is to extract these hydrocarbon fractions with various solvents so as to give a raffinate of a desired high viscosity index, such material being resistant to changes in viscosity with changes in temperature and thus being useful under varying operating conditions. Moreover, it is particularly desired that the lube oil have a -low pour point so that it can be effectively used at low temperature conditions, since excessive thickening at low temperatures is often unacceptable. It is also known in the art to carry out dewaxing operations by contacting hydrocarbon fractions with crystalline aluminosilicate zeolites having pore sizes of about 5 Angstrom units so as to selectively remove normal paraffins.
The present invention is concerned with an improved process for dewaxing normal paraffin-containing oils which is more economical than conventional solvent dewaxing procedures or catalytic dewaxing procedures involving 5 Angstrom unit zeolites and which, with cer tain feedstocks, produces a higher product yield with equivalent or higher pour point reduction.
Briefly, the present process employs the use of a conventional solvent dewaxing step but only to slightly reduce the pour point of the treated stock and obtain a product having an intermediate pour point. Quite obviously, the product of intermediate pour point is unsuitable for use as a low temperature lubricant at this stage. In accordance with the invention, this intermediate product is then subjected to hydrodewaxing with a crystalline aluminosilicate of the ZSM-S type to yield a product having excellent low temperature properties.
It is to be immediately noted that the sequence of steps of the instant combination process is critical. In order to achieve the maximum economic advantage the solvent dewaxing must come first followed by the catalytic hydrodewaxing step. This is so because the highest quality wax which is obtained from a given feed is that obtained in the initial stages of the solvent dewaxing. If the feed stock were first subject to catalytic hydrodewaxing, the highest quality wax would be destroyed.
Additionally, it has been found that catalytic hydrodewaxing with a ZSM-5 type catalyst is more effectively carried out with intermediate pour point product than with a conventional lube stock. Thus, the unique processing scheme of this invention provides a maximization of desirable products from a given feed stock.
The feedstocks adapted for treatment in accordance with the present invention may be generally defined as hydrocarbon oils boiling above about 650 F and particularly between about 650 and about l,lO0 F.
As has heretofore been stated, the first step of the novel process of this invention involves subjecting a feed stock of the type above-described to a mild solvent dewaxing.
By mild solvent dewaxing is meant that the lube stock feed material is treated until it has a pour point of 10 to 50 F and preferably from 2030 F.
The solvent dewaxing step is carried out in a conventional manner according to well known techniques. Suitable solvent mixtures include methyl ethyl ketonetoluene, methyl ethyl ketone-methyl isobutyl ketone etc.
The products from the solvent dewaxing step are high quality waxes which are recovered and an intermediate pour point stock which is then subjected to hydrodewaxing over a catalyst comprising a crystalline zeolite of the ZSM-S type.
While not wishing to be bound by any theory of operation, nevertheless, it appears that the crystalline zeolitic materials employed in the instant invention cannot simply be characterized by the recitation of a pore size or a range of pore sizes. It would appear that the uniform pore openings of this new type of zeolite are not circular in nature, as is usually the case in the heretofore employed zeolites, but rather, are elliptical in nature. Thus, the pore openings of the instant zeolitic materials have both a major and a minor axis, and it is for this reason that the unusual and novel molecular sieving effects are achieved. This elliptical shape can be referred to as a keyhole. From their dynamic molecular sieving properties it would appear that the major and minor axes of the elliptical pore in this family of zeolites have effective sizes of about 7.0 i 0.7A and 5.0 i 0.5A, respectively.
The family of ZSM-5 type compositions has the characteristic X-ray diffraction pattern set forth in Table l, hereinbelow. ZSM5 compositions can also be identified, in terms of mole ratios of oxides, as follows:
0.9 i 0.2 (M O/n) W O 5-100 YO 2 H O wherein M is a cation, n is the valence of said cation, W is selected from the group consisting of aluminum and gallium, Y is selected from the group consisting of silicon and germanium, and Z is from 0 to 40. In a preferred synthesized form, the zeolite has a formula, in terms of mole ratios of oxides, as'followsz.
0.9 i 0.2 (M oln) A1 0 5l00 SiO z H 0 and M is selected from the group consisting of a mixture of alkali metal cations, especially sodium, and tetraalkylammonium cations, the alkyl groups of which preferably contain 2-5 carbon atoms.
In a preferred embodiment of ZSM-5, W is aluminum, Y is silicon and the silica/alumina mole ratio is at least 10 and ranges up to about 60.
Members of the family of ZSM-5 zeolites possess a definite distinguishing crystalline structure whose X-ray diffraction pattern shows the following significant lines:
TABLE 1 lnterplanar Spacing d(A) Relative Intensity 11.1:01 S 10.0:02 S 7.4 t 0.15 W 7.1t0.15 W 6.3i0.1 W 6.04 i 0.1 W 5.97 t 0.1 W 5.56:0.1 W 5.01 i 0.1 W 4.60i0.08 W 4.25 i 0.08 W 3.85 i 0.07 VS 3.711005 S 3.64:0.05 M 3.04 i 0.03 W 2.99 i 0.02 W 2.94 0.02 W
These values as well as all other X-ray data were determined by standard techniques. The radiation was the K-alpha doublet of copper, and a scintillation counter spectrometer with a strip chart pen recorder was used. The peak heights, I, and the positions as a function of two times theta, where theta is the Bragg angle, were read from the spectrometer chart. From these, the relative intensities, 100 M, where 1 is the intensity of positions as a function of two times theta, where theta is the Bragg angle, were read from the spectrometer chart. From these, the relative intensities, 100 1/1, where I is the intensity of the strongest line or peak, and d (obs.), the interplanar spacing in A, corresponding to the recorded lines, were calculated. In Table I the relative intensities are given in terms of the symbols S strong, M medium, MS medium strong, MW medium weak and VS very strong. It should be understood that this X-ray diffraction pattern is characteristic of all the species of ZSM-5 compositions. Ion exchange of the sodium ion with cations reveals substantially the same pattern with some minor shifts in interplanar spacing and variation in relative intensity. Other minor variations can occur depending on the silicon to aluminum ratio of the particular sample, as well as if it has been subjected to thermal treatment. Various cation exchanged forms of ZSM-5 have been prepared. X-ray powder diffraction patterns of several of these forms are set forth below. The ZSM-S forms set forth below are all aluminosilicates.
TABLE 2 X-Ray Diffraction ZSM-5 Powder in Cation Exchanged Forms d Spacings Observed Made HCI NaCl CaCl, ReCl, AgNO, 11.15 11.16 11.19 11.19 11.19 11.19 10.01 10.03 10.05 10.01 10.06 10.01 9.74 9.78 9.80 9.74 9.79 9.77 9.01 9.02 8.99 8.06 7.44 7.46 7.46 7.46 7.40 4.46 7.08 7.07 7.09 7.1 1 7.09 6.70 6.72 6.73 6.70 6.73 6.73 6.36 6.38 6.38 6.37 6.39 6.37 5.99 6.00 6.01 5.99 6.02 6.01 5.70 5.71 5.73 5.70 5.72 5.72 5.56 5.58 5.58 5.57 5.59 5.58 5.37 5.38 5.37 5.38 5.37 5.13 5.11 5.14 5.12 5.14 4.99 5.01 5.01 5.01 5.01 5.01
. Ul boar. oqqqo'qbobo aw: in umamawa-w Zeolite ZSM-5 can be suitably prepared by preparing a solution containing tetrapropyl ammonium hydroxide, sodium oxide, an oxide of aluminum or gallium, an oxide of silica or germanium, and water and having a composition, in terms of mole ratios of oxides, falling within the following ranges:
wherein R is propyl, W is aluminum or gallium and Y is silicon or germanium maintaining the mixture until crystals of the zeolite are formed. Thereafter, the crystals are separated from the liquid and recovered. Typical reaction conditions consist of heating the foregoing reaction mixture to a temperature of from about 150 C to 175 C for a period of time of from about 6 hours to 60 days. A more preferred temperature range is from about 160 to 175 C with the amount of time at a temperature in such range being from about 12 hours to 8 days. I
The digestion of the gel particles is carried out until crystals form. The solid product is separated from the reaction medium, as by cooling the whole to room temperature, filtering, and water washing.
The foregoing product is dried, e.g., at 230 F, for from about 8 to 24 hours. Of course, milder conditions may be employed if desired, e.g., room temperature under vacuum.
ZSM-S is preferably formed as an aluminosilicate. The composition can be prepared utilizing materials which supply the appropriate oxide. Such compositions include for an alumino-silicate, sodium aluminate, alumina, sodium silicate, silica hydrosol, silica gel, silicic acid, sodium hydroxide and tetrapropylammonium hydroxide. It will be understood that each oxide component utilized in the reaction mixture for preparing a member of the ZSM-S family can be supplied by one or more initial reactants and they can be mixed together in any order. For example, sodium oxide can be supplied by an aqueous solution of sodium hydroxide,
or by an aqueous solution of sodium silicate; tetrapro- I pylammonium cation can be supplied by the bromide salt. The reaction mixture can be prepared either batchwise or continuously. Crystal size and crystallization time of the ZSM-S composition will vary with the nature of the reaction mixture employed. ZSM-S is disclosed and claimed in copending U.S. Pat. application Ser. No. 865,472, filed Oct. 10, 1969.
Another operable zeolite falling within the above class is zeolite ZSM-8 which is described and claimed in U.S. Pat. Ser. No. 865,418, filed Oct. 10, 1969 now abandoned.
ZSM-8 can also be identified, in terms of mole ratios of oxides, as follows:
. 0.9 i 0.2 (M O/n) A1 0 5-100 SiO z H O wherein M is at least one cation, n is the valence thereof and z is from 0 to 40. In a preferred synthesized form, the zeolite has a formula, in terms of mole ratios of oxides, as follows:
0.9 i 0.2 (M O/n) A1 0 10-60 SiO 2 H 0 TABLE 4 10.0 42 3 2.94 9.7 10 2 2.86 9.0 6 l 2.78 7.42 10 4 2.73 7.06 7 1 2.68 6.69 5 3 2.61 6.35 12 l 2.57 6.04 6 l 2.55 5.97 12 l 2.51 5.69 9 6 2.49 5.56 13 l 2.45 5.36 3 2 2.47 5.12 4 3 2.39 5.01 7 1 2.35 4.60 7 1 2.32 4.45 3 1 2.28 4.35 7 1 2.23 4.25 18 l 2.20 4.07 20 l 2.17 4.00 10 1 2.12 3.85 100 1 2.1 l 3.82 57 l 2.08 3.75 25 l 2.06 3.71 30 6 2.01 3.64 26 6 1.99 3.59 2 2 1.95 3.47 6 2 1.91 3.43 9 3 1.87 3.39 5 l 1.84 3.34 18 2 1.82 3.31 8
Zeolite ZSM-8 can be suitably prepared by reacting a solution containing either tetraethylammonium hydroxide or tetraethylammonium bromide together with sodium oxide, aluminum oxide, and an oxide of silica and water.
The relative operable proportions of the various ingredients have not been fully determined and it is to be immediately understood that not any and all proportions of reactants will operate to produce the desired 1 zeolite. In fact, completely different zeolites can be prepared utilizing the same starting materials depending upon their relative concentration and reaction conditions as is set forth in U.S. Pat. No. 3,308,069.1n general, however, it has been found that when tetraethylammonium hydroxide is employed, ZSM-S can be prepared from said hydroxide, sodium oxide, aluminum oxide, silica and water by reacting said materials in such proportions that the forming solution has a composition in terms of mole ratios of oxides falling within the following range SiO,/Al,O from about 10 to about 200 Na oltetraethylammonium hydroxide from about Tetraethylammonium hydroxide/SiO from about FLO/tetraethylammonium hydroxide from about to about 200 Thereafter, the crystals are separated from the liquid and recovered. Typical reaction conditions consist of heating the foregoing reaction mixture to a temperature of from about to 175 C for a period of time of from about 6 hours to 60 days. A more preferred temperature range is from about to C with the amount of time at a temperature in such range being from about 12 hours to 8 days.
The digestion of the gel particles is carried out until crystals form. The solid product is separated from the reaction medium, as by cooling the whole to room temperature, filtering, and water washing.
The foregoing product is dried, e.g., at 230 F for from about 8 to 24 hours. Of course, milder conditions may be employed if desired, e.g., room temperature under vacuum.
ZSM'8 is prepared utilizing materials which supply the appropriate oxide. Such compositions include sodium aluminate, alumina, sodium silicate, silica hydrosol, silica gel, silicic acid, sodium hydroxide and tetraethylammonium hydroxide. It will be understood that each oxide component utilized in the reaction mixture can be supplied by one or more initial reactants and they can be mixed together in any order. For example, sodium oxide can be supplied by an aqueous solution of sodium hydroxide, or by an aqueous solution of sodium silicate, tetraethylammonium cation can be supplied by the bromide salt. The reaction mixture can be prepared either batchwise or continuously.
The zeolites used in the instant invention can have the original cations associated therewith replaced by a wide variety of other cations according to techniques well known in the art. Typical replacing cations would include acidic cations such as hydrogen, ammonium and metal cations including mixtures of the same. Of the replacing metallic cations, particular preference is given to cations of metals such as rare earth metals, manganese, calcium, as well as metals of Group II of the Periodic Table, e.g. zinc, and Group VIII of the Periodic Table, e.g., nickel.
Typical ion exchange techniques would be to contact the particular zeolite with a salt of the desired replacing cation or cations. Although a wide variety of salts can be employed, particular preference is given to chlorides, nitrates and sulfates.
Representative ion exchange techniques are disclosed in a wide variety of patents including U.S. Pat. No. 3,140,249; U.S. Pat No. 3,140,251; and U.S. Pat. No. 3,140,253.
Following contact with the salt solution of the desired replacing cation, the zeolites are then preferably washed with water and dried at a temperature ranging from 150 F to about 600 F and thereafter calcined in air or other inert gas at temperatures ranging from about 500 F to 1,500 F for periods of time ranging from 1 to 48 hours or more. It has been further found in accordance with the invention that catalysts of improved selectivity and having other beneficial properties in some hydrocarbon conversion processes such as catalytic cracking are obtained by subjecting the zeolite to treatment with steam at elevated temperatures ranging from 800 to 1,500 F and preferably 1,000 F and 1,400 F. The treatment may be accomplished in atmospheres of 100 percent steam of an atmosphere consisting of steam and a gas which is substantially inert to the zeolites.
A similar treatment can be accomplished at lower temperatures and elevated pressures, e.g., 350-700 F at 10 to about 200 atmospheres.
The ZSM-S type zeolites must be used in intimate combination with a hydrogenating component such as tungsten, vanadium, molybdenum, rhenium, nickel, cobalt, chromium, manganese, zinc, or a noble metal such as platinum or palladium since a hydrogenation/dehydrogenation function is to be performed. Such component can be exchanged into the composition, impregnated therein or physically intimately admixed therewith. Such component can be impregnated in or onto zeolite such as, for example, by, in the case of platinum, treating the zeolite with a platinum metal-containing ion. Thus, suitable platinum compounds include chloroplatinic acid, platinous chloride and various compounds containing the platinum ammine complex.
The compounds of useful platinum or other metals can be divided into compounds in which the metal is present in the cation of the compound and compounds in which it is present in the anion of the compound. Both types of compounds which contain the metal in the ionic state can be used. A solution in which platinum metals are in the form ofa cation or cationic complex, e.g., Pt( NH;,),C1 is particularly useful.
Prior to use, the zeolites should be dehydrated at least partially. This can be done by heating to a temperature in the range of 200 to 600 C in an inert atmosphere, such as air, nitrogen, etc. and at atmospheric or subatmospheric pressures for between 1 and 48 hours. Dehydration can also be performed at lower temperatures merely by using a vacuum, but a longer time is required to obtain a sufficient amount of dehydration.
Operating conditions include temperatures between 650 F and 1,000 F, a pressure between 100 and 3,000 psig but preferably between 200 and 1,500 psig. The liquid hourly space velocity is generally between 0.1 and 100, preferably between 0.5 and 20 and the hydrogen to hydrocarbon mole ratio is generally between 1 and preferably between 4 and 40.
The following examples will illustrate the best mode now contemplated for carrying out this invention.
EXAMPLES l 2 Examples 1 and 2 are directed towards conventional solvent dewaxing and in each case the charge stock was a furfural raffmate having the following properties:
Gravity, "All 32.1 Pour Point, F. +105 K.V. at 210F, cs. 5.45
In both examples, conventional solvent ratios were employed which were as follows on a volume to volume basis:
Solvent MEK/Toluene 60/40 Dilution, Solvent/Oil 3/1 Wash, SolventlOil 1/1 methylethylketone In Example 1 the dewaxing was carried out at 0 F whereas in Example 2 the temperature employed was 20 F.
Typical results of dewaxing at 0 F and 20 F are as follows:
Example 1 2 Dewaxing Temperature, F. 0 20 Yield of Oil, Wt. l: 83 80.5 Gravity, API 29.5 29.1 Pour Point, F. +20 0 K.V. at lm'F, cs. 43.0 45.0 K.V. at 210F, cs. 6.ll 6.23 Viscosity Index 92 Yield of Wax, Wt. 17 19.5 Melting Point, F. +132 +127 Oil Content 1.9 3.85
The small incremental wax from dewaxing to 0 F pour (Example 2) over +20 F pour (Example 1) hurts the quality of the wax, i.e., melting point goes down and oil content goes up. For highest quality wax it is therefore desirable to first dewax to about +20 F, and then further process to reduce the pour to 0 F. When this is done by solvent dewaxing, the material removed is commonly combined with foots oil and sent to catalytic cracking.
EXAMPLE 3 This example illustrates further pour point reduction by conventional solvent dewaxing. This example is carried out at 35 F which represents the lower limit at which solvent dewaxing is practical. The solvents were those used in Example 1 and the charge stock is the solvent dewaxed oil of Example 1 having a pour point of F.
EXAMPLE 4 Oil, Wt. 54 Gravity, APl 29.9 Pour Point, F. K.V. at 100F, cs 36.28
- K.V. at 210F, cs 5.64 V.l. 103 Cracked Products, Wt. 46
Note that although the pour point was indeed lowered, the yield of oil was only 54 percent as compared to 83 percent for solvent dewaxing, i.e., see Example 1.
EXAMPLES 5-7 These examples will illustrate operations in accordance with this invention.
In each of these examples a charge stock was first subjected to solvent dewaxing in the same manner as Example 1. The oil resulting from the treatment of Example l, i.e., the +20 pour point fraction, was then subjected to hydrodewaxing with a Zn/HZSM-S catalyst (This catalyst was prepared according to the same procedure as that used in Example 9 of U.S.Pat. Ser. No.
The results and operating conditions are set forth below:
Example 5 6 7 Yield of Oil, Wt. 86 84 74 Gravity, "APl 27.8 28.5 27.7 Pour Point, F 20 -40 K.V. at l00F, cs 47.95 53.38 I 46.93 K.V. at 210F, cs 6.42 6.72 6.08 Viscosity Index 89 83 76 Cracked Products, Wt. l4 16 26 Reaction Conditions Pressure, psig 500 750 750 Temperature, F 750 750 750 H,, SCF/bbl (HJHC mol ratio) l 1,000 2,000 2,000 (30) (5.4) (5.4) LHSV 8 4 1 As can be seen from the above results, the process of this invention allows for greater yields of lower pour point material as well as taking advantage of producing and recovering high quality waxes from the conventional solvent extraction step.
What is claimed is:
1. A process for preparing low pour point lube oils which comprises subjecting a petroleum feed stock to solvent dewaxing so as to obtain a lube oil having an intermediate pour point of 10 to 50 F and thereafter subjecting said intermediate pour point product to catalytic hydrodewaxing by contacting the same in the presence of added hydrogen with a crystalline aluminosilicate of the ZSM-S type containing a hydrogenation component and obtaining a product having a pour point no higher than 0 F.
2. The process of claim 1 wherein the ZSM-S type zeolite has X-ray diffraction patterns corresponding to that set forth in Table l.
3. The process of claim 1 wherein the ZSM-S type zeolite is ZSM-8.
4. The process of claim 1 wherein the ZSM-S type zeolite has been base exchanged with hydrogen ions,
ammonium ions, and mixtures thereof.
5. The process of claim 4 wherein the product obtained has a pour point no higher than .20 F.
' mg v UNEEED STATES PATENT OFFICE CERTEFICATE OF CORRECTION Patent No. 3,755, 3 Dated August 973 Inventor) Nai Yuen Chen and William E. Garwood It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Column 2, line 50, should 'be --M O--.
Column 2, line 50, "2 H2O" should be --z H2O".
Column 2, line 59, "(M G s o ld be "M on Column 5, line 46, "(l 1 0 should be" M 0.
. {1 I Column 5, line 53, "(M O should be '-M o-'-.
Signed and'sealec] this 30th clay of April 197%- (SEAL) Attest:
EDWARD l-LFLETCHEILJR. 7 1 l 0-. MARSHALL DANN Attesting; Officer Commissioner of Patents

Claims (4)

  1. 2. The process of claim 1 wherein the ZSM-5 type zeolite has X-ray diffraction patterns corresponding to that set forth in Table
  2. 3. The process of claim 1 wherein the ZSM-5 type zeolite is ZSM-8.
  3. 4. The process of claim 1 wherein the ZSM-5 type zeolite has been base exchanged with hydrogen ions, ammonium ions, and mixtures thereof.
  4. 5. The process of claim 4 wherein the product obtained has a pour point no higher than -20* F.
US00206888A 1969-10-10 1971-12-10 Lube oils by solvent dewaxing and hydrodewaxing with a zsm-5 catalyst Expired - Lifetime US3755138A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US86547069A 1969-10-10 1969-10-10
US20688871A 1971-12-10 1971-12-10

Publications (1)

Publication Number Publication Date
US3755138A true US3755138A (en) 1973-08-28

Family

ID=26901762

Family Applications (1)

Application Number Title Priority Date Filing Date
US00206888A Expired - Lifetime US3755138A (en) 1969-10-10 1971-12-10 Lube oils by solvent dewaxing and hydrodewaxing with a zsm-5 catalyst

Country Status (1)

Country Link
US (1) US3755138A (en)

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3902988A (en) * 1973-02-09 1975-09-02 British Petroleum Co Production of lubricating oils
US3926782A (en) * 1973-02-09 1975-12-16 Mobil Oil Corp Hydrocarbon conversion
US3989617A (en) * 1973-08-21 1976-11-02 Mobil Oil Corporation Catalytic treatment of lubrication oil base stock for improvement of oxidative stability
FR2374402A1 (en) * 1976-12-20 1978-07-13 Mobil Oil CATALYTIC PROCESS FOR DEPARAFFINING A GAS-OIL CHARGE
US4153540A (en) * 1977-05-04 1979-05-08 Mobil Oil Corporation Upgrading shale oil
US4176050A (en) * 1978-12-04 1979-11-27 Mobil Oil Corporation Production of high V.I. lubricating oil stock
US4222855A (en) * 1979-03-26 1980-09-16 Mobil Oil Corporation Production of high viscosity index lubricating oil stock
US4229282A (en) * 1979-04-27 1980-10-21 Mobil Oil Corporation Catalytic dewaxing of hydrocarbon oils
FR2462470A1 (en) * 1979-08-01 1981-02-13 Mobil Oil Corp PROCESS FOR RECOVERING CONTAMINATED DEPARAFFINATED BASE LUBRICANT OIL
US4259174A (en) * 1979-03-19 1981-03-31 Mobil Oil Corporation Catalytic dewaxing of hydrocarbon oils
US4428865A (en) 1981-01-13 1984-01-31 Mobil Oil Corporation Catalyst composition for use in production of high lubricating oil stock
US4428825A (en) 1981-05-26 1984-01-31 Union Oil Company Of California Catalytic hydrodewaxing process with added ammonia in the production of lubricating oils
US4428862A (en) 1980-07-28 1984-01-31 Union Oil Company Of California Catalyst for simultaneous hydrotreating and hydrodewaxing of hydrocarbons
US4434046A (en) 1981-04-30 1984-02-28 Mobil Oil Corporation Preventing phase separation of dewaxed oil
US4477333A (en) * 1982-09-29 1984-10-16 Exxon Research And Engineering Co. Dewaxing by a combination centrifuge/catalytic process including solvent deoiling
EP0134682A1 (en) * 1983-08-08 1985-03-20 Mobil Oil Corporation Improvement of overnight cloud and color in lube dewaxing
US4599162A (en) * 1984-12-21 1986-07-08 Mobil Oil Corporation Cascade hydrodewaxing process
US4600497A (en) * 1981-05-08 1986-07-15 Union Oil Company Of California Process for treating waxy shale oils
US4601993A (en) * 1984-05-25 1986-07-22 Mobil Oil Corporation Catalyst composition dewaxing of lubricating oils
US4608151A (en) * 1985-12-06 1986-08-26 Chevron Research Company Process for producing high quality, high molecular weight microcrystalline wax derived from undewaxed bright stock
US4622130A (en) * 1985-12-09 1986-11-11 Shell Oil Company Economic combinative solvent and catalytic dewaxing process employing methylisopropyl ketone as the solvent and a silicate-based catalyst
US4636299A (en) * 1984-12-24 1987-01-13 Standard Oil Company (Indiana) Process for the manufacture of lubricating oils
US4648957A (en) * 1984-12-24 1987-03-10 Mobil Oil Corporation Lube hydrodewaxing method and apparatus with light product removal and enhanced lube yields
US4678556A (en) * 1985-12-20 1987-07-07 Mobil Oil Corporation Method of producing lube stocks from waxy crudes
US4696732A (en) * 1984-10-29 1987-09-29 Mobil Oil Corporation Simultaneous hydrotreating and dewaxing of petroleum feedstocks
US4700562A (en) * 1986-01-08 1987-10-20 Mobil Oil Corporation Method for determining effectiveness of catalytic dewaxing reactor
US4724066A (en) * 1985-01-22 1988-02-09 Mobil Oil Corporation Composites of microporous aluminum phosphates and zeolites and conversions over these catalysts
US4740292A (en) * 1985-09-12 1988-04-26 Mobil Oil Corporation Catalytic cracking with a mixture of faujasite-type zeolite and zeolite beta
US4744884A (en) * 1985-09-25 1988-05-17 Union Oil Company Of California Process for producing lubrication oil of high viscosity index
US4749467A (en) * 1985-04-18 1988-06-07 Mobil Oil Corporation Lube dewaxing method for extension of cycle length
EP0271265A1 (en) * 1986-12-04 1988-06-15 Mobil Oil Corporation Improved process for lowering pour and cloud points of hydrocracked lube oils
EP0278693A2 (en) * 1987-02-13 1988-08-17 Exxon Research And Engineering Company Process for producing formulated dewaxed oil products
US4790927A (en) * 1981-05-26 1988-12-13 Union Oil Company Of California Process for simultaneous hydrotreating and hydrodewaxing of hydrocarbons
US4808300A (en) * 1987-02-13 1989-02-28 Exxon Research And Engineering Company Simultaneous removal of aromatics and wax from lube distillate by an adsorption process
US4808560A (en) * 1985-05-13 1989-02-28 Mobil Oil Corporation Catalyst for simultaneous desulfurization and dewaxing of residua
US4869806A (en) * 1987-12-09 1989-09-26 Mobil Oil Corp. Production of high viscosity index lubricating oil stock
US4877762A (en) * 1981-05-26 1989-10-31 Union Oil Company Of California Catalyst for simultaneous hydrotreating and hydrodewaxing of hydrocarbons
US4911821A (en) * 1985-11-01 1990-03-27 Mobil Oil Corporation Lubricant production process employing sequential dewaxing and solvent extraction
US4919788A (en) * 1984-12-21 1990-04-24 Mobil Oil Corporation Lubricant production process
US4952303A (en) * 1985-07-10 1990-08-28 Mobil Oil Corp. Process for preparing a very high quality lube base stock oil
US4960504A (en) * 1984-12-18 1990-10-02 Uop Dewaxing catalysts and processes employing silicoaluminophosphate molecular sieves
US4981574A (en) * 1989-03-14 1991-01-01 Mobil Oil Corporation Dewaxing process
US5015359A (en) * 1986-06-30 1991-05-14 Mobil Oil Corporation Hydrodewaxing method with interstate recovery of olefin
US5015361A (en) * 1989-01-23 1991-05-14 Mobil Oil Corp. Catalytic dewaxing process employing surface acidity deactivated zeolite catalysts
US5019665A (en) * 1990-04-18 1991-05-28 Mobil Oil Corp. Shape-selective process for concentrating diamondoid-containing hydrocarbon solvents
US5227552A (en) * 1992-04-27 1993-07-13 Mobil Oil Corporation Process for hydrogenating alkenes in the presence of alkanes and a heterogeneous catalyst
WO1994014924A1 (en) * 1992-12-23 1994-07-07 Mobil Oil Corporation Lubricant production by hydroisomerization of solvent extracted feedstocks
US5583276A (en) * 1993-10-18 1996-12-10 Mobil Oil Corporation Process for producing low aromatic diesel fuel with high cetane index
US5780703A (en) * 1994-05-02 1998-07-14 Mobil Oil Corporation Process for producing low aromatic diesel fuel with high cetane index
US20060111233A1 (en) * 2004-11-19 2006-05-25 Fina Technology, Inc. Removal of nitrogen and sulfur contamination from catalysts by hot hydrogen stripping

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3539498A (en) * 1966-06-20 1970-11-10 Texaco Inc Catalytic dewaxing with the use of a crystalline alumino zeolite of the mordenite type in the presence of hydrogen

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3539498A (en) * 1966-06-20 1970-11-10 Texaco Inc Catalytic dewaxing with the use of a crystalline alumino zeolite of the mordenite type in the presence of hydrogen

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3902988A (en) * 1973-02-09 1975-09-02 British Petroleum Co Production of lubricating oils
US3926782A (en) * 1973-02-09 1975-12-16 Mobil Oil Corp Hydrocarbon conversion
US3989617A (en) * 1973-08-21 1976-11-02 Mobil Oil Corporation Catalytic treatment of lubrication oil base stock for improvement of oxidative stability
FR2374402A1 (en) * 1976-12-20 1978-07-13 Mobil Oil CATALYTIC PROCESS FOR DEPARAFFINING A GAS-OIL CHARGE
US4153540A (en) * 1977-05-04 1979-05-08 Mobil Oil Corporation Upgrading shale oil
EP0011926A1 (en) * 1978-12-04 1980-06-11 Mobil Oil Corporation Production of high V.I. lubricating oil stock
US4176050A (en) * 1978-12-04 1979-11-27 Mobil Oil Corporation Production of high V.I. lubricating oil stock
US4259174A (en) * 1979-03-19 1981-03-31 Mobil Oil Corporation Catalytic dewaxing of hydrocarbon oils
US4222855A (en) * 1979-03-26 1980-09-16 Mobil Oil Corporation Production of high viscosity index lubricating oil stock
US4229282A (en) * 1979-04-27 1980-10-21 Mobil Oil Corporation Catalytic dewaxing of hydrocarbon oils
FR2462470A1 (en) * 1979-08-01 1981-02-13 Mobil Oil Corp PROCESS FOR RECOVERING CONTAMINATED DEPARAFFINATED BASE LUBRICANT OIL
US4269695A (en) * 1979-08-01 1981-05-26 Mobil Oil Corporation Reclaiming wax contaminated lubricating oils
US4428862A (en) 1980-07-28 1984-01-31 Union Oil Company Of California Catalyst for simultaneous hydrotreating and hydrodewaxing of hydrocarbons
US4428865A (en) 1981-01-13 1984-01-31 Mobil Oil Corporation Catalyst composition for use in production of high lubricating oil stock
US4434046A (en) 1981-04-30 1984-02-28 Mobil Oil Corporation Preventing phase separation of dewaxed oil
US4600497A (en) * 1981-05-08 1986-07-15 Union Oil Company Of California Process for treating waxy shale oils
US4428825A (en) 1981-05-26 1984-01-31 Union Oil Company Of California Catalytic hydrodewaxing process with added ammonia in the production of lubricating oils
US4877762A (en) * 1981-05-26 1989-10-31 Union Oil Company Of California Catalyst for simultaneous hydrotreating and hydrodewaxing of hydrocarbons
US4790927A (en) * 1981-05-26 1988-12-13 Union Oil Company Of California Process for simultaneous hydrotreating and hydrodewaxing of hydrocarbons
US4477333A (en) * 1982-09-29 1984-10-16 Exxon Research And Engineering Co. Dewaxing by a combination centrifuge/catalytic process including solvent deoiling
EP0134682A1 (en) * 1983-08-08 1985-03-20 Mobil Oil Corporation Improvement of overnight cloud and color in lube dewaxing
US4601993A (en) * 1984-05-25 1986-07-22 Mobil Oil Corporation Catalyst composition dewaxing of lubricating oils
US4696732A (en) * 1984-10-29 1987-09-29 Mobil Oil Corporation Simultaneous hydrotreating and dewaxing of petroleum feedstocks
US4960504A (en) * 1984-12-18 1990-10-02 Uop Dewaxing catalysts and processes employing silicoaluminophosphate molecular sieves
US4919788A (en) * 1984-12-21 1990-04-24 Mobil Oil Corporation Lubricant production process
US4599162A (en) * 1984-12-21 1986-07-08 Mobil Oil Corporation Cascade hydrodewaxing process
US4636299A (en) * 1984-12-24 1987-01-13 Standard Oil Company (Indiana) Process for the manufacture of lubricating oils
US4648957A (en) * 1984-12-24 1987-03-10 Mobil Oil Corporation Lube hydrodewaxing method and apparatus with light product removal and enhanced lube yields
US4724066A (en) * 1985-01-22 1988-02-09 Mobil Oil Corporation Composites of microporous aluminum phosphates and zeolites and conversions over these catalysts
US4749467A (en) * 1985-04-18 1988-06-07 Mobil Oil Corporation Lube dewaxing method for extension of cycle length
US4808560A (en) * 1985-05-13 1989-02-28 Mobil Oil Corporation Catalyst for simultaneous desulfurization and dewaxing of residua
US4952303A (en) * 1985-07-10 1990-08-28 Mobil Oil Corp. Process for preparing a very high quality lube base stock oil
US4740292A (en) * 1985-09-12 1988-04-26 Mobil Oil Corporation Catalytic cracking with a mixture of faujasite-type zeolite and zeolite beta
US4744884A (en) * 1985-09-25 1988-05-17 Union Oil Company Of California Process for producing lubrication oil of high viscosity index
US4911821A (en) * 1985-11-01 1990-03-27 Mobil Oil Corporation Lubricant production process employing sequential dewaxing and solvent extraction
US4608151A (en) * 1985-12-06 1986-08-26 Chevron Research Company Process for producing high quality, high molecular weight microcrystalline wax derived from undewaxed bright stock
US4622130A (en) * 1985-12-09 1986-11-11 Shell Oil Company Economic combinative solvent and catalytic dewaxing process employing methylisopropyl ketone as the solvent and a silicate-based catalyst
US4678556A (en) * 1985-12-20 1987-07-07 Mobil Oil Corporation Method of producing lube stocks from waxy crudes
US4700562A (en) * 1986-01-08 1987-10-20 Mobil Oil Corporation Method for determining effectiveness of catalytic dewaxing reactor
US5015359A (en) * 1986-06-30 1991-05-14 Mobil Oil Corporation Hydrodewaxing method with interstate recovery of olefin
EP0271265A1 (en) * 1986-12-04 1988-06-15 Mobil Oil Corporation Improved process for lowering pour and cloud points of hydrocracked lube oils
US4808300A (en) * 1987-02-13 1989-02-28 Exxon Research And Engineering Company Simultaneous removal of aromatics and wax from lube distillate by an adsorption process
EP0278693A2 (en) * 1987-02-13 1988-08-17 Exxon Research And Engineering Company Process for producing formulated dewaxed oil products
EP0278693B1 (en) * 1987-02-13 1992-06-17 Exxon Research And Engineering Company Process for producing formulated dewaxed oil products
US4869806A (en) * 1987-12-09 1989-09-26 Mobil Oil Corp. Production of high viscosity index lubricating oil stock
US5015361A (en) * 1989-01-23 1991-05-14 Mobil Oil Corp. Catalytic dewaxing process employing surface acidity deactivated zeolite catalysts
US4981574A (en) * 1989-03-14 1991-01-01 Mobil Oil Corporation Dewaxing process
US5019665A (en) * 1990-04-18 1991-05-28 Mobil Oil Corp. Shape-selective process for concentrating diamondoid-containing hydrocarbon solvents
US5227552A (en) * 1992-04-27 1993-07-13 Mobil Oil Corporation Process for hydrogenating alkenes in the presence of alkanes and a heterogeneous catalyst
WO1994014924A1 (en) * 1992-12-23 1994-07-07 Mobil Oil Corporation Lubricant production by hydroisomerization of solvent extracted feedstocks
US5583276A (en) * 1993-10-18 1996-12-10 Mobil Oil Corporation Process for producing low aromatic diesel fuel with high cetane index
US5780703A (en) * 1994-05-02 1998-07-14 Mobil Oil Corporation Process for producing low aromatic diesel fuel with high cetane index
US20060111233A1 (en) * 2004-11-19 2006-05-25 Fina Technology, Inc. Removal of nitrogen and sulfur contamination from catalysts by hot hydrogen stripping

Similar Documents

Publication Publication Date Title
US3755138A (en) Lube oils by solvent dewaxing and hydrodewaxing with a zsm-5 catalyst
US3700585A (en) Dewaxing of oils by shape selective cracking and hydrocracking over zeolites zsm-5 and zsm-8
USRE28398E (en) Marshall dann
US4176050A (en) Production of high V.I. lubricating oil stock
US3759821A (en) Catalytic process for upgrading cracked gasolines
US3755145A (en) Lube oil hydrocracking with zsm-5 zeolite
KR900005095B1 (en) Catalytic dewaxing process
US3972983A (en) Crystalline zeolite ZSM-20 and method of preparing same
US4575416A (en) Hydrodewaxing with mixed zeolite catalysts
US5075269A (en) Production of high viscosity index lubricating oil stock
US3827968A (en) Aromatization process
US3758402A (en) Catalytic hydrocracking of hydrocarbons
US3702886A (en) Crystalline zeolite zsm-5 and method of preparing the same
US3843741A (en) Aromatization process and catalyst therefor
US3970544A (en) Hydrocarbon conversion with ZSM-12
US4021331A (en) Organic compound conversion by zeolite ZSM-20 catalysts
EP0163449A2 (en) Catalytic dewaxing of lubricating oils
EP0164939B1 (en) Preparation of zeolite beta
US3761389A (en) Process of converting aliphatics to aromatics
GB2033358A (en) Crystalline Zeolite Compositions
EA010635B1 (en) Zeolite, its use in a hydrocarbon conversion process
EP0035830B1 (en) Method of preparing crystalline zeolite catalyst of high activity
US4247416A (en) Crystalline zeolite ZSM-25
EP0430337A1 (en) Process for upgrading a sulphur containing feedstock
EP0187497A2 (en) Process for producing high boiling jet fuel