US3755070A - Paper sized with carboxy-functional silicones - Google Patents

Paper sized with carboxy-functional silicones Download PDF

Info

Publication number
US3755070A
US3755070A US00173280A US3755070DA US3755070A US 3755070 A US3755070 A US 3755070A US 00173280 A US00173280 A US 00173280A US 3755070D A US3755070D A US 3755070DA US 3755070 A US3755070 A US 3755070A
Authority
US
United States
Prior art keywords
paper
mole percent
siloxane
units
radicals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00173280A
Inventor
A Bey
J Heffel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Silicones Corp
Original Assignee
Dow Corning Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Corning Corp filed Critical Dow Corning Corp
Application granted granted Critical
Publication of US3755070A publication Critical patent/US3755070A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/46Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/59Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups

Definitions

  • Sizing can be accomplished by either internal sizing processes (wet end) or surfacesizing processes'(dry end).
  • This invention relates to a sizing agent for paper, the paper which has been sized with this agent, and two methods for sizing the paper.
  • finished paper usually has a wide variety of internally contained or surface carried ingredients employed to impart particular desired properties to the paper.
  • ingredients include, for example, fillers such as clay, chalk and other oxides and salts of metals, dyes and colorant materials, mordants, retention aids,v wetstrength agents, sizing agents, and'the like.
  • Paper is sized in order to increase its resistance to penetration by liquids, particularly water, and to improve its printability.
  • the most common sizing system is rosin soap (sodium rosinate) and papermakers alum (aluminum sulfate)
  • rosin soap sodium rosinate
  • alum aluminum sulfate
  • hydrocarbon and natural waxes, starch, sodium silicate, glues, casein, synthetic resins,.latices, and various silicones have been employed as sizing agents.
  • 'It is an object of this invention to provide a new sizing agent for paper
  • Another object of this invention is to provide new methods for sizing paper.
  • Another object is to provide a treatment for paper, particularly newsprint, whereby linting of the paper during printing is substantially reduced.
  • this invention relates to a size for paper which is a siloxane copolymer consisting essentially of about 50 to 99.9 mole percent of R,,SiO units wherein R is a hydrocarbon or a substituted hydrocarbon radical and n has a value of from to 3, and about 0.1 to 50 mole percent of copolymer having an overall degree of substitution in the range of about 1.8 to 2.1.
  • This invention also relates to an aqueous dispersion of the siloxane copolymer as defined above.
  • This invention still further relates to a paper sized with a siloxane copolymer as defined above.
  • This invention also relates to a process of internally sizing paper which includes the step of adding the size to the paper pulp at the wet end before the formation of the web, wherein the improvement comprises employing as the size a siloxane copolymer as defined above.
  • this invention relates to a process of surface sizing paper which includes the step of applying the size to the paper after the web has been formed, the improvement comprising employing as the size the siloxane copolymer as defined above.
  • the R group in the siloxane copolymer can be any monovalent, hydrocarbon or substituted hydrocarbon radical, with the provision that at least mole percent of all the siloxane units in the copolymer containing an R radical being ones wherein at least one of the R'radicals is a methyl radical.
  • alkyl radicals such as the methyl, ethyl, propyl, butyl, amyl, hexyl, octyl, decyl, dodecyl, octadecyl and myricyl radicals; alkenyl radicals such as the vinyl, allyl and hexenyl radicals; cycloalkyl radicals such as the cyclobutyl and cyclohexyl radicals; aryl radicals such as the phenyl, xenyl and naphthyl radicals; aralkyl radicals such asthe benzyl and 2-phenylethyl radicals; alkaryl radicals such as the tolyl, xylyl and mesityl radicals; the corresponding halohydrocarbon radicals such as 3- chloropropyl, 4-bromobutyl, 3,3,3-trifluoropropyl, chlor
  • R which links the carboxy group to the silicon atom can be any divalent linking group attached to the silicon atom via a silicon to carbon (Si-C) bond.
  • R can be a divalent linking group such as a divalent hydrocarbon radical, divalent radicals consisting of carbon, hydrogen and oxygen atoms and divalent radicals consisting of carbon, hydrogen and sulfur atoms.
  • R include the methylene, ethylene, propylene, hexamethylene, decamethylene, CH,CH(CH,)CH,, phenylene, naphthylene, C, H -CHCH4-CHzC.H 'C5Hf'-'CHz, *C... H,-O-C,H -CH,CH,SCH,CH,, CH,C- H,OCH,-, --C,H SC,H
  • R radical contain from 2 to carbon atoms.
  • the siloxane copolymer of this inyention consists of 50 to 99.9 mole percent, preferably 90 to 99 mole percent, of the R,,SiO units and 0.1 to 50 mole percent, perferably l to 10 mole percent, of the units.
  • n can have a value of 0, 1, 2 or 3 and in the second siloxane unit m can have a value of O, 1 or 2.
  • n and m are subject to the limitation that at least 90 mol percent of all the siloxane units in the copolymer have a degree of substitution of 2 and that the siloxane copolymer must have an overall degree of substitution in the range of about 1.8 to 2.1.
  • the siloxane copolymer can contain some small amounts of unsubstituted silicon atoms or monoand tri-substituted silicon atoms as well as disubstituted silicon atoms, the amounts of these units other than the di-substituted units is limited in order to obtain the results desired according to this invention.
  • the method of preparation of the siloxane copolymer of this invention is 'not critical.
  • the emulsion polymerized copolymers are preferred in that they tend to give somewhat better results than the corresponding solvent or bulk polymerized copolymers and in that his preferable to employ the copolymer in the form of an aqueous dispersion and therefore the resulting copolymer does not have to be emulsified or dispersed after preparation when the copolymer is prepared by the emulsion polymerization technique.
  • the details of the various techniques by which these copolymers can be prepared will be obvious to those skilled in the art from the instant disclosure.
  • the paper be sized by a wet end technique; that is it is preferred that the paper be internally sized by a process which includes the step of adding a size to the paper pulp at the wet end before the formation of the web.
  • aqueous dispersion of the siloxane copolymer size as defined heretofore can be added to the paper pulp at the beater, at the head box, at the fan pump, or in the stock chest.
  • the size of this invention is not limited to a wet end sizing process.
  • any conventional technique of application such as a water box on a calender, tub sizing, size press, transfer rolls, spraying and the like can also be employed for sizing the paper.
  • the paper is handled in the same manner that it would be as if the size did't been applied; that is to say, it is simply dried by a conventional technique such as standing at room temperature, passing it through a hot air oven, exposing to infrared, microwaves, or dielectric heating, or by passing it over hot dryer cans.
  • the amount of the siloxane copolymer size of this invention employed should be at least sufficient to enhance the resistance of the paper to wetting by an aqueous medium.
  • the amount of the size of this invention present in and/or on the final product will obviously depend to some extent on the intended end use of the product. As soon as some increase in resistance to wetting is discernible, as compared to the untreated state, the treated paper can be deemed sized.
  • an amount in the range of 0.2 to 50 pounds of siloxane solids per ton (2000 lbs.) of dry paper pulp solids will be employed.
  • the amount used in the wet end will be in the range of 0.5 to 4 pounds.
  • EXAMPLE 1 A mixture of 917.3 g. of water and 2.5 g. of dodecylbenzenesulfonic acid were combined in a 2000 ml. three-necked flask fitted with a condenser, air stirrer and addition funnel. The solution was stirred and heated to 60C. at which time a mixture of 73.7 g. (0.61 mole) of dimethyldimethoxysilane and 6.5 g. (0.032 mole) of CH OOC(CH,) Si(CH;)(OCH were added from the addition funnel over a one and one half hour period. A stable, bluish-white emulsion resulted.
  • the above prepared siloxane copolymer was evaluated by immersing a-l2.5 cm. Watman No. l filter paper in 20 ml. of the acidic colloid for 5 minutes then air-drying it at 60C. for 3 hours.
  • an identical piece of filter paper was immersed in 20 ml. of acidic dimethylsiloxane colloid prepared by the emulsion polymerization of hexamethylcyclotrisiloxane employing dodecylbenzenesulfonic acid as the surfactant-catalyst.
  • a drop of water was placed on the treated filter papers and the time noted for it to be absorbed into the paper.
  • a 10 g. sample of the above prepared siloxane copolymer emulsion containing about 0.004 g. of silicone solids was evaluated as a paper size by spraying the solution onto a 9 inch by 12 inch commercial newsprint sheet weighing about 3.7 g. After application, the paper was dried in a conventional dryer. About 0.11 percent by weight of the silicone solids based on the dry weight of the paper was added on. The resistance of the paper thus sized to penetration by water was tested by placing a drop of water on the sheet with an eyedropper and observing the number of minutes required for the water to soak in. In this test, the time for the water to soak in was greater than 30 minutes, the maximum time for which this test is run.
  • a second carboxy-functional siloxane copolymer identical to the one above was'prepared in the same silicone solids on the paper.
  • This paper was also evalupolymer (obtained via isopropanol coagulation) by i-n-.
  • EXAMPLE 4 preparation of the copolymer by cohydrolysis. After the addition was complete heating was continued for an additional 30 minutes at 82 to 84C.
  • the resulting siloxane copolymer contained about 50 mole percent of dimethylsiloxane units and 50 mole percent of HOOCCHgS CHgCHzSlO units.
  • the above prepared carboxy-functional siloxane copolymer was evaluated as a paper size by applying it in the form of a 0.2 percent silicone solids aqueous dispersion to a commercial newsprint by padding it onto the paper. This resulted in'about a percent wet pickup of the aqueous dispersion of the size, or the depositing of 0.2 percent of silicone solids based on the weight of the dry paper onto the newsprint.
  • the water resistance ofthe sized paper was evaluated employing the water drop test of the preceding example. The sized paper required 26 minutes before the drop of water was completely absorbed whereas the control containing no sized treatment required only 3 minutes for complete absorption of the water drop.
  • EXAMPLE 5 There was mixed together 942 g. of a hydroxyl endblocked, dimethylsiloxane polymer, 58 g. of methylvinylcyclosiloxane, g. of water and 10 g. of an acidclay catalyst and then the mixture heated with stirring under a condenser at 80C. overnight (about 18 hours), then cooled to room temperature and filtered to obtain a clear fluid.
  • EXAMPLE 6 A printing grade paper was made using a 12 inch siloxane units was used in a process of surface sizing paper wherein it was applied to the paper after the web had been formed via a press sizer.
  • the amount of siloxane employed is set out in the table and is given in pounds of siloxane solids per ton of dry pulp solids.
  • the papers thus produced were evaluated for water resistance employing a drop test wherein 15 microliters of an aqueous dye solution at a pH of about 1 was placed on the paper and the time for total absorption of the test drop was measured. These papers were also evaluated for Mullen burst strengths on a Mullen tester using water in the chamber.
  • the tensile strengths of the paper were also measured on a Model .1 Scott Tester, the samples being pulled at the rate of 12 inches per minute. Tensile strengths were measured in both the length (machine) and width (cross-machine) directions of the sample. The results of the tensile strengths are reported in terms pounds per linear inch. The treatments of the various papers and the results of the testing are set forth in the table below.
  • EXAMPLE 7 Papers weremade as in the preceding example, except that a process of internally sizing the paper involving the addition of the size to the paper pulp at the wet end before the formation of, the web was employed. Also in this example a conventional retention aid was used in making papers A-E, 0.08 pounds of retention aid per ton of dry pulp solids was used in making paper A, 0.16 pounds in making papers 8-13., and none in making paper F. In the table below, Papers A, Band C were sized by metering the siloxane copolymer into the pulp. 1n Papers D and E, the size was stirred with the pulp about an hour before formation of the paper. The carboxy-functional siloxane copolymer size employed in this example was identical to the one used in the preceding example. The treatment of the paper and the results of. the tests are set forth in the table below.
  • Paper sized with a siloxane consisting essentially of about 50 to 99.9 mole percent of units wherein R is a hydrocarbon or a substituted hydrocarbon radical and n has a value of from 0 to 3, and about 0.1 to 50 mole percent of units wherein R is as defined above, R is a divalent linking group attached to the silicon atom via a siliconcarbon bond and m has a value of from 0 to 2, at least 90 mole percent of all the siloxane units in the copolymer containing an R radical being ones wherein at least one of the R radicals is a methyl radical, at least 90 mole percent of all the siloxane units in the copolymer having a degree of substitution of 2, and said siloxane copolymer having an overall degree of substitution in the range of about 1.8 to 2,1.
  • siloxane consists essentially of about 90 to 99 mole percent of (CH SiO units, and about i to 10 mole percent of units wherein R is an alkylene radical containing from 2 to ID carbon atoms.
  • siloxane consists essentially of about to 99 mole percent of (CH SiO units, and about I to 10 mole percent of units wherein R is composed of carbon, hydrogen and sulfur atoms, the sulfur atoms being present in the form of thioether linkages, said R containing from 2 to 10 carbon atoms.
  • a siloxane copolymer consisting essentially of about 50 to 99.9 mole percent of units wherein R is a hydrocarbon or a substituted hydrocarbon radical and n has a value of from 0 to 3, and about 0.1 to 50 mole percent of units wherein R is as defined above, R is a divalent linking group attached to the silicon atom via a siliconcarbon bond and m has a value of from 0 to 2, at least 90 mole percent of all the siloxane units in thetcopolymer containing an R radical being ones wherein at least one of the R radicals is a methyl radical, at least 90 mole percent of all the siloxane units in the copolymer having a degree of substitution of 2, and said siloxa-ne copolymer having an overall degree of substitution in the range of about 1.8 to 2.1.
  • siloxane consists essentially of about 90 to 99 mole percent of (CH,) SiO units, andabout l to 10 mole percent of units wherein R is an alkylene radical containing from 2 to to carbon atoms.
  • siloxane consists essentially of about 90 to 99 mole percent of (Cl-1;),Si0 units and about 1 to 10 mole percent of units wherein R is composed of carbon, hydrogen and sulfur atoms, the sulfur atoms being present in the form of thioether linkages, said R containing from 2 to 10 carbon atoms.

Abstract

A sizing agent for paper is disclosed which is a siloxane copolymer containing about 0.1 to 50 mole percent of carboxyfunctional siloxane units. Paper sized with this siloxane has enhanced resistance to wetting. Sizing can be accomplished by either internal sizing processes (wet end) or surface sizing processes (dry end).

Description

. United States U 1 Bey et al.
[ PABER sizsn'wrru I CARBOXY-FUNCTIONAL SILICONES 751 lnventorsf Alvin E. De); James R. nerrl, both of Midland, Mich.
[73] Assignee: Dow Corning Corporation, Midland,
. Mich.
221 Filed; Aug. 19, 1971 21 Appl. No.: 173,280
; Related US. Application Data l [62] Division of'Ser. No. 847,742, Aug. 5, i969.
[52] US. Cl ..L 162/164, 162/158 [51]. Int. Cl D21h 3/62 [58] Field of Search 260/465 Y, 46.5 E;
' l l7/l46, 155; 162/164, 181 C, 72
[4 1 Aug. 28, 1973- 56 ReferencesClted UNITED STATES PATENTS 3,438,807 4/1969 Pikola l62/l64 X 3,338,943
8/1967 Speier 162/72 X Primary Examiner-S. Leon Bashore Assistant Examiner-William F. Smith A ttorngy Robert l 7. Fleming, Jr. Jack E. Moerrnond siloxane has enhanced resistance to wetting. Sizing can be accomplished by either internal sizing processes (wet end) or surfacesizing processes'(dry end).
I 6 Claims, No Drawings PAPER SIZEDWITH CARBOXY-FUNCTIONAL SILICONES This application is a division of application Ser. No. 847,742, filed Aug. 5, 1969.
This invention relates to a sizing agent for paper, the paper which has been sized with this agent, and two methods for sizing the paper.
It is well known that cellulosic fibers constitute the bulk of finished paper. In addition thereto, however, finished paper usually has a wide variety of internally contained or surface carried ingredients employed to impart particular desired properties to the paper. These ingredients include, for example, fillers such as clay, chalk and other oxides and salts of metals, dyes and colorant materials, mordants, retention aids,v wetstrength agents, sizing agents, and'the like.
Paper is sized in order to increase its resistance to penetration by liquids, particularly water, and to improve its printability. The most common sizing system is rosin soap (sodium rosinate) and papermakers alum (aluminum sulfate) In addition to these sizes, hydrocarbon and natural waxes, starch, sodium silicate, glues, casein, synthetic resins,.latices, and various silicones have been employed as sizing agents.
A variety of mechanisms by which sizing takes place have been proposed. There has been, however, little agreement among those skilled in the art as to the mechanisms involved. The actual mechanism involved probably varies-with the particular sizing agent being employed and it is likely that the various sizing agents perform their function by varying mechanisms.
'It is an object of this invention to provide a new sizing agent for paper, It is another object to provide a high quality sized paperfA further object of this invention is to provide new methods for sizing paper. Another object is to provide a treatment for paper, particularly newsprint, whereby linting of the paper during printing is substantially reduced. These and other objects of the invention will become readily apparent to those skilled in the art from the following description and the claims.
More specifically, this invention relates to a size for paper which is a siloxane copolymer consisting essentially of about 50 to 99.9 mole percent of R,,SiO units wherein R is a hydrocarbon or a substituted hydrocarbon radical and n has a value of from to 3, and about 0.1 to 50 mole percent of copolymer having an overall degree of substitution in the range of about 1.8 to 2.1.
This invention also relates to an aqueous dispersion of the siloxane copolymer as defined above.
This invention still further relates to a paper sized with a siloxane copolymer as defined above.
.'This invention also relates to a process of internally sizing paper which includes the step of adding the size to the paper pulp at the wet end before the formation of the web, wherein the improvement comprises employing as the size a siloxane copolymer as defined above.
Finally, this invention relates to a process of surface sizing paper which includes the step of applying the size to the paper after the web has been formed, the improvement comprising employing as the size the siloxane copolymer as defined above.
As stated above, the R group in the siloxane copolymer can be any monovalent, hydrocarbon or substituted hydrocarbon radical, with the provision that at least mole percent of all the siloxane units in the copolymer containing an R radical being ones wherein at least one of the R'radicals is a methyl radical. Illustrative of the other R radicals that can be present are alkyl radicals such as the methyl, ethyl, propyl, butyl, amyl, hexyl, octyl, decyl, dodecyl, octadecyl and myricyl radicals; alkenyl radicals such as the vinyl, allyl and hexenyl radicals; cycloalkyl radicals such as the cyclobutyl and cyclohexyl radicals; aryl radicals such as the phenyl, xenyl and naphthyl radicals; aralkyl radicals such asthe benzyl and 2-phenylethyl radicals; alkaryl radicals such as the tolyl, xylyl and mesityl radicals; the corresponding halohydrocarbon radicals such as 3- chloropropyl, 4-bromobutyl, 3,3,3-trifluoropropyl, chlorocyclohexyl, bromophenyl, chlorophenyl, alpha,- alpha,alphatrifluorotolyl and the dichloroxenyl radicals; the corresponding cyanohydrocarbon radicals such as Z-cyanoethyl, 3-cyanopropyl and cyanophenyl radicals; the corresponding isocyanohydrocarbon radicals such as the 3-isocyanopropyl and 6-isocyanohexyl radicals; the corresponding hydroxyhydrocarbon radicals such as the 3-hydroxypropyl, S-hydroxypentyl, hydroxyphenyl and hydroxynaphthyl radicals; the corresponding mercaptohydrocarbon radicals such as mercaptoethyl, mercaptopropyl, mercaptohexyl and mercaptophenyl; ether and ester hydrocarbon radicals such as z)s s z)s a, -(CH,) COOC,H,, and (CH,),COOCI-I,; the corresponding thioether and thioester hydrocarbon radicals such as (CH ,),SC,I-I and (CH,) COSCH and nitrohydrocarbon radicals such as the nitrophenyl and 3-nitropropyl radicals. It is preferred that the R radical contain from I to 18 carbon atoms.
In the carboxy-functional siloxane unit, R which links the carboxy group to the silicon atom can be any divalent linking group attached to the silicon atom via a silicon to carbon (Si-C) bond. Thus by way of illustration, R can be a divalent linking group such as a divalent hydrocarbon radical, divalent radicals consisting of carbon, hydrogen and oxygen atoms and divalent radicals consisting of carbon, hydrogen and sulfur atoms. Specific examples of R include the methylene, ethylene, propylene, hexamethylene, decamethylene, CH,CH(CH,)CH,, phenylene, naphthylene, C, H -CHCH4-CHzC.H 'C5Hf'-'CHz, *C... H,-O-C,H -CH,CH,SCH,CH,, CH,C- H,OCH,-, --C,H SC,H
and the It is preferred that the R radical contain from 2 to carbon atoms.
As set out above, the siloxane copolymer of this inyention consists of 50 to 99.9 mole percent, preferably 90 to 99 mole percent, of the R,,SiO units and 0.1 to 50 mole percent, perferably l to 10 mole percent, of the units. In the first siloxane unit n can have a value of 0, 1, 2 or 3 and in the second siloxane unit m can have a value of O, 1 or 2. However, it should be noted that these values of n and m are subject to the limitation that at least 90 mol percent of all the siloxane units in the copolymer have a degree of substitution of 2 and that the siloxane copolymer must have an overall degree of substitution in the range of about 1.8 to 2.1. Thus while the siloxane copolymer can contain some small amounts of unsubstituted silicon atoms or monoand tri-substituted silicon atoms as well as disubstituted silicon atoms, the amounts of these units other than the di-substituted units is limited in order to obtain the results desired according to this invention.
So far as is known at this time, the method of preparation of the siloxane copolymer of this invention is 'not critical. However, the emulsion polymerized copolymers are preferred in that they tend to give somewhat better results than the corresponding solvent or bulk polymerized copolymers and in that his preferable to employ the copolymer in the form of an aqueous dispersion and therefore the resulting copolymer does not have to be emulsified or dispersed after preparation when the copolymer is prepared by the emulsion polymerization technique. The details of the various techniques by which these copolymers can be prepared will be obvious to those skilled in the art from the instant disclosure.
in accordance with this invention, it is preferred that the paper be sized by a wet end technique; that is it is preferred that the paper be internally sized by a process which includes the step of adding a size to the paper pulp at the wet end before the formation of the web. Thus, for example, an aqueous dispersion of the siloxane copolymer size as defined heretofore can be added to the paper pulp at the beater, at the head box, at the fan pump, or in the stock chest. Thus, when the web is laid down it will have mixed with it the size of this invention. The use of the size of this invention, however, is not limited to a wet end sizing process. It is also very useful for surface sizing paper in a process which includes the step of applying the size to the paper after the web has been formed. Thus, any conventional technique of application, such as a water box on a calender, tub sizing, size press, transfer rolls, spraying and the like can also be employed for sizing the paper. After application of the size of this invention, the paper is handled in the same manner that it would be as if the size hadn't been applied; that is to say, it is simply dried by a conventional technique such as standing at room temperature, passing it through a hot air oven, exposing to infrared, microwaves, or dielectric heating, or by passing it over hot dryer cans.
The amount of the siloxane copolymer size of this invention employed should be at least sufficient to enhance the resistance of the paper to wetting by an aqueous medium. The amount of the size of this invention present in and/or on the final product will obviously depend to some extent on the intended end use of the product. As soon as some increase in resistance to wetting is discernible, as compared to the untreated state, the treated paper can be deemed sized. Generally speaking, when the size is added to the wet end an amount in the range of 0.2 to 50 pounds of siloxane solids per ton (2000 lbs.) of dry paper pulp solids will be employed. Preferably the amount used in the wet end will be in the range of 0.5 to 4 pounds. This is roughly equivalent to depositing an amount of 0.01 to 2.5 percent by weight of silicone solids on the finished paper with a preferred range of 0.025 to 0.2 percent by weight of silicone solids being deposited. As far as the concentration of the siloxane copolymer in the aqueous dispersion used in a dry end process, this is not critical and only the amount deposited is actually significant.
Now that those skilled in the art may better understand how the instant invention can be practiced, the following examples are given by way of illustration and not by way of limitation. All parts and percents referred to herein are on a weight basis unless otherwise specified.
EXAMPLE 1 A mixture of 917.3 g. of water and 2.5 g. of dodecylbenzenesulfonic acid were combined in a 2000 ml. three-necked flask fitted with a condenser, air stirrer and addition funnel. The solution was stirred and heated to 60C. at which time a mixture of 73.7 g. (0.61 mole) of dimethyldimethoxysilane and 6.5 g. (0.032 mole) of CH OOC(CH,) Si(CH;)(OCH were added from the addition funnel over a one and one half hour period. A stable, bluish-white emulsion resulted. The emulsion was then heated for an additional 6 hours at 60C., then cooled to room temperature and stirred for 18 hours. Evaporation of a 10 g. sample of the acidic emulsion afforded 3.9] percent solids. The deposited polymer was a clear, viscous fluid. An additional sample of polymer isolated via isopropanol precipitation of the colloid by mixing 3 volumes of isopropanol per volume of colloid was analyzed by infrared spectroscopy and found to contain an ester to acid ratio of 2.7:].0 showing that part of the ester functionality had been converted to the carboxy functionality.
The above prepared siloxane copolymer was evaluated by immersing a-l2.5 cm. Watman No. l filter paper in 20 ml. of the acidic colloid for 5 minutes then air-drying it at 60C. for 3 hours. For purposes of comparison, an identical piece of filter paper was immersed in 20 ml. of acidic dimethylsiloxane colloid prepared by the emulsion polymerization of hexamethylcyclotrisiloxane employing dodecylbenzenesulfonic acid as the surfactant-catalyst. A drop of water was placed on the treated filter papers and the time noted for it to be absorbed into the paper. At this point, treatment with the carboxy-functional containing siloxane copolymer was slightly better than'with the dimethylsiloxane polymer treatment. Each treatment filter paper was then placed in an eight ounce bottle of toluene, shaken for 1 hour, and then rinsed with fresh toluene and dried for whereas the filter paper treated with the dimethylsi-" loxane polymer was no. longer hydrophobic. 'The weights of the filter'paper at intervals throughout this experiment indicated that the amount of treatment im parted to each filter paper wasapproximately the same and that the carboxy-functional siloxane polymer was retained on the paper during the toluene extraction.
EXAMPLE 2 A mixture of 90.5 g. of water, 0.5 g. of dodecyl benzene sulfonic acid and 9.1 g. (0.041 mole) of dimethylcyclotrisiloxane were added to a 250 ml. three-necked flask fitted with a condenser, air stirrer and addition funnel. After stirring for 24 hours at room temperature, a white opaque emulsion was obtained. Then 1.3 g. (0.006 mole) of CH,OOC(CH,) Si(CH )(OCH was added to the emulsion from the addition funnel over a 40 minute period and then stirred for 18 hours at room temperature. The appearance of the emulsion remained essentially unchanged. Evaporation=of a g. sample of the emulsion at 60C. and 1 mm. of mercury pressure afforded 5.9 percent solids. Analysis of the siloxane units and about 5 mole percent of the carboxyfunctional siloxane units.
A 10 g. sample of the above prepared siloxane copolymer emulsion containing about 0.004 g. of silicone solids was evaluated as a paper size by spraying the solution onto a 9 inch by 12 inch commercial newsprint sheet weighing about 3.7 g. After application, the paper was dried in a conventional dryer. About 0.11 percent by weight of the silicone solids based on the dry weight of the paper was added on. The resistance of the paper thus sized to penetration by water was tested by placing a drop of water on the sheet with an eyedropper and observing the number of minutes required for the water to soak in. In this test, the time for the water to soak in was greater than 30 minutes, the maximum time for which this test is run.
A second carboxy-functional siloxane copolymer identical to the one above was'prepared in the same silicone solids on the paper. This paper was also evalupolymer (obtained via isopropanol coagulation) by i-n-.
frared indicated an ester to acid ratioof 2.6.:1.0.
When the above prepared carboxy-functional siloxane copolymer is used to size paper in the same manner as Example 1, substantially identical results are obtained.
EXAMPLE 3 To a 500 ml. three-necked flask equipped with condenser, stirrer and addition funnel, there was added 50 g. ofisopropanol and 143 g. (0.794 mol) of mercaptopropylmethyldimethoxysilane and then the system purged with nitrogen. Then 1 g. of azobisisobutyronitrile was added to the flask and the contents heated to 76C. Then a mixture of 50 g. of isopropanol and 59 g. (0.820 mol) of acrylic acid was added via the addition funnel over a period of 53 minutes. After the addition was complete, the solution was stirred for an additional 7 minutes, then cooled and filtered to obtain a clear, slightly yellow solution of HOOCCH,CH,S(C- H,) Si(Cl-l )(OCl-l Infrared analysis of the product showed only a trace of C=C remaining from the acrylic acid.
2320 g. of water and 80 g. of dodecylbenzenesulfonic acid were mixed and then 1600 g. of dimethylsiloxane cyclics were stirred into the previously prepared solution. This mixture was then homogenized by passing it three times at 4000 p.s.i. through a homogenizer. This mixture was then allowed to polymerize at room temperature to obtain an emulsion of a hydroxyl endblocked polydimethylsiloxane polymer.
There was mixed together 250.65 g. of the above prepared hydroxyl endblocked polydimethylsiloxane polymer emulsion, 200.95 g. of water and 25 g. of a 20 percent aqueous solution of dodecylbenzenesulfonic acid and the resulting mixture heated to between 85 and 90C. Then there was added to this mixture 23.40 g. of the above prepared carboxy-functional silane. The resulting mixture was then heated for 4 hours at 85 to 90C. The reaction was carried out in a flask that was equipped with a reflux condenser, stirrer, thermometer and Pyr-O-Vane heat well regulator. The resulting ated using the above described water drop test. Penetration time, or time for total absorption of the water drop, was 29 minutes on the paper sized with the copolymer whereas a control sample containing no treatment required only 3 minutes for the water to be completely absorbed.
EXAMPLE 4 preparation of the copolymer by cohydrolysis. After the addition was complete heating was continued for an additional 30 minutes at 82 to 84C. The resulting siloxane copolymer contained about 50 mole percent of dimethylsiloxane units and 50 mole percent of HOOCCHgS CHgCHzSlO units.
To a flask there was added 136.2 g. of the hydroxyl endblocked polydimethylsiloxane emulsion prepared in the preceding example, 138 g. of water and 15.9 g. of a 20 percent aqueous solution of dodecylbenzenesulfonic acid. This mixture was heated to 85 to C. and then 9.9 g. of the above prepared carboxy-functional siloxane copolymer was added and the resulting mixture heated at 85 to 90C. over night. The resulting product contained about 95.5 mole percent of dimethylsiloxane units and about 4.5 mole percent of the carboxy-functional siloxane units.
The above prepared carboxy-functional siloxane copolymer was evaluated as a paper size by applying it in the form of a 0.2 percent silicone solids aqueous dispersion to a commercial newsprint by padding it onto the paper. This resulted in'about a percent wet pickup of the aqueous dispersion of the size, or the depositing of 0.2 percent of silicone solids based on the weight of the dry paper onto the newsprint. The water resistance ofthe sized paper was evaluated employing the water drop test of the preceding example. The sized paper required 26 minutes before the drop of water was completely absorbed whereas the control containing no sized treatment required only 3 minutes for complete absorption of the water drop.
EXAMPLE 5 There was mixed together 942 g. of a hydroxyl endblocked, dimethylsiloxane polymer, 58 g. of methylvinylcyclosiloxane, g. of water and 10 g. of an acidclay catalyst and then the mixture heated with stirring under a condenser at 80C. overnight (about 18 hours), then cooled to room temperature and filtered to obtain a clear fluid.
There was mixed together in a quartz vessel 134 g. of the above prepared dimethyl-methylvinyl siloxane copolymer, 7 g. (98 percent) of thioglycolic acid and about 60 g. of hexane. The vessel was then thoroughly purged with nitrogen and then a small quantity of a20- bisisobutyronitrile added and the mixture radiated with ultra-violet light. The temperature was allowed to rise to 50C. and then held at between 40 and 50C. for 1 hour. The hexane and other light volatile materials were stripped off by heating to 40C. at about 5 mm.
' of mercury pressure to obtain a white liquid product CH: HOOCCIIgS CHzCHzSlO units. Titration of the product with 0.1 N potassium hydroxide showed 51.2 milliequivalents of acid per one hundred grams of product as compared to a theoretical value of 52.8 milliequivalents of acid.
Twenty g. of the above prepared carboxy-functional siloxane copolymer was stirred into a solution of 78 g. of water and 2 g. of the sodium salt of dodecylbenzenesulfonic acid to obtain a fairly stable emulsion. This emulsion was applied to paper as a size and then the paper evaluated by the above described water drop test. The sized paper showed a water resistancetime of minutes and seconds as compared to a time of 2 minutes and 40 seconds for an untreated paper.
EXAMPLE 6 A printing grade paper was made using a 12 inch siloxane units was used in a process of surface sizing paper wherein it was applied to the paper after the web had been formed via a press sizer. The amount of siloxane employed is set out in the table and is given in pounds of siloxane solids per ton of dry pulp solids. The papers thus produced were evaluated for water resistance employing a drop test wherein 15 microliters of an aqueous dye solution at a pH of about 1 was placed on the paper and the time for total absorption of the test drop was measured. These papers were also evaluated for Mullen burst strengths on a Mullen tester using water in the chamber. The tensile strengths of the paper were also measured on a Model .1 Scott Tester, the samples being pulled at the rate of 12 inches per minute. Tensile strengths were measured in both the length (machine) and width (cross-machine) directions of the sample. The results of the tensile strengths are reported in terms pounds per linear inch. The treatments of the various papers and the results of the testing are set forth in the table below.
Silox- Water Mullen Tensile strength ane resistburst (lbs/in.) (lbsJ ance strength Paper Alum ton) (min) (lbs) Length Width *Included for comparison.
EXAMPLE 7 Papers weremade as in the preceding example, except that a process of internally sizing the paper involving the addition of the size to the paper pulp at the wet end before the formation of, the web was employed. Also in this example a conventional retention aid was used in making papers A-E, 0.08 pounds of retention aid per ton of dry pulp solids was used in making paper A, 0.16 pounds in making papers 8-13., and none in making paper F. In the table below, Papers A, Band C were sized by metering the siloxane copolymer into the pulp. 1n Papers D and E, the size was stirred with the pulp about an hour before formation of the paper. The carboxy-functional siloxane copolymer size employed in this example was identical to the one used in the preceding example. The treatment of the paper and the results of. the tests are set forth in the table below.
Water Mullen Tensile strength resistburst (lbs/in.
ance strength (mm.) (lbs) Length Width Included for comparison.
EXAMPLE 8 When the following siloxane copolymers are substituted for those of the preceding examples as sizing agents for paper, substantially equivalent results are obtained.
Mole
Copolymer percents Slloxane units Ca u i a/2 (CH3)2S C (CHa)2SiO (CH3) C FaCHzCHtSlO D 7 (CHshSlO (CHa)2SlO 9 1 HOOCCHzCHzSiO (CHalzSiO i l 50 HOOC(CH2):4OOO(CHz)aSiO That which is claimed is: 1. Paper sized with a siloxane consisting essentially of about 50 to 99.9 mole percent of units wherein R is a hydrocarbon or a substituted hydrocarbon radical and n has a value of from 0 to 3, and about 0.1 to 50 mole percent of units wherein R is as defined above, R is a divalent linking group attached to the silicon atom via a siliconcarbon bond and m has a value of from 0 to 2, at least 90 mole percent of all the siloxane units in the copolymer containing an R radical being ones wherein at least one of the R radicals is a methyl radical, at least 90 mole percent of all the siloxane units in the copolymer having a degree of substitution of 2, and said siloxane copolymer having an overall degree of substitution in the range of about 1.8 to 2,1.
2. A paper as defined in claim 1 wherein the siloxane consists essentially of about 90 to 99 mole percent of (CH SiO units, and about i to 10 mole percent of units wherein R is an alkylene radical containing from 2 to ID carbon atoms.
3. A paper as defined in claim 1 wherein the siloxane consists essentially of about to 99 mole percent of (CH SiO units, and about I to 10 mole percent of units wherein R is composed of carbon, hydrogen and sulfur atoms, the sulfur atoms being present in the form of thioether linkages, said R containing from 2 to 10 carbon atoms.
4. In a process of internally sizing paper which includes the step of adding the size to the paper pulp at the wet end before the formation of the web, the improvement comprising employing as the size a siloxane copolymer consisting essentially of about 50 to 99.9 mole percent of units wherein R is a hydrocarbon or a substituted hydrocarbon radical and n has a value of from 0 to 3, and about 0.1 to 50 mole percent of units wherein R is as defined above, R is a divalent linking group attached to the silicon atom via a siliconcarbon bond and m has a value of from 0 to 2, at least 90 mole percent of all the siloxane units in thetcopolymer containing an R radical being ones wherein at least one of the R radicals is a methyl radical, at least 90 mole percent of all the siloxane units in the copolymer having a degree of substitution of 2, and said siloxa-ne copolymer having an overall degree of substitution in the range of about 1.8 to 2.1.
5. A process as defined in claim 4 wherein the siloxane consists essentially of about 90 to 99 mole percent of (CH,) SiO units, andabout l to 10 mole percent of units wherein R is an alkylene radical containing from 2 to to carbon atoms.
6. A process as defined in claim 4 wherein the siloxane consists essentially of about 90 to 99 mole percent of (Cl-1;),Si0 units and about 1 to 10 mole percent of units wherein R is composed of carbon, hydrogen and sulfur atoms, the sulfur atoms being present in the form of thioether linkages, said R containing from 2 to 10 carbon atoms.

Claims (5)

  1. 2. A paper as defined in claim 1 wherein the siloxane consists essentiallY of about 90 to 99 mole percent of (CH3)2SiO units, and about 1 to 10 mole percent of
  2. 3. A paper as defined in claim 1 wherein the siloxane consists essentially of about 90 to 99 mole percent of (CH3)2SiO units, and about 1 to 10 mole percent of
  3. 4. In a process of internally sizing paper which includes the step of adding the size to the paper pulp at the wet end before the formation of the web, the improvement comprising employing as the size a siloxane copolymer consisting essentially of about 50 to 99.9 mole percent of RnSiO(4 n)/2 units wherein R is a hydrocarbon or a substituted hydrocarbon radical and n has a value of from 0 to 3, and about 0.1 to 50 mole percent of
  4. 5. A process as defined in claim 4 wherein the siloxane consists essentially of about 90 to 99 mole percent of (CH3)2SiO units, and about 1 to 10 mole percent of
  5. 6. A process as defined in claim 4 wherein the siloxane consists essentially of about 90 to 99 mole percent of (CH3)2SiO units and about 1 to 10 mole percent of
US00173280A 1969-08-05 1971-08-19 Paper sized with carboxy-functional silicones Expired - Lifetime US3755070A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US84774269A 1969-08-05 1969-08-05
US17328071A 1971-08-19 1971-08-19

Publications (1)

Publication Number Publication Date
US3755070A true US3755070A (en) 1973-08-28

Family

ID=26868966

Family Applications (1)

Application Number Title Priority Date Filing Date
US00173280A Expired - Lifetime US3755070A (en) 1969-08-05 1971-08-19 Paper sized with carboxy-functional silicones

Country Status (1)

Country Link
US (1) US3755070A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4046930A (en) * 1974-11-06 1977-09-06 Union Carbide Corporation Treatment of paper and textile fabrics with emulsified epoxy-silicones
US4664735A (en) * 1982-09-30 1987-05-12 Pernicano Vincent S Heat transfer sheeting having release agent coat
EP0470753A2 (en) * 1990-08-08 1992-02-12 Shin-Etsu Chemical Co., Ltd. Alkoxy-functional organopolysiloxanes and processes for preparing them
EP1088939A1 (en) * 1999-09-29 2001-04-04 Dow Corning Toray Silicone Co., Ltd. Printing paper sizing agent composition
US6572736B2 (en) 2000-10-10 2003-06-03 Atlas Roofing Corporation Non-woven web made with untreated clarifier sludge

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3338943A (en) * 1963-05-13 1967-08-29 Dow Corning Aminoorganosiloxane-carboxyorganosiloxane copolymers
US3438807A (en) * 1965-12-15 1969-04-15 Union Carbide Corp Silicone sized paper and cellulosic fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3338943A (en) * 1963-05-13 1967-08-29 Dow Corning Aminoorganosiloxane-carboxyorganosiloxane copolymers
US3438807A (en) * 1965-12-15 1969-04-15 Union Carbide Corp Silicone sized paper and cellulosic fiber

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4046930A (en) * 1974-11-06 1977-09-06 Union Carbide Corporation Treatment of paper and textile fabrics with emulsified epoxy-silicones
US4664735A (en) * 1982-09-30 1987-05-12 Pernicano Vincent S Heat transfer sheeting having release agent coat
EP0470753A2 (en) * 1990-08-08 1992-02-12 Shin-Etsu Chemical Co., Ltd. Alkoxy-functional organopolysiloxanes and processes for preparing them
EP0470753A3 (en) * 1990-08-08 1992-09-23 Shin-Etsu Chemical Co., Ltd. Alkoxy-functional organopolysiloxanes and processes for preparing them
EP1088939A1 (en) * 1999-09-29 2001-04-04 Dow Corning Toray Silicone Co., Ltd. Printing paper sizing agent composition
US6572736B2 (en) 2000-10-10 2003-06-03 Atlas Roofing Corporation Non-woven web made with untreated clarifier sludge

Similar Documents

Publication Publication Date Title
US3729444A (en) Carboxyfunctional silicones
US3755071A (en) Paper sized with carboxy-functional silicones
KR0137001B1 (en) Method for imparting softness with reduced yellowing to a textile using a low amine content, high molecular weight aminopolysiloxane
US5925469A (en) Organopolysiloxane emulsions
DE2335118C3 (en) Organopolysiloxanes containing acrylate or substituted acrylic groups and processes for their preparation
US4447498A (en) Use of organopolysiloxanes in the manufacture of paper-coated plaster boards
EP0744432B1 (en) Monodispersed soluble organopolysiloxane particles
US4568718A (en) Polydiorganosiloxane latex
US5078747A (en) Composition in the form of an aqueous dispersion and process for the treatment of fiber materials: polyethylene and organopolysiloxane amide derivative
CA1322433C (en) Fiber treatment agent composition
US4537595A (en) Organopolysiloxanes with Bunte salt groups, their synthesis and use for the surface treatment of inorganic or organic materials
EP0026366A1 (en) Silylated polyethers, processes for preparing the same, compositions for treating textile materials and the coated textile materials thus treated
DE4338421A1 (en) Graft copolymers of organopolysiloxanes as free-radical macroinitiators
CA2296894C (en) Modified condensation polymers having azetidinium groups and containing polysiloxane moieties
EP0028357A1 (en) Silicone polyether copolymers, processes for preparing the same, compositions for treating textile materials and the coated textile materials, thus treated
JPS61123635A (en) Organosiloxane-oxyalkylene copolymer
GB1523654A (en) Polysiloxanes
GB1599209A (en) Silicone compositions containing colloidal silica
US4204030A (en) Organopolysiloxane sized paperboards for gypsum wallboards
US3755070A (en) Paper sized with carboxy-functional silicones
US3431143A (en) Process for sizing paper with epoxy silicone and resulting products
US4891398A (en) Fiber treatment composition
US6465602B2 (en) Modified condensation polymers having azetidinium groups and containing polysiloxane moieties
US4502889A (en) Silicone emulsion compositions
JPH0853547A (en) Amino-functional organopolysiloxane,its aqueous emulsion,itsproduction and finishing agent for organic fiber and fabric