US3750709A - Heat-exchange tubing and method of making it - Google Patents

Heat-exchange tubing and method of making it Download PDF

Info

Publication number
US3750709A
US3750709A US00230297A US23029772A US3750709A US 3750709 A US3750709 A US 3750709A US 00230297 A US00230297 A US 00230297A US 23029772 A US23029772 A US 23029772A US 3750709 A US3750709 A US 3750709A
Authority
US
United States
Prior art keywords
tubing
fins
flat
heat
exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00230297A
Inventor
F French
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wolverine Tube Canada Inc
Noranda Metal Industries Inc
Original Assignee
Noranda Metal Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US38132A external-priority patent/US3662582A/en
Priority to DE2209325A priority Critical patent/DE2209325C3/en
Application filed by Noranda Metal Industries Inc filed Critical Noranda Metal Industries Inc
Priority to US00230297A priority patent/US3750709A/en
Priority to FR7208596A priority patent/FR2175519B1/fr
Application granted granted Critical
Publication of US3750709A publication Critical patent/US3750709A/en
Assigned to WOLVERINE TUBE (CANADA) INC., 1010 CLARKE ROAD, P.O. BOX 6515, STATIOND, LONDON, ONTARIO, N5W 5S9 reassignment WOLVERINE TUBE (CANADA) INC., 1010 CLARKE ROAD, P.O. BOX 6515, STATIOND, LONDON, ONTARIO, N5W 5S9 ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: NORANDA METAL INDUSTRIES, INC.,
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1048Data bus control circuits, e.g. precharging, presetting, equalising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/15Making tubes of special shape; Making tube fittings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/15Making tubes of special shape; Making tube fittings
    • B21C37/20Making helical or similar guides in or on tubes without removing material, e.g. by drawing same over mandrels, by pushing same through dies ; Making tubes with angled walls, ribbed tubes and tubes with decorated walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/15Making tubes of special shape; Making tube fittings
    • B21C37/20Making helical or similar guides in or on tubes without removing material, e.g. by drawing same over mandrels, by pushing same through dies ; Making tubes with angled walls, ribbed tubes and tubes with decorated walls
    • B21C37/202Making helical or similar guides in or on tubes without removing material, e.g. by drawing same over mandrels, by pushing same through dies ; Making tubes with angled walls, ribbed tubes and tubes with decorated walls with guides parallel to the tube axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/15Making tubes of special shape; Making tube fittings
    • B21C37/20Making helical or similar guides in or on tubes without removing material, e.g. by drawing same over mandrels, by pushing same through dies ; Making tubes with angled walls, ribbed tubes and tubes with decorated walls
    • B21C37/207Making helical or similar guides in or on tubes without removing material, e.g. by drawing same over mandrels, by pushing same through dies ; Making tubes with angled walls, ribbed tubes and tubes with decorated walls with helical guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • F28D7/024Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of only one medium being helically coiled tubes, the coils having a cylindrical configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/025Tubular elements of cross-section which is non-circular with variable shape, e.g. with modified tube ends, with different geometrical features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • F28F1/422Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element with outside means integral with the tubular element and inside means integral with the tubular element
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • Y10T29/49377Tube with heat transfer means
    • Y10T29/49378Finned tube
    • Y10T29/49384Internally finned

Definitions

  • This invention relates to heat-exchange tubing in general, and to finned heat-exchange tubing in particular.
  • the type of heat-exchange tubing with which the present invention is concerned is provided with inwardly extending fins, or so-called inner fins, on its peripheral wall.
  • Tubing of this type is well known for its heat-exchange properties which vary from good to excellent, depending on the inner-fin pattern and size, the particular heat-exchange application, and other factors.
  • this type of tubing does not lend itself to certain exacting heat-exchange requirements for various applications.
  • heat-exchange of the fins and also peripheral wall of such tubing with fluid passing through the latter is inadequate for certain purposes regardless of the height and number of the fins.
  • Another object of the present invention is to devise a method of forming heat-exchange tubing of this type, which comprises providing a round inner-fin tube blank, and partially flattening the blank into the aforementioned oblong cross-section of its peripheral wall at which the fins on either one of the then opposite flat wall sections extend with their tips at least to the level of the tips of the fins on the other flat wall section.
  • the number, height, spacing and direction of the fins therein may be selected from the wide variety of fin patterns and sizes which may readily be formed in round tubular blanks according to different known methods, but which could hardly, and never practically, be formed in flat tubing.
  • a further object of the present invention is to provide flat tubing of this type whose heat-exchange with a fluid passing therehrough is further enhanced, in that in the aforementioned partial flattening of a round inner-fin tube blank into the flat tubing, the flat opposite wall sections are spaced apart a distance at which the fins on either flat wall section extend with their tips beyond the level of the tips of the fins on the opposite flat wall section but remain spaced from the latter.
  • the path of fluid through the tubing is even more tortuous past the fins therein especially where the fins on the opposite flat wall sections cross each other, involving additional diversion of fluid within the channels between successive fins over the tips of opposite fins projecting within the confines of the channels.
  • the fins on the opposite flat wall sections are inclined to and cross each other, the fins will over the extent of their interpress at their crossings readily give way in denting and there interlock without distorting the fin pattern.
  • Another object of the present invention is to provide heat-exchangetubing of this type which for any, and even exceptional, length and, hence, heat-exchange capacity, may be of very condensed lengthwise construction, by lengthwise bending the tubing into more or less closely adjacent, successive helical turns, as around a cylindrical mandrel, for instance.
  • the outer fins on the round tube blank may longitudinally extend parallel to, or helically about, the tube axis, with neither axial nor helical outer fins interfering with orderly partial flattening of the blank on providing for suitable clearance of the outer fins in the blank-flattening tooling.
  • FIG. 2 and 3 are sections through the tubing taken on the lines 2-2 and 33, respectively, in FIGS. 1 and 2;
  • FIG. 4 is a cross-section through a round inner-fin tube blank from which the tubing of FIGS. 1 to 3 is fashioned,
  • FIG. 5 is a section through the tube blank on the line 55 in FIG. 4;
  • FIG. 6 is a cross-section through heat-exchange tubing embodying the invention in a modified manner
  • FIG. 7 is a section through the modified tubing substantially along the line 77 in FIG. 6;
  • FIG. 8 is an enlarged section through part of the modified tubing substantially along the line 8-8 of FIG. 7;
  • FIG. 9 is a cross-section through heat-exchange tubing embodying the invention in another modified manner.
  • FIG. 10 is a section through the modified tubing of FIG. 9 along the line l0l0 thereof;
  • FIG. 11 is a cross-section through heat-exchange tubing embodying the invention in a further modified manner
  • FIG. 12 demonstrates a step in the formation of heatexchange tubing according to a method which also embodies the invention
  • FIG. 13 demonstrates a modified step in the formation of heat-exchange tubing according to a method of the invention
  • FIG. 14 is a cross-section through heat-exchange tub ing of still another modification
  • FIG. 15 is a side view, partly in section, of a heat exchanger embodying the featured tubing
  • FIG. ]6 is a section through the heat-exchanger along the line I6l6 in FIG. 15;
  • FIG. 17 is a side view, partly in section, ofa modified heat-exchanger embodying the featured tubing
  • FIG. 18 is a view of the featured heat-exchange tubing with a longitudinal twist
  • FIG. 19 is a section through the featured heatexchange tubing which is also cross-sectionally curved;
  • FIG. 20 is a perspective view of the featured heatexchange tubing which is also bent longitudinally into successive helical turns;
  • FIG. 21 is a cross-section through heat-exchange tubing embodying the invention in a further modified manner
  • FIG. 22 is a cross-section through a round tinned tube blank from which the heat-exchange tubing of FIG. 21 is fashioned;
  • FIG. 23 is a cross-section through heat-exchange tubing embodying the invention in a still further modified manner.
  • the reference numeral 10 designates heat-exchange tubing having a peripheral metal wall 12 of oblong cross-section and a multitude of metal fins 14 with tips 16.
  • the peripheral wall 12 provides two flat opposite, and preferably parallel, wall sections 18, and opposite return wall sections 20 which join the flat wall sections 18, with the flat wall sections 18 constituting in this instance a far predominant part of the wall 12.
  • the fins 14, which project inwardly from the wall 12 and are preferably formed integrally therewith, are of the same height which is such that the fins on either flat wall section 18 extend with their tips 16 to the level of the tips of the fins on the opposite flat wall section (FIG.
  • Successive fins 14 on the wall 12 are preferably equally spaced, and the fins on either flat wall section 18 extend parallel to each other and at an inclination to the longitudinal axis x of the tubing, with the fins on the respective wall sections 18 being also inclined to and crossing each other (FIG. 3).
  • the flat" metal tubing 10 is advantageously formed from a round inner-fin tube blank 24 (FIGS. 4 and 5) in accordance with an exceedingly simple method.
  • the peripheral wall of the blank 24 is of the same thickness and pe ripheral extent as the wall 12 of the flat tubing 10, and the fins of theblank are of the same height and thickness, and also spaced, as the fins 14 of the tubing, wherefore the peripheral wall and tins of the blank are appropriately designated by the reference numerals 12 and 14, respectively, i.e., the same as their counterparts of the flat tubing.
  • the fins 14 on the round wall 12 of the blank 24 extend longitudinally helically at the same helix angle throughout (FIG. 5).
  • the inner-fin tube blank24 itself may be formed in any known manner, including brazing or otherwise joining inserted fins to the round wall of the blank, but preferably by displacement, according to different known methods, of metal from the wall of the blank into grooves on a mandrel therein to form the fins 14 integral with the wall.
  • One such method is disclosed in my prior U.S. Pat. No. 3,422,5l8, dated .Ian. 21, 1969, with this method involving externally swaging a cylindrical tube blank against a grooved mandrel therein in a single pass of the blank over and beyond the mandrel, whereby metal from the blank wall is displaced into the mandrel grooves to form the fins.
  • the method of forming the inner-fin tube blank 24 into the flat tubing simply involves partially flattening the blank to form opposite peripheral wall portions thereof into the flat parallel wall sections 18, which concludes the formation of the flat tubing 10.
  • Such partial flattening of the round blank 24 may be achieved in any suitable manner, as by passing the blank between rotary companion rolls 30 and 32 in the direction of the arrow 34 (FIG. 12), or by drawing the blank through a die 36 in the direction of the arrow 38 (FIG. 13).
  • peripheral wall 12 of the flat tubing 10 is indeed the same wall 12 of the blank 24 which remains of the same thickness and peripheral extent. It is now also apparent that the fins 14 of the blank 24 and of the flat tubing 10 are indeed the same and retain their height and thickness as well as their spacing from each other. Further, in the course of partially flattening the round blank 24, the helically extending fins 14 will over the extent of the flat wall sections 18 of the tubing be extended into straight disposition (FIG. 3).
  • the fins in the round tube blank must obviously be spaced some distance from the axis of the blank.
  • the fin height may vary widely from less than the thickness of the peripheral blank wall to many times such wall thicknesses, with the fins of any height within this wide range being adequately spaced from the axis of the blank for its formation into flat tubing in which the fins are within full reach of the interior of the tubing.
  • FIGS. 6 and 7 show flat inner-fin tubing 100 that basically differs from the described tubing 10 in that the fins 140 on either flat wall section 18a extend with their tips 16a beyond the level of the tips of the fins on the opposite flat wall section but remain spaced from the latter.
  • the flat tubing 10a may otherwise be like the tubing 10 and, hence, formed from the same round inner-fin tube blank 24 (FIGS. 4 and 5), with the tubing 10a being formed by the same method as the tube 10, except that the round blank is partially flattened to an extent at which the fins on the opposite flat wall sections interproject.
  • the fins 14a on the opposite flat wall sections 18a are at, and over the extent of, their crossings 40 interpressed and thereby interlocked due to mutual denting of the fins thereat as at 42 (FIG. 8).
  • the mutual denting of the fins at their crossings in consequence of partially flat tening the round blank to the extent of part-way interprojecting the fins on the opposite flat wall sections, the
  • fin pattern as such remains intact and is not distorted (FIG. 7).Owing to the part-way interprojection of the fins in this tubing, the fluid path therethrough is quite tortuous in any event, and may even vary considerably with different degrees of interprojection of the fins. Different interprojection of the fins is thus another tool toward achieving good heat-exchange and meeting other widely varying requirements, such as volumetric flow rate of a fluid passing through the tubing, or to keep pressure drop of the passing fluid within prescribed limits.
  • FIGS. 9 and 10 show flat heat-exchange tubing 10b that is formed from a round inner-fin tube blank (not shown) in which the fins extend parallel to the axis of the blank.
  • FIGS. 9 and 10 show flat heat-exchange tubing 10b that is formed from a round inner-fin tube blank (not shown) in which the fins extend parallel to the axis of the blank.
  • the fins 14b on the opposite flat wall sections 18b interproject to some extent, though it is entirely obvious that by different partial flattening of the blank the fins on the flat opposite wall sections 18b may interproject to a different extent, or the tips of the fins on either flat wall section 18b may with their tips extend to the level of the tips of the fins on the other flat wall section 18b.
  • the two opposite flat wall sections constitute the predominant part of the peripheral wall of the tubing. While this is preferred for exacting heat-exchange and also other requirements of many applications, such as cooling the transmission oil of automotive vehicles, just to mention one such application, the advantages of having the fins within full reach of the interior of flat tubing are secured even where the two flat opposite wall sections do not constitute a predominant part, or even constitute less than one-half, the peripheral wall of the tubing.
  • FIG. 1 illustrates the advantages of having the fins within full reach of the interior of flat tubing.
  • FIG. 14 shows flat heat-exchange tubing 10d of which the flat opposite wall sections 18d constitute less than one-half of the peripheral wall 12d of the tubing, with the round inner-fin tube blank (not shown) from which the tubing is fashioned being, in accordance with the present method, partially flattened to an exemplary extent at which the fins 14d on either flat wall section 18d extend with their tips to the level of the tips of the fins on the other flat wall section 18d.
  • the indicated fin height for the also indicated peripheral extent and thickness of the wall of the tubing obviously falls within the aforementioned fin-height range within which the fins in flat tubing are brought within full reach of the interior of the tubing.
  • FIGS. 15 and 16 show a heat-exchange unit 50 using a length or piece 52 of the featured flat inner-fin tubing, for example a piece of the flat tube 10a of FIGS. 6 and 7.
  • the opposite ends 54 and 56 of the tube piece 52 are in communication with the interior of casings 58 and 60, with the tube ends 54 and 56 being fitted in, and conveniently brazed to, slots 62 in the respective casings S8 and 60.
  • the casings 58 and 60 have tapped holes 64 and 66 for connection with conduits through which to lead a fluid, liquid or gas, to and from the unit 50 for temperature modification, such as cooling, for instance.
  • FIG. 17 shows a heat-exchange unit 70 of which the end casings 72 and 74 are circular in section.
  • the length or piece 76 of featured inner-fin tubing is, in its formation from a round innerfin tube blank, partially flattened only over its longitudinal extent I so that opposite end lengths 78 and 80 of the tubing remain cylindrical, and these cylindrical end lengths 78 and 80 are connected with the casings 72 and 74.
  • the fluid passing through the featured flat inner-fin tubing is under operating pressure which may be sufficiently high to open the tubing by forcing the opposite flat sections of the peripheral wall more or less apart, such as the flat wall sections l8to 18c of the described tubing to 100, for example, and thereby greatly reducing the heatexchange capacity of the tubing,'if not rendering the tubing unfit for further use in a particular heatexchange application. Opening of the tubing in this fashion and from this cause is in many cases prevented by additionally curving the same longitudinally, or transversely, or both, and thereby reenforcing the tubing against such opening.
  • a length 90 of the featured flat inner-fin tubing may be twisted about its longitudinal axis x (FIG.
  • the tube length 90 may be twisted by forcing the same through a correspondingly twisting opening in a die 92.
  • FIG. 19 shows a piece 94 of the featured flat inner-fin tubing which is transversely curved for reenforcement against opening under internal pressure.
  • the initially flat tube piece 94 may to this endbe drawn through a die 96 with an opening of the outline of the curved tub-
  • FIG. shows a piece 98 of the featured flat inner-fin tubing which is longitudinally curved for reenforcement against opening under internal pressure. This is achieved in this instance by bending the flat tubing around a cylindrical arbor 100.
  • the exemplary tube piece 98 is of quite extensive length with correspondingly large heat-exchange capacity, and in order greatly to reduce the lengthwise expanse of the longitudinally curved tubing, the tubing is bent around the arbor 100 in successive andmore or less closely adjacent helical turns 102.
  • FIG. 21 shows flat heatexchange tubing 104'which has inner and ouer fins 106 and 108.
  • the tubing 104 is, in accordance with the present method, formed from the round inner-andouter fin tube blank 110 (FIG. 22).
  • the outer fins 108 extend in this instance parallel to the axis of the blank, but they may also extend helically, with the partial flattening of the round tube blank into the flat tubing being in either case entirely feasible on providing companion flattening rolls, for example, with suitable slots for clearing the outer fins.
  • FIG. 23 shows the flat heat-exchange tubing like that may be like the tubing 10 of FIG. 2, except that there is interposed between the tips 16e of the fins Me on the opposite flat wall sections 18e a longitudinal strip 112 of any suitable brazing material.
  • a longitudinal strip 112 of any suitable brazing material is known to the trade as SlL-FOS and manufactured by Handy and Harman.
  • the brazing strip 112 is inserted in the course of flattening the initially round inner-fin tube blank into the flat tubing l0e,'with the strip 112, which is shown of exaggerated thickness for claritys sake, being engaged by the tips of the fins.
  • the flat tubing l0e is then heated, as in a furnace 1 14, for example, to meltthe brazing strip 112 and brace the fins together at their crossing tips, with the excess brazing material spreading over nearby portions ofthe fins.
  • the tubing l0e being thus brazed together at the crossing tips of the fins, will not open under operational, including particularly high, internal fluid pressures.
  • Brazing of flat tubing at the crossing tips of the fins is indicated where higher internal operational fluid pressures are involved, and especially for applications of such tubing which require that the same remains flat and is not to be curved for reenforcement against opening under internal fluid pressure.
  • brazing of flat tubing in this manner applies as fully for tubing in which the inner-fins become interpressed in the course of flattening the initially round inner-fin tube blank into the flat tubing, as in FIG. 6, for example.
  • Longitudinal heat-exchange tubing having a longitudinal axis and a peripheral metal wall of oblong crosssection, with the wall providingtwo opposite spaced flat wall sections parallel to each other and two opposite return wall sections joining said flat wall sections, and spaced metal flns integral with and projecting inwardly from said wall with said fins having tips and being of equal height, the fins on each of said flat wall sections extending inclined to said axis and parallel to each other, the fins on said flat wall sections being inclined to and crossing each other, and the fins on either of said flat wall sections extending with their tips beyond the level of the tips of the fins on the other flat wall section but being spaced from the latter.

Abstract

Heat-exchange tubing with a peripheral wall of oblong crosssection, and inner fins on the wall of which the fins on either of two opposite flat wall sections extend with their tips at least to the level of the tips of the fins on the other flat wall section, and a method of forming the tubing from a round innerfin tube blank, involving partially flattening the round blank into the tubing with its peripheral wall of oblong crosssection.

Description

United States Patent [19] French 1 Aug. 7, 1973 HEAT-EXCHANGE TUBING AND METHOD OF MAKING IT [75] Inventor: Fred W. French, Deer Island, Conn.
[73] Assignee: Noranda Metal Industries Inc.,
Bellingham, Wash.
[22] Filed: Feb. 29, 1972 [21] Appl. N0.: 230,297
Related U.S. Application Data [62] Division of Ser. No. 38,132, May 18, 1970, Pat. No.
[52] U.S. Cl 138/38, 29/157.3 A, 165/179 [51] Int. Cl F28! l/40 [58] Field of Search 165/179, 183, 184; 122/367 R, 367 A, 367 C; 29/1573 A, 157.3
[56] References Cited UNITED STATES PATENTS 2,149,696 3/1939 Holmes 165/179 X FOREIGN PATENTS OR APPLICATIONS 332,280 7/1930 Great Britain 165/179 Primary Examiner-Albert W. Davis, Jr. Attorney-Walter Spruegel [57] ABSTRACT 2 Claims, 23 Drawing Figures HEAT-EXCHANGE TUBING AND METHOD OF MAKING IT This application is a division of my copending application Ser. No. 38,132 filed May 18, 1970, now US. Pat. No. 3,662,582, granted May 16, 1972.
This invention relates to heat-exchange tubing in general, and to finned heat-exchange tubing in particular.
The type of heat-exchange tubing with which the present invention is concerned is provided with inwardly extending fins, or so-called inner fins, on its peripheral wall. Tubing of this type is well known for its heat-exchange properties which vary from good to excellent, depending on the inner-fin pattern and size, the particular heat-exchange application, and other factors. However, even this type of tubing does not lend itself to certain exacting heat-exchange requirements for various applications. There are several reasons for this, and chief among them is that heat-exchange of the fins and also peripheral wall of such tubing with fluid passing through the latter is inadequate for certain purposes regardless of the height and number of the fins.
It is the primary object of the present invention to provide heat-exchange tubing of this type which meets many exacting heat-exchange requirements that cannot be met by the aforementioned known inner-fin tubing.
It is another object of the present invention to provide heat-exchange tubing of this type of which the peripheral wall and the inner fins are arranged to divide the entire interior of the tublng into individual flow channels of a number, depth and width to best meet specified heat-exchange requirements as well as other requirements, such as a specified volumetric flow rate of a fluid through the tubing, or to keep pressure drop of the fluid in the tubing within specified limits, for example.
It is a further object of the present invention to provide heat-exchange tubing of this type the interior of which is divided into flow channels for meeting various specific, including heat-exchange, requirements as aforementioned, by making the peripheral wall generally oblong in cross-section, with the same providing two opposite flat wall sections and opposite return wall sections which join the flat wall sections, and the fins on either flat wall section extend with their tips at least to the level of the tips of the inner fins on the other flat wall section. It is thus within the wide parameters of oblong cross-section of the peripheral wall and the number, height and spacing of the fins, that a great variety of heat-exchange tubing for many different applications may be fashioned.
Another object of the present invention is to devise a method of forming heat-exchange tubing of this type, which comprises providing a round inner-fin tube blank, and partially flattening the blank into the aforementioned oblong cross-section of its peripheral wall at which the fins on either one of the then opposite flat wall sections extend with their tips at least to the level of the tips of the fins on the other flat wall section. In thus forming the heat-exchange tubing, which may aptly be termed flat tubing, the number, height, spacing and direction of the fins therein may be selected from the wide variety of fin patterns and sizes which may readily be formed in round tubular blanks according to different known methods, but which could hardly, and never practically, be formed in flat tubing. Moreover, extreme simplicity characterizes the reformation of a round inner-fin tube blank into flat tubing of this kind in accordance with the present invention, as by passing the round blank between rotary companion rolls or drawing the same through a die, all in a single pass, for example. Moreover, reformation in this fashion of a round tube blank particularly with helical inner fins into flat tubing of this type brings the fins into an entirely new and extremely effective cooperative relation, in that the then-straight fins on the respective flat wall sections abut and are inclined to and cross each other, with the result that these fins sharply divide and divert into different directions at each crosssection of the tubing much of the fluid flowing through the entirely finned passage in the tubing.
A further object of the present invention is to provide flat tubing of this type whose heat-exchange with a fluid passing therehrough is further enhanced, in that in the aforementioned partial flattening of a round inner-fin tube blank into the flat tubing, the flat opposite wall sections are spaced apart a distance at which the fins on either flat wall section extend with their tips beyond the level of the tips of the fins on the opposite flat wall section but remain spaced from the latter. With this arrangement, the path of fluid through the tubing is even more tortuous past the fins therein especially where the fins on the opposite flat wall sections cross each other, involving additional diversion of fluid within the channels between successive fins over the tips of opposite fins projecting within the confines of the channels. Further, where the fins on the opposite flat wall sections are inclined to and cross each other, the fins will over the extent of their interpress at their crossings readily give way in denting and there interlock without distorting the fin pattern.
It is another object of the present invention to provide heat-exchange tubing of this type which, if desired, may have graduated heat-exchange properties over different lengths or from one end to the other end, by simply partially flattening a round inner-fin tube blank to different extents so that the sets of inner fins on the respective flat opposite wallsections vary in their relative projection from level at their tips to interprojection.
It is a further object of the present invention to form heat-exchange tubing of this type according to the aforementioned method, and which is subsequently further deformed in cross-sectionally or longitudinally curved fashion, thereby to reenforce the tubing against spread-apart of their opposite flat wall sections under pressure from fluid passing through the tubing.
Another object of the present invention is to provide heat-exchangetubing of this type which for any, and even exceptional, length and, hence, heat-exchange capacity, may be of very condensed lengthwise construction, by lengthwise bending the tubing into more or less closely adjacent, successive helical turns, as around a cylindrical mandrel, for instance.
It is another object of the present invention to provide heat-exchange tubing of this type which is formed,
according to the aforementioned method, from a round tube blank with inner and outer fins, so that the tubing has by virtue of the additional outer fins further enhanced heat-exchange properties. The outer fins on the round tube blank may longitudinally extend parallel to, or helically about, the tube axis, with neither axial nor helical outer fins interfering with orderly partial flattening of the blank on providing for suitable clearance of the outer fins in the blank-flattening tooling.
' bodying the invention;
FIG. 2 and 3 are sections through the tubing taken on the lines 2-2 and 33, respectively, in FIGS. 1 and 2;
FIG. 4 is a cross-section through a round inner-fin tube blank from which the tubing of FIGS. 1 to 3 is fashioned,
FIG. 5 is a section through the tube blank on the line 55 in FIG. 4;
FIG. 6 is a cross-section through heat-exchange tubing embodying the invention in a modified manner;
FIG. 7 is a section through the modified tubing substantially along the line 77 in FIG. 6;
FIG. 8 is an enlarged section through part of the modified tubing substantially along the line 8-8 of FIG. 7;
FIG. 9 is a cross-section through heat-exchange tubing embodying the invention in another modified manner;
FIG. 10 is a section through the modified tubing of FIG. 9 along the line l0l0 thereof;
FIG. 11 is a cross-section through heat-exchange tubing embodying the invention in a further modified manner;
FIG. 12 demonstrates a step in the formation of heatexchange tubing according to a method which also embodies the invention;
FIG. 13 demonstrates a modified step in the formation of heat-exchange tubing according to a method of the invention;
FIG. 14 is a cross-section through heat-exchange tub ing of still another modification;
FIG. 15 is a side view, partly in section, of a heat exchanger embodying the featured tubing;
FIG. ]6 is a section through the heat-exchanger along the line I6l6 in FIG. 15;
FIG. 17 is a side view, partly in section, ofa modified heat-exchanger embodying the featured tubing;
FIG. 18 is a view of the featured heat-exchange tubing with a longitudinal twist;
FIG. 19 is a section through the featured heatexchange tubing which is also cross-sectionally curved;
FIG. 20 is a perspective view of the featured heatexchange tubing which is also bent longitudinally into successive helical turns;
FIG. 21 is a cross-section through heat-exchange tubing embodying the invention in a further modified manner;
FIG. 22 is a cross-section through a round tinned tube blank from which the heat-exchange tubing of FIG. 21 is fashioned; and
FIG. 23 is a cross-section through heat-exchange tubing embodying the invention in a still further modified manner.
Referring to the drawings, and more particularly to FIGS. 1 to 3 thereof, the reference numeral 10 designates heat-exchange tubing having a peripheral metal wall 12 of oblong cross-section and a multitude of metal fins 14 with tips 16. The peripheral wall 12 provides two flat opposite, and preferably parallel, wall sections 18, and opposite return wall sections 20 which join the flat wall sections 18, with the flat wall sections 18 constituting in this instance a far predominant part of the wall 12. The fins 14, which project inwardly from the wall 12 and are preferably formed integrally therewith, are of the same height which is such that the fins on either flat wall section 18 extend with their tips 16 to the level of the tips of the fins on the opposite flat wall section (FIG. 2), so that the entire interior of the flat tubing is within reach of the fins. Successive fins 14 on the wall 12 are preferably equally spaced, and the fins on either flat wall section 18 extend parallel to each other and at an inclination to the longitudinal axis x of the tubing, with the fins on the respective wall sections 18 being also inclined to and crossing each other (FIG. 3).
With the interior of the flat tubing being within full reach of the fins 14, the entire passage through the tubing is divided into individual flow channels 22, which makes for good heat-exchange between the fluid passing through the tubing and the fins 14 as well as peripheral wall 12 of the tubing. Heat-exchange between such fluid and the fins and peripheral wall of the tubing is even enhanced by the inclination to each other of the channels 22 on the opposite flat wall sections 18 (FIG. 3), in that they sharply divide and divert into different channels much of the fluid passing therein at each cross-section of the tubing.
The flat" metal tubing 10 is advantageously formed from a round inner-fin tube blank 24 (FIGS. 4 and 5) in accordance with an exceedingly simple method. For reasons more fully apparent hereinafter, the peripheral wall of the blank 24 is of the same thickness and pe ripheral extent as the wall 12 of the flat tubing 10, and the fins of theblank are of the same height and thickness, and also spaced, as the fins 14 of the tubing, wherefore the peripheral wall and tins of the blank are appropriately designated by the reference numerals 12 and 14, respectively, i.e., the same as their counterparts of the flat tubing. Further, the fins 14 on the round wall 12 of the blank 24 extend longitudinally helically at the same helix angle throughout (FIG. 5).
The inner-fin tube blank24 itself may be formed in any known manner, including brazing or otherwise joining inserted fins to the round wall of the blank, but preferably by displacement, according to different known methods, of metal from the wall of the blank into grooves on a mandrel therein to form the fins 14 integral with the wall. One such method is disclosed in my prior U.S. Pat. No. 3,422,5l8, dated .Ian. 21, 1969, with this method involving externally swaging a cylindrical tube blank against a grooved mandrel therein in a single pass of the blank over and beyond the mandrel, whereby metal from the blank wall is displaced into the mandrel grooves to form the fins. This method is preferred, not only because the same is highly efficient and readily lends itself to the formation of an inner-fin tube blank of most any desired fin pattern and size, but also because the swaging of the blank over the mandrel entails quite extensive elongation of the blank. Such ex tensive-elongation of the blank and the formation of the fins exclusively by metal from the blank wall entail a considerable reduction of the wall thickness of the finished inner-fin tube blank, which is highly advantageous in point of heat-exchange of the tube wall, and hence also entire tube, with a surrounding temperatu're-modifying medium, such as a coolant, for example.
The method of forming the inner-fin tube blank 24 into the flat tubing simply involves partially flattening the blank to form opposite peripheral wall portions thereof into the flat parallel wall sections 18, which concludes the formation of the flat tubing 10. Such partial flattening of the round blank 24 may be achieved in any suitable manner, as by passing the blank between rotary companion rolls 30 and 32 in the direction of the arrow 34 (FIG. 12), or by drawing the blank through a die 36 in the direction of the arrow 38 (FIG. 13).
It follows from the preceding that the peripheral wall 12 of the flat tubing 10 is indeed the same wall 12 of the blank 24 which remains of the same thickness and peripheral extent. It is now also apparent that the fins 14 of the blank 24 and of the flat tubing 10 are indeed the same and retain their height and thickness as well as their spacing from each other. Further, in the course of partially flattening the round blank 24, the helically extending fins 14 will over the extent of the flat wall sections 18 of the tubing be extended into straight disposition (FIG. 3).
To bring the fins 14 for all practical purposes within full reach of the interior of the flat tubing 10, the fins in the round tube blank must obviously be spaced some distance from the axis of the blank. In this connection, it has been found that for agiven inside diameter of the blank, the fin height may vary widely from less than the thickness of the peripheral blank wall to many times such wall thicknesses, with the fins of any height within this wide range being adequately spaced from the axis of the blank for its formation into flat tubing in which the fins are within full reach of the interior of the tubing. Within this wide range of fin height, and with available round inner-fin tube blanks of many different fin patterns and sizes, it is possible to obtain widely differ ent flat inner-fin tubing which not only has good heatexchange properties, but also meets other requirements, such as a specified volumetric flow rate of fluid through the tubing, or to keep pressure drop of passing fluid in the tubing within prescribed limits, for example. Thus, the number of fins, also their height within the above wide range, and the peripheral extent of the wall, of flat tubing may vary widely to meet many different, including heafiexchange, requirements. Insofar as the height of the fins is concerned, the same is for many, but not all, applications greater than the thickness of the peripheral wall of the tubing.
Reference is now had to FIGS. 6 and 7 which show flat inner-fin tubing 100 that basically differs from the described tubing 10 in that the fins 140 on either flat wall section 18a extend with their tips 16a beyond the level of the tips of the fins on the opposite flat wall section but remain spaced from the latter. The flat tubing 10a may otherwise be like the tubing 10 and, hence, formed from the same round inner-fin tube blank 24 (FIGS. 4 and 5), with the tubing 10a being formed by the same method as the tube 10, except that the round blank is partially flattened to an extent at which the fins on the opposite flat wall sections interproject. In thus partially flattening the round blank, the fins 14a on the opposite flat wall sections 18a are at, and over the extent of, their crossings 40 interpressed and thereby interlocked due to mutual denting of the fins thereat as at 42 (FIG. 8). Thus, due to the mutual denting of the fins at their crossings in consequence of partially flat tening the round blank to the extent of part-way interprojecting the fins on the opposite flat wall sections, the
fin pattern as such remains intact and is not distorted (FIG. 7).Owing to the part-way interprojection of the fins in this tubing, the fluid path therethrough is quite tortuous in any event, and may even vary considerably with different degrees of interprojection of the fins. Different interprojection of the fins is thus another tool toward achieving good heat-exchange and meeting other widely varying requirements, such as volumetric flow rate of a fluid passing through the tubing, or to keep pressure drop of the passing fluid within prescribed limits.
Reference is now had to FIGS. 9 and 10 which show flat heat-exchange tubing 10b that is formed from a round inner-fin tube blank (not shown) in which the fins extend parallel to the axis of the blank. Thus, in partially flattening the round blank in accordance with the present method, all the fins 14b in the flat tubing extend parallel to the longitudinal axis xb. In this exemplary flat tubing, the fins 14b on the opposite flat wall sections 18b interproject to some extent, though it is entirely obvious that by different partial flattening of the blank the fins on the flat opposite wall sections 18b may interproject to a different extent, or the tips of the fins on either flat wall section 18b may with their tips extend to the level of the tips of the fins on the other flat wall section 18b.
In the case of flat tubing of which the fins extend parallel to the longitudinal axis of the tubing, as in FIGS. 9 and 10, it is also feasible partially to flatten the round 7 inner-fin tube blank tothe extent where the fins on either flat wall section extend with their tips tothe opposite flat wall section, with such heat-exchange tubing being shown in FIG. 11. In this tubing 10c, successive fins 14c divide the interior of the tubing into flow channels 220 which, in contrast of the those in the described tubing 10, 10a and 10b, are closed to each other.
In the described flat heat-exchange tubing .10 to 10c, the two opposite flat wall sections constitute the predominant part of the peripheral wall of the tubing. While this is preferred for exacting heat-exchange and also other requirements of many applications, such as cooling the transmission oil of automotive vehicles, just to mention one such application, the advantages of having the fins within full reach of the interior of flat tubing are secured even where the two flat opposite wall sections do not constitute a predominant part, or even constitute less than one-half, the peripheral wall of the tubing. Thus, FIG. 14 shows flat heat-exchange tubing 10d of which the flat opposite wall sections 18d constitute less than one-half of the peripheral wall 12d of the tubing, with the round inner-fin tube blank (not shown) from which the tubing is fashioned being, in accordance with the present method, partially flattened to an exemplary extent at which the fins 14d on either flat wall section 18d extend with their tips to the level of the tips of the fins on the other flat wall section 18d. Further, the indicated fin height for the also indicated peripheral extent and thickness of the wall of the tubing obviously falls within the aforementioned fin-height range within which the fins in flat tubing are brought within full reach of the interior of the tubing.
Reference is now had to FIGS. 15 and 16 which show a heat-exchange unit 50 using a length or piece 52 of the featured flat inner-fin tubing, for example a piece of the flat tube 10a of FIGS. 6 and 7. The opposite ends 54 and 56 of the tube piece 52 are in communication with the interior of casings 58 and 60, with the tube ends 54 and 56 being fitted in, and conveniently brazed to, slots 62 in the respective casings S8 and 60. The casings 58 and 60 have tapped holes 64 and 66 for connection with conduits through which to lead a fluid, liquid or gas, to and from the unit 50 for temperature modification, such as cooling, for instance.
While in the described heat-exchange unit 50 the end casings 58 and 60 and their slots 62 are rectangular in section (FIG. 16), FIG. 17 shows a heat-exchange unit 70 of which the end casings 72 and 74 are circular in section. To this end, the length or piece 76 of featured inner-fin tubing is, in its formation from a round innerfin tube blank, partially flattened only over its longitudinal extent I so that opposite end lengths 78 and 80 of the tubing remain cylindrical, and these cylindrical end lengths 78 and 80 are connected with the casings 72 and 74.
In many heat-exchange applications, the fluid passing through the featured flat inner-fin tubing is under operating pressure which may be sufficiently high to open the tubing by forcing the opposite flat sections of the peripheral wall more or less apart, such as the flat wall sections l8to 18c of the described tubing to 100, for example, and thereby greatly reducing the heatexchange capacity of the tubing,'if not rendering the tubing unfit for further use in a particular heatexchange application. Opening of the tubing in this fashion and from this cause is in many cases prevented by additionally curving the same longitudinally, or transversely, or both, and thereby reenforcing the tubing against such opening. Thus, a length 90 of the featured flat inner-fin tubing may be twisted about its longitudinal axis x (FIG. 18), whereby the tubing becomes curved, longitudinally as well as transversely, over its lengthwise extent, and is thereby reenforced against opening under internal pressure. The tube length 90 may be twisted by forcing the same through a correspondingly twisting opening in a die 92.
FIG. 19 shows a piece 94 of the featured flat inner-fin tubing which is transversely curved for reenforcement against opening under internal pressure. The initially flat tube piece 94 may to this endbe drawn through a die 96 with an opening of the outline of the curved tub- FIG. shows a piece 98 of the featured flat inner-fin tubing which is longitudinally curved for reenforcement against opening under internal pressure. This is achieved in this instance by bending the flat tubing around a cylindrical arbor 100. The exemplary tube piece 98 is of quite extensive length with correspondingly large heat-exchange capacity, and in order greatly to reduce the lengthwise expanse of the longitudinally curved tubing, the tubing is bent around the arbor 100 in successive andmore or less closely adjacent helical turns 102.
While the flat heat-exchange tubing described so far has only inner-fins, such flat tubing may have both, inner and outer fins. Thus, FIG. 21 shows flat heatexchange tubing 104'which has inner and ouer fins 106 and 108. The tubing 104 is, in accordance with the present method, formed from the round inner-andouter fin tube blank 110 (FIG. 22). The outer fins 108 extend in this instance parallel to the axis of the blank, but they may also extend helically, with the partial flattening of the round tube blank into the flat tubing being in either case entirely feasible on providing companion flattening rolls, for example, with suitable slots for clearing the outer fins.
Reference is now had to FIG. 23 which shows the flat heat-exchange tubing like that may be like the tubing 10 of FIG. 2, except that there is interposed between the tips 16e of the fins Me on the opposite flat wall sections 18e a longitudinal strip 112 of any suitable brazing material. One of these strip materials, which is commercially available, is known to the trade as SlL-FOS and manufactured by Handy and Harman. The brazing strip 112 is inserted in the course of flattening the initially round inner-fin tube blank into the flat tubing l0e,'with the strip 112, which is shown of exaggerated thickness for claritys sake, being engaged by the tips of the fins. The flat tubing l0e is then heated, as in a furnace 1 14, for example, to meltthe brazing strip 112 and brace the fins together at their crossing tips, with the excess brazing material spreading over nearby portions ofthe fins. The tubing l0e, being thus brazed together at the crossing tips of the fins, will not open under operational, including particularly high, internal fluid pressures. Brazing of flat tubing at the crossing tips of the fins is indicated where higher internal operational fluid pressures are involved, and especially for applications of such tubing which require that the same remains flat and is not to be curved for reenforcement against opening under internal fluid pressure. Of course, brazing of flat tubing in this manner applies as fully for tubing in which the inner-fins become interpressed in the course of flattening the initially round inner-fin tube blank into the flat tubing, as in FIG. 6, for example.
What is claimed is:
1. Longitudinal heat-exchange tubing, having a longitudinal axis and a peripheral metal wall of oblong crosssection, with the wall providingtwo opposite spaced flat wall sections parallel to each other and two opposite return wall sections joining said flat wall sections, and spaced metal flns integral with and projecting inwardly from said wall with said fins having tips and being of equal height, the fins on each of said flat wall sections extending inclined to said axis and parallel to each other, the fins on said flat wall sections being inclined to and crossing each other, and the fins on either of said flat wall sections extending with their tips beyond the level of the tips of the fins on the other flat wall section but being spaced from the latter.
2. Longitudinal heat-exchange tubing as in claim 1, in which the tips of the fins on said flat wall sections are at their crossings notched and interlocked.

Claims (2)

1. Longitudinal heat-exchange tubing, having a longitudinal axis and a peripheral metal wall of oblong cross-section, with the wall providing two opposite spaced flat wall sections parallel to each other and two opposite return wall sections joining said flat wall sections, and spaced metal fins integral with and projecting inwardly from said wall with said fins having tips and being of equal height, the fins on each of said flat wall sections extending inclined to said axis and parallel to each other, the fins on said flat wall sections being inclined to and crossing each other, and the fins on Either of said flat wall sections extending with their tips beyond the level of the tips of the fins on the other flat wall section but being spaced from the latter.
2. Longitudinal heat-exchange tubing as in claim 1, in which the tips of the fins on said flat wall sections are at their crossings notched and interlocked.
US00230297A 1970-05-18 1972-02-29 Heat-exchange tubing and method of making it Expired - Lifetime US3750709A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE2209325A DE2209325C3 (en) 1970-05-18 1972-02-28 Heat exchange tube
US00230297A US3750709A (en) 1970-05-18 1972-02-29 Heat-exchange tubing and method of making it
FR7208596A FR2175519B1 (en) 1970-05-18 1972-03-13

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US38132A US3662582A (en) 1970-05-18 1970-05-18 Heat-exchange tubing and method of making it
DE2209325A DE2209325C3 (en) 1970-05-18 1972-02-28 Heat exchange tube
US00230297A US3750709A (en) 1970-05-18 1972-02-29 Heat-exchange tubing and method of making it
FR7208596A FR2175519B1 (en) 1970-05-18 1972-03-13

Publications (1)

Publication Number Publication Date
US3750709A true US3750709A (en) 1973-08-07

Family

ID=27431434

Family Applications (1)

Application Number Title Priority Date Filing Date
US00230297A Expired - Lifetime US3750709A (en) 1970-05-18 1972-02-29 Heat-exchange tubing and method of making it

Country Status (3)

Country Link
US (1) US3750709A (en)
DE (1) DE2209325C3 (en)
FR (1) FR2175519B1 (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3847212A (en) * 1973-07-05 1974-11-12 Universal Oil Prod Co Heat transfer tube having multiple internal ridges
US4175416A (en) * 1977-01-18 1979-11-27 Hitachi, Ltd. Apparatus for manufacturing heat transfer tubes
US4476704A (en) * 1980-12-24 1984-10-16 Wieland-Werke Ag Method for producing finned tubes
US4660630A (en) * 1985-06-12 1987-04-28 Wolverine Tube, Inc. Heat transfer tube having internal ridges, and method of making same
US4733698A (en) * 1985-09-13 1988-03-29 Kabushiki Kaisha Kobe Seiko Sho Heat transfer pipe
US4998580A (en) * 1985-10-02 1991-03-12 Modine Manufacturing Company Condenser with small hydraulic diameter flow path
US5058266A (en) * 1987-09-08 1991-10-22 Norsk Hydro A.S. Method of making internally finned hollow heat exchanger
US5184672A (en) * 1990-12-04 1993-02-09 Sanden Corporation Heat exchanger
EP0654645A2 (en) * 1993-11-24 1995-05-24 Showa Aluminum Corporation Heat exchanger
US5791405A (en) * 1995-07-14 1998-08-11 Mitsubishi Shindoh Co., Ltd. Heat transfer tube having grooved inner surface
WO2000023205A1 (en) * 1998-10-20 2000-04-27 Reynolds Aluminium Holland B.V. Method for the production of multi-channel tubes; multi-channel tubes obtained in this way; and an extrusion die and installation for carrying out the method
US6173763B1 (en) * 1994-10-28 2001-01-16 Kabushiki Kaisha Toshiba Heat exchanger tube and method for manufacturing a heat exchanger
US6206047B1 (en) * 1998-06-24 2001-03-27 Asea Brown Boveri Ag Flow duct for the passage of a two-phase flow
US20040099409A1 (en) * 2002-11-25 2004-05-27 Bennett Donald L. Polyhedral array heat transfer tube
US6799630B1 (en) * 1997-09-16 2004-10-05 Zexel Corporation Tube for heat exchangers and method of manufacturing the same
WO2004074756A3 (en) * 2003-02-18 2004-10-21 Behr Gmbh & Co Kg Flat pipe comprising a return bend section and a heat exchanger constructed therewith
US20060201665A1 (en) * 2005-03-09 2006-09-14 Visteon Global Technologies, Inc. Heat exchanger tube having strengthening deformations
US20060219191A1 (en) * 2005-04-04 2006-10-05 United Technologies Corporation Heat transfer enhancement features for a tubular wall combustion chamber
US20070224565A1 (en) * 2006-03-10 2007-09-27 Briselden Thomas D Heat exchanging insert and method for fabricating same
EP1413844A3 (en) * 2002-10-25 2008-12-03 Peter Jähn Temperature control channels
US20100230081A1 (en) * 2008-01-09 2010-09-16 International Mezzo Technologies, Inc. Corrugated Micro Tube Heat Exchanger
US20110024037A1 (en) * 2009-02-27 2011-02-03 International Mezzo Technologies, Inc. Method for Manufacturing A Micro Tube Heat Exchanger
ITMI20091983A1 (en) * 2009-11-12 2011-05-13 Unical Ag Spa HEAT EXCHANGER WITH INCREASED THERMAL EFFICIENCY.
CN102095285A (en) * 2011-02-10 2011-06-15 Tcl空调器(中山)有限公司 Microchannel heat exchanger and flat tube manufacturing method thereof
EP2392417A1 (en) * 2010-04-12 2011-12-07 Cerro Flow Products LLC Methods of manufacturing a flattened tube for use in heat exchangers and heat exchanger comprising such a flattened tube
EP2679318A1 (en) * 2012-06-27 2014-01-01 Cerro Flow Products LLC Method of manufacturing a flattened tube for use in heat exchangers and welding system for manufacturing a flattened tube
USD746416S1 (en) * 2013-08-23 2015-12-29 Penn Aluminum International LLC End-fitting of a concentric-tube heat exchanger
WO2016012664A1 (en) * 2014-07-25 2016-01-28 Hutchinson Heat exchanger such as an internal exchanger for a motor vehicle air-conditioning system and system including same
US20170096938A1 (en) * 2015-07-21 2017-04-06 Unison Industries, Llc Integral oil tank heat exchanger
US20170211478A1 (en) * 2014-04-11 2017-07-27 Unison Industries, Llc Tubular cooler with integrated fan
US20190061312A1 (en) * 2017-08-29 2019-02-28 Eaton Intelligent Power Limited Fluid conduit and method
US10845126B2 (en) * 2014-04-16 2020-11-24 Enterex America LLC Counterflow helical heat exchanger

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3432073A1 (en) * 1984-08-31 1986-03-06 Dirk Dipl.-Wirtsch.-Ing. 3500 Kassel Pietzcker HEAT EXCHANGER, ESPECIALLY FOR MOTOR VEHICLES, AND DEVICE AND METHOD FOR CONNECTING ITS PIPES AND LAMPS
DE3718873C1 (en) * 1987-06-05 1988-11-10 Erno Raumfahrttechnik Gmbh Evaporative cooler
DE59005627D1 (en) * 1990-02-26 1994-06-09 Heilmeier & Weinlein Hydraulic motor pump unit.
FR2694080B1 (en) * 1992-07-24 1996-06-21 Furukawa Electric Co Ltd FLAT AND POROUS CONDENSER TUBE.
US5931226A (en) * 1993-03-26 1999-08-03 Showa Aluminum Corporation Refrigerant tubes for heat exchangers
JPH0926278A (en) * 1995-07-07 1997-01-28 Showa Alum Corp Heat exchanger refrigerant flow pipe and car air-conditioner condenser
US9581380B1 (en) 2007-07-20 2017-02-28 Carlos Quesada Saborio Flexible refrigeration platform
DE102008030423B4 (en) 2007-12-05 2016-03-03 GIB - Gesellschaft für Innovation im Bauwesen mbH Pipe with a surface profile-modified outer surface by pimples
US9285147B1 (en) 2009-09-14 2016-03-15 Carlos Quesada Saborio Relocatable refrigeration system with pendulum within separator and accumulator chambers
EP2738503A1 (en) 2012-11-30 2014-06-04 Carlos Quesada Saborio Heat exchanger means
EP2738504A1 (en) 2012-11-30 2014-06-04 Carlos Quesada Saborio Tubing element for a heat exchanger means
EP2738505A1 (en) 2012-11-30 2014-06-04 Carlos Quesada Saborio Tubing element for a heat exchanger means
US9733024B2 (en) 2012-11-30 2017-08-15 Carlos Quesada Saborio Tubing element with fins for a heat exchanger
WO2015155611A2 (en) 2014-03-21 2015-10-15 Carlos Quesada Saborio Conic spiral coils

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB332280A (en) * 1929-04-17 1930-07-17 H Foege Dipl Ing Improvements in or relating to heat exchanging apparatus
US2149696A (en) * 1936-03-13 1939-03-07 Metropolitan Eng Co Method of making heat exchangers

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1549489A (en) * 1918-10-26 1925-08-11 Griscom Russell Co Oil cooler
FR1573752A (en) * 1968-07-29 1969-07-04

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB332280A (en) * 1929-04-17 1930-07-17 H Foege Dipl Ing Improvements in or relating to heat exchanging apparatus
US2149696A (en) * 1936-03-13 1939-03-07 Metropolitan Eng Co Method of making heat exchangers

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3847212A (en) * 1973-07-05 1974-11-12 Universal Oil Prod Co Heat transfer tube having multiple internal ridges
US4175416A (en) * 1977-01-18 1979-11-27 Hitachi, Ltd. Apparatus for manufacturing heat transfer tubes
US4476704A (en) * 1980-12-24 1984-10-16 Wieland-Werke Ag Method for producing finned tubes
US4660630A (en) * 1985-06-12 1987-04-28 Wolverine Tube, Inc. Heat transfer tube having internal ridges, and method of making same
US4733698A (en) * 1985-09-13 1988-03-29 Kabushiki Kaisha Kobe Seiko Sho Heat transfer pipe
US4998580A (en) * 1985-10-02 1991-03-12 Modine Manufacturing Company Condenser with small hydraulic diameter flow path
US5058266A (en) * 1987-09-08 1991-10-22 Norsk Hydro A.S. Method of making internally finned hollow heat exchanger
US5184672A (en) * 1990-12-04 1993-02-09 Sanden Corporation Heat exchanger
EP0654645A2 (en) * 1993-11-24 1995-05-24 Showa Aluminum Corporation Heat exchanger
EP0654645A3 (en) * 1993-11-24 1995-11-02 Showa Aluminum Corp Heat exchanger.
US5531268A (en) * 1993-11-24 1996-07-02 Showa Aluminum Corporation Heat exchanger
AU678620B2 (en) * 1993-11-24 1997-06-05 Showa Denko Kabushiki Kaisha Heat exchanger
US6173763B1 (en) * 1994-10-28 2001-01-16 Kabushiki Kaisha Toshiba Heat exchanger tube and method for manufacturing a heat exchanger
US5791405A (en) * 1995-07-14 1998-08-11 Mitsubishi Shindoh Co., Ltd. Heat transfer tube having grooved inner surface
US5934128A (en) * 1995-07-14 1999-08-10 Mitsubishi Shindoh Co., Ltd. Heat transfer tube having grooved inner surface
US6799630B1 (en) * 1997-09-16 2004-10-05 Zexel Corporation Tube for heat exchangers and method of manufacturing the same
US6206047B1 (en) * 1998-06-24 2001-03-27 Asea Brown Boveri Ag Flow duct for the passage of a two-phase flow
WO2000023205A1 (en) * 1998-10-20 2000-04-27 Reynolds Aluminium Holland B.V. Method for the production of multi-channel tubes; multi-channel tubes obtained in this way; and an extrusion die and installation for carrying out the method
EP1413844A3 (en) * 2002-10-25 2008-12-03 Peter Jähn Temperature control channels
US20070137848A1 (en) * 2002-11-25 2007-06-21 Bennett Donald L Polyhedral array heat transfer tube
US10267573B2 (en) 2002-11-25 2019-04-23 Luvata Alltop (Zhongshan) Ltd. Polyhedral array heat transfer tube
US20090008075A1 (en) * 2002-11-25 2009-01-08 Outokumpu Oyj Polyhedral array heat transfer tube
US20040099409A1 (en) * 2002-11-25 2004-05-27 Bennett Donald L. Polyhedral array heat transfer tube
US20060243432A1 (en) * 2003-02-18 2006-11-02 Behr Gmbh & Co. Kg Flat pipe comprising a return bend section and a heat exchanger constructed therewith
WO2004074756A3 (en) * 2003-02-18 2004-10-21 Behr Gmbh & Co Kg Flat pipe comprising a return bend section and a heat exchanger constructed therewith
CN100362303C (en) * 2003-02-18 2008-01-16 贝洱两合公司 Flat pipe comprising a return bend section and a heat exchanger constructed therewith
US20060201665A1 (en) * 2005-03-09 2006-09-14 Visteon Global Technologies, Inc. Heat exchanger tube having strengthening deformations
US7182128B2 (en) 2005-03-09 2007-02-27 Visteon Global Technologies, Inc. Heat exchanger tube having strengthening deformations
US7464537B2 (en) * 2005-04-04 2008-12-16 United Technologies Corporation Heat transfer enhancement features for a tubular wall combustion chamber
US20060219191A1 (en) * 2005-04-04 2006-10-05 United Technologies Corporation Heat transfer enhancement features for a tubular wall combustion chamber
US20070224565A1 (en) * 2006-03-10 2007-09-27 Briselden Thomas D Heat exchanging insert and method for fabricating same
US8162040B2 (en) 2006-03-10 2012-04-24 Spinworks, LLC Heat exchanging insert and method for fabricating same
US20100230081A1 (en) * 2008-01-09 2010-09-16 International Mezzo Technologies, Inc. Corrugated Micro Tube Heat Exchanger
US20110024037A1 (en) * 2009-02-27 2011-02-03 International Mezzo Technologies, Inc. Method for Manufacturing A Micro Tube Heat Exchanger
US8177932B2 (en) 2009-02-27 2012-05-15 International Mezzo Technologies, Inc. Method for manufacturing a micro tube heat exchanger
ITMI20091983A1 (en) * 2009-11-12 2011-05-13 Unical Ag Spa HEAT EXCHANGER WITH INCREASED THERMAL EFFICIENCY.
WO2011057895A1 (en) * 2009-11-12 2011-05-19 Unical Ag S.P.A. Heat exchanger with improved thermal efficiency
EP2392417A1 (en) * 2010-04-12 2011-12-07 Cerro Flow Products LLC Methods of manufacturing a flattened tube for use in heat exchangers and heat exchanger comprising such a flattened tube
CN102095285A (en) * 2011-02-10 2011-06-15 Tcl空调器(中山)有限公司 Microchannel heat exchanger and flat tube manufacturing method thereof
CN102095285B (en) * 2011-02-10 2012-07-18 Tcl空调器(中山)有限公司 Flat tube manufacturing method of microchannel heat exchanger
EP2679318A1 (en) * 2012-06-27 2014-01-01 Cerro Flow Products LLC Method of manufacturing a flattened tube for use in heat exchangers and welding system for manufacturing a flattened tube
USD746416S1 (en) * 2013-08-23 2015-12-29 Penn Aluminum International LLC End-fitting of a concentric-tube heat exchanger
US20170211478A1 (en) * 2014-04-11 2017-07-27 Unison Industries, Llc Tubular cooler with integrated fan
US10845126B2 (en) * 2014-04-16 2020-11-24 Enterex America LLC Counterflow helical heat exchanger
WO2016012664A1 (en) * 2014-07-25 2016-01-28 Hutchinson Heat exchanger such as an internal exchanger for a motor vehicle air-conditioning system and system including same
US20170096938A1 (en) * 2015-07-21 2017-04-06 Unison Industries, Llc Integral oil tank heat exchanger
US10578020B2 (en) * 2015-07-21 2020-03-03 Unison Industries, Llc Integral oil tank heat exchanger
US20190061312A1 (en) * 2017-08-29 2019-02-28 Eaton Intelligent Power Limited Fluid conduit and method
US10941884B2 (en) * 2017-08-29 2021-03-09 Eaton Intelligent Power Limited Fluid conduit and method

Also Published As

Publication number Publication date
DE2209325C3 (en) 1978-08-03
FR2175519B1 (en) 1977-01-14
FR2175519A1 (en) 1973-10-26
DE2209325A1 (en) 1973-09-13
DE2209325B2 (en) 1977-12-08

Similar Documents

Publication Publication Date Title
US3750709A (en) Heat-exchange tubing and method of making it
US3662582A (en) Heat-exchange tubing and method of making it
US5551504A (en) Heat exchange element
US3768290A (en) Method of modifying a finned tube for boiling enhancement
US3887004A (en) Heat exchange apparatus
US5311661A (en) Method of pointing and corrugating heat exchange tubing
US2471317A (en) Heat exchanger
US2347957A (en) Heat exchange unit
US5781996A (en) Method of manufacturing heat transfer tube
US5682946A (en) Tube for use in a heat exchanger
US2463997A (en) Method of making integral external and internal finned tubing
US2553142A (en) Method for making heat exchangers
US3998600A (en) Heat exchanger strip and method and apparatus for forming same
US11118847B2 (en) Finned heat exchanger tube
IL201783A (en) Heat transfer tubes and methods of fabrication
US5832995A (en) Heat transfer tube
US6722420B2 (en) Internally finned heat transfer tube with staggered fins of varying height
KR960001709A (en) Metal fin tube
US20030041640A1 (en) Method of making a lanced and offset fin
US1909005A (en) Method of making corrugated wall tubing
US4298062A (en) Heat exchangers and method of making same
US2963779A (en) Method of making heat exchange structures
US6427767B1 (en) Nucleate boiling surface
US3279535A (en) Serpentine-shaped heat exchanger and process for its manufacture
US2281206A (en) Heat exchange device

Legal Events

Date Code Title Description
AS Assignment

Owner name: WOLVERINE TUBE (CANADA) INC., 1010 CLARKE ROAD, P.

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:NORANDA METAL INDUSTRIES, INC.,;REEL/FRAME:004997/0403

Effective date: 19881101