US3749085A - Vascular tissue removing device - Google Patents

Vascular tissue removing device Download PDF

Info

Publication number
US3749085A
US3749085A US00144029A US3749085DA US3749085A US 3749085 A US3749085 A US 3749085A US 00144029 A US00144029 A US 00144029A US 3749085D A US3749085D A US 3749085DA US 3749085 A US3749085 A US 3749085A
Authority
US
United States
Prior art keywords
coil
wires
cutters
tissue
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00144029A
Inventor
J Willson
M Eskridge
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3749085A publication Critical patent/US3749085A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/02Instruments for taking cell samples or for biopsy
    • A61B10/04Endoscopic instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00681Aspects not otherwise provided for
    • A61B2017/00685Archimedes screw

Definitions

  • VASCULAR TISSUE REMOVING DEVICE Inventors: James K. V. Willson; Marshall Eskridge, both of PD. Box 7544, Mobile, Ala. 36607 Filed: May 17, 1971 Appl. No.: 144,029
  • ABSTRACT A device for removing specimens of vascular tissue by scraping various portions of the area to be sampled is formed by a multi-strand coil of wires, the ends of the wires being cut to define radially projecting, axially offset cutters, the device being guided by remote control 12 Claims, 9 Drawing Figures PATENIEU I915 3.749.085
  • The-present invention relates to means for performing biopsies and more particularly to a vascular tissue removing device having a scraping tool provided with a plurality of sharp cutters.
  • Such biopsy devices are used to remove vascular tissues, for example from the lung branches, with the purpose of examination to make a medical diagnosis.
  • devices which utilize a so-called auger" action similar to that employed by the common wood auger which resembles a flat strip twisted about its longitudinal axis and terminating in a radially disposed knife.
  • auger action similar to that employed by the common wood auger which resembles a flat strip twisted about its longitudinal axis and terminating in a radially disposed knife.
  • all these devices are directed to the extraction of a tissue core from a defined location, whereas in some instances it is more interesting to obtain a tissue sample from the surface of a relatively wide area. This can but be achieved by scraping the de sired surface.
  • Such devices for removing specimens of tissue by scraping or rubbing are also known, for example in form of brushes, but the action of such tools is uncertain both as to effectiveness and to the amount of the specimen removed. Furthermore, the known devices are suitable for a longitudinal scraping action, but not for a rotating scraping action, since their considerable length and flexibility makes them inappropriate for transmitting a rotational torque.
  • an object of the present invention to provide a vascular tissue removing device having a tissue scraping tool to be rotated and which can effectively scrape extended areas of the end or side walls of the branch of the cavitY to be examined and remove determined amounts therefrom.
  • the present invention comprises a vascular tissue removing device having a tissue scraping tool to be rotated around an axis and including a plurality of cutters substantially radially projecting with respect to this axis of rotation.
  • the cutters may be partially axially offset with respect to the axis of rotation of the tool, so that tissue portions of different parts of a relatively wide area may be simultaneously scraped.
  • the tool may be guided to the location where it is to be used. It may be done by first inserting a hollow needle into the tissue to the location to be examined and the tool then inserted to that spot through the hollow. On the other hand, if the tissue to be examined lies within a branched cavity, such as the lungs, the tool may be attached to the end of a flexible deflecting probe and guided to the location by the probe.
  • the tissue scraping tool forms the extremity of a flexible helical coilof wire which, in turn, may be guided to the area in question by means of a deflecting probe.
  • the invention also consists of an improved form of deflecting probe means having a multistrand helical coil to provide greater rotational torque for the tool than is possible by means of known deflecting probes and which, in addition, provides more accurate control of the directing of the probe means.
  • FIG. 1 is a view in elevation, on a greatly enlarged scale, of one form of tissue scraping tool made in accordance with this invention
  • FIG. 2 is an end elevation of the device of FIG. 1, showing the position of the cutting means
  • FIG. 3 is an end elevation of a modified form of a scraping tool made in accordance with this invention.
  • FIG. 4 is a view in elevation of the tissue scraping device of FIG. 1, on a reduced scale, forming the extremity of an improved type of deflecting probe in accordance with the invention
  • FIG. 5 is an enlarged fragmentary section of the bending portion of the improved deflecting probe
  • FIG. 6 is a view in elevation of the tissue scraping device of FIG. 1 using a conventional probe solely as a guiding means;
  • FIG. 7 is a side elevation of a plastic catheter employed in inserting the probe into a branched cavity
  • FIG. 8 is a side view of an assembly of two catheters, the scraping device of the invention and a conventional deflecting probe, which can be employed in exploring a branched cavity;
  • FIG. 9 is a diagrammatic representation of the method employed in using the device of FIG. 8.
  • FIGS. 1 and 2 show a preferred embodiment of a tissue scraping tool according to the invention, indicated generally by numeral 11.
  • This device comprises a single layer multistrand helically wound coil of wires, having preferably four wires 12, 13,14 and 15, and defining a leading end 16, an intermediate portion 17 behind said leading end and a trailing portion 18 behind said intermediate portion, said trailing portion 18 being only partially illustrated in FIG. 1.
  • the four wires forming the scraping tool may be fabricated of fine stainless steel spring wire which is strong and substantially inert with respect to bodyand tissue fluids.
  • each of the four spirally coiled wires, of round stainless steel may have an approximate diameter of 0.020 inch, while the outside diameter of the coil may be approximatey 0.090 inch.
  • wire 15 reaches the intermediate portion 17 it is terminated in a sharpened and pointed tissue cutter which is slightly bent to define a cutter l9 projecting partially radially outwardly from said intermediate portion.
  • the coil In the direction towards the leading end 16 and in front of cutter 19 the coil only comprises wires l2, l3 and 14.
  • wire 14 is cut, in a similar way as wire 15, into a sharpened and pointed tissue cutter and is slightly bent to define a cutter 20 projecting partially radially outwardly from said intermediate portion.
  • the remaining wires 12 and 13 are cut in the plane normal to the axis of the device into respective sharpened and pointed tissue cutters 21 and 22.
  • both the first tissue cutters 21 and 22 arranged at the leading end 16, and the second tissue cutters l9 and 20 arranged at the intermediate portion 17 of the coil will simultaneously scrape different parts of the area to be sampled.
  • the gaps 23 and 24, originated by the removal of the respective wires and 14 which have been cut off, and located between subsequent turns of the unremoved wires 14 and 12, and 13 and 12, respectively, will receive the scraped material and lead it to the interior of the coil, so that the risk of loosing the specimen while extracting the scraping device from the living body is completely eliminated.
  • the obtained specimen will comprise surface portions of an area whose size is at least equivalent to the distance between cutters 19 and 21.
  • the cutters 21 and 22 located at the leading end of the tool permit not only a circumferential scraping of the lateral surfaces of a tissue portion but also the extraction of a tissue core, for example from the end surface of a lung branch positioned in a sub stantially normal plane to the axis of the scraping device.
  • the described arrangement of the cutters is particularly suitable due to the symmetrical and regular location of the cutters, shown in FIG. 2, it is apparent that any other distribution of the cutters at the leading end and along the intermediate portion can be chosen without departing from the scope of the invention.
  • any desired number of wires can be utilized to define the cutters, the only requirement being that they project partially radially outwardly from the axis of the scraping device and that they are partially axially offset with respect to said axis.
  • the scraping tool instead of forming the cutters at the ends of the wires of a coil, the scraping tool could be a cylindrical body made of steel sheet and provided with pointed portions projecting outwardly of said body.
  • the four wires of the multi-strand coiled wire have each the same length, and their terminal ends are cut off in a plane normal to the axis of the coil and may be bent outwardly to form a sort of rosette composed of four equi-angularly spaced sharpened cutters, 19', 20', 21' and 22', which may be used to scrape a tissue surface and to pierce and grip a small specimen of tissue for removal by withdrawal of the device in an axial direction.
  • the leading ends of the cutters are serrated.
  • the scraping device embracing the invention concept just described is capable of several modifications.
  • the tool as described may be employed to reach internal organs by the use of a hollow needle provided with an angled tip and having an internal diameter large enough to aecomodate the present tissue scraping device therein for movement to the site of biopsy conducted by an elongated shank extending outwardly of the other end of the needle and for removal of the core specimens through the needle.
  • a typical Muller deflecting tip comprises a tightly wound wire probe having a central con- 4. trol wire passing therethrough. Over an area of flexure near the forward end of the tip, the coiled wires are reduced in diameter over adjacent half turns so that tension produced at the end of the tip by the control wire, causes deflection.
  • the elongated trailing portion 18 which is adapted to guide the scraping tool to the site for use and to manipulate it comprises a single layer multi-strand helical coil, shown in FIGS. 1 and 4, which provides a greater rotational torque for a tool attached to the extremity thereof than is possible by means of the single wire of the known deflecting probes.
  • this trailing portion 18 located behind the intermediate portion 17 comprises the same four wires 12, 13, 14 and 15 which form the previously described tools, these wires having the same diameter and pitch of the helix and being wound into a four-strand helical coil, the turns of which lie closely adjacent each other, except for a portion of its length next to the end defining the guide section or flexure area 25, shown in FIG.
  • the bending effect is accomplished in a known way, already described in connection with the Muller" wire, and is not part of the invention.
  • the central core wire 26 is also conventional, lies inside the coil 18, and is soldered in 27 to the front end of the trailing portion 18.
  • the capacity of transmitting a greater rotational torque results from the facts that the number of turns of each single helical wire decreases proportionally to the increase of the number of wires forming the multistrand coil, and that the elasticity of the coil depends, among other factors, from the number of turns of the wires.
  • this improved deflecting probe means is particularly useful in the embodiment of FIG. 4, since it offers an increased capability of transmitting rotational torque along the portion 18, which results in a better control of rotational torque from the control means to the tip portion.
  • this improved deflecting probe means comprising a multi-strand helical coil, according to the invention, can be used in connection with brushes, augers or any other kind of tools which require a rotational movement of the deflecting probe means.
  • the extremity of the deflecting probe is inserted, together with the tissue cutters, into the vascular system from the exterior ofa living body, for guidance and operation of the tissue cutters from the exterior of said body by manual manipulation of the elongated trailing portion.
  • the other end of the deflecting probe to be disposed exteriorly of a living body is provided with manual control means 28 having one element 29 fixedly connected with the single layer wire coil 18 for exerting positive rotation to a scraping tool 11 at the leading end of the coil, and a second element 30 is fixedly connected with said straight flexible wire 26 for exerting axial compression on the flexurc area.
  • a conventional deflecting tip such as a Muller wire, or the deflecting probe of the present invention, is employed solely as a guide means.
  • the scraping device is constructed generally as previously described with the exception that the trailing portion consists of a uniform multistrand wire coil, without having a flexure area nor a central core wire, which passes over into the scraping tool 11 having an intermediate portion 17 provided with the cutters 19 and 20 and a leading end 16 pro vided with the cutters 21 and 22.
  • the inner diameter of the tool according to this modification is such that the deflecting probe means may be pushed completely through the tool to serve as a guide to reach the desired location, and the length of the coiled wire forming the trailing portion of the tool is such that it will extend along the entire length of the deflecting probe means to permit rotation of the tool, either when the deflecting tip has been partially, or completely, removed from the interior of the trailing portion.
  • the deflecting probe 31 may be used solely to guide the cutter II to the remote portion of the cavity, after which the probe can be removed and the cutter manipulated by manually rotating the other extremity of the trailing portion 18, as shown in FIG. 6.
  • the inside diameter of the helix forming the trailing portion 18 and cutter 11 should be such that the entire length of the device may be easily slid over the exterior of a deflecting probe 31, and the length of the coil should be sufficient to permit the remote end of the coiled wire to extend outwardly of the cavity into which the tool is inserted and to be secured to an annular portion 32.
  • the cutter and trailing portion may be rotationally and axially manipulated, independently of the deflecting probe means indicated generally by numeral 31.
  • the length of the coil does not usually exceed 2 to 3 feet.
  • FIGS. 7 to 9 show a particularly useful application of the scraping device of FIG. 6 and a method for removing tissue from the interior of a living body usingthis particular combination.
  • tubular devices to be inserted into living bodies may be manufactured of a semi-rigid material such as plastic, and that during the manufacture of these plastic cathe ters any desired form may be given to them, so that this form remains inherent to the catheter even ifdue to its semi-rigid nature the catheter is forced to momentarily adopt a different form.
  • FIG. 7 shows a J- shaped catheter 33, that is, a catheter which has the tendency to bend into a .l-form defining a substantially right angle at its leading portion. However, due to its semi-rigid nature this catheter can be forced into a straight line indicated by dotted lines.
  • FIG. 8 shows the combination of an .l-shaped catheter 33 with a straight catheter 34, the outer diameter of catheter 33 being slightly smaller than the inner diameter of catheter 34, so that both catheters are in axially and rotatably slidable' relationship to each other.
  • a scraping device within catheter 33 a scraping device according to the invention, and particularly as shown in FIG. 6, is located in axially and rotatably slidable relationship thereto. That is, the inner diameter of catheter 33 is slightly larger than the outer diameter of the trailing portion 18 and the scraping tool I]. As already mentioned, a conventional deflecting probe 3] is slidably located within the scraping device.
  • a method of using the above described combination to remove tissue specimens from the interior of a living body consists in first inserting a normally J-shaped semi-rigid catheter 33 into the interior of a larger straight catheter 34, so that catheter 33 momentarily adopts the straight form of catheter 34. Both catheters are inserted into the oral cavity 35 of a body until the leading end of catheter 34 reaches a primary branch in said cavity, indicated for example with 36 in FIG. 9. Catheter 33 is now axially oriented and advanced with respect to catheter 34, so that its leading end protrudes from catheter 34, bends to recover its inherent form and enters said branch 36.
  • a longitudinally and angularly basically inflexible but radially flexible biopsy device such as the tissue scraping device according to the invention is inserted into said catheter 33 and advanced into the primary branch 36 beyond the end of catheter 33.
  • the bent end portion of catheter 33 thus provides an accurate and constant guide for the advancing leading portion of tool 11 into a secondary branch 37, to the desired area 38 to be sampled, by the guiding action of the deflecting probe 31.
  • the probe 31 is partially or totally withdrawn, so that the tool can be rotated from the outside of the body, as described above, to capture a tissue specimen. Due to the ability of the device according to the invention to transmit rotational torque, and to the design of the tool, a desired amount of tissue can be easily removed from the area 38 and be effectively withdrawn when the tool is retrieved from the cavity through the catheters.
  • a vascular tissue removing device comprising a tissue scraping tool to be rotated around an axis and having a plurality of cutters substantially radially projecting with respect to said axis of rotation, means for transmitting a rotational torque and a longitudinal movement to said tool and connected to said plurality of cutters, said means comprising a single layer multistrand closely spaced helically wound coil of wires, and means for guiding the direction of said longitudinal movement.
  • a device as defined in claim 2, wherein said means for guiding said longitudinal movement of the tool includes a tubular element surrounding said tool, and said means for transmitting a rotational torque and a longitudinal movement to said tool includes an elongated shank extending outwardly of the other end of the tubular element.
  • said plurality of cutters comprises the terminal ends of the wires of the helically wound coil, said coil being cut off in a plane normal to the axis of the helix and said terminal ends projecting partially radially outwardly from the periphery of said coil to define a rosette-shaped tool.
  • said single layer multi-strand helically wound coil of wires has a leading end, an intermediate portion behind the leading end and an elongated trailing portion behind the intermediate portion, at least one of said wires terminating at the leading end of the coil in a first sharpened tissue cutter, and at least one of the other wires of the coil terminating in a second sharpened tissue cutter projecting partially radially outwardly from said intermediate portion behind said first cutter.
  • each ofthe wires forming said single layer coil terminates in a sharpened tissue cutter.
  • said single layer multi-strand helically wound coil comprises at least four helical wires with substantially the same diameter and the same pitch of the helix, at least two of said wires terminating in sharpened tissue cutters axially spaced from each other and from the leading end of the coil.
  • said elongated trailing portion is radially flexible for insertion of the tissue cutters into the vascular system from the exterior of a living body and for operation of said tissue cutters from the exterior of said body by manual manipulation of said elongated trailing portion.

Abstract

A device for removing specimens of vascular tissue by scraping various portions of the area to be sampled is formed by a multistrand coil of wires, the ends of the wires being cut to define radially projecting, axially offset cutters, the device being guided by remote control means.

Description

United States Patent [1 1 Willson et a1.
VASCULAR TISSUE REMOVING DEVICE Inventors: James K. V. Willson; Marshall Eskridge, both of PD. Box 7544, Mobile, Ala. 36607 Filed: May 17, 1971 Appl. No.: 144,029
Related US Application Data Continuation-impart of Ser. No. 50,182, June 26, 1970, Pat. No. 3,683,891.
US. Cl. 128/2 B, 128/305 Int. Cl A6lb 10/00 Field of Search 128/2 B, 2 M, 2 R, 128/D1G. 9, 304, 305, 310, 328; 15/104.3 G,
References Cited UNITED STATES PATENTS 566,110 8/1896 Wrigley 15/104.3 SN
[451 July 31, 1973 2,631,114 I 3/1953 O'Brien 15/1043 SN 2,694,822 11/1954 Murphy 15/1043 G 2,739,585 3/1956 Ayre 128/2 B 2,955,592 10/1960 MacLean 128/2 B 3,342,175 9/1967 Bulloch 128/2'B 3,452,740 7/1969 Muller 128/2 M 3,628,522 12/1971 Kato 128/2 B Primary Examiner-Kyle L. Howell Attorney-Christen & Sabol [57] ABSTRACT A device for removing specimens of vascular tissue by scraping various portions of the area to be sampled is formed by a multi-strand coil of wires, the ends of the wires being cut to define radially projecting, axially offset cutters, the device being guided by remote control 12 Claims, 9 Drawing Figures PATENIEU I915 3.749.085
'sum 1 OF 2 nv vE/vfoks JAMES K. v WILLSON MARSHALL [SKIP/06E ATTORNEYS PATENIEUJUW 19H 3.749.085
, sum 2 or a INVENTORS JAMES K. L WILLSON MARSHALL E SKR/OGE BYMMM ATTORNEYS VASCULAR TISSUE REMOVING DEVICE This application is a continuation in part of our earlier copending application, Ser. No. 50,182, filed June 26, 1970, entitled TISSUE AUGER, now US. Pat. No. 3683891.
The-present invention relates to means for performing biopsies and more particularly to a vascular tissue removing device having a scraping tool provided with a plurality of sharp cutters.
Such biopsy devices are used to remove vascular tissues, for example from the lung branches, with the purpose of examination to make a medical diagnosis. At present, devices are known which utilize a so-called auger" action similar to that employed by the common wood auger which resembles a flat strip twisted about its longitudinal axis and terminating in a radially disposed knife. However, all these devices are directed to the extraction of a tissue core from a defined location, whereas in some instances it is more interesting to obtain a tissue sample from the surface of a relatively wide area. This can but be achieved by scraping the de sired surface.
Such devices for removing specimens of tissue by scraping or rubbing are also known, for example in form of brushes, but the action of such tools is uncertain both as to effectiveness and to the amount of the specimen removed. Furthermore, the known devices are suitable for a longitudinal scraping action, but not for a rotating scraping action, since their considerable length and flexibility makes them inappropriate for transmitting a rotational torque.
It is, therefore, an object of the present invention to provide a vascular tissue removing device having a tissue scraping tool to be rotated and which can effectively scrape extended areas of the end or side walls of the branch of the cavitY to be examined and remove determined amounts therefrom.
It is another object of the invention to provide a device which can be guided and operated from the outside of a living body to be examined.
It is a further object of the invention to provide a de vice which can efficiently transmit a rotational torque from the outside of a living body to the operating tool in the inside of said living body.
To realize these objects the present invention comprises a vascular tissue removing device having a tissue scraping tool to be rotated around an axis and including a plurality of cutters substantially radially projecting with respect to this axis of rotation. In addition, the cutters may be partially axially offset with respect to the axis of rotation of the tool, so that tissue portions of different parts of a relatively wide area may be simultaneously scraped. There are several ways in which the tool may be guided to the location where it is to be used. It may be done by first inserting a hollow needle into the tissue to the location to be examined and the tool then inserted to that spot through the hollow. On the other hand, if the tissue to be examined lies within a branched cavity, such as the lungs, the tool may be attached to the end of a flexible deflecting probe and guided to the location by the probe.
Further, in one form of the invention, the tissue scraping tool forms the extremity of a flexible helical coilof wire which, in turn, may be guided to the area in question by means of a deflecting probe.
In addition, the invention also consists of an improved form of deflecting probe means having a multistrand helical coil to provide greater rotational torque for the tool than is possible by means of known deflecting probes and which, in addition, provides more accurate control of the directing of the probe means.
Other objects and advantages will be apparent after the reading the following description in connection with the drawings, in which:
FIG. 1 is a view in elevation, on a greatly enlarged scale, of one form of tissue scraping tool made in accordance with this invention;
FIG. 2 is an end elevation of the device of FIG. 1, showing the position of the cutting means;
FIG. 3 is an end elevation of a modified form of a scraping tool made in accordance with this invention;
FIG. 4 is a view in elevation of the tissue scraping device of FIG. 1, on a reduced scale, forming the extremity of an improved type of deflecting probe in accordance with the invention;
FIG. 5 is an enlarged fragmentary section of the bending portion of the improved deflecting probe;
FIG. 6 is a view in elevation of the tissue scraping device of FIG. 1 using a conventional probe solely as a guiding means;
FIG. 7 is a side elevation of a plastic catheter employed in inserting the probe into a branched cavity;
FIG. 8 is a side view of an assembly of two catheters, the scraping device of the invention and a conventional deflecting probe, which can be employed in exploring a branched cavity; and
FIG. 9 is a diagrammatic representation of the method employed in using the device of FIG. 8.
Referring now to the Figures, FIGS. 1 and 2 show a preferred embodiment of a tissue scraping tool according to the invention, indicated generally by numeral 11. This device comprises a single layer multistrand helically wound coil of wires, having preferably four wires 12, 13,14 and 15, and defining a leading end 16, an intermediate portion 17 behind said leading end and a trailing portion 18 behind said intermediate portion, said trailing portion 18 being only partially illustrated in FIG. 1. The four wires forming the scraping tool may be fabricated of fine stainless steel spring wire which is strong and substantially inert with respect to bodyand tissue fluids.
As an example, although not to be considered as a limitating one, each of the four spirally coiled wires, of round stainless steel may have an approximate diameter of 0.020 inch, while the outside diameter of the coil may be approximatey 0.090 inch. Where wire 15 reaches the intermediate portion 17 it is terminated in a sharpened and pointed tissue cutter which is slightly bent to define a cutter l9 projecting partially radially outwardly from said intermediate portion. In the direction towards the leading end 16 and in front of cutter 19 the coil only comprises wires l2, l3 and 14. Further on toward the leading end, preferably after two and a half turns, wire 14 is cut, in a similar way as wire 15, into a sharpened and pointed tissue cutter and is slightly bent to define a cutter 20 projecting partially radially outwardly from said intermediate portion. After another two and a half turns the remaining wires 12 and 13 are cut in the plane normal to the axis of the device into respective sharpened and pointed tissue cutters 21 and 22.
Thus, as the tool is rotated, both the first tissue cutters 21 and 22 arranged at the leading end 16, and the second tissue cutters l9 and 20 arranged at the intermediate portion 17 of the coil will simultaneously scrape different parts of the area to be sampled. The gaps 23 and 24, originated by the removal of the respective wires and 14 which have been cut off, and located between subsequent turns of the unremoved wires 14 and 12, and 13 and 12, respectively, will receive the scraped material and lead it to the interior of the coil, so that the risk of loosing the specimen while extracting the scraping device from the living body is completely eliminated. Moreover, the obtained specimen will comprise surface portions of an area whose size is at least equivalent to the distance between cutters 19 and 21. I
In addition, the cutters 21 and 22 located at the leading end of the tool permit not only a circumferential scraping of the lateral surfaces of a tissue portion but also the extraction of a tissue core, for example from the end surface of a lung branch positioned in a sub stantially normal plane to the axis of the scraping device.
While the described arrangement of the cutters is particularly suitable due to the symmetrical and regular location of the cutters, shown in FIG. 2, it is apparent that any other distribution of the cutters at the leading end and along the intermediate portion can be chosen without departing from the scope of the invention. Also, instead of four wires any desired number of wires can be utilized to define the cutters, the only requirement being that they project partially radially outwardly from the axis of the scraping device and that they are partially axially offset with respect to said axis. Thus, instead of forming the cutters at the ends of the wires of a coil, the scraping tool could be a cylindrical body made of steel sheet and provided with pointed portions projecting outwardly of said body.
According to another embodiment of the invention, shown in FIG. 3, the four wires of the multi-strand coiled wire have each the same length, and their terminal ends are cut off in a plane normal to the axis of the coil and may be bent outwardly to form a sort of rosette composed of four equi-angularly spaced sharpened cutters, 19', 20', 21' and 22', which may be used to scrape a tissue surface and to pierce and grip a small specimen of tissue for removal by withdrawal of the device in an axial direction. Preferably, in this embodiment the leading ends of the cutters are serrated.
Since the instruments just described represent a basic tool, the scraping device embracing the invention concept just described is capable of several modifications. For example, the tool as described may be employed to reach internal organs by the use ofa hollow needle provided with an angled tip and having an internal diameter large enough to aecomodate the present tissue scraping device therein for movement to the site of biopsy conducted by an elongated shank extending outwardly of the other end of the needle and for removal of the core specimens through the needle.
Another system for guiding the tool to the site for use and for manipulating it is to attach the tool to the extremity of a deflecting type probe such as is known as a Muller" wire. This type of device is particularly useful in exploring the various branches of the oral and nasal cavities. A typical Muller deflecting tip comprises a tightly wound wire probe having a central con- 4. trol wire passing therethrough. Over an area of flexure near the forward end of the tip, the coiled wires are reduced in diameter over adjacent half turns so that tension produced at the end of the tip by the control wire, causes deflection.
Deflecting type probes of the type discussed above are disclosed in U. S. Pat. No. 3,452,740 and No. 3,452,742, granted to W. F. Muller on July I, I969, while another form of device of this type is shown in U. S. Pat. No. 3,521,620 granted to W. A. Cook on July 28, 1970, and no claim is made to this form of deflecting probe per se.
According to the invention, the elongated trailing portion 18 which is adapted to guide the scraping tool to the site for use and to manipulate it comprises a single layer multi-strand helical coil, shown in FIGS. 1 and 4, which provides a greater rotational torque for a tool attached to the extremity thereof than is possible by means of the single wire of the known deflecting probes. According to a preferred embodiment, this trailing portion 18 located behind the intermediate portion 17 comprises the same four wires 12, 13, 14 and 15 which form the previously described tools, these wires having the same diameter and pitch of the helix and being wound into a four-strand helical coil, the turns of which lie closely adjacent each other, except for a portion of its length next to the end defining the guide section or flexure area 25, shown in FIG. 5, of the probe. The bending effect is accomplished in a known way, already described in connection with the Muller" wire, and is not part of the invention. The central core wire 26 is also conventional, lies inside the coil 18, and is soldered in 27 to the front end of the trailing portion 18. Thus, when the direction of the front portion of the probe is changed, it urges the attached device to point in the desired direction. The tool means, which extend beyond the end of said probe, can then be rotated to collect the desired specimen of tissue.
The capacity of transmitting a greater rotational torque results from the facts that the number of turns of each single helical wire decreases proportionally to the increase of the number of wires forming the multistrand coil, and that the elasticity of the coil depends, among other factors, from the number of turns of the wires.
Thus, this improved deflecting probe means is particularly useful in the embodiment of FIG. 4, since it offers an increased capability of transmitting rotational torque along the portion 18, which results in a better control of rotational torque from the control means to the tip portion.
It should also be obvious that this improved deflecting probe means comprising a multi-strand helical coil, according to the invention, can be used in connection with brushes, augers or any other kind of tools which require a rotational movement of the deflecting probe means.
The extremity of the deflecting probe is inserted, together with the tissue cutters, into the vascular system from the exterior ofa living body, for guidance and operation of the tissue cutters from the exterior of said body by manual manipulation of the elongated trailing portion. The other end of the deflecting probe to be disposed exteriorly of a living body is provided with manual control means 28 having one element 29 fixedly connected with the single layer wire coil 18 for exerting positive rotation to a scraping tool 11 at the leading end of the coil, and a second element 30 is fixedly connected with said straight flexible wire 26 for exerting axial compression on the flexurc area.
In another form of the scraping device a conventional deflecting tip, such as a Muller wire, or the deflecting probe of the present invention, is employed solely as a guide means. The scraping device is constructed generally as previously described with the exception that the trailing portion consists of a uniform multistrand wire coil, without having a flexure area nor a central core wire, which passes over into the scraping tool 11 having an intermediate portion 17 provided with the cutters 19 and 20 and a leading end 16 pro vided with the cutters 21 and 22.
The inner diameter of the tool according to this modification is such that the deflecting probe means may be pushed completely through the tool to serve as a guide to reach the desired location, and the length of the coiled wire forming the trailing portion of the tool is such that it will extend along the entire length of the deflecting probe means to permit rotation of the tool, either when the deflecting tip has been partially, or completely, removed from the interior of the trailing portion. With this form of the invention, instead of attaching the cutter 11 to a deflecting probe and using the deflecting probe to both guide and rotate the cutter, the deflecting probe 31 may be used solely to guide the cutter II to the remote portion of the cavity, after which the probe can be removed and the cutter manipulated by manually rotating the other extremity of the trailing portion 18, as shown in FIG. 6.
In this case the inside diameter of the helix forming the trailing portion 18 and cutter 11 should be such that the entire length of the device may be easily slid over the exterior of a deflecting probe 31, and the length of the coil should be sufficient to permit the remote end of the coiled wire to extend outwardly of the cavity into which the tool is inserted and to be secured to an annular portion 32. By manually gripping the annular portion 32 the cutter and trailing portion may be rotationally and axially manipulated, independently of the deflecting probe means indicated generally by numeral 31. In practice, the length of the coil does not usually exceed 2 to 3 feet.
FIGS. 7 to 9 show a particularly useful application of the scraping device of FIG. 6 and a method for removing tissue from the interior of a living body usingthis particular combination.
It is known that tubular devices to be inserted into living bodies, commonly known as catheters, may be manufactured of a semi-rigid material such as plastic, and that during the manufacture of these plastic cathe ters any desired form may be given to them, so that this form remains inherent to the catheter even ifdue to its semi-rigid nature the catheter is forced to momentarily adopt a different form.
This quality is illustrated in FIG. 7 which shows a J- shaped catheter 33, that is, a catheter which has the tendency to bend into a .l-form defining a substantially right angle at its leading portion. However, due to its semi-rigid nature this catheter can be forced into a straight line indicated by dotted lines.
FIG. 8 shows the combination of an .l-shaped catheter 33 with a straight catheter 34, the outer diameter of catheter 33 being slightly smaller than the inner diameter of catheter 34, so that both catheters are in axially and rotatably slidable' relationship to each other.
Within catheter 33 a scraping device according to the invention, and particularly as shown in FIG. 6, is located in axially and rotatably slidable relationship thereto. That is, the inner diameter of catheter 33 is slightly larger than the outer diameter of the trailing portion 18 and the scraping tool I]. As already mentioned, a conventional deflecting probe 3] is slidably located within the scraping device.
A method of using the above described combination to remove tissue specimens from the interior of a living body consists in first inserting a normally J-shaped semi-rigid catheter 33 into the interior of a larger straight catheter 34, so that catheter 33 momentarily adopts the straight form of catheter 34. Both catheters are inserted into the oral cavity 35 of a body until the leading end of catheter 34 reaches a primary branch in said cavity, indicated for example with 36 in FIG. 9. Catheter 33 is now axially oriented and advanced with respect to catheter 34, so that its leading end protrudes from catheter 34, bends to recover its inherent form and enters said branch 36. Subsequently, a longitudinally and angularly basically inflexible but radially flexible biopsy device, such as the tissue scraping device according to the invention is inserted into said catheter 33 and advanced into the primary branch 36 beyond the end of catheter 33. The bent end portion of catheter 33 thus provides an accurate and constant guide for the advancing leading portion of tool 11 into a secondary branch 37, to the desired area 38 to be sampled, by the guiding action of the deflecting probe 31. When the tool 11 has reached the area 38, as indicated by dotted lines, the probe 31 is partially or totally withdrawn, so that the tool can be rotated from the outside of the body, as described above, to capture a tissue specimen. Due to the ability of the device according to the invention to transmit rotational torque, and to the design of the tool, a desired amount of tissue can be easily removed from the area 38 and be effectively withdrawn when the tool is retrieved from the cavity through the catheters.
It will be understood that this method described above can also be used in connection with a device as shown in FIG. 4, where the scraping device and the deflecting probe are unitary.
It will further be understood that while the examples described illustrate various modifications of the invention, they are not to be considered as limiting. The dimensions and types of materials may be varied within reasonable limits.
The claims are:
l. A vascular tissue removing device comprising a tissue scraping tool to be rotated around an axis and having a plurality of cutters substantially radially projecting with respect to said axis of rotation, means for transmitting a rotational torque and a longitudinal movement to said tool and connected to said plurality of cutters, said means comprising a single layer multistrand closely spaced helically wound coil of wires, and means for guiding the direction of said longitudinal movement.
2. A device as defined in claim 1, wherein said plurality of cutters are partially axially offset along the longitudinal axis of the tool.
3. A device as defined in claim 2, wherein said means for guiding said longitudinal movement of the tool includes a tubular element surrounding said tool, and said means for transmitting a rotational torque and a longitudinal movement to said tool includes an elongated shank extending outwardly of the other end of the tubular element.
4. A device as defined in claim I, wherein said plurality of cutters comprises the terminal ends of the wires of the helically wound coil, said coil being cut off in a plane normal to the axis of the helix and said terminal ends projecting partially radially outwardly from the periphery of said coil to define a rosette-shaped tool.
5. A device as defined in claim 1, wherein said single layer multi-strand helically wound coil of wires has a leading end, an intermediate portion behind the leading end and an elongated trailing portion behind the intermediate portion, at least one of said wires terminating at the leading end of the coil in a first sharpened tissue cutter, and at least one of the other wires of the coil terminating in a second sharpened tissue cutter projecting partially radially outwardly from said intermediate portion behind said first cutter.
6. A device as defined in claim 5, wherein each ofthe wires forming said single layer coil terminates in a sharpened tissue cutter.
7. A device as defined in claim 6, wherein at least two of said wires forming said coil terminate at the leading end of the coil in sharpened tissue cutters.
8. A device as defined in claim 7, wherein at least two of the wires forming said tissue cutters terminate at locations spaced from each other axially of the coil.
9. A device as defined in claim 8, wherein said single layer multi-strand helically wound coil comprises at least four helical wires with substantially the same diameter and the same pitch of the helix, at least two of said wires terminating in sharpened tissue cutters axially spaced from each other and from the leading end of the coil.
10. A device as defined in claim 5, wherein said elongated trailing portion is radially flexible for insertion of the tissue cutters into the vascular system from the exterior of a living body and for operation of said tissue cutters from the exterior of said body by manual manipulation of said elongated trailing portion.
11. A device as defined in claim 10, wherein the turns of said helical wires in said trailing portion are disposed in axially abutting relation, certain of said turns comprising a direction--changing flexure area, the axial thickness of adjacent portions of each of the turns of wire at said flexure area being reduced over approximately one-half of the adjacent circumferences thereof, a straight flexible wire being connected at one end with the extremity of the trailing portion adjacent said intermediate portion for exerting axial compression on the flexure area for altering the longitudinal curvature of said flexure area of the trailing portion.
12. A device as defined in claim 11, wherein the extremity of said trailing portion to be disposed exteriorly ofa living body is provided with manual control means, said control means being fixedly connected with said single layer wire coil for exerting positive rotation to said cutters at the leading end of the coil, and with said straight flexible wire for exerting axial compression on the trailing portion.

Claims (12)

1. A vascular tissue removing device comprising a tissue scraping tool to be rotated around an axis and having a plurality of cutters substantially radially projecting with respect to said axis of rotation, means for transmitting a rotational torque and a longitudinal movement to said tool and connected to said plurality of cutters, said means comprising a single layer multistrand closely spaced helically wound coil of wires, and means for guiding the direction of said longitudinal movement.
2. A device as defined in claim 1, wherein said plurality of cutters are partially axially offset along the longitudinal axis of the tool.
3. A device as defined in claim 2, wherein said means for guiding said longitudinal movement of the tool includes a tubular element surrounding said tool, and said means for transmitting a rotational torque and a longitudinal movement to said tool includes an elongated shank extending outwardly of the other end of the tubular element.
4. A device as defined in claim 1, wherein said plurality of cutters comprises the terminal ends of the wires of the helically wound coil, said coil being cut off in a plane normal to the axis of the helix and said terminal ends projecting partially radially outwardly from the periphery of said coil to define a rosette-shaped tool.
5. A device as defined in claim 1, wherein said single layer multi-strand helically wound coil of wires has a leading end, an intermediate portion behind the leading end and an elongated trailing portion behind the intermediate portion, at least one of said wires terminating at the leading end of the coil in a first sharpened tissue cutter, and at least one of the other wires of the coil terminating in a second sharpened tissue cutter projecting partially radially outwardly from said intermediate portion behind said first cutter.
6. A device as defined in claim 5, wherein each of the wires forming said single layer coil terminates in a sharpened tissue cutter.
7. A device as defined in claim 6, wherein at least two of said wires forming said coil terminate at the leading end of the coil in sharpened tissue cutters.
8. A device as defined in claim 7, wherein at least two of the wires forming said tissue cutters terminate at locations spaced from each other axially of the coil.
9. A device as defined in claim 8, wherein said single layer multi-strand helically wound coil comprises at least four helical wires with substantially the same diameter and the same pitch of the helix, at least two of said wires terminating in sharpened tissue cutters axially spaced from each other and from the leading end of the coil.
10. A device as defined in claim 5, wherein said elongated trailing portion is radially flexible for insertion of the tissue cutters into the vascular system from the exterior of a living body and for operation of said tissue cutters from the exterior of said body by manual manipulation of said elongated trailing portion.
11. A device as defined in claim 10, wherein the turns of said helical wires in said trailing portion are disposed in axially abuTting relation, certain of said turns comprising a direction--changing flexure area, the axial thickness of adjacent portions of each of the turns of wire at said flexure area being reduced over approximately one-half of the adjacent circumferences thereof, a straight flexible wire being connected at one end with the extremity of the trailing portion adjacent said intermediate portion for exerting axial compression on the flexure area for altering the longitudinal curvature of said flexure area of the trailing portion.
12. A device as defined in claim 11, wherein the extremity of said trailing portion to be disposed exteriorly of a living body is provided with manual control means, said control means being fixedly connected with said single layer wire coil for exerting positive rotation to said cutters at the leading end of the coil, and with said straight flexible wire for exerting axial compression on the trailing portion.
US00144029A 1970-06-26 1971-05-17 Vascular tissue removing device Expired - Lifetime US3749085A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US5018270A 1970-06-26 1970-06-26
US14402971A 1971-05-17 1971-05-17

Publications (1)

Publication Number Publication Date
US3749085A true US3749085A (en) 1973-07-31

Family

ID=26727974

Family Applications (1)

Application Number Title Priority Date Filing Date
US00144029A Expired - Lifetime US3749085A (en) 1970-06-26 1971-05-17 Vascular tissue removing device

Country Status (1)

Country Link
US (1) US3749085A (en)

Cited By (142)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3941119A (en) * 1973-07-20 1976-03-02 Mario Corrales Means for introducing and guiding objects into body cavities and blood vessels
FR2326175A1 (en) * 1975-10-01 1977-04-29 Milan Albert Tissue sample remover for use on human patients - has rigid spiral blade with rotatory handle for section cutting
US4020829A (en) * 1975-10-23 1977-05-03 Willson James K V Spring guide wire with torque control for catheterization of blood vessels and method of using same
US4030503A (en) * 1975-11-05 1977-06-21 Clark Iii William T Embolectomy catheter
US4057149A (en) * 1976-02-17 1977-11-08 Rogers And Clarke Manufacturing Co. Mechanism for transferring parts
US4108162A (en) * 1975-12-28 1978-08-22 Kiyoshi Chikashige Twisted wire brush with threaded assembly for collecting cells
US4271845A (en) * 1978-07-01 1981-06-09 Kabushiki Kaisha Medos Kenkyusho Device for bending a medical instrument inserted into the body cavity
JPS58168336U (en) * 1982-05-07 1983-11-10 ハナコ・メデイカル株式会社 Lead wire for super selective angiography
US4445509A (en) * 1982-02-04 1984-05-01 Auth David C Method and apparatus for removal of enclosed abnormal deposits
JPS59168846A (en) * 1983-03-14 1984-09-22 エチコン・インコ−ポレ−テツド Split ring type tissue fixing tool
US4653496A (en) * 1985-02-01 1987-03-31 Bundy Mark A Transluminal lysing system
US4655217A (en) * 1985-10-11 1987-04-07 Reed Matt H Method and apparatus for disabling vein valves in-situ
US4696667A (en) * 1986-03-20 1987-09-29 Helmut Masch Intravascular catheter and method
US4790812A (en) * 1985-11-15 1988-12-13 Hawkins Jr Irvin F Apparatus and method for removing a target object from a body passsageway
WO1989000835A1 (en) * 1987-07-27 1989-02-09 Husted Royce Hill Catheter with rotatable annular cutter
US4898575A (en) * 1987-08-31 1990-02-06 Medinnovations, Inc. Guide wire following tunneling catheter system and method for transluminal arterial atherectomy
US4909781A (en) * 1988-04-08 1990-03-20 Husted Royce Hill Catheter with flexible cutter
US4919146A (en) * 1988-10-25 1990-04-24 Medrad, Inc. Biopsy device
US4922924A (en) * 1989-04-27 1990-05-08 C. R. Bard, Inc. Catheter guidewire with varying radiopacity
US4932419A (en) * 1988-03-21 1990-06-12 Boston Scientific Corporation Multi-filar, cross-wound coil for medical devices
US4936845A (en) * 1987-03-17 1990-06-26 Cordis Corporation Catheter system having distal tip for opening obstructions
US4951677A (en) * 1988-03-21 1990-08-28 Prutech Research And Development Partnership Ii Acoustic imaging catheter and the like
US4979951A (en) * 1984-05-30 1990-12-25 Simpson John B Atherectomy device and method
DE3931350A1 (en) * 1989-09-20 1991-03-28 Kaltenbach Martin GUIDE SLEEVE FOR IMPORTING CATHETERS
US5065769A (en) * 1988-11-23 1991-11-19 Boston Scientific Corporation Small diameter guidewires of multi-filar, cross-wound coils
US5078723A (en) * 1989-05-08 1992-01-07 Medtronic, Inc. Atherectomy device
US5116350A (en) * 1987-03-17 1992-05-26 Cordis Corporation Catheter system having distal tip for opening obstructions
US5197482A (en) * 1989-06-15 1993-03-30 Research Corporation Technologies, Inc. Helical-tipped lesion localization needle device and method of using the same
US5217474A (en) * 1991-07-15 1993-06-08 Zacca Nadim M Expandable tip atherectomy method and apparatus
US5234451A (en) * 1990-11-16 1993-08-10 Peter Osypka Apparatus for eliminating occlusions and stenoses in body cavities
US5336234A (en) * 1992-04-17 1994-08-09 Interventional Technologies, Inc. Method and apparatus for dilatation of a stenotic vessel
US5423799A (en) * 1988-12-14 1995-06-13 Medtronic, Inc. Surgical instrument
US5524630A (en) * 1988-03-21 1996-06-11 Crowley; Robert J. Acoustic imaging catheter and the like
US5527326A (en) * 1992-12-29 1996-06-18 Thomas J. Fogarty Vessel deposit shearing apparatus
US5601599A (en) * 1994-09-23 1997-02-11 Symbiosis Corporation Flexible surgical instruments incorporating a hollow lumen coil having areas of different preload tension
US5630806A (en) * 1991-08-13 1997-05-20 Hudson International Conductors Spiral wrapped medical tubing
US5766192A (en) * 1995-10-20 1998-06-16 Zacca; Nadim M. Atherectomy, angioplasty and stent method and apparatus
US6001112A (en) * 1998-04-10 1999-12-14 Endicor Medical, Inc. Rotational atherectomy device
US6210395B1 (en) 1987-09-30 2001-04-03 Lake Region Mfg., Inc. Hollow lumen cable apparatus
US6238405B1 (en) 1999-04-30 2001-05-29 Edwards Lifesciences Corp. Percutaneous material removal device and method
US20020077648A1 (en) * 1998-09-03 2002-06-20 Rubicor Medical, Inc. Excisional biopsy devices and methods
US6451036B1 (en) 1998-04-10 2002-09-17 Endicor Medical, Inc. Rotational atherectomy system with stationary cutting elements
US6482217B1 (en) 1998-04-10 2002-11-19 Endicor Medical, Inc. Neuro thrombectomy catheter
US20020193816A1 (en) * 1999-06-22 2002-12-19 Ndo Surgical, Inc., A Delaware Corporation Tissue reconfiguration
US20030037570A1 (en) * 2000-04-28 2003-02-27 Sklyarevich Vladislav E. Method for the rapid thermal treatment of glass and glass-like materials using microwave radiation
US6602264B1 (en) 1997-07-24 2003-08-05 Rex Medical, L.P. Rotational thrombectomy apparatus and method with standing wave
US20030216761A1 (en) * 1990-03-27 2003-11-20 Samuel Shiber Guidewire system
US20040006338A1 (en) * 2002-07-03 2004-01-08 Rubicor Medical, Inc. Methods and devices for cutting and collecting soft tissue
US20040006355A1 (en) * 2002-07-03 2004-01-08 Rubicor Medical, Inc. Methods and devices for cutting and collecting soft tissue
US20040006362A1 (en) * 2002-07-02 2004-01-08 Dean Schaefer Uniaxial multifilar vaso-occlusive device with high stretch resistance and low buckling strength
US20040006363A1 (en) * 2002-07-02 2004-01-08 Dean Schaefer Coaxial stretch-resistant vaso-occlusive device
US6685696B2 (en) 1987-09-30 2004-02-03 Lake Region Manufacturing, Inc. Hollow lumen cable apparatus
US20040077971A1 (en) * 2002-10-16 2004-04-22 Rubicor Medical, Inc. Devices and methods for performing procedures on a breast
US20040087872A1 (en) * 2002-11-06 2004-05-06 Rubicor Medical, Inc. Excisional devices having selective cutting and atraumatic configurations and methods of using same
US20040098028A1 (en) * 2002-07-31 2004-05-20 George Martinez Three element coaxial vaso-occlusive device
US6764495B2 (en) 1998-09-03 2004-07-20 Rubicor Medical, Inc. Excisional biopsy devices and methods
US6790215B2 (en) 1999-04-30 2004-09-14 Edwards Lifesciences Corporation Method of use for percutaneous material removal device and tip
US20040193184A1 (en) * 1999-06-22 2004-09-30 Ndo Surgical, Inc., A Massachusetts Corporation Methods and devices for tissue reconfiguration
US20040193194A1 (en) * 1999-06-22 2004-09-30 Ndo Surgical, Inc., A Massachusetts Corporation Tissue reconfiguration
US20040243156A1 (en) * 2003-05-29 2004-12-02 Scimed Life Systems, Inc. Cutting balloon catheter with improved balloon configuration
US20040255739A1 (en) * 2003-06-18 2004-12-23 Rubicor Medical, Inc. Methods and devices for cutting and collecting soft tissue
US20050027309A1 (en) * 2003-06-17 2005-02-03 Samuel Shiber Guidewire system
US20050033225A1 (en) * 2003-08-08 2005-02-10 Scimed Life Systems, Inc. Catheter shaft for regulation of inflation and deflation
US20050038383A1 (en) * 2003-08-14 2005-02-17 Scimed Life Systems, Inc. Catheter having a cutting balloon including multiple cavities or multiple channels
US20050119652A1 (en) * 1998-09-03 2005-06-02 Rubicor Medical, Inc. Devices and methods for performing procedures on a breast
US20050124986A1 (en) * 2003-12-09 2005-06-09 Rubicor Medical, Inc. Suction sleeve and interventional devices having such a suction sleeve
US20050143768A1 (en) * 2003-06-17 2005-06-30 Samuel Shiber Sleeved guidewire system method of use
US20050171572A1 (en) * 2002-07-31 2005-08-04 Microvention, Inc. Multi-layer coaxial vaso-occlusive device
US6926725B2 (en) 2002-04-04 2005-08-09 Rex Medical, L.P. Thrombectomy device with multi-layered rotational wire
US20050177073A1 (en) * 2003-06-17 2005-08-11 Samuel Shiber Guidewire system with a deflectable distal tip
US20050228343A1 (en) * 2004-04-08 2005-10-13 Scimed Life Systems, Inc. Cutting balloon catheter and method for blade mounting
US7037316B2 (en) 1997-07-24 2006-05-02 Mcguckin Jr James F Rotational thrombectomy device
US20060100480A1 (en) * 2002-12-24 2006-05-11 Usgi Medical Inc. Apparatus and methods for achieving endoluminal access
US20060106407A1 (en) * 2004-11-17 2006-05-18 Mcguckin James F Jr Rotational thrombectomy wire
US7104966B2 (en) 2003-07-16 2006-09-12 Samuel Shiber Guidewire system with exposed midsection
US20070010840A1 (en) * 2003-04-22 2007-01-11 Fox Hollow Technologies, Inc. Methods and devices for cutting tissue at a vascular location
AU2003271302B2 (en) * 1999-06-22 2007-02-01 Ethicon Endo-Surgery, Inc. GERD treatment apparatus and method
US20070038225A1 (en) * 2005-08-12 2007-02-15 Cook Incorporated Thrombus removal device
US7198626B2 (en) 2000-12-07 2007-04-03 Rubicor Medical, Inc. Methods and devices for radiofrequency electrosurgery
US20070149951A1 (en) * 2005-12-27 2007-06-28 Mina Wu Variable stiffness guidewire
US7291158B2 (en) 2004-11-12 2007-11-06 Boston Scientific Scimed, Inc. Cutting balloon catheter having a segmented blade
US20070276419A1 (en) * 2006-05-26 2007-11-29 Fox Hollow Technologies, Inc. Methods and devices for rotating an active element and an energy emitter on a catheter
US20080125798A1 (en) * 2006-11-08 2008-05-29 Cook Incorporated Thrombus removal device
US7566319B2 (en) 2004-04-21 2009-07-28 Boston Scientific Scimed, Inc. Traction balloon
US20090247822A1 (en) * 2008-03-28 2009-10-01 Olympus Medical Systems Corp. Endoscope treatment instrument
US20090299394A1 (en) * 1999-08-19 2009-12-03 Fox Hollow Technologies, Inc. Methods and devices for cutting tissue
US7632288B2 (en) 2003-05-12 2009-12-15 Boston Scientific Scimed, Inc. Cutting balloon catheter with improved pushability
US7645261B2 (en) 1999-10-22 2010-01-12 Rex Medical, L.P Double balloon thrombectomy catheter
US20100022943A1 (en) * 2008-07-25 2010-01-28 Medtronic Vascular, Inc. Hydrodynamic Thrombectomy Catheter
US20100130996A1 (en) * 2008-10-13 2010-05-27 Fox Hollow Technologies, Inc. Devices and methods for manipulating a catheter shaft
US20100198240A1 (en) * 2000-12-20 2010-08-05 Fox Hollow Technologies, Inc. Debulking catheters and methods
US7776057B2 (en) 1999-06-22 2010-08-17 Ethicon Endo-Surgery, Inc. Methods and devices for tissue reconfiguration
US20100292721A1 (en) * 2009-05-14 2010-11-18 Fox Hollow Technologies, Inc. Easily cleaned atherectomy catheters and methods of use
US20100298850A1 (en) * 1999-08-19 2010-11-25 Fox Hollow Technologies, Inc. Atherectomy catheter with aligned imager
US7846180B2 (en) 1999-06-22 2010-12-07 Ethicon Endo-Surgery, Inc. Tissue fixation devices and methods of fixing tissue
US20110130777A1 (en) * 2009-12-02 2011-06-02 Fox Hollow Technologies, Inc. Methods and devices for cutting tissue
US20110144673A1 (en) * 2009-12-11 2011-06-16 Fox Hollow Technologies, Inc. Material removal device having improved material capture efficiency and methods of use
US20110184455A1 (en) * 2009-10-26 2011-07-28 Microvention, Inc. Embolization Device Constructed From Expansile Polymer
US7993358B2 (en) 2005-02-11 2011-08-09 Boston Scientific Scimed, Inc. Cutting balloon catheter having increased flexibility regions
US20110212178A1 (en) * 2009-09-24 2011-09-01 Microvention, Inc. Injectable Hydrogel Filaments For Biomedical Uses
US8038691B2 (en) 2004-11-12 2011-10-18 Boston Scientific Scimed, Inc. Cutting balloon catheter having flexible atherotomes
US8216260B2 (en) 2002-12-11 2012-07-10 Usgi Medical, Inc. Apparatus and methods for forming and securing gastrointestinal tissue folds
US8287554B2 (en) 1999-06-22 2012-10-16 Ethicon Endo-Surgery, Inc. Method and devices for tissue reconfiguration
US8328829B2 (en) 1999-08-19 2012-12-11 Covidien Lp High capacity debulking catheter with razor edge cutting window
US20120316543A1 (en) * 2010-12-28 2012-12-13 Olympus Medical Systems Corp. Treatment device for endoscope
US8414543B2 (en) 1999-10-22 2013-04-09 Rex Medical, L.P. Rotational thrombectomy wire with blocking device
US8469979B2 (en) 2000-12-20 2013-06-25 Covidien Lp High capacity debulking catheter with distal driven cutting wheel
US20130325056A1 (en) * 2008-08-29 2013-12-05 Rapid Medical Ltd. Clot removal device with steerable element
US8663259B2 (en) 2010-05-13 2014-03-04 Rex Medical L.P. Rotational thrombectomy wire
US20140107678A1 (en) * 2012-10-12 2014-04-17 Cook Medical Technologies Llc Helical fibrin removal tool
US20140107681A1 (en) * 2006-02-22 2014-04-17 Baylis Medical Company Inc. Guide-Wire Dilation Device for Facilitation of Lesion Crossing
US20140107693A1 (en) * 2012-10-12 2014-04-17 Cook Medical Technologies Llc Device and method for removing tissue inside a body vessel
US8764779B2 (en) 2010-05-13 2014-07-01 Rex Medical, L.P. Rotational thrombectomy wire
US8784440B2 (en) 2008-02-25 2014-07-22 Covidien Lp Methods and devices for cutting tissue
US8808186B2 (en) 2010-11-11 2014-08-19 Covidien Lp Flexible debulking catheters with imaging and methods of use and manufacture
US8852216B2 (en) 2007-03-23 2014-10-07 Ethicon Endo-Surgery, Inc. Tissue approximation methods
US8920450B2 (en) 2010-10-28 2014-12-30 Covidien Lp Material removal device and method of use
US8992717B2 (en) 2011-09-01 2015-03-31 Covidien Lp Catheter with helical drive shaft and methods of manufacture
US9023070B2 (en) 2010-05-13 2015-05-05 Rex Medical, L.P. Rotational thrombectomy wire coupler
US9119662B2 (en) 2010-06-14 2015-09-01 Covidien Lp Material removal device and method of use
US9259228B2 (en) 2006-06-15 2016-02-16 Microvention, Inc. Embolization device constructed from expansile polymer
CN105555210A (en) * 2013-08-08 2016-05-04 急速医疗有限公司 Clot removal device with steerable element
US9339282B2 (en) 2012-10-02 2016-05-17 Cook Medical Technologies Llc Auger guidewire
US9381278B2 (en) 2012-04-18 2016-07-05 Microvention, Inc. Embolic devices
US9456843B2 (en) 2014-02-03 2016-10-04 Covidien Lp Tissue-removing catheter including angular displacement sensor
US9456823B2 (en) 2011-04-18 2016-10-04 Terumo Corporation Embolic devices
US9486221B2 (en) 2007-12-21 2016-11-08 Microvision, Inc. Hydrogel filaments for biomedical uses
US9526519B2 (en) 2014-02-03 2016-12-27 Covidien Lp Tissue-removing catheter with improved angular tissue-removing positioning within body lumen
US9532844B2 (en) 2012-09-13 2017-01-03 Covidien Lp Cleaning device for medical instrument and method of use
US9597110B2 (en) 2012-11-08 2017-03-21 Covidien Lp Tissue-removing catheter including operational control mechanism
US9687266B2 (en) 2009-04-29 2017-06-27 Covidien Lp Methods and devices for cutting and abrading tissue
US9795406B2 (en) 2010-05-13 2017-10-24 Rex Medical, L.P. Rotational thrombectomy wire
US9943329B2 (en) 2012-11-08 2018-04-17 Covidien Lp Tissue-removing catheter with rotatable cutter
US10092663B2 (en) 2014-04-29 2018-10-09 Terumo Corporation Polymers
US10124090B2 (en) 2014-04-03 2018-11-13 Terumo Corporation Embolic devices
US10213224B2 (en) 2014-06-27 2019-02-26 Covidien Lp Cleaning device for catheter and catheter including the same
US10226533B2 (en) 2014-04-29 2019-03-12 Microvention, Inc. Polymer filaments including pharmaceutical agents and delivering same
US10292721B2 (en) 2015-07-20 2019-05-21 Covidien Lp Tissue-removing catheter including movable distal tip
US10314664B2 (en) 2015-10-07 2019-06-11 Covidien Lp Tissue-removing catheter and tissue-removing element with depth stop
US10314667B2 (en) 2015-03-25 2019-06-11 Covidien Lp Cleaning device for cleaning medical instrument
US10639396B2 (en) 2015-06-11 2020-05-05 Microvention, Inc. Polymers
US10835312B2 (en) 2013-04-16 2020-11-17 Transmed7, Llc Methods, devices and therapeutic platform for automated, selectable, soft tissue resection

Cited By (291)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3941119A (en) * 1973-07-20 1976-03-02 Mario Corrales Means for introducing and guiding objects into body cavities and blood vessels
FR2326175A1 (en) * 1975-10-01 1977-04-29 Milan Albert Tissue sample remover for use on human patients - has rigid spiral blade with rotatory handle for section cutting
US4020829A (en) * 1975-10-23 1977-05-03 Willson James K V Spring guide wire with torque control for catheterization of blood vessels and method of using same
US4030503A (en) * 1975-11-05 1977-06-21 Clark Iii William T Embolectomy catheter
US4108162A (en) * 1975-12-28 1978-08-22 Kiyoshi Chikashige Twisted wire brush with threaded assembly for collecting cells
US4057149A (en) * 1976-02-17 1977-11-08 Rogers And Clarke Manufacturing Co. Mechanism for transferring parts
US4271845A (en) * 1978-07-01 1981-06-09 Kabushiki Kaisha Medos Kenkyusho Device for bending a medical instrument inserted into the body cavity
US4445509A (en) * 1982-02-04 1984-05-01 Auth David C Method and apparatus for removal of enclosed abnormal deposits
JPS617739Y2 (en) * 1982-05-07 1986-03-10
JPS58168336U (en) * 1982-05-07 1983-11-10 ハナコ・メデイカル株式会社 Lead wire for super selective angiography
JPS59168846A (en) * 1983-03-14 1984-09-22 エチコン・インコ−ポレ−テツド Split ring type tissue fixing tool
US4979951A (en) * 1984-05-30 1990-12-25 Simpson John B Atherectomy device and method
US4653496A (en) * 1985-02-01 1987-03-31 Bundy Mark A Transluminal lysing system
US4655217A (en) * 1985-10-11 1987-04-07 Reed Matt H Method and apparatus for disabling vein valves in-situ
US4790812A (en) * 1985-11-15 1988-12-13 Hawkins Jr Irvin F Apparatus and method for removing a target object from a body passsageway
US4696667A (en) * 1986-03-20 1987-09-29 Helmut Masch Intravascular catheter and method
US4936845A (en) * 1987-03-17 1990-06-26 Cordis Corporation Catheter system having distal tip for opening obstructions
US5116350A (en) * 1987-03-17 1992-05-26 Cordis Corporation Catheter system having distal tip for opening obstructions
WO1989000835A1 (en) * 1987-07-27 1989-02-09 Husted Royce Hill Catheter with rotatable annular cutter
US4898575A (en) * 1987-08-31 1990-02-06 Medinnovations, Inc. Guide wire following tunneling catheter system and method for transluminal arterial atherectomy
US6685696B2 (en) 1987-09-30 2004-02-03 Lake Region Manufacturing, Inc. Hollow lumen cable apparatus
US6210395B1 (en) 1987-09-30 2001-04-03 Lake Region Mfg., Inc. Hollow lumen cable apparatus
US6364840B1 (en) 1988-03-21 2002-04-02 Boston Scientific Corporation Acoustic imaging catheter and the like
US20030208119A1 (en) * 1988-03-21 2003-11-06 Crowley Robert J. Medical imaging device
US6572553B2 (en) 1988-03-21 2003-06-03 Scimed Life Systems, Inc. Medical imaging device
US4951677A (en) * 1988-03-21 1990-08-28 Prutech Research And Development Partnership Ii Acoustic imaging catheter and the like
US5524630A (en) * 1988-03-21 1996-06-11 Crowley; Robert J. Acoustic imaging catheter and the like
US4932419A (en) * 1988-03-21 1990-06-12 Boston Scientific Corporation Multi-filar, cross-wound coil for medical devices
US6585655B2 (en) 1988-03-21 2003-07-01 Scimed Life Systems, Inc. Medical imaging device
US7037271B2 (en) 1988-03-21 2006-05-02 Boston Scientific Corporation Medical imaging device
US6165127A (en) * 1988-03-21 2000-12-26 Boston Scientific Corporation Acoustic imaging catheter and the like
US5715825A (en) * 1988-03-21 1998-02-10 Boston Scientific Corporation Acoustic imaging catheter and the like
US4909781A (en) * 1988-04-08 1990-03-20 Husted Royce Hill Catheter with flexible cutter
US4919146A (en) * 1988-10-25 1990-04-24 Medrad, Inc. Biopsy device
US5065769A (en) * 1988-11-23 1991-11-19 Boston Scientific Corporation Small diameter guidewires of multi-filar, cross-wound coils
US6443966B1 (en) 1988-12-14 2002-09-03 Intravascular Medical, Inc. Surgical instrument
US5423799A (en) * 1988-12-14 1995-06-13 Medtronic, Inc. Surgical instrument
US4922924A (en) * 1989-04-27 1990-05-08 C. R. Bard, Inc. Catheter guidewire with varying radiopacity
US5078723A (en) * 1989-05-08 1992-01-07 Medtronic, Inc. Atherectomy device
US5197482A (en) * 1989-06-15 1993-03-30 Research Corporation Technologies, Inc. Helical-tipped lesion localization needle device and method of using the same
DE3931350A1 (en) * 1989-09-20 1991-03-28 Kaltenbach Martin GUIDE SLEEVE FOR IMPORTING CATHETERS
US5131406A (en) * 1989-09-20 1992-07-21 Martin Kaltenbach Guide for introduction of catheters into blood vessels and the like
US20030216761A1 (en) * 1990-03-27 2003-11-20 Samuel Shiber Guidewire system
US5234451A (en) * 1990-11-16 1993-08-10 Peter Osypka Apparatus for eliminating occlusions and stenoses in body cavities
US5217474A (en) * 1991-07-15 1993-06-08 Zacca Nadim M Expandable tip atherectomy method and apparatus
US5308354A (en) * 1991-07-15 1994-05-03 Zacca Nadim M Atherectomy and angioplasty method and apparatus
USRE36764E (en) * 1991-07-15 2000-07-04 Nadim M. Zacca Expandable tip atherectomy method and apparatus
US5630806A (en) * 1991-08-13 1997-05-20 Hudson International Conductors Spiral wrapped medical tubing
US5336234A (en) * 1992-04-17 1994-08-09 Interventional Technologies, Inc. Method and apparatus for dilatation of a stenotic vessel
US5527326A (en) * 1992-12-29 1996-06-18 Thomas J. Fogarty Vessel deposit shearing apparatus
US5601599A (en) * 1994-09-23 1997-02-11 Symbiosis Corporation Flexible surgical instruments incorporating a hollow lumen coil having areas of different preload tension
US5766192A (en) * 1995-10-20 1998-06-16 Zacca; Nadim M. Atherectomy, angioplasty and stent method and apparatus
US7037316B2 (en) 1997-07-24 2006-05-02 Mcguckin Jr James F Rotational thrombectomy device
US7507246B2 (en) 1997-07-24 2009-03-24 Rex Medical, L.P. Rotational thrombectomy device
US6602264B1 (en) 1997-07-24 2003-08-05 Rex Medical, L.P. Rotational thrombectomy apparatus and method with standing wave
US8579926B2 (en) 1998-04-10 2013-11-12 Covidien Lp Plaque removal device with rotatable cutting element
US7842055B2 (en) 1998-04-10 2010-11-30 Ev3 Endovascular, Inc. Neuro thrombectomy catheter
US7172610B2 (en) 1998-04-10 2007-02-06 Ev3 Endovascular, Inc. Rotational atherectomy system with stationary cutting elements
US20020188307A1 (en) * 1998-04-10 2002-12-12 Rafael Pintor Neuro thrombectomy catheter
US6482217B1 (en) 1998-04-10 2002-11-19 Endicor Medical, Inc. Neuro thrombectomy catheter
US7479147B2 (en) 1998-04-10 2009-01-20 Ev3 Endovascular, Inc. Rotational atherectomy device
US6454779B1 (en) 1998-04-10 2002-09-24 Endicor Medical, Inc. Rotational atherectomy device
US6451036B1 (en) 1998-04-10 2002-09-17 Endicor Medical, Inc. Rotational atherectomy system with stationary cutting elements
US6666874B2 (en) 1998-04-10 2003-12-23 Endicor Medical, Inc. Rotational atherectomy system with serrated cutting tip
US6001112A (en) * 1998-04-10 1999-12-14 Endicor Medical, Inc. Rotational atherectomy device
US6206898B1 (en) 1998-04-10 2001-03-27 Endicor Medical, Inc. Rotational atherectomy device
US7771445B2 (en) 1998-04-10 2010-08-10 Ev3 Endovascular, Inc. Rotational atherectomy system with stationary cutting elements
US7235088B2 (en) 1998-04-10 2007-06-26 Ev3 Endovascular, Inc. Neuro thrombectomy catheter
US20050119652A1 (en) * 1998-09-03 2005-06-02 Rubicor Medical, Inc. Devices and methods for performing procedures on a breast
US20070203427A1 (en) * 1998-09-03 2007-08-30 Rubicor Medical, Inc. Devices and methods for performing procedures on a breast
US20070197934A1 (en) * 1998-09-03 2007-08-23 Rubicor Medical, Inc. Devices and methods for performing procedures on a breast
US20070203428A1 (en) * 1998-09-03 2007-08-30 Rubicor Medical, Inc. Devices and methods for performing procedures on a breast
US6764495B2 (en) 1998-09-03 2004-07-20 Rubicor Medical, Inc. Excisional biopsy devices and methods
US20040176789A1 (en) * 1998-09-03 2004-09-09 Rubicor Medical, Inc. Excisional biopsy devices and methods
US20020077648A1 (en) * 1998-09-03 2002-06-20 Rubicor Medical, Inc. Excisional biopsy devices and methods
US6863676B2 (en) 1998-09-03 2005-03-08 Rubicor Medical, Inc. Excisional biopsy devices and methods
US7303531B2 (en) 1998-09-03 2007-12-04 Rubicor Medical, Inc. Excisional biopsy devices and methods
US6440147B1 (en) 1998-09-03 2002-08-27 Rubicor Medical, Inc. Excisional biopsy devices and methods
US7517348B2 (en) 1998-09-03 2009-04-14 Rubicor Medical, Inc. Devices and methods for performing procedures on a breast
US20050182339A1 (en) * 1998-09-03 2005-08-18 Roberta Lee Excisional biopsy devices and methods
US6849080B2 (en) 1998-09-03 2005-02-01 Rubicon Medical, Inc. Excisional biopsy device and methods
US6238405B1 (en) 1999-04-30 2001-05-29 Edwards Lifesciences Corp. Percutaneous material removal device and method
US6623495B2 (en) 1999-04-30 2003-09-23 Edwards Lifesciences Corporation Percutaneous material removal device tip
US6790215B2 (en) 1999-04-30 2004-09-14 Edwards Lifesciences Corporation Method of use for percutaneous material removal device and tip
US7736373B2 (en) 1999-06-22 2010-06-15 Ndo Surical, Inc. Methods and devices for tissue reconfiguration
US8287554B2 (en) 1999-06-22 2012-10-16 Ethicon Endo-Surgery, Inc. Method and devices for tissue reconfiguration
US20020193816A1 (en) * 1999-06-22 2002-12-19 Ndo Surgical, Inc., A Delaware Corporation Tissue reconfiguration
US7776057B2 (en) 1999-06-22 2010-08-17 Ethicon Endo-Surgery, Inc. Methods and devices for tissue reconfiguration
US8277468B2 (en) 1999-06-22 2012-10-02 Ethicon Endo-Surgery, Inc. Tissue reconfiguration
US8057494B2 (en) 1999-06-22 2011-11-15 Ethicon Endo-Surgery, Inc. Methods and devices for tissue reconfiguration
US7722633B2 (en) 1999-06-22 2010-05-25 Ethicon Endo-Surgery, Inc. Tissue reconfiguration
US7846180B2 (en) 1999-06-22 2010-12-07 Ethicon Endo-Surgery, Inc. Tissue fixation devices and methods of fixing tissue
US7713277B2 (en) 1999-06-22 2010-05-11 Ethicon Endo-Surgery, Inc. Tissue reconfiguration
AU2003271302B2 (en) * 1999-06-22 2007-02-01 Ethicon Endo-Surgery, Inc. GERD treatment apparatus and method
US7153314B2 (en) 1999-06-22 2006-12-26 Ndo Surgical Tissue reconfiguration
US20040193184A1 (en) * 1999-06-22 2004-09-30 Ndo Surgical, Inc., A Massachusetts Corporation Methods and devices for tissue reconfiguration
US7857823B2 (en) 1999-06-22 2010-12-28 Ethicon Endo-Surgery, Inc. Tissue reconfiguration
US20040193194A1 (en) * 1999-06-22 2004-09-30 Ndo Surgical, Inc., A Massachusetts Corporation Tissue reconfiguration
US7896893B2 (en) 1999-06-22 2011-03-01 Ethicon Endo-Surgery, Inc. Methods and devices for tissue reconfiguration
EP1447052A3 (en) * 1999-06-22 2004-10-20 NDO Surgical, Inc. Gerd treatment apparatus and method
EP1658812A1 (en) * 1999-06-22 2006-05-24 NDO Surgical, Inc. Tissue reconfiguration
US10022145B2 (en) 1999-08-19 2018-07-17 Covidien Lp Methods and devices for cutting tissue
US8328829B2 (en) 1999-08-19 2012-12-11 Covidien Lp High capacity debulking catheter with razor edge cutting window
US8597315B2 (en) 1999-08-19 2013-12-03 Covidien Lp Atherectomy catheter with first and second imaging devices
US9615850B2 (en) 1999-08-19 2017-04-11 Covidien Lp Atherectomy catheter with aligned imager
US9532799B2 (en) 1999-08-19 2017-01-03 Covidien Lp Method and devices for cutting tissue
US20090299394A1 (en) * 1999-08-19 2009-12-03 Fox Hollow Technologies, Inc. Methods and devices for cutting tissue
US8998937B2 (en) 1999-08-19 2015-04-07 Covidien Lp Methods and devices for cutting tissue
US9486237B2 (en) 1999-08-19 2016-11-08 Covidien Lp Methods and devices for cutting tissue
US20100298850A1 (en) * 1999-08-19 2010-11-25 Fox Hollow Technologies, Inc. Atherectomy catheter with aligned imager
US8911459B2 (en) 1999-08-19 2014-12-16 Covidien Lp Debulking catheters and methods
US9788854B2 (en) 1999-08-19 2017-10-17 Covidien Lp Debulking catheters and methods
US7645261B2 (en) 1999-10-22 2010-01-12 Rex Medical, L.P Double balloon thrombectomy catheter
US7909801B2 (en) 1999-10-22 2011-03-22 Rex Medical, L.P. Double balloon thrombectomy catheter
US9017294B2 (en) 1999-10-22 2015-04-28 Rex Medical, L.P. Rotational thrombectomy wire with blocking device
US8435218B2 (en) 1999-10-22 2013-05-07 Rex Medical, L.P. Double balloon thrombectomy catheter
US8414543B2 (en) 1999-10-22 2013-04-09 Rex Medical, L.P. Rotational thrombectomy wire with blocking device
US20030037570A1 (en) * 2000-04-28 2003-02-27 Sklyarevich Vladislav E. Method for the rapid thermal treatment of glass and glass-like materials using microwave radiation
US7198626B2 (en) 2000-12-07 2007-04-03 Rubicor Medical, Inc. Methods and devices for radiofrequency electrosurgery
US20100198240A1 (en) * 2000-12-20 2010-08-05 Fox Hollow Technologies, Inc. Debulking catheters and methods
US8226674B2 (en) 2000-12-20 2012-07-24 Tyco Healthcare Group Lp Debulking catheters and methods
US9241733B2 (en) 2000-12-20 2016-01-26 Covidien Lp Debulking catheter
US8469979B2 (en) 2000-12-20 2013-06-25 Covidien Lp High capacity debulking catheter with distal driven cutting wheel
US6926725B2 (en) 2002-04-04 2005-08-09 Rex Medical, L.P. Thrombectomy device with multi-layered rotational wire
US20040006362A1 (en) * 2002-07-02 2004-01-08 Dean Schaefer Uniaxial multifilar vaso-occlusive device with high stretch resistance and low buckling strength
US20040006363A1 (en) * 2002-07-02 2004-01-08 Dean Schaefer Coaxial stretch-resistant vaso-occlusive device
US20040006355A1 (en) * 2002-07-03 2004-01-08 Rubicor Medical, Inc. Methods and devices for cutting and collecting soft tissue
US20040006338A1 (en) * 2002-07-03 2004-01-08 Rubicor Medical, Inc. Methods and devices for cutting and collecting soft tissue
US8066727B2 (en) 2002-07-03 2011-11-29 Rubicor Medical Llc Methods and devices for cutting and collecting soft tissue
US20070203513A1 (en) * 2002-07-03 2007-08-30 Rubicor Medical, Inc. Methods and devices for cutting and collecting soft tissue
US7044956B2 (en) 2002-07-03 2006-05-16 Rubicor Medical, Inc. Methods and devices for cutting and collecting soft tissue
US20060229650A1 (en) * 2002-07-03 2006-10-12 Rubicor Medical, Inc. Methods and devices for cutting and collecting soft tissue
US20040098028A1 (en) * 2002-07-31 2004-05-20 George Martinez Three element coaxial vaso-occlusive device
US8882796B2 (en) 2002-07-31 2014-11-11 Microvention, Inc. Three element coaxial vaso-occlusive device
US8273100B2 (en) 2002-07-31 2012-09-25 Microvention, Inc. Three element coaxial vaso-occlusive device
US20050171572A1 (en) * 2002-07-31 2005-08-04 Microvention, Inc. Multi-layer coaxial vaso-occlusive device
US8764788B2 (en) 2002-07-31 2014-07-01 Microvention, Inc. Multi-layer coaxial vaso-occlusive device
US7438693B2 (en) 2002-10-16 2008-10-21 Rubicor Medical, Inc. Devices and methods for performing procedures on a breast
US20050222521A1 (en) * 2002-10-16 2005-10-06 Rubicor Medical, Inc. Devices and methods for performing procedures on a breast
US6936014B2 (en) 2002-10-16 2005-08-30 Rubicor Medical, Inc. Devices and methods for performing procedures on a breast
US20040077971A1 (en) * 2002-10-16 2004-04-22 Rubicor Medical, Inc. Devices and methods for performing procedures on a breast
US20040087872A1 (en) * 2002-11-06 2004-05-06 Rubicor Medical, Inc. Excisional devices having selective cutting and atraumatic configurations and methods of using same
US7029451B2 (en) 2002-11-06 2006-04-18 Rubicor Medical, Inc. Excisional devices having selective cutting and atraumatic configurations and methods of using same
US8216260B2 (en) 2002-12-11 2012-07-10 Usgi Medical, Inc. Apparatus and methods for forming and securing gastrointestinal tissue folds
US7955253B2 (en) 2002-12-24 2011-06-07 Usgi Medical, Inc. Apparatus and methods for achieving endoluminal access
US20060100480A1 (en) * 2002-12-24 2006-05-11 Usgi Medical Inc. Apparatus and methods for achieving endoluminal access
US8246640B2 (en) 2003-04-22 2012-08-21 Tyco Healthcare Group Lp Methods and devices for cutting tissue at a vascular location
US8961546B2 (en) 2003-04-22 2015-02-24 Covidien Lp Methods and devices for cutting tissue at a vascular location
US20070010840A1 (en) * 2003-04-22 2007-01-11 Fox Hollow Technologies, Inc. Methods and devices for cutting tissue at a vascular location
US9999438B2 (en) 2003-04-22 2018-06-19 Covidien Lp Methods and devices for cutting tissue at a vascular location
US8617193B2 (en) 2003-05-12 2013-12-31 Boston Scientific Scimed, Inc. Balloon catheter with improved pushability
US8172864B2 (en) 2003-05-12 2012-05-08 Boston Scientific Scimed, Inc. Balloon catheter with improved pushability
US7632288B2 (en) 2003-05-12 2009-12-15 Boston Scientific Scimed, Inc. Cutting balloon catheter with improved pushability
US20040243156A1 (en) * 2003-05-29 2004-12-02 Scimed Life Systems, Inc. Cutting balloon catheter with improved balloon configuration
US7758604B2 (en) 2003-05-29 2010-07-20 Boston Scientific Scimed, Inc. Cutting balloon catheter with improved balloon configuration
US20050027309A1 (en) * 2003-06-17 2005-02-03 Samuel Shiber Guidewire system
US20050143768A1 (en) * 2003-06-17 2005-06-30 Samuel Shiber Sleeved guidewire system method of use
US20050177073A1 (en) * 2003-06-17 2005-08-11 Samuel Shiber Guidewire system with a deflectable distal tip
US7615013B2 (en) 2003-06-18 2009-11-10 Rubicor Medical, Inc. Methods and devices for cutting and collecting soft tissue
US7122011B2 (en) 2003-06-18 2006-10-17 Rubicor Medical, Inc. Methods and devices for cutting and collecting soft tissue
US20060224083A1 (en) * 2003-06-18 2006-10-05 Rubicor Medical, Inc. Methods and devices for cutting and collecting soft tissue
US20040255739A1 (en) * 2003-06-18 2004-12-23 Rubicor Medical, Inc. Methods and devices for cutting and collecting soft tissue
US7104966B2 (en) 2003-07-16 2006-09-12 Samuel Shiber Guidewire system with exposed midsection
US20050033225A1 (en) * 2003-08-08 2005-02-10 Scimed Life Systems, Inc. Catheter shaft for regulation of inflation and deflation
US7780626B2 (en) 2003-08-08 2010-08-24 Boston Scientific Scimed, Inc. Catheter shaft for regulation of inflation and deflation
US7887557B2 (en) 2003-08-14 2011-02-15 Boston Scientific Scimed, Inc. Catheter having a cutting balloon including multiple cavities or multiple channels
US20050038383A1 (en) * 2003-08-14 2005-02-17 Scimed Life Systems, Inc. Catheter having a cutting balloon including multiple cavities or multiple channels
US7329253B2 (en) 2003-12-09 2008-02-12 Rubicor Medical, Inc. Suction sleeve and interventional devices having such a suction sleeve
US20050124986A1 (en) * 2003-12-09 2005-06-09 Rubicor Medical, Inc. Suction sleeve and interventional devices having such a suction sleeve
US7754047B2 (en) 2004-04-08 2010-07-13 Boston Scientific Scimed, Inc. Cutting balloon catheter and method for blade mounting
US20050228343A1 (en) * 2004-04-08 2005-10-13 Scimed Life Systems, Inc. Cutting balloon catheter and method for blade mounting
US7566319B2 (en) 2004-04-21 2009-07-28 Boston Scientific Scimed, Inc. Traction balloon
US8945047B2 (en) 2004-04-21 2015-02-03 Boston Scientific Scimed, Inc. Traction balloon
US9603619B2 (en) 2004-11-12 2017-03-28 Boston Scientific Scimed, Inc. Cutting balloon catheter having flexible atherotomes
US8690903B2 (en) 2004-11-12 2014-04-08 Boston Scientific Scimed, Inc. Cutting balloon catheter having flexible atherotomes
US9017353B2 (en) 2004-11-12 2015-04-28 Boston Scientific Scimed, Inc. Cutting balloon catheter having flexible atherotomes
US8361096B2 (en) 2004-11-12 2013-01-29 Boston Scientific Scimed, Inc. Cutting balloon catheter having flexible atherotomes
US7291158B2 (en) 2004-11-12 2007-11-06 Boston Scientific Scimed, Inc. Cutting balloon catheter having a segmented blade
US8038691B2 (en) 2004-11-12 2011-10-18 Boston Scientific Scimed, Inc. Cutting balloon catheter having flexible atherotomes
US7819887B2 (en) * 2004-11-17 2010-10-26 Rex Medical, L.P. Rotational thrombectomy wire
US9474543B2 (en) 2004-11-17 2016-10-25 Argon Medical Devices, Inc. Rotational thrombectomy wire
US8465511B2 (en) 2004-11-17 2013-06-18 Rex Medical, L.P. Rotational thrombectomy wire
US10117671B2 (en) 2004-11-17 2018-11-06 Argon Medical Devices Inc. Rotational thrombectomy device
US8062317B2 (en) 2004-11-17 2011-11-22 Rex Medical, L.P. Rotational thrombectomy wire
US20060106407A1 (en) * 2004-11-17 2006-05-18 Mcguckin James F Jr Rotational thrombectomy wire
US7993358B2 (en) 2005-02-11 2011-08-09 Boston Scientific Scimed, Inc. Cutting balloon catheter having increased flexibility regions
US20070038225A1 (en) * 2005-08-12 2007-02-15 Cook Incorporated Thrombus removal device
US8123769B2 (en) 2005-08-12 2012-02-28 Cook Medical Technologies Llc Thrombus removal device
US7867176B2 (en) * 2005-12-27 2011-01-11 Cordis Corporation Variable stiffness guidewire
US20070149951A1 (en) * 2005-12-27 2007-06-28 Mina Wu Variable stiffness guidewire
US20140107681A1 (en) * 2006-02-22 2014-04-17 Baylis Medical Company Inc. Guide-Wire Dilation Device for Facilitation of Lesion Crossing
US9345509B2 (en) * 2006-02-22 2016-05-24 Baylis Medical Company Inc. Guide-wire dilation device for facilitation of lesion crossing
US9801647B2 (en) 2006-05-26 2017-10-31 Covidien Lp Catheter including cutting element and energy emitting element
US11666355B2 (en) 2006-05-26 2023-06-06 Covidien Lp Catheter including cutting element and energy emitting element
US10588653B2 (en) 2006-05-26 2020-03-17 Covidien Lp Catheter including cutting element and energy emitting element
US20070276419A1 (en) * 2006-05-26 2007-11-29 Fox Hollow Technologies, Inc. Methods and devices for rotating an active element and an energy emitter on a catheter
US11160557B2 (en) 2006-06-15 2021-11-02 Microvention, Inc. Embolization device constructed from expansile polymer
US9724103B2 (en) 2006-06-15 2017-08-08 Microvention, Inc. Embolization device constructed from expansile polymer
US9259228B2 (en) 2006-06-15 2016-02-16 Microvention, Inc. Embolization device constructed from expansile polymer
US11185336B2 (en) 2006-06-15 2021-11-30 Microvention, Inc. Embolization device constructed from expansile polymer
US9451963B2 (en) 2006-06-15 2016-09-27 Microvention, Inc. Embolization device constructed from expansile polymer
US10226258B2 (en) 2006-06-15 2019-03-12 Microvention, Inc. Embolization device constructed from expansile polymer
US10499925B2 (en) 2006-06-15 2019-12-10 Microvention, Inc. Embolization device constructed from expansile polymer
US9877731B2 (en) 2006-06-15 2018-01-30 Microvention, Inc. Embolization device constructed from expansile polymer
US8246641B2 (en) 2006-11-08 2012-08-21 Cook Medical Technolgies, LLC Thrombus removal device
US8608761B2 (en) 2006-11-08 2013-12-17 Cook Medical Technologies Llc Thrombus removal device
US20080125798A1 (en) * 2006-11-08 2008-05-29 Cook Incorporated Thrombus removal device
US8852216B2 (en) 2007-03-23 2014-10-07 Ethicon Endo-Surgery, Inc. Tissue approximation methods
US10194915B2 (en) 2007-12-21 2019-02-05 Microvention, Inc. Implantation devices including hydrogel filaments
US9486221B2 (en) 2007-12-21 2016-11-08 Microvision, Inc. Hydrogel filaments for biomedical uses
US9445834B2 (en) 2008-02-25 2016-09-20 Covidien Lp Methods and devices for cutting tissue
US8784440B2 (en) 2008-02-25 2014-07-22 Covidien Lp Methods and devices for cutting tissue
US10219824B2 (en) 2008-02-25 2019-03-05 Covidien Lp Methods and devices for cutting tissue
US8728089B2 (en) * 2008-03-28 2014-05-20 Olympus Medical Systems Corp. Endoscope treatment instrument
US20090247822A1 (en) * 2008-03-28 2009-10-01 Olympus Medical Systems Corp. Endoscope treatment instrument
US20100022943A1 (en) * 2008-07-25 2010-01-28 Medtronic Vascular, Inc. Hydrodynamic Thrombectomy Catheter
US20130325056A1 (en) * 2008-08-29 2013-12-05 Rapid Medical Ltd. Clot removal device with steerable element
US10751073B2 (en) * 2008-08-29 2020-08-25 Rapid Medical Ltd Clot removal device with steerable element
US10507037B2 (en) 2008-10-13 2019-12-17 Covidien Lp Method for manipulating catheter shaft
US20100130996A1 (en) * 2008-10-13 2010-05-27 Fox Hollow Technologies, Inc. Devices and methods for manipulating a catheter shaft
US8414604B2 (en) 2008-10-13 2013-04-09 Covidien Lp Devices and methods for manipulating a catheter shaft
US9192406B2 (en) 2008-10-13 2015-11-24 Covidien Lp Method for manipulating catheter shaft
US10555753B2 (en) 2009-04-29 2020-02-11 Covidien Lp Methods and devices for cutting and abrading tissue
US9687266B2 (en) 2009-04-29 2017-06-27 Covidien Lp Methods and devices for cutting and abrading tissue
US8192452B2 (en) 2009-05-14 2012-06-05 Tyco Healthcare Group Lp Easily cleaned atherectomy catheters and methods of use
US9220530B2 (en) 2009-05-14 2015-12-29 Covidien Lp Easily cleaned atherectomy catheters and methods of use
US20100292721A1 (en) * 2009-05-14 2010-11-18 Fox Hollow Technologies, Inc. Easily cleaned atherectomy catheters and methods of use
US8574249B2 (en) 2009-05-14 2013-11-05 Covidien Lp Easily cleaned atherectomy catheters and methods of use
US20110212178A1 (en) * 2009-09-24 2011-09-01 Microvention, Inc. Injectable Hydrogel Filaments For Biomedical Uses
US9114200B2 (en) 2009-09-24 2015-08-25 Microvention, Inc. Injectable hydrogel filaments for biomedical uses
US9993252B2 (en) 2009-10-26 2018-06-12 Microvention, Inc. Embolization device constructed from expansile polymer
US20110184455A1 (en) * 2009-10-26 2011-07-28 Microvention, Inc. Embolization Device Constructed From Expansile Polymer
US20110130777A1 (en) * 2009-12-02 2011-06-02 Fox Hollow Technologies, Inc. Methods and devices for cutting tissue
US8496677B2 (en) 2009-12-02 2013-07-30 Covidien Lp Methods and devices for cutting tissue
US10499947B2 (en) 2009-12-02 2019-12-10 Covidien Lp Device for cutting tissue
US9687267B2 (en) 2009-12-02 2017-06-27 Covidien Lp Device for cutting tissue
US9028512B2 (en) 2009-12-11 2015-05-12 Covidien Lp Material removal device having improved material capture efficiency and methods of use
US9913659B2 (en) 2009-12-11 2018-03-13 Covidien Lp Material removal device having improved material capture efficiency and methods of use
US20110144673A1 (en) * 2009-12-11 2011-06-16 Fox Hollow Technologies, Inc. Material removal device having improved material capture efficiency and methods of use
US10751082B2 (en) 2009-12-11 2020-08-25 Covidien Lp Material removal device having improved material capture efficiency and methods of use
US10517630B2 (en) 2010-05-13 2019-12-31 Rex Medical, L.P. Rotational thrombectomy wire
US9700346B2 (en) 2010-05-13 2017-07-11 Rex Medical, L.P. Rotational thrombectomy wire
US10064645B2 (en) 2010-05-13 2018-09-04 Rex Medical, L.P. Rotational thrombectomy wire
US8764779B2 (en) 2010-05-13 2014-07-01 Rex Medical, L.P. Rotational thrombectomy wire
US8663259B2 (en) 2010-05-13 2014-03-04 Rex Medical L.P. Rotational thrombectomy wire
US9023070B2 (en) 2010-05-13 2015-05-05 Rex Medical, L.P. Rotational thrombectomy wire coupler
US9795406B2 (en) 2010-05-13 2017-10-24 Rex Medical, L.P. Rotational thrombectomy wire
US9282992B2 (en) 2010-05-13 2016-03-15 Rex Medical, L.P. Rotational thrombectomy wire
US9119662B2 (en) 2010-06-14 2015-09-01 Covidien Lp Material removal device and method of use
US9855072B2 (en) 2010-06-14 2018-01-02 Covidien Lp Material removal device and method of use
US9924957B2 (en) 2010-08-23 2018-03-27 Argon Medical Devices, Inc. Rotational thrombectomy wire with blocking device
US9717520B2 (en) 2010-10-28 2017-08-01 Covidien Lp Material removal device and method of use
US8920450B2 (en) 2010-10-28 2014-12-30 Covidien Lp Material removal device and method of use
US10952762B2 (en) 2010-10-28 2021-03-23 Covidien Lp Material removal device and method of use
US9326789B2 (en) 2010-11-11 2016-05-03 Covidien Lp Flexible debulking catheters with imaging and methods of use and manufacture
US8808186B2 (en) 2010-11-11 2014-08-19 Covidien Lp Flexible debulking catheters with imaging and methods of use and manufacture
US20120316543A1 (en) * 2010-12-28 2012-12-13 Olympus Medical Systems Corp. Treatment device for endoscope
US8523899B2 (en) * 2010-12-28 2013-09-03 Olympus Medical Systems Corp. Treatment device for endoscope
US9456823B2 (en) 2011-04-18 2016-10-04 Terumo Corporation Embolic devices
US9770259B2 (en) 2011-09-01 2017-09-26 Covidien Lp Catheter with helical drive shaft and methods of manufacture
US8992717B2 (en) 2011-09-01 2015-03-31 Covidien Lp Catheter with helical drive shaft and methods of manufacture
US10335188B2 (en) 2011-09-01 2019-07-02 Covidien Lp Methods of manufacture of catheter with helical drive shaft
US9381278B2 (en) 2012-04-18 2016-07-05 Microvention, Inc. Embolic devices
US9532844B2 (en) 2012-09-13 2017-01-03 Covidien Lp Cleaning device for medical instrument and method of use
US10406316B2 (en) 2012-09-13 2019-09-10 Covidien Lp Cleaning device for medical instrument and method of use
US10434281B2 (en) 2012-09-13 2019-10-08 Covidien Lp Cleaning device for medical instrument and method of use
US9579157B2 (en) 2012-09-13 2017-02-28 Covidien Lp Cleaning device for medical instrument and method of use
US9339282B2 (en) 2012-10-02 2016-05-17 Cook Medical Technologies Llc Auger guidewire
US8920451B2 (en) * 2012-10-12 2014-12-30 Cook Medical Technologies Llc Device and method for removing tissue inside a body vessel
US9017352B2 (en) * 2012-10-12 2015-04-28 Cook Medical Technologies Llc Helical fibrin removal tool
US20140107693A1 (en) * 2012-10-12 2014-04-17 Cook Medical Technologies Llc Device and method for removing tissue inside a body vessel
US20140107678A1 (en) * 2012-10-12 2014-04-17 Cook Medical Technologies Llc Helical fibrin removal tool
US10932811B2 (en) 2012-11-08 2021-03-02 Covidien Lp Tissue-removing catheter with rotatable cutter
US10368902B2 (en) 2012-11-08 2019-08-06 Covidien Lp Tissue-removing catheter including operational control mechanism
US9943329B2 (en) 2012-11-08 2018-04-17 Covidien Lp Tissue-removing catheter with rotatable cutter
US9597110B2 (en) 2012-11-08 2017-03-21 Covidien Lp Tissue-removing catheter including operational control mechanism
US10835312B2 (en) 2013-04-16 2020-11-17 Transmed7, Llc Methods, devices and therapeutic platform for automated, selectable, soft tissue resection
CN105555210A (en) * 2013-08-08 2016-05-04 急速医疗有限公司 Clot removal device with steerable element
US9456843B2 (en) 2014-02-03 2016-10-04 Covidien Lp Tissue-removing catheter including angular displacement sensor
US10292728B2 (en) 2014-02-03 2019-05-21 Covidien Lp Tissue-removing catheter with improved angular tissue-removing positioning within body lumen
US9526519B2 (en) 2014-02-03 2016-12-27 Covidien Lp Tissue-removing catheter with improved angular tissue-removing positioning within body lumen
US10124090B2 (en) 2014-04-03 2018-11-13 Terumo Corporation Embolic devices
US10092663B2 (en) 2014-04-29 2018-10-09 Terumo Corporation Polymers
US10226533B2 (en) 2014-04-29 2019-03-12 Microvention, Inc. Polymer filaments including pharmaceutical agents and delivering same
US10946100B2 (en) 2014-04-29 2021-03-16 Microvention, Inc. Polymers including active agents
US10213224B2 (en) 2014-06-27 2019-02-26 Covidien Lp Cleaning device for catheter and catheter including the same
US10314667B2 (en) 2015-03-25 2019-06-11 Covidien Lp Cleaning device for cleaning medical instrument
US10639396B2 (en) 2015-06-11 2020-05-05 Microvention, Inc. Polymers
US11759547B2 (en) 2015-06-11 2023-09-19 Microvention, Inc. Polymers
US10292721B2 (en) 2015-07-20 2019-05-21 Covidien Lp Tissue-removing catheter including movable distal tip
US10314664B2 (en) 2015-10-07 2019-06-11 Covidien Lp Tissue-removing catheter and tissue-removing element with depth stop

Similar Documents

Publication Publication Date Title
US3749085A (en) Vascular tissue removing device
US3683891A (en) Tissue auger
EP1359848B1 (en) Device for taking a tissue sample
EP0702528B1 (en) Instrument for collecting multiple biopsy specimens
DE69731921T2 (en) Minimally invasive biopsy device
US5201323A (en) Wire-guided cytology brush
US5749887A (en) Twisted strand localization wire
EP2629676B1 (en) Cytology brush apparatus with improvements
US5573008A (en) Multiple biopsy sampling coring device
EP0720442B1 (en) Multiple biopsy sampling coring device
US4299225A (en) Surgical extracter
US20040260199A1 (en) Cytology collection device
GB1592595A (en) Electrode assembly for sensing heart activity
US20040133124A1 (en) Flexible biopsy needle
DE10027342B4 (en) Treatment instrument for an endoscope
EP2623036B1 (en) Instrument for taking a tissue sample
BE1028019B9 (en) Instrument for taking a tissue sample and using it in an endoscope with a flexible shaft
US10206664B2 (en) Spiral cut biopsy cannula
EP4037573B1 (en) Medical instrument for taking tissue samples in the body
JP3079657B2 (en) Cell collection tool
CN116916836A (en) Guide wire
JPH0515913U (en) Endoscopic treatment tool
JPS6389149A (en) Cytodiagnosis brush